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Abstract: Wearable sensors hold promise for advancing cardiovascular health monitoring by enabling
continuous, real-time risk assessment. This study leveraged the Framingham Heart Study dataset to develop
and evaluate machine learning algorithms for predicting mortality risk based on key cardiovascular parameters.
Five ML models were implemented: XGBoost, Random Forest, Logistic Regression, Ensemble Learning, and
Ensemble Stacking. Among these, XGBoost and Ensemble Stacking demonstrated the highest predictive
performance, with an area under the curve (AUC) value of 0.83. And feature importance analysis identified
coronary artery disease, glucose levels, and diastolic blood pressure (DIABP) as significant risk factors for
mortality. Given the advancements in wearable sensor technology for measuring and estimating glucose levels
and blood pressure, these findings underscore the potential of wearable devices for effective cardiovascular risk
prediction. This study highlights the feasibility of integrating machine learning algorithms with wearable

sensors to enhance cardiovascular health monitoring and facilitate early intervention.

Keywords: Framingham Heart Study dataset; machine learning (ML); mortality risk prediction;
cardiovascular health monitoring; wearable sensors

1. Introduction

Identifying predictors of cardiovascular disease (CVD) is essential for effective prevention and
management. Numerous studies have already explored the risk factors for CVD, and it has been well-
established that factors such as smoking, hypertension, diabetes, and dyslipidemia contribute to its
development [1-21]. Furthermore, a study by Yuda E et al. (2021) investigated the redundancy
between these predictors, highlighting that multiple indicators often overlap in their predictive
ability [22], and research is also progressing on heart rate indicators and CVD risk [23-26]. However,
these previous studies primarily identified risk factors based on clinical measurements obtained
during hospital visits, rather than through data collected in free-living conditions using wearable
devices. As a result, the practical application of these findings for continuous, real-time
cardiovascular risk monitoring in daily life has not yet been fully realized. Recent technological
advances in wearable sensors have enabled the non-invasive and continuous monitoring of
physiological parameters, such as heart rate, blood pressure, and blood glucose levels, providing an
opportunity to shift risk prediction from clinical settings to everyday environments.

The Framingham Heart Study (FHS) provides a valuable resource for investigating
cardiovascular disease risk factors. This study, which began in 1948 in Framingham, Massachusetts,
USA, initially enrolled more than 5,000 participants and has since expanded to include multiple
generations [27-36]. Its primary objective is to identify common risk factors for cardiovascular disease
by following participants over an extended period and collecting comprehensive health data,
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including lifestyle factors, clinical measurements, and laboratory results. This dataset includes
parameters such as blood pressure, cholesterol levels, blood glucose levels, and educational
background, along with long-term follow-up data on cardiovascular events and mortality. As a result,
the Framingham dataset is one of the most influential resources in cardiovascular epidemiology.

Several studies have already utilized the Framingham dataset to evaluate models for predicting
cardiovascular-related mortality. For example, prior research includes comparative studies of
machine learning algorithms, Bayesian analyses that account for time-varying treatments and
heterogeneity, evaluations of methods for imputing missing data, and multi-model data mining
approaches for predicting heart failure [37—-40]. Many of these studies have focused on improving the
accuracy of risk prediction by addressing missing data using techniques such as multiple imputation
and deep learning-based approaches. While these studies have advanced cardiovascular risk
stratification, they have not been specifically aimed at developing wearable sensor-based applications
derived from their findings.

Therefore, the objective of this study is to analyze the Framingham Heart Study dataset using
various machine learning approaches and identify cardiovascular risk factors that can be effectively
monitored and estimated using wearable devices. By focusing on parameters measurable with
current wearable technology, this study aims to bridge the gap between traditional epidemiological
research and continuous cardiovascular risk monitoring in real-world settings.

2. Materials and Methods

2.1. Study Design and Population

This study utilized the Framingham Heart Study (FHS) dataset, a well-established longitudinal
cohort study designed to identify risk factors for cardiovascular disease (CVD). The dataset includes
comprehensive health data collected from multiple generations of participants, with long-term
follow-up on cardiovascular events and mortality.

2.2. Data Collection

The dataset included 41 variables encompassing demographic information, clinical
measurements, lifestyle factors, and cardiovascular outcomes. The key features used in this study
were as follows (Table 1).

Table 1. Categories, descriptions, and notations for each variable in FHS.

