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Abstract: Characterization of soil attribute variability often requires dense sampling grids, which can 

be economically unfeasible. A possible solution is to perform targeted sampling based on previously 

collected data. The objective of this research was to develop a method for mapping soil attributes 

based on Management Zones (MZs) delineated from Sentinel‐1 radar data. Sentinel‐1 images were 

used to create time profiles of six indices based on VV (vertical‐vertical) and VH (vertical‐horizontal) 

backscatter  in  two  agricultural  fields. MZs  were  delineated  by  analyzing  indices  and  VV/VH 

backscatter  bands  individually  through  two  approaches:  (1)  fuzzy  k‐means  clustering  directly 

applied  to  the  indicesʹ  time  series,  and  (2)  dimensionality  reduction  using  deep‐learning 

autoencoders  followed  by  fuzzy  k‐means  clustering.  The  best  combination  of  index  and MZs 

delineation approach was compared with four soil attribute mapping methods: conventional (single 

composite  sample),  high‐density  uniform  grid  (one  sample  per  hectare),  rectangular  cells  (one 

composite sample per cell of 5 to 10 hectares), and random cells (one composite sample per cell of 

varying sizes). Leave‐one‐out cross‐validation evaluated the performance of each sampling method. 

Results showed that combining VV/VH index and autoencoders for MZs delineation provided more 

accurate  soil  attribute  estimates,  outperforming  the  conventional,  random  cells,  and  often  the 

rectangular cell method. 

Keywords: precision agriculture; remote sensing; soil sampling 

 

1. Introduction 

Information regarding the spatial and temporal variability of soil attributes plays a crucial role 

in the development of effective soil management strategies. By examining these data, farmers can 

adopt the most suitable cultivars and plant population densities for each specific point within the 

production  area.  This,  in  turn,  facilitates  the  precise  determination  of  the  required  amounts  of 

fertilizers and soil acidity correctives, not only  to maximize  financial  returns but also  to promote 

more sustainable production [1]. 

However, developing an effective  strategy  for  collecting data  to characterize  the  spatial and 

temporal variability of soil attributes is a complex and challenging task. Research has highlighted the 

importance of establishing dense sampling grids, with a minimum density of one sample per hectare, 

to adequately capture the variability of soil attributes [2–4]. [5] demonstrated that variograms used 

to infer soil attributes at unsampled points are unreliable when based on fewer than 100 data points, 

potentially leading to inaccurate estimates with significant margins of error. Therefore, grid sampling 

can provide  a precise  basis  for variable  rate  application,  but  the  costs  and  labour  requirements, 

especially  in  extensive  areas with  high  variability,  suggest  that  other  approaches may  be more 

economical [6]. 

To understand the spatial and temporal variability of soil attributes without the need to establish 

dense sampling grids, studies have demonstrated the potential of using soil sensors or the crop itself 

as a ʹsoil sensorʹ [1]. Apparent soil electrical conductivity sensors, yield maps, and canopy reflectance 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2025 doi:10.20944/preprints202504.0262.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.0262.v1
http://creativecommons.org/licenses/by/4.0/


  2  of  22 

 

indices can provide maps with different spatial and  temporal variability patterns and be used  to 

delineate homogeneous areas known as Management Zones  (MZs)  [7–12]. Within each MZs,  low 

variability of soil attributes is assumed, recommending the collection of a single composite sample. 

Based  on  specific  levels  of  these  attributes,  targeted  management  practices  for  each MZs  are 

established. This  strategy  reduces  soil  sampling  costs  compared  to  dense  sampling  grids, while 

simultaneously providing a better distribution of management practices  (cultivars, plant density, 

fertilizers) compared to the conventional soil sampling method, in which only a single attribute level 

and consequently a single management strategy is determined for the entire area. 

Although  the  development  of MZs  through  these methods  represents  an  advancement  in 

precision agriculture, their adoption among farmers remains limited. This limitation is largely due to 

difficulties in accessing reliable historical yield maps, electrical conductivity data, and multispectral 

satellite  image  time  series with  high  temporal  resolution.  For  example,  yield maps  have  been 

available  since  the  early  1990s,  yet  their  adoption  is  still  limited  to  only  5%  to  25%  of  the  total 

cultivated area in the United States for crops such as winter wheat, cotton, sorghum, and rice, and 

45%  for  corn  and  soybean  crops  [13]. Apparent  soil  electrical  conductivity  presents  itself  as  an 

attractive alternative because it can be quickly and easily measured for fields using electromagnetic 

induction instruments. However, this type of data collection strongly depends on specialized service 

providers  for  data  acquisition  and  interpretation,  whose  availability  varies  across  agricultural 

regions, complicating the implementation of this technology. 

The use of multispectral optical images, freely available from orbital platforms such as Landsat‐

8  and  Sentinel‐2,  enables  remote  service  delivery  and  extensive  spatial  coverage. However,  its 

application  faces  significant  challenges,  such  as  cloud  cover, which  compromises  consistent data 

acquisition. This issue is particularly critical in tropical regions, where average annual cloud cover 

can  reach  approximately  66%,  hindering  the  construction  of  representative  historical  time  series 

[14,15]. Therefore, to expand farmersʹ adoption of MZs, it is essential to develop alternative methods 

capable of efficiently characterizing the spatial and temporal variability of soil attributes, with lower 

cost per unit area and broader spatial coverage. 

A  promising  line  of  research  for  characterizing  the  spatial  and  temporal  variability  of  soil 

attributes through MZs is the use of Synthetic Aperture Radar (SAR) data. The Sentinel‐1 mission, 

part of the European Unionʹs Copernicus program, currently consisting of the Sentinel‐1A sensor, 

freely provides SAR imagery with a spatial resolution of 20 × 22 meters and a temporal resolution of 

12 days [16]. Equipped with an active C‐band SAR sensor operating at a central frequency of 5.405 

GHz with dual polarization  (Vertical‐Vertical and Vertical‐Horizontal),  this satellite can penetrate 

cloud cover and acquire imagery both day and night [17–20]. Moreover, its electromagnetic waves, 

characterized by a longer wavelength, can penetrate the superficial vegetation layers and, in some 

cases, reach deeper soil layers. In agricultural contexts, SAR backscatter data have been used, either 

alone or  in combination with multispectral data,  for various applications,  including soil moisture 

estimation  [21–23], assessment of soil physical properties  [24–27], and estimation of multispectral 

indices  such  as  the  Normalized  Difference  Vegetation  Index  (NDVI)  [28–30],  among  other 

applications. 

