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Abstract: Characterization of soil attribute variability often requires dense sampling grids, which can
be economically unfeasible. A possible solution is to perform targeted sampling based on previously
collected data. The objective of this research was to develop a method for mapping soil attributes
based on Management Zones (MZs) delineated from Sentinel-1 radar data. Sentinel-1 images were
used to create time profiles of six indices based on VV (vertical-vertical) and VH (vertical-horizontal)
backscatter in two agricultural fields. MZs were delineated by analyzing indices and VV/VH
backscatter bands individually through two approaches: (1) fuzzy k-means clustering directly
applied to the indices' time series, and (2) dimensionality reduction using deep-learning
autoencoders followed by fuzzy k-means clustering. The best combination of index and MZs
delineation approach was compared with four soil attribute mapping methods: conventional (single
composite sample), high-density uniform grid (one sample per hectare), rectangular cells (one
composite sample per cell of 5 to 10 hectares), and random cells (one composite sample per cell of
varying sizes). Leave-one-out cross-validation evaluated the performance of each sampling method.
Results showed that combining VV/VH index and autoencoders for MZs delineation provided more
accurate soil attribute estimates, outperforming the conventional, random cells, and often the
rectangular cell method.

Keywords: precision agriculture; remote sensing; soil sampling

1. Introduction

Information regarding the spatial and temporal variability of soil attributes plays a crucial role
in the development of effective soil management strategies. By examining these data, farmers can
adopt the most suitable cultivars and plant population densities for each specific point within the
production area. This, in turn, facilitates the precise determination of the required amounts of
fertilizers and soil acidity correctives, not only to maximize financial returns but also to promote
more sustainable production [1].

However, developing an effective strategy for collecting data to characterize the spatial and
temporal variability of soil attributes is a complex and challenging task. Research has highlighted the
importance of establishing dense sampling grids, with a minimum density of one sample per hectare,
to adequately capture the variability of soil attributes [2—4]. [5] demonstrated that variograms used
to infer soil attributes at unsampled points are unreliable when based on fewer than 100 data points,
potentially leading to inaccurate estimates with significant margins of error. Therefore, grid sampling
can provide a precise basis for variable rate application, but the costs and labour requirements,
especially in extensive areas with high variability, suggest that other approaches may be more
economical [6].

To understand the spatial and temporal variability of soil attributes without the need to establish
dense sampling grids, studies have demonstrated the potential of using soil sensors or the crop itself
as a 'soil sensor' [1]. Apparent soil electrical conductivity sensors, yield maps, and canopy reflectance
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indices can provide maps with different spatial and temporal variability patterns and be used to
delineate homogeneous areas known as Management Zones (MZs) [7-12]. Within each MZs, low
variability of soil attributes is assumed, recommending the collection of a single composite sample.
Based on specific levels of these attributes, targeted management practices for each MZs are
established. This strategy reduces soil sampling costs compared to dense sampling grids, while
simultaneously providing a better distribution of management practices (cultivars, plant density,
fertilizers) compared to the conventional soil sampling method, in which only a single attribute level
and consequently a single management strategy is determined for the entire area.

Although the development of MZs through these methods represents an advancement in
precision agriculture, their adoption among farmers remains limited. This limitation is largely due to
difficulties in accessing reliable historical yield maps, electrical conductivity data, and multispectral
satellite image time series with high temporal resolution. For example, yield maps have been
available since the early 1990s, yet their adoption is still limited to only 5% to 25% of the total
cultivated area in the United States for crops such as winter wheat, cotton, sorghum, and rice, and
45% for corn and soybean crops [13]. Apparent soil electrical conductivity presents itself as an
attractive alternative because it can be quickly and easily measured for fields using electromagnetic
induction instruments. However, this type of data collection strongly depends on specialized service
providers for data acquisition and interpretation, whose availability varies across agricultural
regions, complicating the implementation of this technology.

The use of multispectral optical images, freely available from orbital platforms such as Landsat-
8 and Sentinel-2, enables remote service delivery and extensive spatial coverage. However, its
application faces significant challenges, such as cloud cover, which compromises consistent data
acquisition. This issue is particularly critical in tropical regions, where average annual cloud cover
can reach approximately 66%, hindering the construction of representative historical time series
[14,15]. Therefore, to expand farmers' adoption of MZs, it is essential to develop alternative methods
capable of efficiently characterizing the spatial and temporal variability of soil attributes, with lower
cost per unit area and broader spatial coverage.

A promising line of research for characterizing the spatial and temporal variability of soil
attributes through MZs is the use of Synthetic Aperture Radar (SAR) data. The Sentinel-1 mission,
part of the European Union's Copernicus program, currently consisting of the Sentinel-1A sensor,
freely provides SAR imagery with a spatial resolution of 20 x 22 meters and a temporal resolution of
12 days [16]. Equipped with an active C-band SAR sensor operating at a central frequency of 5.405
GHz with dual polarization (Vertical-Vertical and Vertical-Horizontal), this satellite can penetrate
cloud cover and acquire imagery both day and night [17-20]. Moreover, its electromagnetic waves,
characterized by a longer wavelength, can penetrate the superficial vegetation layers and, in some
cases, reach deeper soil layers. In agricultural contexts, SAR backscatter data have been used, either
alone or in combination with multispectral data, for various applications, including soil moisture
estimation [21-23], assessment of soil physical properties [24-27], and estimation of multispectral
indices such as the Normalized Difference Vegetation Index (NDVI) [28-30], among other
applications.

Therefore, the previously mentioned properties highlight the potential of Sentinel-1 SAR
imagery as a rich source of spatiotemporal information, making it promising for mapping soil
attributes and delineating MZs. A methodology can be applied to create temporal profiles of
backscatter with dual polarization—VV (vertical-vertical) and VH (vertical-horizontal)—from SAR
data, complemented by the calculation of specific SAR indices. These temporal profiles can be
analyzed using unsupervised classification techniques to identify regions with similar backscatter
responses, potentially associated with variations in soil attributes. Thus, the objective of this study
was to develop a method for mapping soil attributes through the delineation of MZs using SAR data
provided by Sentinel-1.

