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Abstract: In electric circuits, energy is delivered by electromagnetic
fields through the space, as suggested by Kraus and Carver. They
provide insights by showing electric/magnetic fields and Poynting
vector directions around a DC circuit. In this work, the energy flow
mechanism by Kraus and Carver is further studied theoretically for
arbitrary terminal potentials of a DC power source.
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1 Introduction

The waterfall analogy of electricity is commonly used to
help conceptualize voltage and current in most educational or
academic environments [1-3]. While it does a good job in that
purpose, it may not provide a full description of how energy in
electric circuits is transported. It is pointed out that
electromagnetic fields in space deliver energy in circuits [4,5].
Kraus and Carver especially provided great insights into the
subject by visualizing electric/magnetic fields and Poynting
vector distribution around a DC circuit in 1973 (Ref. [4], figure
10-19 on page 417). They show that the energy enters the load
through the space from the battery’s terminals, as shown in
Fig. 1. They also state that the dissipated power in the load has
the same magnitude as the total power entering the load from
the space, which is the integral of the Poynting vector over a
surface enclosing the load (Ref. [4], page 418). If a power
source with a higher electromotive force is used, then the
power dissipated in the load increases as well, according to
Ohm’s law. Thus, it can be inferred that the energy flux around
the circuit would change as a function of electromotive force.
The electromotive force of a power source, such as battery, is
determined by the potential difference between its terminals.
It is the purpose of this work to discuss the subject suggested
by Kraus and Carver for arbitrary terminal potentials of the
power source. In Section 2 below, relationships between
source terminal potentials and energy flow
magnitude/direction are derived based on a shielded DC
circuit model. Simulation results are also provided which
support the findings.

Fig. 1. Energy flow around a DC circuit. EandB represent electric and

magnetic fields, respectively. S represents Poynting vector. The
concept is explained by Kraus and Carver [4].

2 Derivation

Prior to the derivation, let us make a note about the power
source (or a battery). The power source’s terminals are not
constrained to be at potentials with opposite signs, + and -,
although this is what is commonly seen in commercially
available batteries. In fact, a power source should be
understood as anything that can create electromotive force or
make charges “move”. For example, suppose two sets of
identical capacitor plates: one set of plates with the charge
density +Q and -Q, and the other set with +2Q and -2Q. If you
connect the plates charged with +Q and +2Q (or -Q and -2Q),
there will be a movement of charges until both plates reach
the equal potential at +1.5Q. Consider three cases in Fig. 2
where the battery’s terminal potentials are different while the
electromotive force stays the same value. The three circuits in
Fig. 2 are all identical in that the voltage and current across the
resister are the same. Assuming no resistance of the wire and
battery, the dissipated power in the resistor is equal to the
product of the battery’s electromotive force and the current
(Pr = Vsl). The + and — sings around the wire in Fig. 2 represent
surface charges [6-8].
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Fig. 2. Three identical DC circuits in steady state. Surface charges in the wire are represented with + and — signs. The electric potential along
the circuit components is illustrated. U" and Ui are potentials of the source terminals relative to the ground (U = 0). P is the power consumed
in the resistor. R is the resistance of the resistor. / is current. V; is the electromotive force of the power source. An infinite conductivity of the
wire and no internal resistance of the battery are assumed.

Case1: U > 0 > UL Figs. 3a and 3b. Since the wire has an infinite conductivity, the
potentials in the wires are constant as Us" and Us! in Regions 1
and 3, respectively. This indicates that the electric field and
Poynting vector within the wire are zero. Thus, energy in the
circuit only transports through the space between the wire and
shield. Because the energy must be conserved, the sum of
energy flows from both terminals is expected to be equal to
Vsl. To derive this, isotropic materials are assumed in this work

suchthatD = ¢E and B = uﬁ or D I Eand B I H [9].