Therefore,  the  previously  mentioned  properties  highlight  the  potential  of  Sentinel‐1  SAR 

imagery  as  a  rich  source  of  spatiotemporal  information, making  it  promising  for mapping  soil 

attributes  and  delineating MZs.  A methodology  can  be  applied  to  create  temporal  profiles  of 

backscatter with dual polarization—VV (vertical‐vertical) and VH (vertical‐horizontal)—from SAR 

data,  complemented  by  the  calculation  of  specific  SAR  indices.  These  temporal  profiles  can  be 

analyzed using unsupervised classification  techniques  to  identify regions with similar backscatter 

responses, potentially associated with variations in soil attributes. Thus, the objective of this study 

was to develop a method for mapping soil attributes through the delineation of MZs using SAR data 

provided by Sentinel‐1. 

2. Materials and Methods 
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This study was conducted in two commercial grain production fields (Field A and Field B) that 

exhibit different soil texture characteristics (Figure 1). Field A covers an area of 117 hectares and is 

situated in the municipality of Sinop, Mato Grosso, Brazil (11°8ʹ20ʺ S and 56°19ʹ18ʺ W). Field B spans 

an  area  of  106  hectares  and  is  situated  in  the municipality  of Chapadão  do Céu, Goiás,  Brazil 

(18°20ʹ10ʺ  S  and  52°37ʹ12ʺ W). According  to  the  Brazilian  Soil Classification  System,  Field A  is 

identified as a Dystrophic Red‐Yellow Latosol, while Field B is classified as a Dystrophic Red Latosol 

[31]. For soil sampling, a grid‐point sampling method was adopted with an approximate spacing of 

100 meters. Field A was represented by 113 samples, and Field B by 104 samples. The values of 9 soil 

attributes were  determined  in  the  laboratory  from  the  grid  of  points  established  in  each  field. 

Descriptive statistics of these attributes are summarized in Table 1. 

 

Figure 1. Location of the study fields (Field A and Field B) in Brazil with the respective sampling points. 

Table 1. Summary of descriptive statistics of soil properties measured in the study area. 

Field  Soil attribute  Unity  Mean  Minimum  Maximum  STD  CV (%) 

A 

CLA  g/kg  35.65  16.30  62.00  11.91  33 

pH  ‐  6.11  5.76  7.78  0.28  5 

P  mg/dm3  17.91  3.40  56.60  10.40  58 

K+  mg/dm3  86.24  25.00  199.00  36.72  43 

Ca2+  cmolc/dm3  2.55  0.99  5.82  0.70  28 

Mg2+  cmolc/dm3  0.84  0.43  1.68  0.22  26 

C  cmolc/dm3  1.43  0.47  2.78  0.45  31 

V  %  51.65  36.70  97.00  8.95  17 

H+ + Al3+  cmolc/dm3  3.28  0.20  5.20  0.81  25 

B 

CLA  g/kg  37.00  19.00  58.30  7.71  21 

pH  ‐  6.35  5.81  6.91  0.21  3 

P  mg/dm3  13.75  2.50  30.10  6.16  45 

K+  mg/dm3  55.55  26.0  120.00  19.43  35 

Ca2+  cmolc/dm3  3.30  2.14  5.23  0.61  18 

Mg2+  cmolc/dm3  1.25  0.72  2.08  0.29  24 

C  cmolc/dm3  1.58  0.87  2.86  0.32  2 

V  %  62.29  49.50  74.60  5.46  9 

H+ + Al3+  cmolc/dm3  2.87  1.20  4.40  0.72  25 
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CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil 

Organic Carbon; V: Basis Saturations; H+ + Al3+: Potential acidity; STD: standard deviation; CV: coefficient of 

variation (%). 

The  SAR  data  used  in  this  study were  freely  obtained  from  the  Sentinel‐1A  sensor  of  the 

European Unionʹs Copernicus program. The Sentinel‐1 mission provides global SAR data in the C‐

band (central frequency of 5.405 GHz) with dual polarization (VV and VH). The temporal resolution 

is 12 days, although it can be higher in some cases due to overlapping sensor passes. In this study, 

the  Sentinel‐1  collection  available  on Google Earth Engine was used,  comprising Ground Range 

Detected  (GRD)  format  images  processed with  the  Sentinel‐1  toolbox  to  produce  calibrated  and 

orthorectified products. All  images were  acquired  in descending orbits using  the  Interferometric 

Wide (IW) swath mode and dual polarization (VV and VH). They have a pixel spacing of 10 meters 

but a spatial resolution of 20 × 22 meters [16]. 

The  preprocessing  steps  for  the  SAR data  included  border  noise  removal,  speckle  filtering, 

terrain radiometric normalization, and conversion of  the backscatter coefficient  to decibels.  Image 

border noise  results  from  the process of converting acquisitions  from GRD  format  to  IW, and  its 

presence  is an undesired processing artifact that  limits  its full exploitation  in various applications 

[32].  The  speckle  phenomenon,  common  in  SAR  images  due  to  the  interference  of  radar waves 

reflected  by  surfaces  smaller  than  the  radar  resolution,  was  addressed  through multitemporal 

filtering [33]. The Refined Lee filter, 3x3 [34], was used with a multitemporal filtering structure of 10 

images. Terrain radiometric normalization corrects variations  in the received signal due to terrain 

slope. For this, the Shuttle Radar Topography Mission digital elevation model with a 1‐arc‐second 

resolution (~30 m) [35] was employed, deriving elevation, slope, and aspect values for normalization. 

Finally,  as  the  last preprocessing  step,  the  terrain‐corrected  radiometric  backscatter  coefficient  is 

converted to decibels through a logarithmic transformation. Table 2 summarizes the parameters and 

specifications  for  image acquisition and preprocessing. The data were preprocessed using Google 

Earth Engine (GEE) [36]. All GEE codes for Sentinel‐1 data preprocessing were provided by [37] and 

are available at https://github.com/adugnag/gee_s1_ard. 

Table 2. Specifications of the Sentinel‐1 SAR data used in this study. 

Parameters  Specifications 

Satellite Pass  Descending 

Polarization 
Vertical‐Vertical (VV) 

Vertical‐Horizontal (VH) 

Speckle filter  Refined Lee ‐ 3x3 (Lee et al., 1999) 

Speckle filter Framework    Multitemporal – 10 images 

Digital elevation model  NASA SRTM Digital Elevation 30m (T.G. Farr et al., 2007) 

SRTM: Shuttle Radar Topography Mission. 

