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1  Introduction 

The waterfall analogy of electricity is commonly used to 

help conceptualize voltage and current in most educational or 

academic environments [1–3]. While it does a good job in that 

purpose, it may not provide a full description of how energy in 

electric circuits is transported. It is pointed out that 

electromagnetic fields in space deliver energy in circuits [4,5]. 

Kraus and Carver especially provided great insights into the 

subject by visualizing electric/magnetic fields and Poynting 

vector distribution around a DC circuit in 1973 (Ref. [4], figure 

10-19 on page 417). They show that the energy enters the load 

through the space from the battery’s terminals, as shown in 

Fig. 1. They also state that the dissipated power in the load has 

the same magnitude as the total power entering the load from 

the space, which is the integral of the Poynting vector over a 

surface enclosing the load (Ref. [4], page 418). If a power 

source with a higher electromotive force is used, then the 

power dissipated in the load increases as well, according to 

Ohm’s law. Thus, it can be inferred that the energy flux around 

the circuit would change as a function of electromotive force. 

The electromotive force of a power source, such as battery, is 

determined by the potential difference between its terminals. 

It is the purpose of this work to discuss the subject suggested 

by Kraus and Carver for arbitrary terminal potentials of the 

power source. In Section 2 below, relationships between 

source terminal potentials and energy flow 

magnitude/direction are derived based on a shielded DC 

circuit model. Simulation results are also provided which 

support the findings. 

 
Fig. 1. Energy flow around a DC circuit. 𝐸⃑  and 𝐵⃑  represent electric and 

magnetic fields, respectively. 𝑆  represents Poynting vector. The 
concept is explained by Kraus and Carver [4]. 

 

2  Derivation 

Prior to the derivation, let us make a note about the power 

source (or a battery). The power source’s terminals are not 

constrained to be at potentials with opposite signs, + and -, 

although this is what is commonly seen in commercially 

available batteries. In fact, a power source should be 

understood as anything that can create electromotive force or 

make charges “move”. For example, suppose two sets of 

identical capacitor plates: one set of plates with the charge 

density +Q and -Q, and the other set with +2Q and -2Q. If you 

connect the plates charged with +Q and +2Q (or -Q and -2Q), 

there will be a movement of charges until both plates reach 

the equal potential at +1.5Q. Consider three cases in Fig. 2 

where the battery’s terminal potentials are different while the 

electromotive force stays the same value. The three circuits in 

Fig. 2 are all identical in that the voltage and current across the 

resister are the same. Assuming no resistance of the wire and 

battery, the dissipated power in the resistor is equal to the 

product of the battery’s electromotive force and the current 

(PR = VsI). The + and – sings around the wire in Fig. 2 represent 

surface charges [6–8]. 
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Fig. 2. Three identical DC circuits in steady state. Surface charges in the wire are represented with + and – signs. The electric potential along 
the circuit components is illustrated. Us

H and Us
L are potentials of the source terminals relative to the ground (U = 0). PR is the power consumed 

in the resistor. R is the resistance of the resistor. I is current. Vs is the electromotive force of the power source. An infinite conductivity of the 
wire and no internal resistance of the battery are assumed. 

Case 1: 𝑼𝒔
𝑯 > 𝟎 > 𝑼𝒔

𝑳 

Suppose that the circuit in Fig. 2a is shielded with a 

separate, grounded conductor along the wire as shown in Fig. 

3. The wire and shield are not connected, and the current flows 

only in the wire. Since the shield is grounded, the potential and 

electric fields outside the shield are zero everywhere. This, in 

steady state, indicates that there is no electromagnetic energy 

flow outside the shield due to the Poynting vector being zero. 