2. Materials and Methods
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This study was conducted in two commercial grain production fields (Field A and Field B) that
exhibit different soil texture characteristics (Figure 1). Field A covers an area of 117 hectares and is
situated in the municipality of Sinop, Mato Grosso, Brazil (11°8'20" S and 56°19'18" W). Field B spans
an area of 106 hectares and is situated in the municipality of Chapadao do Céu, Goias, Brazil
(18°20'10" S and 52°37'12" W). According to the Brazilian Soil Classification System, Field A is
identified as a Dystrophic Red-Yellow Latosol, while Field B is classified as a Dystrophic Red Latosol
[31]. For soil sampling, a grid-point sampling method was adopted with an approximate spacing of
100 meters. Field A was represented by 113 samples, and Field B by 104 samples. The values of 9 soil
attributes were determined in the laboratory from the grid of points established in each field.
Descriptive statistics of these attributes are summarized in Table 1.
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Figure 1. Location of the study fields (Field A and Field B) in Brazil with the respective sampling points.

Table 1. Summary of descriptive statistics of soil properties measured in the study area.

Field Soil attribute Unity Mean Minimum Maximum STD  CV (%)

CLA g/kg 35.65 16.30 62.00 11.91 33

pH - 6.11 5.76 7.78 0.28 5

P mg/dm? 17.91 3.40 56.60 10.40 58

K+ mg/dm3 86.24 25.00 199.00 36.72 43

A Caz+ cmolc/dm3 2.55 0.99 5.82 0.70 28
Mg2 cmolc/dm? 0.84 0.43 1.68 0.22 26

C cmolc/dm? 1.43 0.47 2.78 0.45 31
\Y% % 51.65 36.70 97.00 8.95 17

H++ AP+ cmolc/dm? 3.28 0.20 5.20 0.81 25

CLA g/kg 37.00 19.00 58.30 7.71 21

pH - 6.35 5.81 6.91 0.21 3

P mg/dm3 13.75 2.50 30.10 6.16 45

K+ mg/dm3 55.55 26.0 120.00 19.43 35

B Ca2 cmole/dm3  3.30 2.14 5.23 0.61 18
Mg? cmolc/dm3  1.25 0.72 2.08 0.29 24

C cmolc/dm3  1.58 0.87 2.86 0.32 2

\Y% % 62.29 49.50 74.60 5.46 9

H++ A+ cmolc/dm3 2.87 1.20 4.40 0.72 25
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CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*: Potassium; Ca?*: Calcium; Mg?: Magnesium; C: Soil
Organic Carbon; V: Basis Saturations; H* + Al**: Potential acidity; STD: standard deviation; CV: coefficient of

variation (%).

The SAR data used in this study were freely obtained from the Sentinel-1A sensor of the
European Union's Copernicus program. The Sentinel-1 mission provides global SAR data in the C-
band (central frequency of 5.405 GHz) with dual polarization (VV and VH). The temporal resolution
is 12 days, although it can be higher in some cases due to overlapping sensor passes. In this study,
the Sentinel-1 collection available on Google Earth Engine was used, comprising Ground Range
Detected (GRD) format images processed with the Sentinel-1 toolbox to produce calibrated and
orthorectified products. All images were acquired in descending orbits using the Interferometric
Wide (IW) swath mode and dual polarization (VV and VH). They have a pixel spacing of 10 meters
but a spatial resolution of 20 x 22 meters [16].

The preprocessing steps for the SAR data included border noise removal, speckle filtering,
terrain radiometric normalization, and conversion of the backscatter coefficient to decibels. Image
border noise results from the process of converting acquisitions from GRD format to IW, and its
presence is an undesired processing artifact that limits its full exploitation in various applications
[32]. The speckle phenomenon, common in SAR images due to the interference of radar waves
reflected by surfaces smaller than the radar resolution, was addressed through multitemporal
filtering [33]. The Refined Lee filter, 3x3 [34], was used with a multitemporal filtering structure of 10
images. Terrain radiometric normalization corrects variations in the received signal due to terrain
slope. For this, the Shuttle Radar Topography Mission digital elevation model with a 1-arc-second
resolution (~30 m) [35] was employed, deriving elevation, slope, and aspect values for normalization.
Finally, as the last preprocessing step, the terrain-corrected radiometric backscatter coefficient is
converted to decibels through a logarithmic transformation. Table 2 summarizes the parameters and
specifications for image acquisition and preprocessing. The data were preprocessed using Google
Earth Engine (GEE) [36]. All GEE codes for Sentinel-1 data preprocessing were provided by [37] and
are available at https://github.com/adugnag/gee_s1_ard.

Table 2. Specifications of the Sentinel-1 SAR data used in this study.

Parameters Specifications
Satellite Pass Descending

N Vertical-Vertical (VV)
Polarization

Vertical-Horizontal (VH)
Speckle filter Refined Lee - 3x3 (Lee et al., 1999)
Speckle filter Framework  Multitemporal — 10 images
Digital elevation model NASA SRTM Digital Elevation 30m (T.G. Farr et al., 2007)

SRTM: Shuttle Radar Topography Mission.

After preprocessing, each SAR image was converted into a dataframe and stored to generate
temporal backscatter profiles. For each analyzed field, a grid of 40m x 40m quadrilaterals was
established. In each image, the average pixel values within these quadrilaterals were calculated,
thereby constructing the temporal backscatter profiles for the VV and VH bands. This method helps
minimize potential residual noise in the images and reduces the computational load required for
subsequent analyses. Based on these profiles, six indices were calculated using Sentinel-1 data, as
detailed in Table 3. Each VV and VH temporal backscatter series, as well as the indices for each
quadrilateral, were standardized using z-score normalization. This process adjusts the data so that
each set has a mean of 0 and a standard deviation of 1. To avoid issues of collinearity among the
indices, Pearson correlation (r) was calculated between them. Based on this analysis, only those
indices that showed lower collinearity (r < 0.95) were included, thus ensuring the independence and
relevance of each chosen index for the definition of MZs.
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Table 3. The SAR (Synthetic Aperture Radar) indices used in this study to delineate management zones.