Suppose that the circuit in Fig. 2a is shielded with a
separate, grounded conductor along the wire as shown in Fig.
3. The wire and shield are not connected, and the current flows
only in the wire. Since the shield is grounded, the potential and
electric fields outside the shield are zero everywhere. This, in
steady state, indicates that there is no electromagnetic energy
flow outside the shield due to the Poynting vector being zero.
For a cylindrical, infinitely long wire, the electric and magnetic
fields are visualized with the corresponding Poynting vector in
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Fig. 3. Electric and magnetic fields around the circuit for Case 1. a) and b): cross-section of the wire along and perpendicular to the wire’s
longitudinal axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (E),

magnetic field (E), and Poynting vector (§) are denoted. r and 6 are radius and angle. c): oblique view with a Gaussian surface and an Amperian
loop. d): cross-section view of simulated electric fields, where Ut = 1V and Uit = -1V are used. The electric field strength, in V/m, is represented

by color. e): electromagnetic power flow (ﬁEM) in Regions 1 and 3 and power absorbed (Pgy qps) in the resistor. The thickness of the power
flow arrows represents relative power magnitude.

a) Electric Fields (surface in grey in Fig. 3c, for example). Qf.enc is the total free
charge enclosed in the volume that the Gaussian surface
According to Gauss’s law makes. € is permittivity of the material where the fields are
present. From Eq. (1b), the electric field around the wire is
. obtained as
§D -da = Qf,enc (1a)
E = Ef
fﬁ.dazﬁ (1b) 2)
£

Qfencl
=[==—— )7 <r<
<2anr)r' asr<b

, where E and D are electric and electric displacement fields, ) ) ; ] ;
respectively. dd is the surface normal vector with the ° where r and L are radius and height of the Gaussian surface

magnitude of an infinitesimal area on the Gaussian surface in Fig. 3c. 7 is a unit vector in the radial direction. Since the
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shield is grounded (U = 0), the potential differences between
the shield and wire are U and Ust for Regions 1 and 3,
respectively. These potential differences can also be calculated
by integrating the electric field along the path. That is,

For Region 1:

H v 3
Us = ERegion 1 dr

a

_ Qf,enc,Regionl fbldr
2mLe a7

(3a)

_ Qf,enc,Regoin 1

2nLe a

= TERegion 1 lna

For Region 3:

b
L — o =
Us - f ERegion3 ar

(3b)

= rERegion 3ln E

From the left-hand and right-hand sides of Eq. (3), the electric
fields around the wire can also be expressed by

vl 1
ERegion1=@;' a<r<bh (4a)
_ U1 <r<b
ERegionS = @ T asr=s (4b)
b) Magnetic Fields
According to Ampere’s law,
Sﬁﬁ : di = If,enc (5a)
f B dl = ply one (5b)

, Where H and B are magnetic “H” and “B” fields, respectively
(it seems that there is no universal agreement as to which field
should be called “magnetic field” [10]). dl is the path vector
with the magnitude of an infinitesimal length along the
Amperian loop (loop in blue in Fig. 3c, for example). lsenc is the
total free current passing through the Amperian loop. U is
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permeability of the material where the fields are present.
From Eq. (5b), the magnetic field around the wire is obtained
as

For both Regions 1 and 3:
B =Bo
I .
- M (6)
2nr
u
r

2

6, r=>a

=Vl

@ is a unit vector in the angular direction.

c) Poynting Vector and Power Flow

According to Poynting’s theorem, the energy flow in

electromagnetic fields is given by
= 1 = —
S = ;E X B (7)

By inserting Egs. (4) and (6) into Eq. (7), the magnitude of the

-

Poynting vector (S) writes

1
|SRegion 1| = ; |ERegion 1||B|

1{ U1 (u Vs)

U lnér 2mr R (8a)
a

Uy, 1

rz

2nRIn b
a

1
SRegion 3| = ; IERegion 3 | |B|

1 UsLl(MVs)

m 2nr R

U lng r (8b)

o uty1

21TRlné r
a

Since the unit of Poynting vector is []/s . mz]’ the amount of

power passing through an area can be obtained by integrating
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the Poynting vector over that area. Therefore, from Eq. (8), the
power flow around the wire is

=g -
|PL€J{M| = fSRegionl -da

2w b UEVS 1
=f f — 5z rdrdf
o Ja \2nRin="
a
(9a)
UEY,
=—2°_ onln—
2nRIn— a
a
A
" R
Likewise,
|PL{7‘M| = ngegionS -da
ULy, (9b)
- R