After preprocessing, each SAR  image was converted  into a dataframe and stored to generate 

temporal  backscatter  profiles.  For  each  analyzed  field,  a  grid  of  40m  x  40m  quadrilaterals was 

established.  In  each  image,  the  average pixel values within  these quadrilaterals were  calculated, 

thereby constructing the temporal backscatter profiles for the VV and VH bands. This method helps 

minimize potential  residual noise  in  the  images and reduces  the computational  load  required  for 

subsequent analyses. Based on  these profiles, six  indices were calculated using Sentinel‐1 data, as 

detailed  in Table 3. Each VV and VH  temporal backscatter series, as well as  the  indices  for each 

quadrilateral, were standardized using z‐score normalization. This process adjusts the data so that 

each set has a mean of 0 and a standard deviation of 1. To avoid  issues of collinearity among the 

indices, Pearson  correlation  (r) was  calculated  between  them. Based  on  this  analysis,  only  those 

indices that showed lower collinearity (r < 0.95) were included, thus ensuring the independence and 

relevance of each chosen index for the definition of MZs. 
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Table 3. The SAR (Synthetic Aperture Radar) indices used in this study to delineate management zones. 

Full Name 
Abbreviated 

Name 
Equation  Source 

Polarimetric Radar 

Vegetation Index 
PRVI  ൬1െ

𝑉𝑉
𝑉𝐻 ൅ 𝑉𝑉

൰ ∗ 𝑉𝐻  [38] 

Sentinel‐1 Radar 

Vegetation Index 
RVI4S1  ඨ

𝑉𝑉
𝑉𝐻 ൅ 𝑉𝑉

∗
4 ∗ 𝑉𝐻
𝑉𝐻 ൅ 𝑉𝑉

 

https://custom‐scripts.sentinel‐

hub.com/custom‐scripts/sentinel‐

1/radar_vegetation_index/# 

Radar Vegetation Index  RVI 
4 ∗ 𝑉𝐻
𝑉𝐻 ൅ 𝑉𝑉

  [39] 

Normalized Ratio 

Procedure Between Bands 
NRPB 

𝑉𝐻 െ 𝑉𝑉
𝑉𝐻 ൅ 𝑉𝑉

  [40] 

VV VH Ratio  VV/VH 
𝑉𝑉
𝑉𝐻
  [30] 

VH VV Ratio  VH/VV 
𝑉𝐻
𝑉𝑉
  [28] 

VH Backscattering  VH  𝑉𝐻  ‐ 

VV Backscattering  VV  𝑉𝑉  ‐ 

VV: Vertical‐Vertical polarization; VH: Vertical‐Horizonal polarization. 

To understand the seasonal variability of the SAR indices, rainfall data from the NASA‐POWER 

system  (https://power.larc.nasa.gov) were  used,  considering  that  radar  data  are  sensitive  to  soil 

moisture  [21–23].This  system  was  developed  to  provide  meteorological  information  directly 

applicable  to  fields  such  as  architecture,  energy  generation,  and  agrometeorology.  It  compiles 

information from various data sources, including grid‐derived data, to offer a comprehensive view 

of climate and weather conditions (Maldonado et al. 2019). 

To delineate the MZs, all SAR  indices were analyzed  individually, and two approaches were 

proposed. The  first approach  (Approach  1)  involved  the direct application of  the  fuzzy k‐means 

clustering algorithm  (Bezdek et al. 1984) on  the  temporal series of  the SAR  indices.  In  the second 

approach  (Approach 2), a machine  learning method known as autoencoders was  implemented  to 

reduce the dimensionality of the temporal series. Autoencoders are a type of neural network often 

used in unsupervised machine learning tasks, such as feature extraction (Hoang and Kang 2019). The 

basic  architecture  of  an  autoencoder  is  divided  into  three  parts:  encoder,  bottleneck  layer,  and 

decoder. The encoder  receives  the  input data  (in  this case, SAR  indices) and compresses  it  into a 

lower‐dimensional  representation  (bottleneck  layer).  The  decoder  then  takes  this  compressed 

representation and attempts to reconstruct the original data from it. This process is carried out during 

the training of the autoencoder network. Thus, after training, the bottleneck layer was used as input 

for the fuzzy k‐means algorithm to cluster the SAR data time series and, consequently, define the 

MZs. To define the architecture and training parameters, a k‐fold cross‐validation procedure, with 

k=5, was  implemented aiming  to  identify  the most suitable hyperparameters. The selection of  the 

final model was based on the lowest mean squared error obtained during the validation process. The 

selected architecture and training parameters are detailed in Tables 4 and 5. 
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Table 4. A proposed autoencoder architecture for feature extraction. 

Layers  Type  Neurons  Activation Function 

Input Layer (SAR)  ‐  N° of SAR images each field  ‐ 

Encoder Layer 1  Fully Connected  32  ReLU 

Bottleneck Layer 1  Fully Connected  6  ReLU 

Decoder Layer 1  Fully Connected  32  ReLU 

Output Layer  Fully Connected  N° of SAR images each field  Sigmoid 

ReLU: Rectified Linear Unit; SAR: Synthetic Aperture Radar. 

Table 5. Parameters used to train the autoencoder architecture. 

Parameter  Value 

Number of Epochs  200 

Optimization Function  Adam 

Learning Rate  0.0001 

Batch Size  1 

Loss Function  Mean Squared Error 

Regularization  L2 (lambda = 0.01) 

The simulations were conducted considering the number of clusters, in this case MZs, equal to 

three  for  both  approaches  and  fields. After  clustering, QGIS  geoprocessing  tools were  used  for 

refinements. Clusters with an area smaller than 3 hectares were integrated into the larger contiguous 

clusters, while clusters larger than 3 hectares but geographically disconnected and sharing the same 

label were considered as distinct clusters. 

The most  common  soil  sampling methods  include  the  conventional  soil  sampling method 

(CONV), the cell‐based soil sampling method (CEL), the uniform grid soil sampling method (GRID‐

1), and the MZs‐based soil sampling method. The CONV method involves collecting several samples 

to  form  a  single  composite  sample, which  is  considered  representative of  the  entire  field.  In  the 

present study, the CONV method was considered as the average of all collected samples. The CEL 

method, on the other hand, divided the area into cells (polygons of 5 to 10 hectares), ensuring the 

presence of at least four GRID‐1 samples in each cell. The attribute estimation in each cell was the 

average of the samples collected within each cell. A fifth comparison method is proposed where cells 

are created randomly, called random cell‐based soil sampling method (CEL‐RND) (Figure 2). The 

number of random cells was defined to match the number of MZs established by the SAR data‐based 

method. In total, 1000 random cell scenarios were generated for each study area. The minimum size 

of each random cell was 4 hectares, to ensure the presence of at least four soil samples per cell. The 

random cells were generated using a Python script based on Voronoi Diagrams, proposed by Georgy 

Voronoi (Voronoi 1908), and the soil attributes within each cell were estimated by the average of the 

samples collected within each cell. 
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Figure 2. Sampling methods defined by cells (CEL) and random cells (CEL‐RND) for the study areas (Field A 

and Field B). The number within each zone represents its area in hectares. 

