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Abstract: Wearable sensors hold promise for advancing cardiovascular health monitoring by enabling 

continuous, real-time risk assessment. This study leveraged the Framingham Heart Study dataset to develop 

and evaluate machine learning algorithms for predicting mortality risk based on key cardiovascular parameters. 

Five ML models were implemented: XGBoost, Random Forest, Logistic Regression, Ensemble Learning, and 

Ensemble Stacking. Among these, XGBoost and Ensemble Stacking demonstrated the highest predictive 

performance, with an area under the curve (AUC) value of 0.83. And feature importance analysis identified 

coronary artery disease, glucose levels, and diastolic blood pressure (DIABP) as significant risk factors for 

mortality. Given the advancements in wearable sensor technology for measuring and estimating glucose levels 

and blood pressure, these findings underscore the potential of wearable devices for effective cardiovascular risk 

prediction. This study highlights the feasibility of integrating machine learning algorithms with wearable 

sensors to enhance cardiovascular health monitoring and facilitate early intervention. 

Keywords: Framingham Heart Study dataset; machine learning (ML); mortality risk prediction; 

cardiovascular health monitoring; wearable sensors 

 

1. Introduction 

Identifying predictors of cardiovascular disease (CVD) is essential for effective prevention and 

management. Numerous studies have already explored the risk factors for CVD, and it has been well-

established that factors such as smoking, hypertension, diabetes, and dyslipidemia contribute to its 

development [1–21]. Furthermore, a study by Yuda E et al. (2021) investigated the redundancy 

between these predictors, highlighting that multiple indicators often overlap in their predictive 

ability [22], and research is also progressing on heart rate indicators and CVD risk [23–26]. However, 

these previous studies primarily identified risk factors based on clinical measurements obtained 

during hospital visits, rather than through data collected in free-living conditions using wearable 

devices. As a result, the practical application of these findings for continuous, real-time 

cardiovascular risk monitoring in daily life has not yet been fully realized. Recent technological 

advances in wearable sensors have enabled the non-invasive and continuous monitoring of 

physiological parameters, such as heart rate, blood pressure, and blood glucose levels, providing an 

opportunity to shift risk prediction from clinical settings to everyday environments. 

The Framingham Heart Study (FHS) provides a valuable resource for investigating 

cardiovascular disease risk factors. This study, which began in 1948 in Framingham, Massachusetts, 

USA, initially enrolled more than 5,000 participants and has since expanded to include multiple 

generations [27–36]. Its primary objective is to identify common risk factors for cardiovascular disease 

by following participants over an extended period and collecting comprehensive health data, 
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including lifestyle factors, clinical measurements, and laboratory results. This dataset includes 

parameters such as blood pressure, cholesterol levels, blood glucose levels, and educational 

background, along with long-term follow-up data on cardiovascular events and mortality. As a result, 

the Framingham dataset is one of the most influential resources in cardiovascular epidemiology. 

Several studies have already utilized the Framingham dataset to evaluate models for predicting 

cardiovascular-related mortality. For example, prior research includes comparative studies of 

machine learning algorithms, Bayesian analyses that account for time-varying treatments and 

heterogeneity, evaluations of methods for imputing missing data, and multi-model data mining 

approaches for predicting heart failure [37–40]. Many of these studies have focused on improving the 

accuracy of risk prediction by addressing missing data using techniques such as multiple imputation 

and deep learning-based approaches. While these studies have advanced cardiovascular risk 

stratification, they have not been specifically aimed at developing wearable sensor-based applications 

derived from their findings. 

Therefore, the objective of this study is to analyze the Framingham Heart Study dataset using 

various machine learning approaches and identify cardiovascular risk factors that can be effectively 

monitored and estimated using wearable devices. By focusing on parameters measurable with 

current wearable technology, this study aims to bridge the gap between traditional epidemiological 

research and continuous cardiovascular risk monitoring in real-world settings. 