For a cylindrical, infinitely long wire, the electric and magnetic 

fields are visualized with the corresponding Poynting vector in 

Figs. 3a and 3b. Since the wire has an infinite conductivity, the 

potentials in the wires are constant as Us
H and Us

L in Regions 1 

and 3, respectively. This indicates that the electric field and 

Poynting vector within the wire are zero. Thus, energy in the 

circuit only transports through the space between the wire and 

shield. Because the energy must be conserved, the sum of 

energy flows from both terminals is expected to be equal to 

VsI. To derive this, isotropic materials are assumed in this work 

such that 𝐷⃑⃑ = 𝜀𝐸⃑  and 𝐵⃑ = 𝜇𝐻⃑⃑  or  𝐷⃑⃑ ∥ 𝐸⃑  and 𝐵⃑ ∥ 𝐻⃑⃑  [9]. 
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Fig. 3. Electric and magnetic fields around the circuit for Case 1. a) and b): cross-section of the wire along and perpendicular to the wire’s 

longitudinal axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (𝐸⃑ ), 

magnetic field (𝐵⃑ ), and Poynting vector (𝑆 ) are denoted. r and θ are radius and angle. c): oblique view with a Gaussian surface and an Amperian 
loop. d): cross-section view of simulated electric fields, where Us

H = 1V and Us
L = -1V are used. The electric field strength, in V/m, is represented 

by color. e): electromagnetic power flow (𝑃⃑ 𝐸𝑀) in Regions 1 and 3 and power absorbed (𝑃𝐸𝑀,𝑎𝑏𝑠) in the resistor. The thickness of the power 

flow arrows represents relative power magnitude. 

a) Electric Fields 

 

According to Gauss’s law, 

 

 ∮ 𝐷⃑⃑ ⋅ 𝑑𝑎 = 𝑄𝑓,𝑒𝑛𝑐   (1a) 

 

 ∮ 𝐸⃑ ⋅ 𝑑𝑎 =
𝑄𝑓,𝑒𝑛𝑐

𝜀
 (1b) 

 

, where 𝐸⃑  and 𝐷⃑⃑  are electric and electric displacement fields, 

respectively. 𝑑𝑎  is the surface normal vector with the 

magnitude of an infinitesimal area on the Gaussian surface 

(surface in grey in Fig. 3c, for example). Qf,enc is the total free 

charge enclosed in the volume that the Gaussian surface 

makes. ε is permittivity of the material where the fields are 

present. From Eq. (1b), the electric field around the wire is 

obtained as 

 

 

𝐸⃑ = 𝐸𝑟̂ 
 

= (
𝑄𝑓,𝑒𝑛𝑐

2𝜋𝐿𝜀

1

𝑟
) 𝑟̂, 𝑎 ≤ 𝑟 ≤ 𝑏 

(2) 

 

, where r and L are radius and height of the Gaussian surface 
in Fig. 3c. 𝑟̂ is a unit vector in the radial direction. Since the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202211.0352.v2

https://doi.org/10.20944/preprints202211.0352.v2


 

 

  4  

 

shield is grounded (U = 0), the potential differences between 
the shield and wire are Us

H and Us
L for Regions 1 and 3, 

respectively. These potential differences can also be calculated 
by integrating the electric field along the path. That is, 
 

 For Region 1:  

 

𝑈𝑠
𝐻 = ∫ 𝐸⃑ 𝑅𝑒𝑔𝑖𝑜𝑛 1 𝑑𝑟 

𝑏

𝑎

 

 

=
𝑄𝑓,𝑒𝑛𝑐,𝑅𝑒𝑔𝑖𝑜𝑛 1

2𝜋𝐿𝜀
∫

1

𝑟
𝑑𝑟

𝑏

𝑎

 

 

=
𝑄𝑓,𝑒𝑛𝑐,𝑅𝑒𝑔𝑜𝑖𝑛 1

2𝜋𝐿𝜀
𝑙𝑛

𝑏

𝑎
 

 

= 𝑟𝐸𝑅𝑒𝑔𝑖𝑜𝑛 1 𝑙𝑛
𝑏

𝑎
 

  

(3a) 

 

 For Region 3:  

 

𝑈𝑠
𝐿 = ∫ 𝐸⃑ 𝑅𝑒𝑔𝑖𝑜𝑛 3 𝑑𝑟 

𝑏

𝑎

 

 

= 𝑟𝐸𝑅𝑒𝑔𝑖𝑜𝑛 3 𝑙𝑛
𝑏

𝑎
 

 

(3b) 

   