To  evaluate  the  performance  of  each  sampling method,  the  ʹleave‐one‐outʹ  cross‐validation 

(LOOCV)  method  was  used,  always  based  on  the  GRID‐1  data.  In  this  way,  we  ensured  the 

participation of all points in the error calculation for all evaluated methods. In LOOCV, each point 

from the GRID‐1 dataset was successively removed, and its estimate was made using the sampling 

methods: CONV, CEL, MZs, GRID‐1, and CEL‐RND. After the estimation, the point was reintegrated 

into  the dataset. This process  continued until  all GRID‐1 points were  evaluated.  For  the CONV 

method, the estimate of the removed point was calculated from the average of the remaining points. 

For the CEL, MZs, and CEL‐RND methods, the estimate was based on the average of the remaining 

samples within their respective areas. Finally, to evaluate the GRID‐1 method, the estimate of the 

removed  point  was  a  value  interpolated  using  ordinary  kriging  based  on  the  fitting  of 

semivariograms. Semivariograms are tools that allow for the characterization and determination of 

distribution patterns, such as randomness, uniformity, and spatial trends [41]. For this, equation (1) 

was used to calculate the semi‐variance: 

𝛾∗ሺℎሻ ൌ  
ଵ

ଶேሺ௛ሻ
∑ ሺ𝑧ሺ𝑥௜ሻ  െ 𝑧ሺ𝑥௜ ൅ ℎሻሻଶேሺ௛ሻ
௜ୀଵ     (1)

where  𝛾∗ሺℎሻ  is  the value of  the experimental semivariance at  the distance  interval h;  𝑧ሺ𝑥௜ሻ  is  the 
sample value measured at the sampling points  𝑥௜, where data exist at  𝑥௜  and  𝑥௜ ൅ ℎ; and 𝑁ሺℎሻ is the 
total number of sample pairs within the distance interval h. 

During the adaptation of theoretical models  to  the experimental semivariograms, coefficients 

were determined that describe the nugget effect (C0), sill (C0 + C), partial sill (C), and range (A). The 

models tested for adaptation included the spherical, exponential, Gaussian, and linear models, and 

they  were  selected  based  on maximizing  coefficient  of  determination  (R²), minimizing  sum  of 

squared  residuals,  and maximizing  the  correlation  coefficient  obtained  through  cross‐validation. 

These metrics are used to evaluate how well the fitted model matches the experimental data. Spatial 

Dependence Index (SDI) was analyzed using the ratio C0/(C0 + C), and the intervals proposed by [42] 

were employed to classify spatial dependence into three categories: strong dependence (SDI < 25%), 

moderate dependence (25% ≤ SDI < 75%), and weak dependence (SDI ≥ 75%). Semivariograms of soil 
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chemical and physical attributes were modelled using SmartMap [43] Version 1.4, an open‐source 

plugin developed for QGIS. 

By comparing the estimated values of soil attributes obtained by the CONV, CEL, MZs, GRID‐

1, and CEL‐RND methods with  the  sampled values at each  corresponding point,  the Root Mean 

Square Error (RMSE) was calculated. This analysis was conducted individually for each study field, 

following the methodology established in equation (2): 

𝑅𝑀𝑆𝐸 ൌ   ඨ
1
𝑛

 ෍ ሺ𝑥௜ െ  𝑥పෝሻଶ 
𝑛

௜ୀଵ
  (2)

where:  𝑥పෝ   represents the estimated value of the soil attribute at point i;  𝑥௜  is the observed value of 
the soil attribute at point i and n is the number of sampled points. 

To compare the MZs defined from SAR data with the other soil sampling methods used in this 

study, the combination of approach (1 or 2) and SAR index that resulted in the lowest RMSE was 

selected. After this selection, the average of each attribute was calculated for each zone, and then the 

attributes were compared using  the F‐test  (with a significance  level of p‐value < 0.05). The RMSE 

values of the MZs sampling method for each field were compared with the other values resulting 

from  the  sampling  methods  evaluated  in  this  study.  To  evaluate  the  CEL‐RND  method,  we 

quantified, across 1000 generated scenarios, the frequency with which the MZs method showed a 

higher RMSE  than CEL‐RND. Then,  the percentage of  these  scenarios  in which  the MZs method 

performed worse, in terms of RMSE, compared to the CEL‐RND method was calculated. 

3. Results 

3.1. Exploratory Analysis of the SAR Dataset 

Between January 1, 2018, and March 31, 2023, 319  images were obtained  for Field A and 266 

images for Field B, resulting in average temporal resolutions of 6.0 and 7.4 days, respectively. Figure 

3 shows the Peason correlation estimated between the VV and VH backscatter values and the SAR 

indices. The  correlations obtained were  found  to be  significant, with p‐values equal  to zero. The 

indices RVI, NRPB, VH/VV, and VV/VH  show high  r with each other, as well as PRVI and VH, 

exhibiting values above 0.95. On the other hand, the RVI4SI index showed the lowest level of r with 

the other indices. Based on these results, four indices (VV, VH, VV/VH, RVI4SI) were selected for the 

continuation of the study. 
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Figure  3.  Pearson  correlation  between  VV  (Vertical‐Vertical  polarization)  and  VH  (Vertical‐Horizontal 

polarization)  backscatter  values  and  SAR  indices  obtained  in  Fields  A  and  B.  VH:  Vertical‐Horizonal 

polarization; VV: Vertical‐Vertical polarization; PRVI: Polarimetric Radar Vegetation Index; RVI4SI: Sentinel‐1 

Radar Vegetation  Index; RVI: Radar Vegetation  Index; NRPB: Normalized Ratio Procedure Between Bands; 

VV/VH: VV VH Ratio; VH/VV: VH VV Ratio. 

The monthly averages of the time series for the VV and VH backscatter coefficients, as well as 

the VV/VH and RVI4SI indices, were plotted for both fields in each year (Figure 4). Considering that 

the data availability extended only until March 2023,  the graphical analysis was  restricted  to  the 

period from 2018 to 2022. The time series of the calculated indices exhibited seasonal trends. Except 

for the VV/VH index, an increase was observed between September and December, followed by a 

decline  in  February. This  behavior  coincides with  the period  of  increased monthly  accumulated 

precipitation (Figure 5), suggesting a possible relationship between higher soil moisture or vegetation 

growth and elevated backscatter  levels. From February  to March, although precipitation  tends  to 

remain relatively constant, there is a new increase in backscatter, likely due to the growth of second‐

crop vegetation. Subsequently, from May to September, there was a decrease in the SAR indices, in 

line with  the  reduction  in monthly accumulated precipitation and  crop biomass. For  the VV/VH 

index, there was an increase between January and February, which then gave way to a decrease from 

February to April, except for the years 2019 and 2021. Additionally, only for the VV/VH index, an 

increase in values was recorded from April to August. 