2. Materials and Methods 

2.1. Study Design and Population 

This study utilized the Framingham Heart Study (FHS) dataset, a well-established longitudinal 

cohort study designed to identify risk factors for cardiovascular disease (CVD). The dataset includes 

comprehensive health data collected from multiple generations of participants, with long-term 

follow-up on cardiovascular events and mortality. 

2.2. Data Collection 

The dataset included 41 variables encompassing demographic information, clinical 

measurements, lifestyle factors, and cardiovascular outcomes. The key features used in this study 

were as follows (Table 1). 

Table 1. Categories, descriptions, and notations for each variable in FHS. 

Category Variable Name English Description 

Basic Information RANDID Random ID for individual identification 
 SEX Sex (1 = Male, 2 = Female) 
 AGE Age (years) 

Health Status & Risk Factors TOTCHOL Total cholesterol (mg/dL) 
 SYSBP Systolic blood pressure (mmHg) 
 DIABP Diastolic blood pressure (mmHg) 
 CURSMOKE Current smoking status (1 = Yes, 0 = No) 
 CIGPDAY Cigarettes per day 
 BMI Body mass index (BMI, kg/m²) 
 DIABETES Diabetes (1 = Yes, 0 = No) 
 BPMEDS Antihypertensive medication (1 = Yes, 0 = No) 
 HEARTRTE Heart rate (bpm) 
 GLUCOSE Glucose level (mg/dL) 
 HDLC High-density lipoprotein cholesterol (mg/dL) 
 LDLC Low-density lipoprotein cholesterol (mg/dL) 

Medical History educ Education level 
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 PREVCHD 
Previous coronary heart disease (1 = Yes, 0 = 

No) 
 PREVAP Previous angina pectoris (1 = Yes, 0 = No) 

 PREVMI 
Previous myocardial infarction (1 = Yes, 0 = 

No) 
 PREVSTRK Previous stroke (1 = Yes, 0 = No) 
 PREVHYP Previous hypertension (1 = Yes, 0 = No) 

Event Occurrence DEATH Death (1 = Yes, 0 = No) 
 ANGINA Angina occurrence (1 = Yes, 0 = No) 

 HOSPMI 
Hospitalization for myocardial infarction (1 = 

Yes, 0 = No) 

 MI_FCHD 
Myocardial infarction or coronary heart disease 

occurrence (1 = Yes, 0 = No) 

 ANYCHD 
Any coronary heart disease occurrence (1 = 

Yes, 0 = No) 
 STROKE Stroke occurrence (1 = Yes, 0 = No) 

 CVD 
Cardiovascular disease occurrence (1 = Yes, 0 = 

No) 
 HYPERTEN Hypertension occurrence (1 = Yes, 0 = No) 

Follow-Up Period TIME Follow-up period (months or years) 
 PERIOD Study period or phase 
 TIMEAP Time to angina occurrence 
 TIMEMI Time to myocardial infarction occurrence 

 TIMEMIFC 
Time to myocardial infarction or coronary 

heart disease occurrence 
 TIMECHD Time to coronary heart disease occurrence 
 TIMESTRK Time to stroke occurrence 
 TIMECVD Time to cardiovascular disease occurrence 
 TIMEDTH Time to death 
 TIMEHYP Time to hypertension occurrence 

Among these variables, DEATH was used as the primary outcome variable, representing all-

cause mortality. Independent variables included age, sex, blood pressure (SYSBP and DIABP), 

cholesterol levels (TOTCHOL, HDLC, and LDLC), glucose levels (GLUCOSE), smoking status 

(CURSMOKE and CIGPDAY), body mass index (BMI), diabetes status (DIABETES), and medication 

use (BPMEDS). Data preprocessing involved handling missing values through multiple imputation 

techniques, standardizing continuous variables, and encoding categorical variables as appropriate. 

The dataset was then split into training and testing sets using a stratified approach to maintain the 

proportion of outcomes across both sets. 

2.3. Machine Learning Analysis 

To identify key risk factors associated with cardiovascular-related mortality and evaluate 

predictive performance, five machine learning algorithms were applied: 

• XGBoost 

Gradient boosting algorithm known for its high predictive accuracy and ability to handle 

complex interactions between variables. 