Full Name Abbreviated Equation Source
Name
Polarimetric Radar 4%
PRVI _ 38
Vegetation Index (1 VH + VV) VA 138]
Sentinel-1 Radar - L VH https://custom—scrlPts.sentlr}el—
Vesetation Index RVI4S1 * hub.com/custom-scripts/sentinel-
& VH+VV VH+VV 1/radar_vegetation_index/#
4+« VH
Radar Vegetation Index RVI B [39]
VH +VV
Normalized Ratio VH -VV
Procedure Between Bands NRPB VH+VV [40]
4%
VV VH Ratio VV/VH Vi [30]
VH
VH VV Ratio VH/VV 7 [28]
VH Backscattering VH VH -
VV Backscattering VvV 44 -

VV: Vertical-Vertical polarization; VH: Vertical-Horizonal polarization.

To understand the seasonal variability of the SAR indices, rainfall data from the NASA-POWER
system (https://power.larc.nasa.gov) were used, considering that radar data are sensitive to soil
moisture [21-23].This system was developed to provide meteorological information directly
applicable to fields such as architecture, energy generation, and agrometeorology. It compiles
information from various data sources, including grid-derived data, to offer a comprehensive view
of climate and weather conditions (Maldonado et al. 2019).

To delineate the MZs, all SAR indices were analyzed individually, and two approaches were
proposed. The first approach (Approach 1) involved the direct application of the fuzzy k-means
clustering algorithm (Bezdek et al. 1984) on the temporal series of the SAR indices. In the second
approach (Approach 2), a machine learning method known as autoencoders was implemented to
reduce the dimensionality of the temporal series. Autoencoders are a type of neural network often
used in unsupervised machine learning tasks, such as feature extraction (Hoang and Kang 2019). The
basic architecture of an autoencoder is divided into three parts: encoder, bottleneck layer, and
decoder. The encoder receives the input data (in this case, SAR indices) and compresses it into a
lower-dimensional representation (bottleneck layer). The decoder then takes this compressed
representation and attempts to reconstruct the original data from it. This process is carried out during
the training of the autoencoder network. Thus, after training, the bottleneck layer was used as input
for the fuzzy k-means algorithm to cluster the SAR data time series and, consequently, define the
MZs. To define the architecture and training parameters, a k-fold cross-validation procedure, with
k=5, was implemented aiming to identify the most suitable hyperparameters. The selection of the
final model was based on the lowest mean squared error obtained during the validation process. The
selected architecture and training parameters are detailed in Tables 4 and 5.
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Table 4. A proposed autoencoder architecture for feature extraction.
Layers Type Neurons Activation Function

Input Layer (SAR) - N° of SAR images each field -

Encoder Layer 1 ~ Fully Connected 32 ReLU
Bottleneck Layer 1 ~ Fully Connected 6 ReLU

Decoder Layer 1 Fully Connected 32 ReLU

Output Layer Fully Connected N° of SAR images each field Sigmoid

ReLU: Rectified Linear Unit; SAR: Synthetic Aperture Radar.

Table 5. Parameters used to train the autoencoder architecture.

Parameter Value
Number of Epochs 200
Optimization Function Adam
Learning Rate 0.0001
Batch Size 1
Loss Function Mean Squared Error
Regularization L2 (lambda = 0.01)

The simulations were conducted considering the number of clusters, in this case MZs, equal to
three for both approaches and fields. After clustering, QGIS geoprocessing tools were used for
refinements. Clusters with an area smaller than 3 hectares were integrated into the larger contiguous
clusters, while clusters larger than 3 hectares but geographically disconnected and sharing the same
label were considered as distinct clusters.

The most common soil sampling methods include the conventional soil sampling method
(CONV), the cell-based soil sampling method (CEL), the uniform grid soil sampling method (GRID-
1), and the MZs-based soil sampling method. The CONV method involves collecting several samples
to form a single composite sample, which is considered representative of the entire field. In the
present study, the CONV method was considered as the average of all collected samples. The CEL
method, on the other hand, divided the area into cells (polygons of 5 to 10 hectares), ensuring the
presence of at least four GRID-1 samples in each cell. The attribute estimation in each cell was the
average of the samples collected within each cell. A fifth comparison method is proposed where cells
are created randomly, called random cell-based soil sampling method (CEL-RND) (Figure 2). The
number of random cells was defined to match the number of MZs established by the SAR data-based
method. In total, 1000 random cell scenarios were generated for each study area. The minimum size
of each random cell was 4 hectares, to ensure the presence of at least four soil samples per cell. The
random cells were generated using a Python script based on Voronoi Diagrams, proposed by Georgy
Voronoi (Voronoi 1908), and the soil attributes within each cell were estimated by the average of the
samples collected within each cell.
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Figure 2. Sampling methods defined by cells (CEL) and random cells (CEL-RND) for the study areas (Field A

and Field B). The number within each zone represents its area in hectares.