 

Figure 4. Scatter plots with smoothed lines of backscatter coefficients and SAR indices for Fields A and B over 

the months, covering the period from January 1, 2018, to December 31, 2022. VV: Vertical‐Vertical polarization; 

VH: Vertical‐Horizonal polarization; VV/VH: VV VH Ratio: RVI4SI: Sentinel‐1 Radar Vegetation Index. 
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Figure 5. Scatter plots with smoothed trend lines of monthly accumulated precipitation for Fields A and B, using 

NASA POWER data, in annual subplots from January 2018 to December 2022. 

3.2. Analysis of Spatial Variability of Soil 

The analysis of the experimental semivariograms in GRID‐1 confirmed the spatial variability of 

soil attributes for both fields (Table 6). When analyzing the SDI, it was found that clay (CLA) content 

and soil organic carbon (C) in Field A and CLA and potential acidity (H+ + Al3+) in Field B had SDI 

values  lower  than 25%,  indicating a high  spatial dependence  [42]. All other elements,  except  for 

phosphorus (P) in both fields, exhibited SDI values between 25% and 75%, which indicates moderate 

spatial  dependence.  Figures  6  and  7  show  the  maps  constructed  using  ordinary  kriging  after 

semivariogram  fitting.  In Fields A  and B,  the maps of CLA  and C,  as well  as  those of Ca2+  and 

magnesium (Mg2+), respectively, display visual similarities that indicate high correlations between 

these soil attributes. 

Table 6. O The theoretical model parameters were adjusted to the empirical semivariance of the soil attributes 

for Field A and Field B. 

Field  Soil attribute  Model  Range (m)  C0  C0 + C  R2  SDI (%) 

 A 

CLA  Gaussian  697.85  14.72  198.50  0.99  7.42 

pH  Linear to Sill  370.64  0.022  0.036  0.47  61.11 

P  Spherical  396.95  45.27  96.66  0.74  46.83 

K+  Linear to Sill  642.51  286.77  1012.68  0.99  28.32 

Ca2+  Linear to Sill  419.14  0.12  0.36  0.79  33.33 

Mg2+  Linear to Sill  458.12  0.02  0.04  0.83  50.00 

C  Linear to Sill  472.85  0.04  0.17  0.97  23,52 

V (%)  Linear to Sill  347.48  28.78  48.47  0.59  59.37 

H+ + Al3+  Linear to Sill  379.13  0.24  0.57  0.67  42.11 

B 

CLA  Spherical  401.31  3.77  58.51  0.97  6.44 

pH  Linear  557.85  0.02  0.04  0.948  50.00 

P  Linear to Sill  320.92  26.97  33.60  0.29  80.26 
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K+  Exponential  788.23  160.36  341.29  0.92  46.99 

Ca2+  Linear  552.69  0.13  0.30  0.98  43.33 

Mg2+  Linear  559.91  0.03  0.08  0.99  37.50 

C  Linear  557.18  0.03  0.09  0.99  33.33 

V  Linear to Sill  585.78  23.10  31.00  0.96  74.19 

H+ + Al3+  Linear  569.48  0.09  0.53  0.98  16.98 

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil 

Organic Carbon; V: Basis Saturations; H+ + Al3+: Potential acidity; Range (m); C0: Nugget effect; C0 + C: Sill; R²: 

Coefficient of determination; SDI (%): Special Dependency Index. 

 

Figure 6. Figures of soil attributes interpolated by ordinary kriging for Field A using GRID‐1. CLA: Clay; pH: 

Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil Organic Carbon; 

V: Basis Saturations; H+ + Al3+: Potential acidity. 
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Figure 7. Figures of soil attributes interpolated by ordinary kriging for Field B using GRID‐1. CLA: Clay; pH: 

Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil Organic Carbon; 

V: Basis Saturations; H+ + Al3+: Potential acidity. 

3.3. Delineation of Management Zones with SAR 

Regarding the design and quantity of MZs, visual variations were observed depending on the 

SAR index used and the methodology adopted (Figure 8). These variations in size, shape, and number 

of MZs  become  even more  noticeable when  contrasting  the  proposed methodologies.  The  total 

number of MZs in Approach 2 exceeded that of Approach 1. In the case of Field B, the number of 

MZs according  to Approach 1 was 2,  lower  than  the  initially  stipulated value of 3. This  result  is 

because some clusters created by the Fuzzy C‐means algorithm did not have significant associations 

with data points or exhibited an extremely low degree of membership in relation to all points for a 

specific cluster. Additionally, the RVI4SI index resulted in excessively fragmented clusters compared 

to the other algorithms evaluated. Due to this fragmentation, it was considered inappropriate to use 

this index for the creation of MZs in Field B. Therefore, its results were not considered in this study. 
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Figure 8. Management zones resulting from SAR  indices for both fields and approaches. The number within 

each zone represents its area in hectares. VV: Vertical‐Vertical polarization; VH: Vertical‐Horizonal polarization; 

VV/VH: VV VH Ratio: RVI4SI: Sentinel‐1 Radar Vegetation Index. 

Table 7 presents the RMSE obtained through LOOCV, representing the accuracy of soil attribute 

estimates for Fields A and B using Approaches 1 and 2 with the MZs method. In the evaluation of 

errors associated with soil attribute estimation, the VV/VH index consistently stood out, achieving 

the lowest RMSE values compared to the other indices. For example, in Field A, when estimating the 

clay content attribute using Approach 2, the VV backscatter band recorded an RMSE of 8.33, while 

the VV/VH index showed a significantly lower RMSE of 5.74. When analyzing the two approaches, 

it is observed that Approach 2 has an advantage in terms of accuracy over Approach 1, especially 

when adopting the VV/VH ratio for soil attribute estimation. In all fields studied, the attributes CLA, 

P, Ca2+, and C recorded lower RMSE with Approach 2 when using the VV/VH index. 

Table 7. RMSE of Approaches 1 and 2 for Fields A and B related to the VV and VH backscatter coefficients and 

the SAR indices VV/VH and RVI. 