In calculation of Egs. (9a) and (9b), note that the orientation of
the surface normal vector (da) is chosen to be the same as that
of the Poynting vector in each Region. Since there is no energy
input/output from outside the shield, the energy flow in the
circuit is confined in the space between the shield and wire.
Thus, the total amount of electromagnetic power absorbed in
the resistor is

|PEM,abs| = |P£IM| + |P£M|

= w!-uhy
(9¢c)

=],

[
o~
—~

From the classical circuit theory, the power consumed in the
resistor is

P =VI (10)
From Egs. (9c) and (10),

(11)

|Pert.ans| = Pr

Moreover, from Egs. (9a) and (9b), the power flow ratio from
the battery’s terminals is obtained by

|PEh 2 1Pé | = 1US1: 1U | (12)

Case2: U¥ > UL >0

Now, let us consider the case of Fig. 2b. The fields in this
case are illustrated in Fig. 4. In analogy to Case 1 above, the
electric and magnetic fields around the wire are given by Egs.
(4) and (6). Putting these equations into Eq. (7), the magnitude
of the Poynting vector is obtained by

1
e . = — .
SR gwnll U |ERegwn1||B|

Ui ( U Vs)
“u\, br|\2nrR (13a)
lna
Uty 1
= 5
ZﬂRlna
1
SRegion 3| = ; |ERegion 3 | |B|
IRYRZ! ( u VS)
“u\, br|\2nrR (13b)
lna
uty, 1
)
27TRlné r
a
Therefore,
|PI§IM| = ngegionl da
A (14a)
" R
|P£M| = fSRegion3 -da
14b
U, (14b)
"R

Since the energy in the circuit flows in the same direction in
both Regions 1 and 3, as shown in Fig. 4, and U > UL > 0,
the total amount of electromagnetic power absorbed in the
resistor is
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|PEM,abs| = |PEHM| - |P1§“M| . .
From Egs. (14a) and (14b), the power flow ratio from/into the
174 two terminals is
=W b (14c)
|Pé | 1P| = US| US| (15)
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Fig. 4. Electric and magnetic fields around the circuit for Case 2. a): cross-section of the wire along and perpendicular to the wire’s longitudinal

axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (E), magnetic field
(§), and Poynting vector (S) are denoted. r and 0 are radius and angle. b): cross-section view of simulated electric fields, where Us" = 3V and
s = 1V are used. The electric field strength, in V/m, is represented by color. Structure dimensions are same as the one in Fig. 3d. c):

electromagnetic power flow (ﬁEM) in Regions 1 and 3 and power absorbed (Pgy 4ps) in the resistor. The thickness of the power flow arrows
represents relative power magnitude.
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Case3: U > UL =0 3 ULy,
|Pgm| =——=10 (16b)
Lastly, let us consider the case of Fig. 2c. The fields in this
case are illustrated in Fig. 5. Likewise in Cases 1 and 2 above, V2
the following is obtained |Peraps| = [Pyl = % = Py (16¢)
H 2
|PH | = Us Vs = VL Therefore,
EM R R (16a)
|Pé|: |1Pgy | = US|: US| (17)

a) U=(_), E=0, B#0, S=0 (outside shield)
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Fig. 5. Electric and magnetic fields around the circuit for Case 3. a): cross-section of the wire along and perpendicular to the wire’s longitudinal
axis, respectively. The resistor is visualized in grey with the lumped element symbol. The electric potential (U), electric field (E), magnetic field
(§), and Poynting vector (5‘) are denoted. r and 0 are radius and angle. b): cross-section view of simulated electric fields, where Us" = 2V and

st = 0V are used. The electric field strength, in V/m, is represented by color. Structure dimensions are same as the one in Fig. 3d. c):

electromagnetic power flow (ﬁEM) in Regions 1 and 3 and power absorbed (Pgy 4ps) in the resistor. The thickness of the power flow arrows
represents relative power magnitude.


https://doi.org/10.20944/preprints202211.0352.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 December 2022

3 Summary and Conclusion

The energy flow mechanism in electric circuits is described
by Kraus and Carver by using electric/magnetic fields and
Poynting vectors [4]. Based on the insights provided by Kraus
and Carver, this work discusses the subject for arbitrary
terminal potentials of the power source. In conclusion, the
magnitude and direction of energy flow in circuits are
determined by the terminal potentials in a way that the power
absorbed in the load is only dependent on the terminals’
potential difference, as shown in Egs. 12, 15, and 17.
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