To evaluate the performance of each sampling method, the 'leave-one-out' cross-validation
(LOOCV) method was used, always based on the GRID-1 data. In this way, we ensured the
participation of all points in the error calculation for all evaluated methods. In LOOCYV, each point
from the GRID-1 dataset was successively removed, and its estimate was made using the sampling
methods: CONV, CEL, MZs, GRID-1, and CEL-RND. After the estimation, the point was reintegrated
into the dataset. This process continued until all GRID-1 points were evaluated. For the CONV
method, the estimate of the removed point was calculated from the average of the remaining points.
For the CEL, MZs, and CEL-RND methods, the estimate was based on the average of the remaining
samples within their respective areas. Finally, to evaluate the GRID-1 method, the estimate of the
removed point was a value interpolated using ordinary kriging based on the fitting of
semivariograms. Semivariograms are tools that allow for the characterization and determination of
distribution patterns, such as randomness, uniformity, and spatial trends [41]. For this, equation (1)
was used to calculate the semi-variance:

y () = ==X P() - z(x; + h))? )

2N(h) i

where y*(h) is the value of the experimental semivariance at the distance interval h; z(x;) is the
sample value measured at the sampling points x;, where data exist at x; and x; + h; and N(h) is the
total number of sample pairs within the distance interval h.

During the adaptation of theoretical models to the experimental semivariograms, coefficients
were determined that describe the nugget effect (C0), sill (CO + C), partial sill (C), and range (A). The
models tested for adaptation included the spherical, exponential, Gaussian, and linear models, and
they were selected based on maximizing coefficient of determination (R?), minimizing sum of
squared residuals, and maximizing the correlation coefficient obtained through cross-validation.
These metrics are used to evaluate how well the fitted model matches the experimental data. Spatial
Dependence Index (SDI) was analyzed using the ratio C0/(CO + C), and the intervals proposed by [42]
were employed to classify spatial dependence into three categories: strong dependence (SDI < 25%),
moderate dependence (25% < SDI <75%), and weak dependence (SDI 2 75%). Semivariograms of soil
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chemical and physical attributes were modelled using SmartMap [43] Version 1.4, an open-source
plugin developed for QGIS.

By comparing the estimated values of soil attributes obtained by the CONV, CEL, MZs, GRID-
1, and CEL-RND methods with the sampled values at each corresponding point, the Root Mean
Square Error (RMSE) was calculated. This analysis was conducted individually for each study field,
following the methodology established in equation (2):

1 n
RMSE = Jﬁ Ziﬂ(xi - %))? ()

where: X, represents the estimated value of the soil attribute at point i; x; is the observed value of

the soil attribute at point i and n is the number of sampled points.

To compare the MZs defined from SAR data with the other soil sampling methods used in this
study, the combination of approach (1 or 2) and SAR index that resulted in the lowest RMSE was
selected. After this selection, the average of each attribute was calculated for each zone, and then the
attributes were compared using the F-test (with a significance level of p-value < 0.05). The RMSE
values of the MZs sampling method for each field were compared with the other values resulting
from the sampling methods evaluated in this study. To evaluate the CEL-RND method, we
quantified, across 1000 generated scenarios, the frequency with which the MZs method showed a
higher RMSE than CEL-RND. Then, the percentage of these scenarios in which the MZs method
performed worse, in terms of RMSE, compared to the CEL-RND method was calculated.

3. Results

3.1. Exploratory Analysis of the SAR Dataset

Between January 1, 2018, and March 31, 2023, 319 images were obtained for Field A and 266
images for Field B, resulting in average temporal resolutions of 6.0 and 7.4 days, respectively. Figure
3 shows the Peason correlation estimated between the VV and VH backscatter values and the SAR
indices. The correlations obtained were found to be significant, with p-values equal to zero. The
indices RVI, NRPB, VH/VV, and VV/VH show high r with each other, as well as PRVI and VH,
exhibiting values above 0.95. On the other hand, the RVI4SI index showed the lowest level of r with
the other indices. Based on these results, four indices (VV, VH, VV/VH, RVI4SI) were selected for the

continuation of the study.
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Figure 3. Pearson correlation between VV (Vertical-Vertical polarization) and VH (Vertical-Horizontal
polarization) backscatter values and SAR indices obtained in Fields A and B. VH: Vertical-Horizonal
polarization; VV: Vertical-Vertical polarization; PRVI: Polarimetric Radar Vegetation Index; RVI4SI: Sentinel-1
Radar Vegetation Index; RVI: Radar Vegetation Index; NRPB: Normalized Ratio Procedure Between Bands;
VV/VH: VV VH Ratio; VH/VV: VH VV Ratio.

The monthly averages of the time series for the VV and VH backscatter coefficients, as well as
the VV/VH and RVI4SI indices, were plotted for both fields in each year (Figure 4). Considering that
the data availability extended only until March 2023, the graphical analysis was restricted to the
period from 2018 to 2022. The time series of the calculated indices exhibited seasonal trends. Except
for the VV/VH index, an increase was observed between September and December, followed by a
decline in February. This behavior coincides with the period of increased monthly accumulated
precipitation (Figure 5), suggesting a possible relationship between higher soil moisture or vegetation
growth and elevated backscatter levels. From February to March, although precipitation tends to
remain relatively constant, there is a new increase in backscatter, likely due to the growth of second-
crop vegetation. Subsequently, from May to September, there was a decrease in the SAR indices, in
line with the reduction in monthly accumulated precipitation and crop biomass. For the VV/VH
index, there was an increase between January and February, which then gave way to a decrease from
February to April, except for the years 2019 and 2021. Additionally, only for the VV/VH index, an
increase in values was recorded from April to August.
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Figure 4. Scatter plots with smoothed lines of backscatter coefficients and SAR indices for Fields A and B over
the months, covering the period from January 1, 2018, to December 31, 2022. VV: Vertical-Vertical polarization;
VH: Vertical-Horizonal polarization; VV/VH: VV VH Ratio: RVI4SI: Sentinel-1 Radar Vegetation Index.
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Figure 5. Scatter plots with smoothed trend lines of monthly accumulated precipitation for Fields A and B, using
NASA POWER data, in annual subplots from January 2018 to December 2022.