FIELD  Approach  Soil attribute  VV  VH  VV/VH  RVI4SI 

A 
Approach 1 

CLA  8.99  9.01  7.82  7.67 

pH  0.27  0.27  0.27  0.27 

P  10.08  10.18  9.74  9.42 

K+  31.63  31.73  29.73  29.21 

Ca2+  0.66  0.65  0.65  0.65 

Mg2+  0.2  0.2  0.19  0.2 

C  0.38  0.38  0.36  0.35 

V  8.99  8.93  9.04  9.09 

H+ + Al3+  0.82  0.83  0.81  0.8 

Approach 2  CLA  8.33  6.34  5.74  7.82 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2025 doi:10.20944/preprints202504.0262.v1

https://doi.org/10.20944/preprints202504.0262.v1


  14  of  22 

 

pH  0.27  0.27  0.27  0.27 

P  9.98  9.81  9.67  10.02 

K+  31.28  24.87  23.7  29.47 

Ca2+  0.65  0.64  0.64  0.63 

Mg2+  0.19  0.19  0.19  0.19 

C  0.36  0.3  0.27  0.35 

V  9  9.08  9.05  8.99 

H+ + Al3+  0.82  0.75  0.75  0.83 

B 

Approach 1 

CLA  7.77  7.81  7.48  ‐ 

pH  0.21  0.21  0.19  ‐ 

P  6.24  6.23  6.21  ‐ 

K+  19.24  18.79  18.28  ‐ 

Ca2+  0.61  0.6  0.55  ‐ 

Mg2+  0.29  0.29  0.26  ‐ 

C  0.32  0.31  0.29  ‐ 

V  5.51  5.52  5.3  ‐ 

H+ + Al3+  0.7  0.7  0.56  ‐ 

Approach 2 

CLA  7.31  7.8  6.53  ‐ 

pH  0.19  0.19  0.2  ‐ 

P  6.14  6.26  6.08  ‐ 

K+  18.25  19.03  19.22  ‐ 

Ca2+  0.57  0.57  0.53  ‐ 

Mg2+  0.27  0.27  0.25  ‐ 

C  0.29  0.29  0.28  ‐ 

V  5.31  5.31  5.52  ‐ 

H+ + Al3+  0.58  0.59  0.58  ‐ 

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil 

Organic Carbon; V: Basis Saturations; H+ + Al3+: Potential acidity; VV: Vertical‐Vertical polarization; VH: Vertical‐

Horizonal polarization; VV/VH: VV VH Ratio: RVI4SI: Sentinel‐1 Radar Vegetation Index. 

The results indicated significant differences in soil attribute values between the MZs delineated 

by Approach 2 and the SAR index VV/VH, which had the lowest RMSE (Table 8). At least one mean 

of each soil attribute from the MZs differed statistically at a p‐value < 0.05, except for the V attribute 

in both fields. For Field A, MZ3 was characterized as the zone with the highest average values of CLA, 

potassium (K+), Ca2+, Mg2+, C, and potential acidity (H+ + Al3+), while MZ2 had the lowest values. For 

Field B, MZ2 was characterized as the zone with the lowest average values of CLA, P, Ca2+, Mg2+, and 

C. 

Table 8. Univariate analysis of variance of soil attributes for the management zones delineated by Approach 2 

and the SAR VV/VH index for fields A and B. 

Field  Management zonesNumber of Samples 

Soil Attributes 

CLA  pH  P  K  Ca2+ Mg2+  C  V 
H+ + 

Al3+ 

A 

MZ1  20  38.11 6.2919.81 73.35  2.91  0.87  1.47  54.40  3.34 

MZ2  52  25.97 6.0221.41 67.38  2.20  0.72  1.12  49.84  3.04 

MZ3  12  58.23 6.05 8.48 160.50 3.11  1.09  2.29  50.03  4.33 

MZ4  28  42.18 6.1514.13 98.64  2.70  0.93  1.59  53.75  3.23 

Variance analysis 
F‐Value  128.505.25 7.98  57.93 11.5717.7869.34  2.03  10.15 

Prob > F  0  0  0  0  0  0  0  0.11  0 

B 

MZ1  49  39.30 6.2614.54 62.08  3.60  1.41  1.73  60.94  3.31 

MZ2  4  40.58 6.28 16.7  55.00  3.80  1.54  1.75  63.32  3.18 

MZ3  14  33.75 6.4214.61 52.5  3.16  1.15  1.48  63.9  2.56 
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MZ4  20  40.58 6.42 9.63  48.85  2.98  1.06  1.44  62.92  2.45 

MZ5  17  28.01 6.5114.92 47.24  2.81  1.03  1.33  63.91  2.25 

 
Variance analysis 

F‐Value  12.80 6.89 3.13  3.07  11.2113.86 9.14  1.57  16.57 

  Prob > F  0  0  0.02  0.02  0  0  0  0.19  0 

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil 

Organic Carbon; V: Basis Saturations; H+ + Al3+: Potential acidity. CLA in g/kg; P e K+ in mg/dm3; Ca2+, Mg2+, C e 

H+ + Al3+ in cmolc/dm3. 

Figure 9 presents a comparison between the error (RMSE) obtained by the MZs method using 

Approach  2  and  the  SAR  index VV/VH  and  the  error  generated  from  1000  different CEL‐RND 

scenarios. The value indicated on each bar represents the percentage of times the MZs method, based 

on SAR data, had a higher error than the random cell method. Therefore, the lower the percentage 

value displayed on the bar, the better the performance of the MZs method compared to CEL‐RND. 

Values equal to or greater than 50% indicate that MZs do not contribute to the representativeness of 

the  soil  attribute  variability  compared  to  a  random  process. As  can  be  observed,  for most  soil 

attributes in both fields, the RMSE resulting from the CEL‐RND sampling method was higher than 

the RMSE obtained by  the MZs sampling method, resulting  in values below 50%.  In Field A,  the 

attributes with the lowest percentage of errors (less than 5%) are CLA, K+, C, H+ + Al3+, and pH. This 

indicates that the MZs method performed well for these attributes in this field. The V attribute, on 

the  other  hand,  showed  a  significantly  higher  error  percentage  of  43%,  indicating  that  the MZs 

method may not be as efficient for this specific attribute. In Field B, the CLA attribute had a relatively 

low error percentage, around 3.9%. On the other hand, pH, K+, and V showed considerably higher 

errors, around 48%, 72%, and 77%, respectively. 

 

Figure 9. The percentage value by which  the RMSE of  the Management Zones  (MZs) soil sampling method, 

delineated by Approach 2 and the SAR VV/VH index, was greater than the RMSE generated by the 1000 random 

cell soil sampling method (CEL‐RND) scenarios. CLA: Clay; pH: Active Acidity  in water; P: Phosphorus; K+: 

Potassium; Ca2+: Calcium; Mg2+: Magnesium; C: Soil Organic Carbon; V: Basis Saturations; H+ + Al3+: Potential 

acidity. 