Category Variable Name English Description
Basic Information RANDID Random ID for individual identification
SEX Sex (1 =Male, 2 = Female)
AGE Age (years)
Health Status & Risk Factors TOTCHOL Total cholesterol (mg/dL)
SYSBP Systolic blood pressure (mmHg)
DIABP Diastolic blood pressure (mmHg)
CURSMOKE Current smoking status (1 = Yes, 0 = No)
CIGPDAY Cigarettes per day
BMI Body mass index (BMI, kg/m?)
DIABETES Diabetes (1 = Yes, 0 = No)
BPMEDS Antihypertensive medication (1 = Yes, 0 = No)
HEARTRTE Heart rate (bpm)
GLUCOSE Glucose level (mg/dL)
HDLC High-density lipoprotein cholesterol (mg/dL)
LDLC Low-density lipoprotein cholesterol (mg/dL)

Medical History educ Education level
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Previous coronary heart disease (1 = Yes, 0 =

d0i:10.20944/preprints202502.2135.v1

PREVCHD No)
PREVAP Previous angina pectoris (1 = Yes, 0 = No)
PREVMI Previous myocardial infarction (1= Yes, 0=
No)
PREVSTRK Previous stroke (1 = Yes, 0 = No)
PREVHYP Previous hypertension (1 = Yes, 0 = No)
Event Occurrence DEATH Death (1 =Yes, 0= No)
ANGINA Angina occurrence (1 = Yes, 0 =No)
HOSPMI Hospitalization for myocardial infarction (1 =
Yes, 0 =No)
MI_FCHD Myocardial infarction or coronary heart disease
occurrence (1= Yes, 0 =No)
ANYCHD Any coronary heart disease occurrence (1 =
Yes, 0 =No)
STROKE Stroke occurrence (1 = Yes, 0 = No)
CVD Cardiovascular disease occurrence (1 = Yes, 0=
No)
HYPERTEN Hypertension occurrence (1 = Yes, 0 = No)
Follow-Up Period TIME Follow-up period (months or years)
PERIOD Study period or phase
TIMEAP Time to angina occurrence
TIMEMI Time to myocardial infarction occurrence
TIMEMIFC Time to myocar(‘:lial infarction or coronary
heart disease occurrence
TIMECHD Time to coronary heart disease occurrence
TIMESTRK Time to stroke occurrence
TIMECVD Time to cardiovascular disease occurrence
TIMEDTH Time to death
TIMEHYP Time to hypertension occurrence

Among these variables, DEATH was used as the primary outcome variable, representing all-
cause mortality. Independent variables included age, sex, blood pressure (SYSBP and DIABP),
cholesterol levels (TOTCHOL, HDLC, and LDLC), glucose levels (GLUCOSE), smoking status
(CURSMOKE and CIGPDAY), body mass index (BMI), diabetes status (DIABETES), and medication
use (BPMEDS). Data preprocessing involved handling missing values through multiple imputation
techniques, standardizing continuous variables, and encoding categorical variables as appropriate.
The dataset was then split into training and testing sets using a stratified approach to maintain the
proportion of outcomes across both sets.

2.3. Machine Learning Analysis

To identify key risk factors associated with cardiovascular-related mortality and evaluate
predictive performance, five machine learning algorithms were applied:

° XGBoost

Gradient boosting algorithm known for its high predictive accuracy and ability to handle
complex interactions between variables.

. Random Forest

Ensemble learning method that constructs multiple decision trees and outputs the mode of the
classes (classification) or mean prediction (regression).
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e  Logistic Regression
Traditional statistical model used as a baseline for binary classification tasks.
e Ensemble Learning

Voting-based approach that combines the predictions of multiple models to improve overall
accuracy.

e  Ensemble Stacking

Meta-learning technique where multiple base models' predictions are combined using a higher-
level model to enhance prediction accuracy further.

Each model was trained using the training dataset and evaluated on the test dataset. Model
performance was assessed using the area under the receiver operating characteristic curve (AUC) as the
primary metric. Feature importance was analyzed to identify the most significant predictors of mortality.

Hyperparameter tuning was conducted using grid search and cross-validation to optimize each
model's performance. The final evaluation was based on the test set, ensuring an unbiased assessment
of predictive accuracy.

3. Results

Among the 5 machine learning models used in the analysis —XGBoost, Random Forest, Logistic
Regression, Ensemble Learning, and Ensemble Stacking—XGBoost and Ensemble Stacking
demonstrated the highest performance in predicting mortality, with an area under the curve (AUC)
value of 0.83 (Figure 1).