3.2. Analysis of Spatial Variability of Soil

The analysis of the experimental semivariograms in GRID-1 confirmed the spatial variability of
soil attributes for both fields (Table 6). When analyzing the SD], it was found that clay (CLA) content
and soil organic carbon (C) in Field A and CLA and potential acidity (H+ + Al3+) in Field B had SDI
values lower than 25%, indicating a high spatial dependence [42]. All other elements, except for
phosphorus (P) in both fields, exhibited SDI values between 25% and 75%, which indicates moderate
spatial dependence. Figures 6 and 7 show the maps constructed using ordinary kriging after
semivariogram fitting. In Fields A and B, the maps of CLA and C, as well as those of Ca* and
magnesium (Mg?"), respectively, display visual similarities that indicate high correlations between
these soil attributes.

Table 6. O The theoretical model parameters were adjusted to the empirical semivariance of the soil attributes
for Field A and Field B.

Field Soil attribute Model Range (m) Co Co+C R? SDI (%)
CLA Gaussian 697.85 1472 198.50 0.99 7.42
pH Linear to Sill 370.64 0.022 0.036 0.47 61.11
P Spherical 396.95 45.27 96.66 0.74 46.83
K Linear to Sill 642.51 286.77 1012.68  0.99 28.32
A Ca? Linear to Sill 419.14 0.12 0.36 0.79 33.33
Mg Linear to Sill 458.12 0.02 0.04 0.83 50.00
C Linear to Sill 472.85 0.04 0.17 0.97 23,52
V (%) Linear to Sill 347.48 28.78 48.47 0.59 59.37
H++ Al Linear to Sill 379.13 0.24 0.57 0.67 42.11
CLA Spherical 401.31 3.77 58.51 0.97 6.44
B pH Linear 557.85 0.02 0.04 0.948 50.00

P Linear to Sill 320.92 26.97 33.60 0.29 80.26
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K+ Exponential 788.23 160.36  341.29 0.92 46.99
Caz Linear 552.69 0.13 0.30 0.98 43.33
Mgz Linear 559.91 0.03 0.08 0.99 37.50
C Linear 557.18 0.03 0.09 0.99 33.33
v Linear to Sill 585.78 23.10 31.00 0.96 74.19
H++ Al Linear 569.48 0.09 0.53 0.98 16.98

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*: Potassium; Ca2+: Calcium; Mg?": Magnesium; C: Soil
Organic Carbon; V: Basis Saturations; H* + AI3*: Potential acidity; Range (m); CO: Nugget effect; CO + C: Sill; R*
Coefficient of determination; SDI (%): Special Dependency Index.
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m148.21
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Figure 6. Figures of soil attributes interpolated by ordinary kriging for Field A using GRID-1. CLA: Clay; pH:
Active Acidity in water; P: Phosphorus; K*: Potassium; Ca?": Calcium; Mg?": Magnesium; C: Soil Organic Carbon;
V: Basis Saturations; H* + AI>*: Potential acidity.
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Figure 7. Figures of soil attributes interpolated by ordinary kriging for Field B using GRID-1. CLA: Clay; pH:
Active Acidity in water; P: Phosphorus; K*: Potassium; Ca?": Calcium; Mg?": Magnesium; C: Soil Organic Carbon;
V: Basis Saturations; H* + Al Potential acidity.

3.3. Delineation of Management Zones with SAR

Regarding the design and quantity of MZs, visual variations were observed depending on the
SAR index used and the methodology adopted (Figure 8). These variations in size, shape, and number
of MZs become even more noticeable when contrasting the proposed methodologies. The total
number of MZs in Approach 2 exceeded that of Approach 1. In the case of Field B, the number of
MZs according to Approach 1 was 2, lower than the initially stipulated value of 3. This result is
because some clusters created by the Fuzzy C-means algorithm did not have significant associations
with data points or exhibited an extremely low degree of membership in relation to all points for a
specific cluster. Additionally, the RVI4Sl index resulted in excessively fragmented clusters compared
to the other algorithms evaluated. Due to this fragmentation, it was considered inappropriate to use
this index for the creation of MZs in Field B. Therefore, its results were not considered in this study.
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Figure 8. Management zones resulting from SAR indices for both fields and approaches. The number within

each zone represents its area in hectares. VV: Vertical-Vertical polarization; VH: Vertical-Horizonal polarization;

VV/VH: VV VH Ratio: RVI4SI: Sentinel-1 Radar Vegetation Index.

Table 7 presents the RMSE obtained through LOOCYV, representing the accuracy of soil attribute
estimates for Fields A and B using Approaches 1 and 2 with the MZs method. In the evaluation of
errors associated with soil attribute estimation, the VV/VH index consistently stood out, achieving
the lowest RMSE values compared to the other indices. For example, in Field A, when estimating the
clay content attribute using Approach 2, the VV backscatter band recorded an RMSE of 8.33, while
the VV/VH index showed a significantly lower RMSE of 5.74. When analyzing the two approaches,
it is observed that Approach 2 has an advantage in terms of accuracy over Approach 1, especially
when adopting the VV/VH ratio for soil attribute estimation. In all fields studied, the attributes CLA,

P, Ca? and C recorded lower RMSE with Approach 2 when using the VV/VH index.

Table 7. RMSE of Approaches 1 and 2 for Fields A and B related to the VV and VH backscatter coefficients and

the SAR indices VV/VH and RVIL.

