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Abstract

We present the first geometric-analytic proof of the reverse isoperimetric inequality for black holes in
any dimension. The proof holds for compact Riemannian hypersurfaces in AdS (and dS) and seems
to be a generic property of black holes in the extended phase space formalism. Using Euclidean
gravitational action, we show that, among all hypersurfaces of given volume, the round sphere in
the D-dimensional (Anti-)de Sitter space maximizes the area (and hence the entropy). This analytic
result is supported by a geometric argument in a 1 + 1 + 2 decomposition of spacetime: gravitational
focusing enforces a strictly negative conformal deformation, and the Sherif–Dunsby rigidity theorem
then forces the deformed 3-sphere to be isometric to round 3-sphere, establishing the round sphere
as the extremal surface, in fact, a maximally entropic surface. Our work establishes that the reversal
of the usual isoperimetric inequality occurs due to the structure of curved background governed by
Einstein’s equation, underscoring the role of gravity in the reverse isoperimetric inequality for black
hole horizons in (A)dS space.

Keywords: reverse isoperimetric inequality; Sherif-Dunsby rigidity; Obata’s theorem; black holes;
general relativity; gravitation

1. Introduction
Extended black hole thermodynamics [1–3] provides a richer structure of black hole thermody-

namics by identifying the cosmological constant Λ with pressure as

P = − Λ
8π

(1)

This is possible for the AdS case for which we have Λ < 0, which implies that P > 0 as required on
physical grounds. The volume is given as

Θ = −
VD−2rD−1

h
(D − 1)

, (2)

where VD−2 is the volume of unit sphere and rh is the horizon radius. This leads to the modified first
law with a varying cosmological constant as

δM =
κ

8πG
δA +

Θ
8πG

δΛ. (3)

κ is the surface gravity given as (ka is the Killing vector)

ka∇akb = κkb. (4)

The modified first law points to the mass of the AdS black hole as being the enthalpy of spacetime
[1]. This has given rise to interesting phenomena concerning black holes, such as Van der Waals fluids
[4,5], and heat engines [6].
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A varying cosmological constant has been shown to arise from higher-dimensional bulk effects,
in which case the varying brane tension τ induces extended thermodynamics on the brane [7]. The
modified first law has been shown to arise robustly via the Extended Iyer-Wald formalism in [8]. In the
context of extended phase space, an interesting result is conjectured called the “reverse” isoperimetric
inequality (RII) [3], which is formally defined as

(D − 1)V
AD−2

1
D−1

≥ A
AD−2

1
D−1

, (5)

where V is the thermodynamic volume1, AD−2 is the volume of unit sphere and A is the area of the
outer horizon. Equivalently, the inequality can be stated as AdS-Schwarzschild black holes at a fixed
geometric volume V′ maximize area or entropy [3]. This means that a round sphere of fixed geometric
volume in (A)dS space maximize area or entropy. It is precisely this statement that we will prove.

The inequality is reversed in the sense that in Euclidean space, a round sphere minimizes area,
called simply the isoperimetric inequality [9,10]. The reverse isoperimetric inequality is known to be
obeyed for every case except for the Bañados-Teitelboim-Zanelli (BTZ) black holes [11]. Black holes
that violate RII are called superentropic [12,13]. However, these are thermodynamically unstable [14]
since they have negative heat capacity at constant volume. RII is a classical result, and some quantum
inequalities have also been proposed recently regarding this [15]. Despite the success of RII, it lacks a
general proof and remains a conjecture.

In this letter, we provide for the first time a two-pronged proof of RII using a geometric and
analytical approach. The proof is briefly organized as follows: In subsection (2.1), we argue in favor of
RII purely on geometric grounds. In section (2.2), an analytical approach using the second variation
of the area is provided. We end the paper with some discussion. Three appendices (A, B and C) are
included to further elaborate on our proof.