3.4. Comparing Soil Sampling Methods 

Table  9  highlights  the RMSE  obtained  through LOOCV  cross‐validation, demonstrating  the 

accuracy of soil attribute estimates  in Fields A and B using different sampling strategies: GRID‐1, 

CONV, CEL, and MZs using Approach 2 and the SAR index VV/VH. The GRID‐1 method recorded 

the  lowest  RMSE  values  in  both  fields,  indicating  superiority  in  the  precision  of  soil  attribute 

estimates. In both fields, the CONV method stood out with the highest RMSE values, indicating lower 

precision  in  soil  attribute  estimates.  The  MZs  delineated  from  SAR  data  showed  superiority 

compared to the CONV and CEL methods in Field A. In Field B, MZs outperformed the conventional 

method. 
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Table 9. RMSE of the sampling methods GRID‐1, CONV, CEL, and MZs delineated by Approach 2 and the SAR 

index VV/VH for soil attributes in Fields A and B. 

Field  Soil attribute  GRID‐1  CONV  CEL  MZs 

A 

CLA  3.49  11.97  6.24  5.74 

pH  0.22  0.28  0.29  0.27 

P  6.72  10.44  10.23  9.67 

K  18.59  36.88  25.32  23.7 

Ca2+  0.43  0.71  0.64  0.64 

Mg2+  0.15  0.22  0.2  0.19 

SOC  0.17  0.45  0.31  0.27 

V  7.07  8.99  9.34  9.05 

H+AL  0.55  0.82  0.84  0.75 

B 

CLA  1.45  7.75  6.35  6.53 

pH  0.14  0.21  0.2  0.2 

P  5.24  6.19  6.95  6.08 

K  12.69  19.52  20.12  19.22 

Ca2+  0.36  0.61  0.46  0.53 

Mg2+  0.14  0.3  0.2  0.25 

SOC  0.19  0.32  0.26  0.28 

V  4.63  5.48  5.66  5.52 

H+AL  0.26  0.72  0.54  0.58 

CLA: Clay; pH: Active Acidity in water; P: Phosphorus; K+: Potassium; Ca2+: Calcium; Mg2+: Magnesium; SOC: 

Soil Organic Carbon; V: Basis  Saturations; H+  + Al3+: Potential  acidity. GRID‐1: uniform  grid  soil  sampling 

method; CONV: conventional soil sampling method; CEL: cell soil sampling method; MZs: management zone 

soil sampling method. 

4. Discussion 

In  the context of remote sensing applied  to agricultural  fields dedicated  to grain production, 

SAR backscatter time series were used in this study to delineate MZs. Although the Sentinel‐1 satellite 

has  a  nominal  temporal  resolution  of  12  days  for  South America,  a  shorter  revisit  interval was 

observed, possibly due  to  the overlapping of  imaging swaths during consecutive satellite passes. 

Previous studies have demonstrated that higher temporal resolution enhances trend detection, and 

the identification of spatiotemporal patterns related to crop phenology [44]. [45] pointed out that, in 

the  case  of C‐band  SAR data,  temporal  resolutions  between  3  and  6 days  are more  suitable  for 

distinguishing crop types and monitoring their phenology, while daily monitoring is necessary to 

capture rapid changes in soil moisture conditions. Therefore, the higher temporal resolution observed 

provides  improved  conditions  for understanding  and  interpreting  variations  in  backscatter  over 

time,  potentially  contributing  to  a  more  accurate  delineation  of MZs  and  greater  accuracy  in 

estimating soil attributes. 

The  analysis  of  the  relationship  between  VV  and  VH  backscatter  values  and  SAR  indices 

revealed  that  certain  indices  exhibit  strong  correlations,  indicating  potential  redundancies.  This 

finding aligns with  the  study by  [46], which  identified  that  the RVI, NRPB, VH/VV, and VV/VH 

indices show high mutual correlation, with values greater than 0.95 or less than ‐0.95. Additionally, 

in both our analysis and the cited study, the RVI4SI index displayed the lowest correlation compared 

to other indices. Therefore, these findings suggest that, regardless of the agricultural fields studied, 

the  relationship between VV and VH backscatter values and SAR  indices  tends  to  follow similar 

patterns. 

From September to December, an increase in VV and VH indices was observed. This increase 

may be related to the return of the rainy season, which raises soil moisture content. Indeed, during 

this  same  period,  there  is  an  increase  in  the monthly  accumulated  precipitation,  elevating  soil 
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moisture  levels. Additionally,  the  planting  period  for  agricultural  crops, which  occurs  between 

September and October, also  influences  this phenomenon, as  increased biomass  intensifies signal 

backscatter [47]. However, during the same period, the VV/VH index showed a decline. According 

to studies, the VV polarization band is particularly more sensitive to soil moisture compared to the 

VH band, leading to a reduction in the VV/VH index during this period [48,49]. 

Between December and January, a stabilization of VV and VH backscatter values is observed. 

This phenomenon occurs because, with  the crop biomass  fully developed,  there  is an attenuation 

effect from the canopy on the bands, reducing their sensitivity to soil moisture variation. [49] showed 

that  the sensitivity of VV and VH bands  to soil moisture variation decreases with  the  increase  in 

vegetation cover growth (NDVI) and is stronger in the VV polarisation than in the cross‐polarization 

VH. [47] demonstrated that the VV polarization C‐band penetrates the maize canopy even when the 

crop is at its biomass peak (NDVI > 0.7). However, penetration was limited in wheat and pastures. 

Therefore, during  the crop canopy development, vegetation may become  the primary component 

contributing  to  the volume scattering of  the backscattered signal, while  the  influence of soil may 

become  secondary.  Finally,  between  April  and  August,  there  is  a  strong  downward  trend  in 

backscatter values  for both VV and VH polarizations. This behavior may be associated with  the 

decrease  in  precipitation  during  this  period,  resulting  in  lower  soil moisture  content.  Since  the 

decrease in backscatter is more pronounced in VV polarization compared to VH, an increase in the 

VV/VH ratio is observed. 

The  evaluation  of  experimental  semivariograms  in GRID‐1,  for  both  fields,  highlighted  the 

spatial dependence of soil attributes. The SDI, which relates the nugget effect to the sill to quantify 

the spatial dependence of these attributes, was found to be less than 75% for most attributes. This 

indicates strong spatial dependence (less than 25%) and moderate spatial dependence (between 25% 

and  75%),  as  suggested  by  [42].  In  this  context,  kriging  emerges  as  an  excellent  method  for 

interpolation and estimation of soil attributes in unsampled locations. 

The  VV  and  VH  backscatter  bands,  along  with  the  VV/VH  and  RVI4SI  indices,  showed 

variations in the size, shape, and number of MZs when subjected to Approaches 1 and 2. Approach 

2, which applies clustering on features extracted from SAR time series via autoencoders, tended to 

generate more MZs in both fields compared to Approach 1, which performs clustering directly on 

the time series. Autoencoders belong to a specific class of deep artificial neural networks. They are 

designed  to  compress  an  input  into  a  more  compact  representation  and  then  reverse  that 

compression, aiming for the reconstructed input to resemble the original as closely as possible [50]. 