• Random Forest 

Ensemble learning method that constructs multiple decision trees and outputs the mode of the 

classes (classification) or mean prediction (regression). 
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• Logistic Regression 

Traditional statistical model used as a baseline for binary classification tasks. 

• Ensemble Learning 

Voting-based approach that combines the predictions of multiple models to improve overall 

accuracy. 

• Ensemble Stacking 

Meta-learning technique where multiple base models' predictions are combined using a higher-

level model to enhance prediction accuracy further. 

Each model was trained using the training dataset and evaluated on the test dataset. Model 

performance was assessed using the area under the receiver operating characteristic curve (AUC) as the 

primary metric. Feature importance was analyzed to identify the most significant predictors of mortality. 

Hyperparameter tuning was conducted using grid search and cross-validation to optimize each 

model's performance. The final evaluation was based on the test set, ensuring an unbiased assessment 

of predictive accuracy. 

3. Results 

Among the 5 machine learning models used in the analysis—XGBoost, Random Forest, Logistic 

Regression, Ensemble Learning, and Ensemble Stacking—XGBoost and Ensemble Stacking 

demonstrated the highest performance in predicting mortality, with an area under the curve (AUC) 

value of 0.83 (Figure 1). 

 

Figure 1. Receiver Operating Characteristics（ROC）. Vertical axis shows true positive rate, and horizontal axis 

shows false positive rate. The true positive rate (TPR) and false positive rate (FPR) are calculated for each cutoff 

point used to distinguish between survived and non-survived. These points are plotted on a graph, with the TPR 

on the vertical axis and the FPR on the horizontal axis, and then connected by a line. The closer a point is to the 

top left corner—indicating a low false positive rate and a high true positive rate—the better the model's 

performance. Similarly, a larger area under the curve (AUC) reflects a more effective discriminative marker. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2025 doi:10.20944/preprints202502.2135.v1

https://doi.org/10.20944/preprints202502.2135.v1


 5 of 11 

 

Among the 15 parameters extracted from the Framingham dataset, coronary heart disease 

(PREVCHD), blood glucose (GLUCOSE), and diastolic blood pressure (DIABP) were identified as 

significant risk factors associated with increased mortality (Figures 2–4). 

 

Figure 2. Refined correlation plot. Shows correlation matrix that has been cleaned using principal component 

analysis (PCA) for 15 factors in the dataset, such as gender and age. Various risk factors have been strongly 

associated with the onset of CVD and increased mortality. In the Framingham Heart Study (FHS), the variable 

"educ" represents years of education: 1 to 11 for elementary to high school (including dropouts), 12 for high 

school graduates, 13 to 15 for some college (including associate degrees), 16 for university graduates 

(bachelor's degree), and 17 or more for graduate or professional education. This variable is used to analyze the 

relationship between educational level and health or cardiovascular disease risk. 

 

Figure 3. Plots of age, glucose, BMI, and heart rate for survived and non-survived. Survivors are shown in 

blue, non-survivors in orange. Age is an important factor analyzed in the Framingham dataset, but it has been 

shown to be closely associated with other physiological factors. 
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(a) 

 

 
(b) 

 

(c) 

Figure 4. Predicting the risk of mortality for each factor. Figure (a) is explanation of the XGB model using 

SHAPley, (b) is bar plot, and (c) is summary of all effects of each feature. 
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4. Discussion 

The results of this study confirmed that glucose levels and blood pressure are significant factors 

associated with mortality risk. Recent advancements in wearable sensor technology have made it 

possible to continuously monitor these parameters in daily life. Notably, minimally invasive blood 

glucose monitoring has progressed considerably, with technologies now available to estimate long-

term glucose levels from interstitial fluid using shallow needles [41]. Similarly, non-invasive methods 

for estimating blood pressure via optical sensors embedded in smartwatches and activity trackers are 

becoming increasingly practical [42–48]. These advancements enable real-time health monitoring 

without relying solely on spot measurements taken at medical facilities. The strong association 

between glucose levels, diastolic blood pressure, and mortality risk highlighted by this study 

underscores the importance of using wearable sensors for continuous monitoring. Elevated blood 

glucose levels are known to increase the risk of heart disease through diabetes and metabolic 

syndrome. By tracking glucose levels daily, early intervention and lifestyle modifications can be more 

effectively implemented. Likewise, sustained increases in diastolic blood pressure place chronic 

stress on the cardiovascular system, increasing the risk of arteriosclerosis and heart failure, making 

real-time monitoring highly valuable. 