2. (A)dS-Schwarzschild Black Holes Maximize Entropy
To begin with, we perform a 1+1+2 split [16] of spacetime M of dimension D = 4 and apply a

proper (non-constant) conformal transformation to the metric of the (D − 1)-hypersurface Σ of M

hab −→ Ω2(X )hab. (6)

Here, X are the angular coordinates, so that the spherical symmetry is broken. For example, one
can have Φ ≡ Φ(θ) which explicitly breaks the SO(3) symmetry. In the 1+1+2 decomposition of the
spacetime M, the 3-space orthogonal to the timelike unit vector uµ is further split into a preferred
spacelike direction eµ and its orthogonal 2-space (or “2-sheet”). One introduces the projection tensors
[17]

hµν = gµν + uµuν, Nµν = hµν − eµeν ,

so that uµuµ = −1, eµeµ = +1, and uµeµ = 0. Working on a fixed background (here, Anti-de Sitter) so
that Rµν[g] is held fixed by Einstein’s equations, we vary only the intrinsic 3-metric (or induced metric)
hµν via a (proper) conformal transformation. Spatial indices are then raised and lowered with hµν. This
point can be understood as follows: Although the induced metric and bulk metric are related by

hab = gab + nanb,

we hold the bulk metric fixed,
δgab = 0 =⇒ δRab[g] = 0,

1 The definition of thermodynamic volume requires a cosmological constant or a gauge coupling. (A)dS black holes are
naturally equipped with this.
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and vary only the hypersurface embedding (or its conformal factor). Concretely, deforming the
embedding as

Xa(σ) −→ Xa(σ) + ϕ(σ) na =⇒ na −→ na + δna,

induces a change in the induced metric via

δhab = δ
(
nanb

)
= (δna) nb + na (δnb),

even though δgab = 0. Therefore,

1. Bulk metric fixed: δgab = 0 =⇒ δRab = 0.
2. Hypersurface varied: Xa → Xa + ϕ na so that δna ̸= 0 and hence δhij ̸= 0.

Thus, we achieve a non-trivial variation of the induced metric hij while keeping the ambient Ricci
tensor Rab fixed by Einstein’s equations.

In addition, we choose to break the spherical symmetry via conformal transformation so that the
topology of the hypersurface Σ is preserved while breaking the spherical symmetry in a controlled way.
We now argue in favor of the round 3-sphere in M maximizing area or entropy purely on geometric
grounds.

2.1. Sherif-Dunsby Rigidity and Maximal Entropy

Consider a compact 3-manifold Σ of spherical topology in the 1+1+2 decomposition of spacetime
M. We consider an arbitrary one-parameter family of volume-preserving normal deformations Σs,
s ∈ (−ε, ε), with induced metrics

hab(s) = e2 Φ(s) hab(0) , Φ(0) = 0 .

Let us represent the deformed 3-sphere (non-Einstein) with T (see Figure (1)). Then on T :

• Identification of the conformal factor: One shows that the infinitesimal conformal factor

φ̇(0) =
dφ

ds

∣∣∣∣
s=0

coincides with the sheet-expansion scalar θ = δµeµ in the 1 + 1 + 2 split.
• Gravitational focusing: Under the usual energy conditions (e.g. ρ + 3p ≥ 0) the Raychaudhuri-

type equation for θ implies

θ = φ̇(0) < 0 everywhere on T .

Hence, the conformal factor is strictly negative as we move along eµ.
• Sherif–Dunsby rigidity: By Theorem VII.4 of Sherif and Dunsby [17] (see Appendix (A) for details

of theorem and its role in our proof), any proper (non-constant), scalar-curvature-preserving
conformal transformation

h̃ab = e2φ hab with φ < 0

on a compact 3-manifold (non-Einstein) forces (T , h̃ab) to be isometric to the round S3 (up to a
constant scale).
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Figure 1. A representative figure of the round 3-sphere Σ and the deformed 3-sphere (non-Einstein), T of the
1+1+2 decomposed spacetime M. The axi-symmetric deformation is just one possible way of deforming the round
3-sphere while preserving the volume. It can be deformed in many different ways under volume preservation.

Note that we are using two different expressions of conformal factors: Φ is the proper conformal
factor by which we deform the round 3-sphere. This is not sign-definite. In fact, under volume
preservation ∫

Σ
Φ dµ = 0. (7)

and it takes both positive and negative values. φ is the Yamabe factor by which we study the Yamabe
problem on the deformed 3-sphere T . This has a strictly negative sign via gravitational focusing2.
The discussion leads to an interesting geometrical implication: any non-homothetic, volume-preserving
conformal deformation of a compact 3-sphere under the gravitational focusing forces it to be isometric to round
3-sphere. So, the only admissible extremal is the round S3.