FIELD Approach Soil attribute \AY VH VV/VH RVI4SI

CLA 8.99 9.01 7.82 7.67

pH 0.27 0.27 0.27 0.27

P 10.08 10.18 9.74 9.42

K* 31.63 31.73 29.73 29.21

A Approach 1 Caz 0.66 0.65 0.65 0.65
Mg? 0.2 0.2 0.19 0.2

C 0.38 0.38 0.36 0.35

\% 8.99 8.93 9.04 9.09
Hr + Al 0.82 0.83 0.81 0.8

Approach 2 CLA 8.33 6.34 5.74 7.82
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pH 0.27 0.27 0.27 0.27
P 9.98 9.81 9.67 10.02
K+ 31.28 24.87 23.7 29.47
Ca2 0.65 0.64 0.64 0.63
Mg? 0.19 0.19 0.19 0.19
C 0.36 0.3 0.27 0.35
A% 9 9.08 9.05 8.99
H++ Al 0.82 0.75 0.75 0.83
CLA 7.77 7.81 7.48 -
pH 0.21 0.21 0.19 -
P 6.24 6.23 6.21 -
K 19.24 18.79 18.28 -
Approach 1 Ca 0.61 0.6 0.55 -
Mg 0.29 0.29 0.26 -
C 0.32 0.31 0.29 -
A% 5.51 5.52 5.3 -
B H++ Al 0.7 0.7 0.56 -
CLA 7.31 7.8 6.53 -
pH 0.19 0.19 0.2 -
P 6.14 6.26 6.08 -
K+ 18.25 19.03 19.22 -
Approach 2 Ca2 0.57 0.57 0.53 -
Mg? 0.27 0.27 0.25 -
C 0.29 0.29 0.28 -
A% 5.31 5.31 5.52 -
H++ Al 0.58 0.59 0.58 -

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*: Potassium; Ca2+: Calcium; Mg?": Magnesium; C: Soil
Organic Carbon; V: Basis Saturations; H* + Al**: Potential acidity; VV: Vertical-Vertical polarization; VH: Vertical-
Horizonal polarization; VV/VH: VV VH Ratio: RVI4SI: Sentinel-1 Radar Vegetation Index.

The results indicated significant differences in soil attribute values between the MZs delineated
by Approach 2 and the SAR index VV/VH, which had the lowest RMSE (Table 8). At least one mean
of each soil attribute from the MZs differed statistically at a p-value < 0.05, except for the V attribute
in both fields. For Field A, MZs was characterized as the zone with the highest average values of CLA,
potassium (K*), Ca?, Mg*, C, and potential acidity (H* + Al*), while MZ: had the lowest values. For
Field B, MZ: was characterized as the zone with the lowest average values of CLA, P, Ca?, Mg?, and
C.

Table 8. Univariate analysis of variance of soil attributes for the management zones delineated by Approach 2
and the SAR VV/VH index for fields A and B.

Soil Attributes

Field Management zonesNumber of Samples CLApH P K Ca»Mg* C V I:i:
MZ: 20 38.11 6.2919.81 73.35 2.91 0.87 1.47 54.40 3.34
MZ> 52 25.97 6.0221.41 67.38 2.20 0.72 1.12 49.84 3.04
A MZs 12 58.23 6.05 8.48 160.50 3.11 1.09 2.29 50.03 4.33
MZ, 28 42.18 6.1514.13 98.64 2.70 0.93 1.59 53.75 3.23
Variance analysis F-Value 128.505.25 7.98 57.93 11.5717.7869.34 2.03 10.15

Prob >F o o 0 o0 0 o0 0 011 O
MZ: 49 39.30 6.2614.54 62.08 3.60 1.41 1.73 60.94 3.31
B MZ, 4 40.58 6.28 16.7 55.00 3.80 1.54 1.75 63.32 3.18

MZs 14 33.75 6.4214.61 52.5 3.16 1.15 148 63.9 2.56
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MZ.4 20 40.58 6.429.63 48.85 2.98 1.06 1.44 6292 245
MZs 17 28.01 6.5114.92 47.24 2.81 1.03 1.33 6391 225
Variance analvsis F-Value 12.80 6.893.13 3.07 11.2113.86 9.14 1.57 16.57
Y Prob > F 0 0002002 0 0 0 019 0

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*: Potassium; Ca?*: Calcium; Mg?: Magnesium; C: Soil
Organic Carbon; V: Basis Saturations; H* + Al**: Potential acidity. CLA in g/kg; P e K* in mg/dm3; Ca?, Mg, C e
H* + AI¥*in cmolc/dm3.

Figure 9 presents a comparison between the error (RMSE) obtained by the MZs method using
Approach 2 and the SAR index VV/VH and the error generated from 1000 different CEL-RND
scenarios. The value indicated on each bar represents the percentage of times the MZs method, based
on SAR data, had a higher error than the random cell method. Therefore, the lower the percentage
value displayed on the bar, the better the performance of the MZs method compared to CEL-RND.
Values equal to or greater than 50% indicate that MZs do not contribute to the representativeness of
the soil attribute variability compared to a random process. As can be observed, for most soil
attributes in both fields, the RMSE resulting from the CEL-RND sampling method was higher than
the RMSE obtained by the MZs sampling method, resulting in values below 50%. In Field A, the
attributes with the lowest percentage of errors (less than 5%) are CLA, K*, C, H* + Al**, and pH. This
indicates that the MZs method performed well for these attributes in this field. The V attribute, on
the other hand, showed a significantly higher error percentage of 43%, indicating that the MZs
method may not be as efficient for this specific attribute. In Field B, the CLA attribute had a relatively
low error percentage, around 3.9%. On the other hand, pH, K+, and V showed considerably higher
errors, around 48%, 72%, and 77%, respectively.

80 mmm FIELD A 77
B FIELD B 72

70

60
50 - 48

43
40

30 4 28 30 30

20 - 1 19

% RMSEMZ > RMSE CEL-RND

CLA pH P K+ Ca2+  Mg2+ C V. H+ + A3+
Soil attributes

Figure 9. The percentage value by which the RMSE of the Management Zones (MZs) soil sampling method,
delineated by Approach 2 and the SAR VV/VH index, was greater than the RMSE generated by the 1000 random
cell soil sampling method (CEL-RND) scenarios. CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*:
Potassium; Ca?": Calcium; Mg?": Magnesium; C: Soil Organic Carbon; V: Basis Saturations; H* + Al**: Potential
acidity.