0.8

0.6

True Positive Rate

0.4

0.2

P —— XGBoost AUC = 0.83
il —— Random Forest AUC = 0.82
4 Logistic Regression AUC = 0.82
s —— Ensemble AUC = 0.82
—— Ensemble Stacking AUC = 0.83
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 1. Receiver Operating Characteristics (ROC) . Vertical axis shows true positive rate, and horizontal axis
shows false positive rate. The true positive rate (TPR) and false positive rate (FPR) are calculated for each cutoff
point used to distinguish between survived and non-survived. These points are plotted on a graph, with the TPR
on the vertical axis and the FPR on the horizontal axis, and then connected by a line. The closer a point is to the
top left corner—indicating a low false positive rate and a high true positive rate—the better the model's

performance. Similarly, a larger area under the curve (AUC) reflects a more effective discriminative marker.
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Among the 15 parameters extracted from the Framingham dataset, coronary heart disease
(PREVCHD), blood glucose (GLUCOSE), and diastolic blood pressure (DIABP) were identified as
significant risk factors associated with increased mortality (Figures 2—4).
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Figure 2. Refined correlation plot. Shows correlation matrix that has been cleaned using principal component
analysis (PCA) for 15 factors in the dataset, such as gender and age. Various risk factors have been strongly
associated with the onset of CVD and increased mortality. In the Framingham Heart Study (FHS), the variable
"educ" represents years of education: 1 to 11 for elementary to high school (including dropouts), 12 for high
school graduates, 13 to 15 for some college (including associate degrees), 16 for university graduates
(bachelor's degree), and 17 or more for graduate or professional education. This variable is used to analyze the

relationship between educational level and health or cardiovascular disease risk.
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Figure 3. Plots of age, glucose, BMI, and heart rate for survived and non-survived. Survivors are shown in
blue, non-survivors in orange. Age is an important factor analyzed in the Framingham dataset, but it has been

shown to be closely associated with other physiological factors.
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Figure 4. Predicting the risk of mortality for each factor. Figure (a) is explanation of the XGB model using
SHAPIey, (b) is bar plot, and (c) is summary of all effects of each feature.
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4. Discussion

The results of this study confirmed that glucose levels and blood pressure are significant factors
associated with mortality risk. Recent advancements in wearable sensor technology have made it
possible to continuously monitor these parameters in daily life. Notably, minimally invasive blood
glucose monitoring has progressed considerably, with technologies now available to estimate long-
term glucose levels from interstitial fluid using shallow needles [41]. Similarly, non-invasive methods
for estimating blood pressure via optical sensors embedded in smartwatches and activity trackers are
becoming increasingly practical [42-48]. These advancements enable real-time health monitoring
without relying solely on spot measurements taken at medical facilities. The strong association
between glucose levels, diastolic blood pressure, and mortality risk highlighted by this study
underscores the importance of using wearable sensors for continuous monitoring. Elevated blood
glucose levels are known to increase the risk of heart disease through diabetes and metabolic
syndrome. By tracking glucose levels daily, early intervention and lifestyle modifications can be more
effectively implemented. Likewise, sustained increases in diastolic blood pressure place chronic
stress on the cardiovascular system, increasing the risk of arteriosclerosis and heart failure, making
real-time monitoring highly valuable.

Wearable sensors are especially beneficial for older adults and individuals living in remote areas
who may have difficulty accessing healthcare facilities regularly. These devices facilitate early
medical intervention by detecting health risks before symptoms become apparent. Additionally, self-
reported information, such as the presence of coronary artery disease, can be integrated with real-
time data to provide personalized risk assessments and health management. Long-term data
collection via wearable sensors offers several advantages over conventional cross-sectional studies,
including risk assessment that accounts for temporal fluctuations. This approach not only enables
tailored lifestyle guidance and timely treatment but also has the potential to identify new predictive
markers. However, this study has several limitations, primarily related to the dataset used for
analysis. The findings were based on the Framingham dataset, which, while demonstrating the utility
of machine learning models for heart disease risk prediction, has inherent biases.