The features extracted by the autoencoder, represented by the compact part, can capture nuances and 

patterns in the data that raw representation cannot. This leads to a more detailed segmentation of the 

fields,  resulting  in  a  higher  number  of MZs. Another  point  to  consider  is  that  SAR  images  are 

characterized by high levels of noise [51]. Therefore, the use of features extracted by autoencoders 

represents a  less noisy version of the original data, as the learning process of architecture extracts 

patterns that explain the temporal behavior of the backscatter. This factor may result in more accurate 

clustering and an increase in the number of MZs. 

The VV/VH index, combined with Approach 2 based on autoencoders, tended to exhibit lower 

RMSE values for soil attribute estimation using the LOOCV strategy. Thus, it was able to produce 

MZs with greater precision compared to other SAR indices. The integration of VV and VH backscatter 

band  information has shown superior performance compared  to  the  isolated use of each band  in 

various applications [52,53]. This phenomenon is justified by the fact that the VV/VH ratio minimizes 

acquisition system errors and provides more consistent indications over time than the isolated VH or 

VV backscatter, as pointed out by [30]. Additionally, certain studies indicate that the VV/VH index 

correlates more closely with NDVI in specific phenological stages of the crop. This suggests that this 

index helps  in understanding not only  the spatial variability of soil moisture but also  the canopy 

structure and crop biomass—crucial aspects for defining MZs [54]. 

When analyzing the MZs derived from the VV/VH index using autoencoders in both fields, a 

statistical distinction was observed in at  least one mean of each soil attribute originating from the 
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MZs, except for V. Despite the high variability of clay in the region, statistical differences were also 

detected in temporally unstable attributes, such as Ca2+, Mg2+, K+, etc. The ability of plants to access 

these attributes is strongly influenced by the soilʹs ability to retain water in its macro‐ and micropores. 

Thus,  the  sensitivity  of  SAR data  to  soil moisture,  as  evidenced  in  several  studies,  is  crucial  in 

identifying the variability of these macro‐ and micronutrients present in the soil [21,49,55]. 

When analyzing the MZs generated by the VV/VH index using autoencoders in comparison to 

the  randomly  created  cells  (CEL  ‐ RND),  the  potential  of  the  SAR  index  to delineate MZS was 

highlighted. Only for the soil attributes K+ and V in Field A was observed that in more than 50% of 

the scenarios, the RMSE of CEL ‐ RND was lower than the RMSE estimated by the MZs. The best 

performance scenario of the VV/VH index against CEL ‐ RND was observed for clay in both fields. 

The clay fraction of the soil is intrinsically linked to water retention [56]. Therefore, the sensitivity of 

SAR data to soil moisture may be one of the explanations for the high correlation observed between 

the MZs and clay variability in the fields. 

When  evaluating  the various  sampling methods,  it was observed  that  the method based on 

GRID‐1  stood out,  recording  the  lowest  errors  (lower RMSE)  for all  soil attributes. This  result  is 

justified by  the  fact  that  the  fields  investigated  in  this study exhibited high and moderate spatial 

dependencies  for  soil  attributes,  as  indicated  by  the  SDI.  In  such  contexts,  the  fitting  of 

semivariograms combined with kriging interpolation, the approach adopted in our study, tends to 

provide  good  estimates.  In  contrast,  the  significant  spatial  variability  suggests  that  the  CONV 

method, which attempts to represent the field through a single soil sample, may not be efficient. This 

observation is reinforced by noting that in the fields analyzed in this study, the CONV method had 

the highest RMSE values, indicating lower accuracy in the estimates of soil attributes. 

The MZs delineated from SAR data showed superiority compared to the CONV, CEL, and CEL‐

RND methods, being occasionally surpassed only by the CEL and CEL‐RND methods. Therefore, in 

scenarios with limited financial resources where conventional sampling is chosen, SAR data can be 

used to guide sampling through MZs. This methodology presented in this study offers specialists the 

opportunity  to provide services  remotely, eliminating  the need  for  field  trips. This  results  in cost 

savings  facilitates  the  implementation of precision agriculture,  even  for  small  farmers. However, 

future research should be conducted to  investigate the  impact of reducing the time series  in areas 

without  overlapping  satellite  passes,  where  temporal  resolution  consequently  decreases. 

Additionally, as evidenced, there is significant variation in backscatter intensity throughout the year, 

primarily  influenced by fluctuations  in precipitation. Thus,  it  is also suggested that future studies 

assess the possibility of using images acquired during specific periods of the year. 

5. Conclusions 

The strategy combining autoencoders with the VV/VH index resulted in more accurate estimates 

of soil attributes compared to other Synthetic Aperture Radar (SAR) indices. The GRID‐1 method, 

which uses a high‐density point grid followed by kriging interpolation, stood out as the most effective 

technique  for  mapping  soil  attributes,  while  the  conventional  soil  sampling  method  (CONV) 

performed the least satisfactorily. The Management Zones (MZs) delineated using the VV/VH index 

based  on  autoencoders  outperformed  the  CONV method,  the  random  cell‐based  soil  sampling 

method  (CEL‐RND), and,  in many  cases,  the  rectangular  cell‐based  soil  sampling method  (CEL). 

These findings are encouraging and indicate the potential of SAR data in analyzing soil variability 

and defining MZs. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

A  range (m) 

C  partial sill 

C0  nugget effect 

C0 + C  sill 

Ca2+  Calcium (cmolc dm‐3) 

CEL  cell‐based soil sampling method 

CLA  Clay (g kg‐1) 

CONV  conventional soil sampling method 

CEL‐RND  random cell‐based soil sampling method 

CV  coefficients of variation 

GEE  Google Earth Engine 

GRD  Ground Range Detected 

GRID‐1  uniform grid soil sampling method 

IW  Interferometric Wide 

K+  Potassium (mg dm‐3) 

LOOCV  ʹleave‐one‐outʹ cross‐validation 

Mg2+  Magnesium (cmolc dm‐3) 

MZ  Management Zones 

NDVI  Normalized Difference Vegetation Index 

NRPB  Normalized Ratio Procedure Between Bands 

P  Phosphorus (mg dm‐3) 

PRVI  Polarimetric Radar Vegetation Index 

r  Pearson correlation 

R²  Coefficient of determination 

RMSE  Root Mean Square Error   

RVI  Radar Vegetation Index 

RVI4SI  Sentinel‐1 Radar Vegetation Index. 

SAR  Synthetic Aperture Radar 

SDI  Spatial Dependence Index 

SOC  Soil Organic Carbon (cmolc dm‐3) 

V  Basis Saturations (%) 

VH  vertical‐horizontal polarization 

VV  vertical‐vertical polarization 
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