3.4. Comparing Soil Sampling Methods

Table 9 highlights the RMSE obtained through LOOCV cross-validation, demonstrating the
accuracy of soil attribute estimates in Fields A and B using different sampling strategies: GRID-1,
CONYV, CEL, and MZs using Approach 2 and the SAR index VV/VH. The GRID-1 method recorded
the lowest RMSE values in both fields, indicating superiority in the precision of soil attribute
estimates. In both fields, the CONV method stood out with the highest RMSE values, indicating lower
precision in soil attribute estimates. The MZs delineated from SAR data showed superiority
compared to the CONV and CEL methods in Field A. In Field B, MZs outperformed the conventional
method.
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Table 9. RMSE of the sampling methods GRID-1, CONV, CEL, and MZs delineated by Approach 2 and the SAR
index VV/VH for soil attributes in Fields A and B.

Field Soil attribute GRID-1 CONV CEL MZs
CLA 3.49 11.97 6.24 5.74
pH 0.22 0.28 0.29 0.27
P 6.72 10.44 10.23 9.67
K 18.59 36.88 25.32 23.7
A Ca2 0.43 0.71 0.64 0.64
Mg2 0.15 0.22 0.2 0.19
SOC 0.17 0.45 0.31 0.27
A% 7.07 8.99 9.34 9.05
H+AL 0.55 0.82 0.84 0.75
CLA 1.45 7.75 6.35 6.53
pH 0.14 0.21 0.2 0.2
P 5.24 6.19 6.95 6.08
K 12.69 19.52 20.12 19.22
B Ca2 0.36 0.61 0.46 0.53
Mg2+ 0.14 0.3 0.2 0.25
SOC 0.19 0.32 0.26 0.28
A% 4.63 5.48 5.66 5.52
H+AL 0.26 0.72 0.54 0.58

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K*: Potassium; Ca?: Calcium; Mg?": Magnesium; SOC:
Soil Organic Carbon; V: Basis Saturations; H* + AI*": Potential acidity. GRID-1: uniform grid soil sampling
method; CONV: conventional soil sampling method; CEL: cell soil sampling method; MZs: management zone
soil sampling method.

4. Discussion

In the context of remote sensing applied to agricultural fields dedicated to grain production,
SAR backscatter time series were used in this study to delineate MZs. Although the Sentinel-1 satellite
has a nominal temporal resolution of 12 days for South America, a shorter revisit interval was
observed, possibly due to the overlapping of imaging swaths during consecutive satellite passes.
Previous studies have demonstrated that higher temporal resolution enhances trend detection, and
the identification of spatiotemporal patterns related to crop phenology [44]. [45] pointed out that, in
the case of C-band SAR data, temporal resolutions between 3 and 6 days are more suitable for
distinguishing crop types and monitoring their phenology, while daily monitoring is necessary to
capture rapid changes in soil moisture conditions. Therefore, the higher temporal resolution observed
provides improved conditions for understanding and interpreting variations in backscatter over
time, potentially contributing to a more accurate delineation of MZs and greater accuracy in
estimating soil attributes.

The analysis of the relationship between VV and VH backscatter values and SAR indices
revealed that certain indices exhibit strong correlations, indicating potential redundancies. This
finding aligns with the study by [46], which identified that the RVI, NRPB, VH/VV, and VV/VH
indices show high mutual correlation, with values greater than 0.95 or less than -0.95. Additionally,
in both our analysis and the cited study, the RVI4SI index displayed the lowest correlation compared
to other indices. Therefore, these findings suggest that, regardless of the agricultural fields studied,
the relationship between VV and VH backscatter values and SAR indices tends to follow similar
patterns.

From September to December, an increase in VV and VH indices was observed. This increase
may be related to the return of the rainy season, which raises soil moisture content. Indeed, during
this same period, there is an increase in the monthly accumulated precipitation, elevating soil
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moisture levels. Additionally, the planting period for agricultural crops, which occurs between
September and October, also influences this phenomenon, as increased biomass intensifies signal
backscatter [47]. However, during the same period, the VV/VH index showed a decline. According
to studies, the VV polarization band is particularly more sensitive to soil moisture compared to the
VH band, leading to a reduction in the VV/VH index during this period [48,49].

Between December and January, a stabilization of VV and VH backscatter values is observed.
This phenomenon occurs because, with the crop biomass fully developed, there is an attenuation
effect from the canopy on the bands, reducing their sensitivity to soil moisture variation. [49] showed
that the sensitivity of VV and VH bands to soil moisture variation decreases with the increase in
vegetation cover growth (NDVI) and is stronger in the VV polarisation than in the cross-polarization
VH. [47] demonstrated that the VV polarization C-band penetrates the maize canopy even when the
crop is at its biomass peak (NDVI > 0.7). However, penetration was limited in wheat and pastures.
Therefore, during the crop canopy development, vegetation may become the primary component
contributing to the volume scattering of the backscattered signal, while the influence of soil may
become secondary. Finally, between April and August, there is a strong downward trend in
backscatter values for both VV and VH polarizations. This behavior may be associated with the
decrease in precipitation during this period, resulting in lower soil moisture content. Since the
decrease in backscatter is more pronounced in VV polarization compared to VH, an increase in the
VV/VH ratio is observed.

The evaluation of experimental semivariograms in GRID-1, for both fields, highlighted the
spatial dependence of soil attributes. The SDI, which relates the nugget effect to the sill to quantify
the spatial dependence of these attributes, was found to be less than 75% for most attributes. This
indicates strong spatial dependence (less than 25%) and moderate spatial dependence (between 25%
and 75%), as suggested by [42]. In this context, kriging emerges as an excellent method for
interpolation and estimation of soil attributes in unsampled locations.

The VV and VH backscatter bands, along with the VV/VH and RVI4SI indices, showed
variations in the size, shape, and number of MZs when subjected to Approaches 1 and 2. Approach
2, which applies clustering on features extracted from SAR time series via autoencoders, tended to
generate more MZs in both fields compared to Approach 1, which performs clustering directly on
the time series. Autoencoders belong to a specific class of deep artificial neural networks. They are
designed to compress an input into a more compact representation and then reverse that
compression, aiming for the reconstructed input to resemble the original as closely as possible [50].
The features extracted by the autoencoder, represented by the compact part, can capture nuances and
patterns in the data that raw representation cannot. This leads to a more detailed segmentation of the
fields, resulting in a higher number of MZs. Another point to consider is that SAR images are
characterized by high levels of noise [51]. Therefore, the use of features extracted by autoencoders
represents a less noisy version of the original data, as the learning process of architecture extracts
patterns that explain the temporal behavior of the backscatter. This factor may result in more accurate
clustering and an increase in the number of MZs.