To further investigate the extremality, consider a dS saddle of fixed volume in D = 4 (saddle
topology is S4). The saddle action under volume constraints in 1+1+2 decomposition gives (see
Appendix (B))

−Isaddle =
A

4G
= S. (8)

where A is the area of 2-sheet. Therefore, extremality of S3 (the spatial hypersurface of dS saddle)
establishes it as the maximally entropic state3. Conversely, the round dS saddle in D-dimension has
minimal action Isaddle [18]. This follows from Bishop comparison theorem [19]. Therefore, the surface
has maximal entropy or area (this follows from (8)). We thus conclude that a round 3-sphere maximizes
entropy (or area) under gravity. This is in stark contrast to the Euclidean isoperimetric case, where no
such curvature-driven rigidity exists due to the absence of gravity.

Bolt-to-horizon identification.

By Sherif–Dunsby rigidity the compact Euclidean slice T ∼= S3 is isometric to the round 3-sphere.
Introducing standard “latitude” coordinate χ ∈ [0, π],

ds2
S3 = dχ2 + sin2χ dΩ2

2,

each χ = const hypersurface is a round S2
χ of radius sin χ. In particular the Euclidean “bolt” at

χ =
π

2
=⇒ r = sin

(
π
2

)
= 1

is the unique maximal-area 2-sphere leaf under fixed enclosed 3-volume. Under the Wick rotation back
to Lorentzian signature this bolt maps exactly to the event-horizon cross-section (the r = rh sphere) of
the black hole. Hence maximality of the full S3 immediately implies maximality of the horizon S2.

2 Since we now study the natural state of deformed 3-sphere under gravity.
3 This is because gravity drives a deformed 3-sphere back to round 3-sphere establishing it as a stable state. Since stability in

the context of thermodynamics is tied with maximal entropy, the conclusion naturally follows.
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After the geometric argument, we now turn towards the area variation method to analytically
establish this result.

2.2. Effective Functional and Its Variation

We begin with the Euclidean Einstein–Hilbert action plus Gibbons–Hawking boundary term in D
dimension in the presence of cosmological constant

I[g] = − 1
16πG

∫
M
(R − 2Λ)

√
−g dDx

− 1
8πG

∫
∂M

K
√

h dD−1x.
(9)

On an Einstein solution Rab − 1
2 R gab + Λ gab = 0 we have R = DΛ, so under a normal deformation

Xa → Xa + ϕ na the bulk term varies as

δIbulk = − 1
16πG

∫
M
(R − 2Λ)∇a(ϕ na) dDx

= − (D − 2)Λ
16πG

δV,
(10)

while the Gibbons–Hawking term contributes

δIbdy = − 1
8πG

δA, (11)

where A is the area of (D − 2)-sphere. Collecting these values leads to

δI[g] = δIbulk + δIbdy

= − 1
8πG

δA − (D − 2)Λ
16πG

δV.
(12)

Let us define

Islice[Σ] = − A[Σ] − Λeff V[Σ],

Λeff =
(D − 2)Λ

16πG
.

(13)

so that
δI ∝ − δA − Λeff δV. (14)

We first calculate the first variation. Using4

δA = −
∫

Σ
H ϕ dV,

δV =
∫

Σ
ϕ dV,

(15)

where H is the mean curvature (trace of second fundamental form). The stationarity of δI = 0 implies∫
Σ
(H − Λeff) ϕ dV = 0 =⇒ H = Λeff, (16)

4 The explicit equations for area and volume variations can be found in [20].
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For the second variation of a Riemann hypersurface, we have the standard expression

δ2 A =
∫

Σ

(
|∇ϕ|2 − (|K|2 + Rabnanb) ϕ2) dV,

δ2V = −
∫

Σ
H ϕ2 dV.

(17)

where |∇ϕ|2 is the squared norm of the gradient operator, Ric(n, n) is the ambient manifold Ricci
tensor and Kij is the second fundamental form. Thus, we get

δ2 Islice = − δ2 A − Λe f f δ2V

= −
∫

Σ
|∇ϕ|2 dV

+
∫

Σ

(
|K|2 + Rabnanb + HΛe f f

)
ϕ2 dV.

(18)

In an Einstein background Rabnanb = Λ. Therefore, on a round 3-sphere of radius R in an Euclidean
AdS space, we obtain

δ2 Islice = − ℓ(ℓ+ 2)
R2 +

3
l2

(
1 +

l2

R2

)
+

9
l2

(
1 +

l2

R2

)
− 3

l2

= − ℓ(ℓ+ 2)
R2 +

12
R2 +

9
l2 .