The Framingham Heart Study began in 1948, primarily involving middle-class white individuals
in Framingham, Massachusetts. Consequently, the participants' socioeconomic background, lifestyle,
and genetic factors were relatively homogeneous, limiting the generalizability of the results to other
ethnic groups and diverse social environments. Addressing health disparities in low-income
countries and among underrepresented populations will require analysis using more diverse
datasets. Another limitation concerns gender bias and the impact of sex differences. Although the
Framingham dataset includes substantial data on women, the male-to-female ratio is uneven,
potentially influencing risk factor analysis. Cardiovascular risk is known to increase in
postmenopausal women due to hormonal changes, a factor not fully captured by the dataset [49-54].
Our reanalysis of gender and mortality showed a minimal effect, but previous studies have reported
that women face higher heart disease risks from diabetes and hypertension compared to men.
Additionally, the 15 parameters used in this study were derived from the Framingham dataset,
excluding other potential risk factors such as inflammatory markers, mental stress, and genetic
predispositions. The lack of detailed lifestyle data—such as diet, exercise, and sleep —further limits
the comprehensiveness of the risk assessment. Integrating these factors through continuous wearable
monitoring could significantly enhance prediction accuracy. Given that health conditions change
over time, wearable sensors address the limitations of static data by enabling dynamic risk estimation
that accounts for temporal variations. Achieving personalized risk assessment tailored to an
individual's living environment and behavior will require a comprehensive approach, integrating a
broader range of biological signals and contextual data. Furthermore, optimizing machine learning
models to effectively process and interpret the vast datasets generated by wearable sensors will be
essential for advancing precision health monitoring.
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5. Conclusions

In this study, we used the Framingham dataset to apply five types of machine learning models
(XG Boost, Random Forest, Logistic Regression, Ensemble Learning, and Ensemble Stacking) and
compared their accuracy in predicting the risk of death from heart disease. The results showed that
XG Boost and Ensemble Stacking had the highest prediction performance (AUC= 0.83). Furthermore,
among the 15 parameters extracted from the dataset, it was confirmed that coronary artery disease
(PREVCHD), glucose level (GLUCOSE), and diastolic blood pressure (DIABP) were important factors
strongly associated with the risk of death. The results of this study show that parameters that can be
measured by wearable sensors, such as glucose levels and blood pressure, play an important role in
predicting the risk of heart disease, suggesting the usefulness of wearable technology in the
management of heart disease risk in the future.

Supplementary Materials: The Framingham dataset used in this study is publicly available and can be accessed
through Kaggle. The dataset can be accessed via the following link: Kaggle Framingham Heart Study Dataset
(https://www kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset) For further details on the
dataset, including variable definitions and additional descriptive statistics, please refer to the accompanying
Kaggle page.

Author Contributions: Conceptualization, E.Y.; methodology, E.Y. and 1.K; software, D.H.; validation, D.H;
formal analysis, D.H.; investigation, Y.E.; resources, D.H. and LK; data curation, E.Y.; writing —original draft
preparation, E.Y.; writing—review and editing, E.Y.; visualization, D.H., supervision, E.Y.; project
administration, E.Y.; funding acquisition, E.Y. All authors have read and agreed to the published version of the

manuscript.
Funding: This research received no external funding.

Institutional Review Board Statement: This study involves the analysis of open data. The open data does not
contain personally identifiable information (such as addresses or names), and since it does not involve human

subjects, ethical review board approval is not required.

Informed Consent Statement: In this study, informed consent is not required as the research involves the
analysis of open data that does not contain personally identifiable information. The data used in this study is
anonymized and does not pertain to human subjects directly, thus making the informed consent process

unnecessary.

Data Availability Statement: The data used in this study is publicly available from Kaggle's Framingham Heart
Study dataset. The dataset can be accessed at the following URL: https://www .kaggle.com/datasets/. The data is

provided under the terms of the relevant license and can be freely accessed for research purposes.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The abbreviations used in this paper are explained in section 2, Methods.

References

1.  Teo, KK Rafig, T. Cardiovascular Risk Factors and Prevention: A Perspective from Developing Countries.
Can. J. Cardiol. 2021, 37, 733-743. https://doi.org/10.1016/j.cjca.2021.02.009.

2. Pirzada, A,; Caj, J.; Cordero, C.; Gallo, L.C.; Isasi, C.R.; Kunz, ]J.; Thyagaragan, B.; Wassertheil-Smoller, S.;
Daviglus, M.L. Risk Factors for Cardiovascular Disease: Knowledge Gained from the Hispanic Community
Health Study/Study of Latinos. Curr. Atheroscler. Rep. 2023, 25, 785-793. https://doi.org/10.1007/s11883-
023-01152-9.