Wearable sensors are especially beneficial for older adults and individuals living in remote areas 

who may have difficulty accessing healthcare facilities regularly. These devices facilitate early 

medical intervention by detecting health risks before symptoms become apparent. Additionally, self-

reported information, such as the presence of coronary artery disease, can be integrated with real-

time data to provide personalized risk assessments and health management. Long-term data 

collection via wearable sensors offers several advantages over conventional cross-sectional studies, 

including risk assessment that accounts for temporal fluctuations. This approach not only enables 

tailored lifestyle guidance and timely treatment but also has the potential to identify new predictive 

markers. However, this study has several limitations, primarily related to the dataset used for 

analysis. The findings were based on the Framingham dataset, which, while demonstrating the utility 

of machine learning models for heart disease risk prediction, has inherent biases. 

The Framingham Heart Study began in 1948, primarily involving middle-class white individuals 

in Framingham, Massachusetts. Consequently, the participants' socioeconomic background, lifestyle, 

and genetic factors were relatively homogeneous, limiting the generalizability of the results to other 

ethnic groups and diverse social environments. Addressing health disparities in low-income 

countries and among underrepresented populations will require analysis using more diverse 

datasets. Another limitation concerns gender bias and the impact of sex differences. Although the 

Framingham dataset includes substantial data on women, the male-to-female ratio is uneven, 

potentially influencing risk factor analysis. Cardiovascular risk is known to increase in 

postmenopausal women due to hormonal changes, a factor not fully captured by the dataset [49–54]. 

Our reanalysis of gender and mortality showed a minimal effect, but previous studies have reported 

that women face higher heart disease risks from diabetes and hypertension compared to men. 

Additionally, the 15 parameters used in this study were derived from the Framingham dataset, 

excluding other potential risk factors such as inflammatory markers, mental stress, and genetic 

predispositions. The lack of detailed lifestyle data—such as diet, exercise, and sleep—further limits 

the comprehensiveness of the risk assessment. Integrating these factors through continuous wearable 

monitoring could significantly enhance prediction accuracy. Given that health conditions change 

over time, wearable sensors address the limitations of static data by enabling dynamic risk estimation 

that accounts for temporal variations. Achieving personalized risk assessment tailored to an 

individual's living environment and behavior will require a comprehensive approach, integrating a 

broader range of biological signals and contextual data. Furthermore, optimizing machine learning 

models to effectively process and interpret the vast datasets generated by wearable sensors will be 

essential for advancing precision health monitoring. 
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5. Conclusions 

In this study, we used the Framingham dataset to apply five types of machine learning models 

(XG Boost, Random Forest, Logistic Regression, Ensemble Learning, and Ensemble Stacking) and 

compared their accuracy in predicting the risk of death from heart disease. The results showed that 

XG Boost and Ensemble Stacking had the highest prediction performance (AUC= 0.83). Furthermore, 

among the 15 parameters extracted from the dataset, it was confirmed that coronary artery disease 

(PREVCHD), glucose level (GLUCOSE), and diastolic blood pressure (DIABP) were important factors 

strongly associated with the risk of death. The results of this study show that parameters that can be 

measured by wearable sensors, such as glucose levels and blood pressure, play an important role in 

predicting the risk of heart disease, suggesting the usefulness of wearable technology in the 

management of heart disease risk in the future. 

Supplementary Materials: The Framingham dataset used in this study is publicly available and can be accessed 

through Kaggle. The dataset can be accessed via the following link: Kaggle Framingham Heart Study Dataset 

(https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset) For further details on the 

dataset, including variable definitions and additional descriptive statistics, please refer to the accompanying 

Kaggle page. 
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