From the left-hand and right-hand sides of Eq. (3), the electric 

fields around the wire can also be expressed by 

 

 𝐸𝑅𝑒𝑔𝑖𝑜𝑛 1 =
𝑈𝑠

𝐻

𝑙𝑛
𝑏

𝑎

 
1

𝑟
  ,  𝑎 ≤ 𝑟 ≤ 𝑏 (4a) 

 

 𝐸𝑅𝑒𝑔𝑖𝑜𝑛 3 =
𝑈𝑠

𝐿

𝑙𝑛
𝑏

𝑎

 
1

𝑟
 ,   𝑎 ≤ 𝑟 ≤ 𝑏 (4b) 

 

 

b) Magnetic Fields 

 

According to Ampere’s law,  

 

 ∮ 𝐻⃑⃑ ⋅ 𝑑𝑙 = 𝐼𝑓,𝑒𝑛𝑐   (5a) 

 

 ∮ 𝐵⃑ ⋅ 𝑑𝑙 = 𝜇𝐼𝑓,𝑒𝑛𝑐  (5b) 

 

, where 𝐻⃑⃑  and 𝐵⃑  are magnetic “H” and “B” fields, respectively 
(it seems that there is no universal agreement as to which field 

should be called “magnetic field” [10]). 𝑑𝑙  is the path vector 
with the magnitude of an infinitesimal length along the 
Amperian loop (loop in blue in Fig. 3c, for example). If,enc is the 
total free current passing through the Amperian loop. µ is 

permeability of the material where the fields are present. 
From Eq. (5b), the magnetic field around the wire is obtained 
as 
 
 

 For both Regions 1 and 3:  

 

 

𝐵⃑ = 𝐵𝜃̂ 
 

=
𝜇𝐼

2𝜋𝑟
𝜃̂ 

 

=
𝜇

2𝜋𝑟

𝑉𝑠
𝑅

𝜃̂, 𝑟 ≥ 𝑎 

(6) 

 

𝜃̂ is a unit vector in the angular direction. 

 

 

c) Poynting Vector and Power Flow 

 

According to Poynting’s theorem, the energy flow in 

electromagnetic fields is given by  

 

 𝑆 =
1

𝜇
𝐸⃑ × 𝐵⃑    (7) 

 

By inserting Eqs. (4) and (6) into Eq. (7), the magnitude of the 

Poynting vector (𝑆 ) writes 

 

 

|𝑆𝑅𝑒𝑔𝑖𝑜𝑛 1| =
1

𝜇
|𝐸𝑅𝑒𝑔𝑖𝑜𝑛 1||𝐵| 

 

=
1

𝜇
(

𝑈𝑠
𝐻

𝑙𝑛
𝑏
𝑎

 
1

𝑟
) (

𝜇

2𝜋𝑟

𝑉𝑠
𝑅
) 

 

=
𝑈𝑠

𝐻𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

 
1

𝑟2
 

(8a) 

 

 

 

|𝑆𝑅𝑒𝑔𝑖𝑜𝑛 3| =
1

𝜇
|𝐸𝑅𝑒𝑔𝑖𝑜𝑛 3||𝐵| 

 

=
1

𝜇
(−

𝑈𝑠
𝐿

𝑙𝑛
𝑏
𝑎

 
1

𝑟
) (

𝜇

2𝜋𝑟

𝑉𝑠
𝑅

) 

 

= −
𝑈𝑠

𝐿𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

 
1

𝑟2
 

(8b) 

 

Since the unit of Poynting vector is [
𝐽

𝑠 ⋅ 𝑚2⁄ ], the amount of 

power passing through an area can be obtained by integrating 
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the Poynting vector over that area. Therefore, from Eq. (8), the 

power flow around the wire is 

 

 

|𝑃𝐸𝑀
𝐻 | = ∫ 𝑆 𝑅𝑒𝑔𝑖𝑜𝑛 1 ⋅ 𝑑𝑎  

 

= ∫ ∫ (
𝑈𝑠

𝐻𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

 
1

𝑟2
)

𝑏

𝑎

2𝜋

0

𝑟 𝑑𝑟 𝑑𝜃 

 