3.  Godijk, N.G,; Vos, A.G.; Jongen, V.W.; Moraba, R.; Tempelman, H.; Grobbee, D.E.; Coutinho, R.A.; Devillé,
W.; Klipstein-Grobusch, K. Heart Rate Variability, HIV and the Risk of Cardiovascular Diseases in Rural
South Africa. Glob. Heart 2020, 15, 17. https://doi.org/10.5334/gh.532.


https://www.kaggle.com/datasets/aasheesh200/framingham-heart-study-dataset
https://doi.org/10.20944/preprints202502.2135.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 February 2025 d0i:10.20944/preprints202502.2135.v1

9 of 11

4. Rosenthal, T.; Touyz, RM.; Oparil, S. Migrating Populations and Health: Risk Factors for Cardiovascular
Disease and Metabolic Syndrome. Curr. Hypertens. Rep. 2022, 24, 325-340. https://doi.org/10.1007/s11906-
022-01194-5.

5.  Lopez-Jaramillo, P.; Lopez-Lopez, J.P.; Tole, M.C.; Cohen, D.D. Muscular Strength in Risk Factors for
Cardiovascular Disease and Mortality: A Narrative Review. Anatol. J. Cardiol. 2022, 26, 598-607.
https://doi.org/10.5152/AnatolJCardiol.2022.1586.

6. Artola Arita, V.; Beigrezaei, S.; Franco, O.H. Risk Factors for Cardiovascular Disease: The Known
Unknown. Eur. J. Prev. Cardiol. 2024, 31, e106—e107. https://doi.org/10.1093/eurjpc/zwad392.

7. Quesada, O. Reproductive Risk Factors for Cardiovascular Disease in Women. Menopause 2023, 30, 1058—
1060. https://doi.org/10.1097/GME.0000000000002264.

8.  Miller, D.V.; Watson, K.E.; Wang, H.; Fyfe-Kirschner, B.; Heide, R.S.V. Racially Related Risk Factors for
Cardiovascular Disease: Society for Cardiovascular Pathology Symposium 2022. Cardiovasc. Pathol. 2022,
61, 107470. https://doi.org/10.1016/j.carpath.2022.107470.

9. Saba, P.S.; Parodi, G.; Ganau, A. From Risk Factors to Clinical Disease: New Opportunities and Challenges
for Cardiovascular Risk  Prediction. J. Am. Coll. Cardiol. 2021, 77, 1436-1438.
https://doi.org/10.1016/j.jacc.2021.01.040.

10. Whelton, S.P.; Post, W.S. Importance of Traditional Cardiovascular Risk Factors for Identifying High-Risk
Persons in Early Adulthood. Eur. Heart J. 2022, 43, 2901-2903. https://doi.org/10.1093/eurheartj/ehac148.

11. Hutchesson, M.; Campbell, L.; Leonard, A.; Vincze, L.; Shrewsbury, V.; Collins, C.; Taylor, R. Disorders of
Pregnancy and Cardiovascular Health Outcomes? A Systematic Review of Observational Studies.
Pregnancy Hypertens. 2022, 27, 138-147. https://doi.org/10.1016/j.preghy.2021.12.017.

12.  Freak-Poli, R.; Phyo, A.Z.Z.; Hu, ].; Barker, S.F. Are Social Isolation, Lack of Social Support or Loneliness
Risk Factors for Cardiovascular Disease in Australia and New Zealand? A Systematic Review and Meta-
Analysis. Health Promot. J. Austr. 2022, 33, 278-315. https://doi.org/10.1002/hpja.592.

13. Bergami, M.; Scarpone, M.; Bugiardini, R.; Cenko, E.; Manfrini, O. Sex Beyond Cardiovascular Risk Factors
and Clinical Biomarkers of Cardiovascular Disease. Rev. Cardiovasc. Med. 2022, 23, 19.
https://doi.org/10.31083/j.rcm2301019.

14. Kato, M. Diet- and Sleep-Based Approach for Cardiovascular Risk/Diseases. Nutrients 2023, 15, 3668.
https://doi.org/10.3390/nu15173668.

15. Hauer, RN.W. The Fractionated QRS Complex for Cardiovascular Risk Assessment. Eur. Heart J. 2022, 43,
4192-4194. https://doi.org/10.1093/eurheartj/ehac198.

16. Thayer, ]J.F.; Yamamoto, S.S.; Brosschot, ]J.F. The Relationship of Autonomic Imbalance, Heart Rate
Variability and Cardiovascular Disease Risk Factors. Int. J. Cardiol. 2010, 141, 122-131.
https://doi.org/10.1016/j.ijcard.2009.09.543.