The VV/VH index, combined with Approach 2 based on autoencoders, tended to exhibit lower
RMSE values for soil attribute estimation using the LOOCV strategy. Thus, it was able to produce
MZs with greater precision compared to other SAR indices. The integration of VV and VH backscatter
band information has shown superior performance compared to the isolated use of each band in
various applications [52,53]. This phenomenon is justified by the fact that the VV/VH ratio minimizes
acquisition system errors and provides more consistent indications over time than the isolated VH or
VV backscatter, as pointed out by [30]. Additionally, certain studies indicate that the VV/VH index
correlates more closely with NDVI in specific phenological stages of the crop. This suggests that this
index helps in understanding not only the spatial variability of soil moisture but also the canopy
structure and crop biomass—crucial aspects for defining MZs [54].

When analyzing the MZs derived from the VV/VH index using autoencoders in both fields, a
statistical distinction was observed in at least one mean of each soil attribute originating from the
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MZs, except for V. Despite the high variability of clay in the region, statistical differences were also
detected in temporally unstable attributes, such as Ca?, Mg?, K+, etc. The ability of plants to access
these attributes is strongly influenced by the soil's ability to retain water in its macro- and micropores.
Thus, the sensitivity of SAR data to soil moisture, as evidenced in several studies, is crucial in
identifying the variability of these macro- and micronutrients present in the soil [21,49,55].

When analyzing the MZs generated by the VV/VH index using autoencoders in comparison to
the randomly created cells (CEL - RND), the potential of the SAR index to delineate MZS was
highlighted. Only for the soil attributes K* and V in Field A was observed that in more than 50% of
the scenarios, the RMSE of CEL - RND was lower than the RMSE estimated by the MZs. The best
performance scenario of the VV/VH index against CEL - RND was observed for clay in both fields.
The clay fraction of the soil is intrinsically linked to water retention [56]. Therefore, the sensitivity of
SAR data to soil moisture may be one of the explanations for the high correlation observed between
the MZs and clay variability in the fields.

When evaluating the various sampling methods, it was observed that the method based on
GRID-1 stood out, recording the lowest errors (lower RMSE) for all soil attributes. This result is
justified by the fact that the fields investigated in this study exhibited high and moderate spatial
dependencies for soil attributes, as indicated by the SDI. In such contexts, the fitting of
semivariograms combined with kriging interpolation, the approach adopted in our study, tends to
provide good estimates. In contrast, the significant spatial variability suggests that the CONV
method, which attempts to represent the field through a single soil sample, may not be efficient. This
observation is reinforced by noting that in the fields analyzed in this study, the CONV method had
the highest RMSE values, indicating lower accuracy in the estimates of soil attributes.

The MZs delineated from SAR data showed superiority compared to the CONV, CEL, and CEL-
RND methods, being occasionally surpassed only by the CEL and CEL-RND methods. Therefore, in
scenarios with limited financial resources where conventional sampling is chosen, SAR data can be
used to guide sampling through MZs. This methodology presented in this study offers specialists the
opportunity to provide services remotely, eliminating the need for field trips. This results in cost
savings facilitates the implementation of precision agriculture, even for small farmers. However,
future research should be conducted to investigate the impact of reducing the time series in areas
without overlapping satellite passes, where temporal resolution consequently decreases.
Additionally, as evidenced, there is significant variation in backscatter intensity throughout the year,
primarily influenced by fluctuations in precipitation. Thus, it is also suggested that future studies
assess the possibility of using images acquired during specific periods of the year.

5. Conclusions

The strategy combining autoencoders with the VV/VH index resulted in more accurate estimates
of soil attributes compared to other Synthetic Aperture Radar (SAR) indices. The GRID-1 method,
which uses a high-density point grid followed by kriging interpolation, stood out as the most effective
technique for mapping soil attributes, while the conventional soil sampling method (CONYV)
performed the least satisfactorily. The Management Zones (MZs) delineated using the VV/VH index
based on autoencoders outperformed the CONV method, the random cell-based soil sampling
method (CEL-RND), and, in many cases, the rectangular cell-based soil sampling method (CEL).
These findings are encouraging and indicate the potential of SAR data in analyzing soil variability
and defining MZs.
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Abbreviations

The following abbreviations are used in this manuscript:

A range (m)

C partial sill

Co nugget effect

Co+C sill

Ca? Calcium (cmolc dm?)

CEL cell-based soil sampling method
CLA Clay (g kg™)

CONV conventional soil sampling method
CEL-RND  random cell-based soil sampling method
Ccv coefficients of variation

GEE Google Earth Engine

GRD Ground Range Detected

GRID-1 uniform grid soil sampling method
w Interferometric Wide

K+ Potassium (mg dm)

LOOCV 'leave-one-out' cross-validation
Mg? Magnesium (cmolc dm3)

Mz Management Zones

NDVI Normalized Difference Vegetation Index
NRPB Normalized Ratio Procedure Between Bands
p Phosphorus (mg dm-3)

PRVI Polarimetric Radar Vegetation Index
r Pearson correlation

R? Coefficient of determination

RMSE Root Mean Square Error

RVI Radar Vegetation Index

RVI4SI Sentinel-1 Radar Vegetation Index.
SAR Synthetic Aperture Radar

SDI Spatial Dependence Index

SOC Soil Organic Carbon (cmolc dm3)

A% Basis Saturations (%)

VH vertical-horizontal polarization

\'A% vertical-vertical polarization
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