=
𝑈𝑠

𝐻𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

  2𝜋 𝑙𝑛
𝑏

𝑎
 

 

=
𝑈𝑠

𝐻𝑉𝑠
𝑅

 

(9a) 

 

Likewise, 

 

 

|𝑃𝐸𝑀
𝐿 | = ∫ 𝑆 𝑅𝑒𝑔𝑖𝑜𝑛 3 ⋅ 𝑑𝑎  

 

= −
𝑈𝑠

𝐿𝑉𝑠
𝑅

 

(9b) 

 

In calculation of Eqs. (9a) and (9b), note that the orientation of 

the surface normal vector (𝑑𝑎 ) is chosen to be the same as that 

of the Poynting vector in each Region. Since there is no energy 

input/output from outside the shield, the energy flow in the 

circuit is confined in the space between the shield and wire. 

Thus, the total amount of electromagnetic power absorbed in 

the resistor is 

 

 

|𝑃𝐸𝑀,𝑎𝑏𝑠| = |𝑃𝐸𝑀
𝐻 | + |𝑃𝐸𝑀

𝐿 | 

 

= (𝑈𝑠
𝐻 − 𝑈𝑠

𝐿)
𝑉𝑠
𝑅

 

 

=
𝑉𝑠

2

𝑅
 

 
= 𝑉𝑠𝐼 

(9c) 

 

From the classical circuit theory, the power consumed in the 

resistor is 

 

 𝑃𝑅 = 𝑉𝑠𝐼 (10) 

 

From Eqs. (9c) and (10), 

 

 |𝑃𝐸𝑀,𝑎𝑏𝑠| = 𝑃𝑅  (11) 

 

Moreover, from Eqs. (9a) and (9b), the power flow ratio from 

the battery’s terminals is obtained by 

 

 |𝑃𝐸𝑀
𝐻 |: |𝑃𝐸𝑀

𝐿 | = |𝑈𝑠
𝐻|: |𝑈𝑠

𝐿| (12) 

 

Case 2: 𝑼𝒔
𝑯 > 𝑼𝒔

𝑳 > 𝟎 

Now, let us consider the case of Fig. 2b. The fields in this 

case are illustrated in Fig. 4. In analogy to Case 1 above, the 

electric and magnetic fields around the wire are given by Eqs. 

(4) and (6). Putting these equations into Eq. (7), the magnitude 

of the Poynting vector is obtained by 

 

 

|𝑆𝑅𝑒𝑔𝑖𝑜𝑛 1| =
1

𝜇
|𝐸𝑅𝑒𝑔𝑖𝑜𝑛 1||𝐵| 

 

=
1

𝜇
(

𝑈𝑠
𝐻

𝑙𝑛
𝑏
𝑎

 
1

𝑟
) (

𝜇

2𝜋𝑟

𝑉𝑠
𝑅
) 

 

=
𝑈𝑠

𝐻𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

 
1

𝑟2
 

(13a) 

 

 

 

|𝑆𝑅𝑒𝑔𝑖𝑜𝑛 3| =
1

𝜇
|𝐸𝑅𝑒𝑔𝑖𝑜𝑛 3||𝐵| 

 

=
1

𝜇
(

𝑈𝑠
𝐿

𝑙𝑛
𝑏
𝑎

 
1

𝑟
) (

𝜇

2𝜋𝑟

𝑉𝑠
𝑅
) 

 

=
𝑈𝑠

𝐿𝑉𝑠

2𝜋𝑅𝑙𝑛
𝑏
𝑎

 
1

𝑟2
 

(13b) 

 

Therefore,  

 

 

|𝑃𝐸𝑀
𝐻 | = ∫ 𝑆 𝑅𝑒𝑔𝑖𝑜𝑛 1 𝑑𝑎  

 

=
𝑈𝑠

𝐻𝑉𝑠
𝑅

 

 

(14a) 

 

 

|𝑃𝐸𝑀
𝐿 | = ∫ 𝑆 𝑅𝑒𝑔𝑖𝑜𝑛 3 ⋅ 𝑑𝑎  

 

=
𝑈𝑠

𝐿𝑉𝑠
𝑅

 

(14b) 