17.  Greiser, K.H.; et al. Cardiovascular Disease, Risk Factors and Heart Rate Variability in the Elderly General
Population: Design and Objectives of the CARLA Study. BMC Cardiovasc. Disord. 2005, 5, 36.
https://doi.org/10.1186/1471-2261-5-36.

18. Wekenborg, M.K; Kiinzel, R.G.; Rothe, N.; Penz, M.; Walther, A.; Kirschbaum, C.; Thayer, ].F.; Hill, L.K.
Exhaustion and Cardiovascular Risk Factors: The Role of Vagally-Mediated Heart Rate Variability. Ann.
Epidemiol. 2023, 87, 51047-2797. https://doi.org/10.1016/j.annepidem.2023.09.008.

19. Nakayama, N.; Miyachi, M.; Tamakoshi, K.; Morikawa, S.; Negi, K.; Watanabe, K.; Moriwaki, Y.; Hirai, M.
Increased Afternoon Step Count Increases Heart Rate Variability in Patients with Cardiovascular Risk
Factors. J. Clin. Nurs. 2022, 31, 1636-1642. https://doi.org/10.1111/jocn.16018.

20. Malik, M. Heart Rate Variability. Curr. Opin. Cardiol. 1998, 13, 36—44. https://doi.org/10.1097/00001573-
199801000-00006.

21. Meller, A.L.; Andersson, C. Importance of Smoking Cessation for Cardiovascular Risk Reduction. Eur.
Heart J. 2021, 42, 4154-4156. https://doi.org/10.1093/eurheartj/ehab541.

22. Yuda, E.; Ueda, N.; Kisohara, M.; Hayano, J. Redundancy among risk predictors derived from heart rate
variability and dynamics: ALLSTAR big data analysis. Ann. Noninvasive Electrocardiol. 2021, 26, €12790.
https://doi.org/10.1111/anec.12790.


https://doi.org/10.1097/00001573-199801000-00006
https://doi.org/10.1097/00001573-199801000-00006
https://doi.org/10.1093/eurheartj/ehab541
https://doi.org/10.1111/anec.12790
https://doi.org/10.20944/preprints202502.2135.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 February 2025 d0i:10.20944/preprints202502.2135.v1

10 of 11

23. Carney, RM,; Blumenthal, J.A.; Freedland, K.E.; Stein, P.K.; Howells, W.B.; Berkman, L.F.; Watkins, L.L.;
Czajkowski, S.M.; Hayano, J.; Domitrovich, P.P.; Jaffe, A.S. Low heart rate variability and the effect of
depression on post-myocardial infarction mortality. Arch. Intern. Med. 2005, 165, 1486-1491.
https://doi.org/10.1001/archinte.165.13.1486.

24. Blumenthal, J.A.; Sherwood, A.; Babyak, M.A.; Watkins, L.L.; Waugh, R.; Georgiades, A.; Bacon, S.L.;
Hayano, J.; Coleman, R.E.; Hinderliter, A. Effects of exercise and stress management training on markers
of cardiovascular risk in patients with ischemic heart disease: a randomized controlled trial. JAMA 2005,
293, 1626-1634. https://doi.org/10.1001/jama.293.13.1626.

25. Kiyono, K.; Hayano, J.; Watanabe, E.; Struzik, Z.R.; Yamamoto, Y. Non-Gaussian heart rate as an
independent predictor of mortality in patients with chronic heart failure. Heart Rhythm 2008, 5, 261-268.
https://doi.org/10.1016/j.hrthm.2007.10.030.

26. Kojima, M.; Hayano, J.; Fukuta, H.; Sakata, S.; Mukai, S.; Ohte, N.; Seno, H.; Toriyama, T.; Kawahara, H,;
Furukawa, T.A.; Tokudome, S. Loss of fractal heart rate dynamics in depressive hemodialysis patients.
Psychosom. Med. 2008, 70, 177-185. https://doi.org/10.1097/PSY.0b013e31816477al.

27. Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the Epidemiology of
Cardiovascular Disease: A Historical Perspective. Lancet 2014, 383, 999-1008. DOI:10.1016/S0140-
6736(13)61752-3.

28. D'Agostino, R.B. Sr.; Vasan, R.S.; Pencina, M.].; Wolf, P.A.; Cobain, M.; Massaro, ].M.; Kannel, W.B. General
Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation 2008, 117,
743-753. DOI:10.1161/CIRCULATIONAHA.107.699579.

29. Andersson, C.; Nayor, M.; Tsao, C.W.; Levy, D.; Vasan, R.S. Framingham Heart Study: JACC Focus
Seminar, 1/8. J. Am. Coll. Cardiol. 2021, 77, 2680-2692. DOI:10.1016/j.jacc.2021.01.059.

30. Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-Year Legacy of the Framingham
Heart Study. Nat. Rev. Cardiol. 2019, 16, 687-698. DOI:10.1038/s41569-019-0202-5.

31. Rempakos, A.; Prescott, B.; Mitchell, G.F.; Vasan, R.S.; Xanthakis, V. Association of Life's Essential 8 with
Cardiovascular Disease and Mortality: The Framingham Heart Study. ]. Am. Heart Assoc. 2023, 12,
e030764. DOI:10.1161/JAHA.123.030764.

32. Cybulska, B.; Klosiewicz-Latoszek, L. Landmark Studies in Coronary Heart Disease Epidemiology: The
Framingham Heart Study after 70 Years and the Seven Countries Study after 60 Years. Kardiol. Pol. 2019,
77,173-180. DOI:10.5603/KP.a2019.0017.

33. Cooper, L.L.; Mitchell, G.F. Incorporation of Novel Vascular Measures into Clinical Management: Recent
Insights from the Framingham Heart Study. Curr. Hypertens. Rep. 2019, 21, 19. DOI:10.1007/s11906-019-
0919-x.

34. Graf, G.H],; Aiello, A.E.; Caspi, A.; Kothari, M.; Liu, H.; Moffitt, T.E.; Muennig, P.A.; Ryan, C.P.; Sugden,
K.; Belsky, D.W. Educational Mobility, Pace of Aging, and Lifespan Among Participants in the Framingham
Heart Study. JAMA Netw. Open 2024, 7, €240655. DOI:10.1001/jamanetworkopen.2024.0655.

35. Ding, H.; Mandapati, A.; Hamel, A.P.; Karjadi, C.; Ang, T.F.A,; Xia, W.; Au, R.; Lin, H. Multimodal Machine
Learning for 10-Year Dementia Risk Prediction: The Framingham Heart Study. J. Alzheimers Dis. 2023, 96,
277-286. DOI:10.3233/JAD-230496.

36. Murabito, ].M. Women and Cardiovascular Disease: Contributions from the Framingham Heart Study. J.
Am. Med. Womens Assoc. (1972) 1995, 50, 35-39, 55. PMID:7722204.

37. Kahouadji, N. Comparison of Machine Learning Classification Algorithms and Application to the
Framingham Heart Study. arXiv 2024, arXiv:2402.15005. Available online: https://arxiv.org/abs/2402.15005
(accessed on 23 February 2025).

38. Keizer, S.; Zhan, Z.; Ramachandran, V.S.; van den Heuvel, E.R. Joint Modeling with Time-Dependent
Treatment and Heteroskedasticity: Bayesian Analysis with Application to the Framingham Heart Study.
arXiv 2019, arXiv:1912.06398. Available online: https://arxiv.org/abs/1912.06398 (accessed on 23 February
2025).

39. Psychogyios, K; Ilias, L.; Askounis, D. Comparison of Missing Data Imputation Methods Using the
Framingham Heart Study Dataset. In Proceedings of the IEEE Conference, Location, Date. IEEE, 2022.
Available online: https://ieeexplore.ieee.org/document/9926882 (accessed on 23 February 2025).


https://doi.org/10.1097/PSY.0b013e31816477a1
https://doi.org/10.20944/preprints202502.2135.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 February 2025 d0i:10.20944/preprints202502.2135.v1

11 of 11

40. Priyanka, H.U.; Vivek, R. Multi Model Data Mining Approach for Heart Failure Prediction. Int. J. Data Min.
Knowl. Manag. Process 2016, 6, 31-39. DOIL 10.5121/ijdkp.2016.6503. Available online:
https://www.aircconline.com/ijdkp/V6N5/6516ijdkp03.pdf (accessed on 23 February 2025).

41. Hayano, J.; Yamada, A.; Yoshida, Y.; Ueda, N.; Yuda, E. Spectral Structure and Nonlinear Dynamics
Properties of Long-Term Interstitial Fluid Glucose. Int. J. Biosci. Biochem. Bioinform. 2020, 10, 137-143.
DOI: 10.17706/ijbbb.2020.10.3.137-143. Available online: https://www.ijbbb.org/vol10/545-K2034.pdf
(accessed on 23 February 2025).

42.  Schutte, A.E.; Kollias, A.; Stergiou, G.S. Blood Pressure and Its Variability: Classic and Novel Measurement
Techniques. Nat. Rev. Cardiol. 2022, 19, 643-654. DOI:10.1038/s41569-022-00690-0.