(19)

This equation follows from the fact that the Laplace-Beltrami spectrum on a 3-sphere of radius R is

µℓ =
ℓ(ℓ+ 2)

R2 , (20)

while in an AdS space

Rabnanb = Λ = − 3
ℓ2 , (21)

Kij =
1
ℓ

√
1 +

ℓ2

R2 hij, H = Tr K. (22)

Therefore, for ℓ = 2 (quadrupole) modes, which are volume preserving, true shape deformations of
the Laplace-Beltrami spectrum (see Appendix (C)), we get

δ2 Islice > 0, (23)

This shows that the round S3 in an AdS space is a local maximum of area since δ2 Islice > 0 =⇒ δ2 A < 0.
Interestingly, the above remains true for a dS space, showing that dS black holes also obey a reverse
isoperimetric inequality as advocated in [21]. In Euclidean space, Ricci scalar vanishes, and we have

δ2 Islice(Euclidean space) = − ℓ(ℓ+ 2)
R2 +

3
R2 . (24)

Therefore, for the volume preserving, true shape deforming modes

δ2 Islice(Euclidean space) < 0. (25)

This means that a round 3-sphere in Euclidean space is a local minimum of area, which is the standard
isoperimetric inequality in Euclidean spaces. This shows that the reversal of the isoperimetric inequality
is due to the structure of spacetime governed by Einstein’s field equation in a curved background.

It is worth mentioning that in the case of horizons, the area is identified with entropy. Therefore,
maximizing area (or entropy) leads to stability, unlike the Euclidean isoperimetric inequality, where
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minimizing area is related to stability. Although we derived the result for Euclidean (A)dS space in
D = 4, the analysis applies directly to Euclidean (A)dS space in D-dimension since all the results
(gravitational focusing, Sherif-Dunsby rigidity, and second area variation) continue to hold. Therefore,
the conclusion naturally extends to any dimension. The extension of the Sherif-Dunsby result can
be better understood as follows. Because Obata’s theorem [22] holds on any compact n-manifold
(n ≥ 2), we may replace the 3D Yamabe rigidity of Sherif–Dunsby by its n-dimensional analogue.
Concretely, on a D-dimensional spacetime we perform a 1 + 1 + (D − 2) decomposition and identify
the infinitesimal conformal factor with expansion of (D − 2) sheet, ϕ̇ = θ. Then, via gravitational
focusing, we have ϕ̇ < 0 everywhere, and Obata’s theorem then forces the deformed metric to be
isometric (up to scale) to the round SD−1. Hence, the only volume-preserving extremum of the entropy
functional is the round sphere in any dimension.

At this point, it is necessary to analyze another spherically symmetric geometry, the charged
(Reissner-Nordström) black hole. It is straightforward to evaluate that adding a charge Q modifies the
saddle action as

Isaddle =
1

4G
(−A + QΨ), (26)

where Ψ is the electrostatic potential. The term corresponding to the charge Q appears due to the
addition of Maxwell’s action to the Einstein-Hilbert action

I = IEH − 1
16πG

∫ √
−gFabFabdDx. (27)

However, the entropy is still given by the usual Bekenstein-Hawking entropy in the fixed Q-ensemble

SRN =
A

4G
. (28)

Evidently, this means that a charged, spherically symmetric black hole also maximizes entropy as
required by RII.

This leads us to conclude the main result of our Letter: Spherically symmetric black holes in (A)dS
space, i.e., (A)dS-Schwarzschild/RN black holes in any dimension maximize entropy (or horizon area).

3. Conclusion and Discussion
In this work, we have established a rigorous geometric–analytic proof of the reverse isoperimetric

inequality (RII) for black hole horizons in (A)dS space of arbitrary dimension. On the one hand,
the geometric argument based on a 1 + 1 + (D − 2) decomposition, Raychaudhuri focusing, and the
Sherif–Dunsby (or Obata) rigidity theorem shows that any nontrivial, volume-preserving conformal
deformation of a compact spherical hypersurface is forced back to the round SD−1 by gravitational
focusing alone. On the other hand, the analytic approach—via the second variation of the Euclidean
gravitational action plus Gibbons–Hawking–York boundary term—demonstrates that quadrupolar
(ℓ = 2) perturbations of the round sphere yield δ2 A < 0 in Euclidean (A)dS (but δ2 A > 0 in flat
Euclidean space), confirming that the round (A)dS-Schwarzschild horizon is a local maximum of area
(entropy) under volume constraints.