 

Since the energy in the circuit flows in the same direction in 

both Regions 1 and 3, as shown in Fig. 4, and 𝑈𝑠
𝐻 > 𝑈𝑠

𝐿 > 0, 

the total amount of electromagnetic power absorbed in the 

resistor is 
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|𝑃𝐸𝑀,𝑎𝑏𝑠| = |𝑃𝐸𝑀
𝐻 | − |𝑃𝐸𝑀

𝐿 | 

 

= (𝑈𝑠
𝐻 − 𝑈𝑠

𝐿)
𝑉𝑠
𝑅

 

 
= 𝑃𝑅  

(14c) 

 

From Eqs. (14a) and (14b), the power flow ratio from/into the 

two terminals is 

 

 |𝑃𝐸𝑀
𝐻 |: |𝑃𝐸𝑀

𝐿 | = |𝑈𝑠
𝐻|: |𝑈𝑠

𝐿| (15) 

 

 

 
 
Fig. 4. Electric and magnetic fields around the circuit for Case 2. a): cross-section of the wire along and perpendicular to the wire’s longitudinal 

axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (𝐸⃑ ), magnetic field 

(𝐵⃑ ), and Poynting vector (𝑆 ) are denoted. r and θ are radius and angle. b): cross-section view of simulated electric fields, where Us
H = 3V and 

Us
L = 1V are used. The electric field strength, in V/m, is represented by color. Structure dimensions are same as the one in Fig. 3d. c): 

electromagnetic power flow (𝑃⃑ 𝐸𝑀) in Regions 1 and 3 and power absorbed (𝑃𝐸𝑀,𝑎𝑏𝑠) in the resistor. The thickness of the power flow arrows 

represents relative power magnitude. 
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Case 3: 𝑼𝒔
𝑯 > 𝑼𝒔

𝑳 = 𝟎 

Lastly, let us consider the case of Fig. 2c. The fields in this 

case are illustrated in Fig. 5. Likewise in Cases 1 and 2 above, 

the following is obtained 

 

 |𝑃𝐸𝑀
𝐻 | =

𝑈𝑠
𝐻𝑉𝑠
𝑅

=
𝑉𝑠

2

𝑅
 

 
(16a) 

 
|𝑃𝐸𝑀

𝐿 | =
𝑈𝑠

𝐿𝑉𝑠
𝑅

= 0 

 
(16b) 

 |𝑃𝐸𝑀,𝑎𝑏𝑠| = |𝑃𝐸𝑀
𝐻 | =

𝑉𝑠
2

𝑅
 = 𝑃𝑅  (16c) 

  

Therefore, 

 

 |𝑃𝐸𝑀
𝐻 |: |𝑃𝐸𝑀

𝐿 | = |𝑈𝑠
𝐻|: |𝑈𝑠

𝐿| (17) 

 
 
Fig. 5. Electric and magnetic fields around the circuit for Case 3. a): cross-section of the wire along and perpendicular to the wire’s longitudinal 

axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (𝐸⃑ ), magnetic field 

(𝐵⃑ ), and Poynting vector (𝑆 ) are denoted. r and θ are radius and angle. b): cross-section view of simulated electric fields, where Us
H = 2V and 

Us
L = 0V are used. The electric field strength, in V/m, is represented by color. Structure dimensions are same as the one in Fig. 3d. c): 

electromagnetic power flow (𝑃⃑ 𝐸𝑀) in Regions 1 and 3 and power absorbed (𝑃𝐸𝑀,𝑎𝑏𝑠) in the resistor. The thickness of the power flow arrows 

represents relative power magnitude. 
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3  Summary and Conclusion 

The energy flow mechanism in electric circuits is described 

by Kraus and Carver by using electric/magnetic fields and 

Poynting vectors [4]. Based on the insights provided by Kraus 

and Carver, this work discusses the subject for arbitrary 

terminal potentials of the power source. In conclusion, the 

magnitude and direction of energy flow in circuits are 

determined by the terminal potentials in a way that the power 

absorbed in the load is only dependent on the terminals’ 

potential difference, as shown in Eqs. 12, 15, and 17. 
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