43. Bradley, C.K,; Shimbo, D.; Colburn, D.A.; Pugliese, D.N.; Padwal, R; Sia, S.K.; Anstey, D.E. Cuffless Blood
Pressure Devices. Am. J. Hypertens. 2022, 35, 380-387. DOI:10.1093/ajh/hpac017.

44. Sagirova, Z.; Kuznetsova, N.; Gogiberidze, N.; Gognieva, D.; Suvorov, A.; Chomakhidze, P.; Omboni, S.;
Saner, H.; Kopylov, P. Cuffless Blood Pressure Measurement Using a Smartphone-Case Based ECG
Monitor with Photoplethysmography in Hypertensive Patients. Sensors 2021, 21, 3525.
DOI:10.3390/s21103525.

45. Tamura, T.; Huang, M. Culffless Blood Pressure Monitor for Home and Hospital Use. Sensors 2025, 25, 640.
DOI:10.3390/s25030640.

46. Tamura, T.; Shimizu, S.; Nishimura, N.; Takeuchi, M. Long-Term Stability of Over-the-Counter Cuffless
Blood Pressure Monitors: A Proposal. Health Technol. 2023, 13, 53—-63. DOI:10.1007/s12553-023-00726-6.

47. Pandit, J.A.; Lores, E.; Batlle, D. Cuffless Blood Pressure Monitoring: Promises and Challenges. Clin. J. Am.
Soc. Nephrol. 2020, 15, 1531-1538. DOI:10.2215/CJN.03680320.

48. Gogiberidze, N.; Suvorov, A.; Sultygova, E.; Sagirova, Z.; Kuznetsova, N.; Gognieva, D.; Chomakhidze, P.;
Frolov, V.; Bykova, A.; Mesitskaya, D.; Novikova, A.; Kondakov, D.; Volovchenko, A.; Omboni, S.;
Kopylov, P. Practical Application of a New Cuffless Blood Pressure Measurement Method.
Pathophysiology 2023, 30, 586-598. DOI:10.3390/pathophysiology30040042.

49. Rajendran, A.; Minhas, A.S.; Kazzi, B.; Varma, B.; Choi, E.; Thakkar, A.; Michos, E.D. Sex-Specific
Differences in Cardiovascular Risk Factors and Implications for Cardiovascular Disease Prevention in
Women. Atherosclerosis 2023, 384, 117269. DOI:10.1016/j.atherosclerosis.2023.117269.

50. Faulkner, J.L. Obesity-Associated Cardiovascular Risk in Women: Hypertension and Heart Failure. Clin.
Sci. (Lond.) 2021, 135, 1523-1544. DOI:10.1042/CS20210384.

51. Mehta, L.S.; Velarde, G.P.; Lewey, J.; Sharma, G.; Bond, RM.; Navas-Acien, A.; Fretts, A.M.; Magwood,
G.S.; Yang, E.; Blumenthal, R.S.; Brown, R.M.; Mieres, J.H.; American Heart Association Cardiovascular
Disease and Stroke in Women and Underrepresented Populations Committee of the Council on Clinical
Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Hypertension; Council on Lifelong
Congenital Heart Disease and Heart Health in the Young; Council on Lifestyle and Cardiometabolic
Health; Council on Peripheral Vascular Disease; Stroke Council. Cardiovascular Disease Risk Factors in
Women: The Impact of Race and Ethnicity: A Scientific Statement from the American Heart Association.
Circulation 2023, 147, 1471-1487. DOI:10.1161/CIR.0000000000001139.

52. Kim, C. Management of Cardiovascular Risk in Perimenopausal Women with Diabetes. Diabetes Metab. J.
2021, 45, 492-501. DOI:10.4093/dm;.2020.0262.

53. Brown, R.M.; Tamazi, S.; Weinberg, C.R.; Dwivedi, A.; Mieres, ].H. Racial Disparities in Cardiovascular
Risk and Cardiovascular Care in Women. Curr. Cardiol. Rep. 2022, 24, 1197-1208. DOI:10.1007/s11886-022-
01738-w.

54. Rodriguez de Morales, Y.A.; Abramson, B.L. Cardiovascular and Physiological Risk Factors in Women at
Mid-Life and Beyond. Can. ]J. Physiol. Pharmacol. 2024, 102, 442-451. DOI:10.1139/cjpp-2023-0468.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202502.2135.v1