Together, these complementary arguments show that, in contrast to the classical isoperimetric
inequality in flat space, gravity in a curved background reverses the inequality: among all hyper-
surfaces of fixed thermodynamic volume, spherically symmetric black holes uniquely maximizes
horizon area. This result not only resolves the long-standing conjecture of RII in extended black hole
thermodynamics but also highlights the fundamental role of Einstein’s equations and background
curvature in governing entropic extremization.

Several avenues for further investigation naturally arise from our proof:

• Charged and Rotating Solutions: Although we have shown that electric charge reduces the
saddle action via the additional Maxwell term but keeps the entropy equal to the uncharged
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case, it also saturates RII. However, a full treatment of RII for charged (Reissner–Nordström) and
rotating (Kerr–AdS) black holes—including off-shell stability analysis—would elucidate possible
extensions or violations in these more general settings.

• Quantum Corrections: Incorporating higher-curvature corrections or quantum effects (e.g., via
one-loop determinants or entanglement entropy corrections) may modify the geometric rigidity
or the second variation functional, potentially leading to refined “quantum RII” bounds.

• Holographic Perspectives: Given the AdS/CFT correspondence, it would be interesting to
interpret our RII proof in the dual field theory, perhaps relating maximal horizon entropy at fixed
volume to extremal entanglement or energy constraints in the boundary CFT.

• Beyond Asymptotic (A)dS: Extending the analysis to asymptotically flat or more exotic asymp-
totics (e.g., Lifshitz, hyperscaling violation) might reveal whether the reverse isoperimetric
phenomenon is unique to constant-Λ backgrounds or has broader applicability.

• Violation in the case of superentropic black holes: It is known that superentropic black holes
violate RII. As part of the proof we presented, this can be traced to their non-compact hypersurface
while the proof requires a compact hypersurface. Nevertheless, a general proof explicitly for
non-compact hypersurfaces is an interesting future work.

In summary, our geometric–analytic approach not only proves the reverse isoperimetric conjecture
in its full generality but also underscores the deep interplay between curvature, gravitational focusing,
and entropy extremization. We anticipate that these insights will inform future studies of black
hole thermodynamics, geometric inequalities in curved manifolds, and the fundamental connections
between geometry and information in gravitational systems.

Appendix A. Conformal Rigidity and Sphericity of Compact Hypersurfaces
In this appendix, we recall and explain the key geometric result (Theorem VII.4 of Sherif–Dunsby

[17]) that underpins the identification of the unique extremal slice in our proof of the Reverse Isoperi-
metric Inequality. We then show how it applies to the class of hypersurfaces considered in this
work.

Appendix A.1. Statement of the Theorem

Theorem A1 (Sherif–Dunsby, [17], Theorem VII.4). Let (M4, g) be a spacetime admitting a 1 + 1 + 2
covariant split, and let T ↪→ M be a compact, smoothly embedded spacelike hypersurface whose induced metric
h has Ricci tensor of the form

Rich = α e ⊗ e + β N , (A1)

α ̸= β, β > 0 , (A2)

where e is the unit “radial” direction and N is the projector onto the remaining 2–sheet. Suppose T admits a
proper conformal transformation

h 7→ h̃ = e2φ h , (A3)

with associated conformal factor φ < 0, and that

R̃ = R, (A4)

R̃ ≥ 0. (A5)

and the sheet–expansion scalar ϕ of T is nowhere zero. Then (T, h̃) is isometric to the round 3–sphere (S3, Rstd).

Here, primes denote covariant derivatives along the sheet direction e.
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Appendix A.2. Role in the Reverse Isoperimetric Proof

In Section (2.2) of the main text, we similarly assume that the deformed horizon slice T :

• is compact,
• admits a nontrivial conformal deformation preserving scalar curvature. This is the Yamabe problem [23]

and can always be ensured for a choice of conformal factor φ within a conformal class. Physically,
this is a natural condition whenever we demand that the hypersurface be an extremum of some
conformally sensitive functional (such as area at fixed volume) under all local Weyl rescalings,

• scalar curvature is positive. This is always the case for round S3. Therefore, any deformation of Σ
by a small conformal factor Φ will preserve the positivity. This means that curvature scalar is also
positive on T . On the Lorentzian side, it a known result [24] that horizons are positive Yamabe
type (admit positive scalar curvature),

along with the Raychaudhuri equation, which guarantees a negative sheet expansion under gravita-
tional focusing (equivalently, negative conformal factor φ in the 1+1+2 decomposition of spacetime),
so that each hypothesis of Theorem VII.4 is met. By this theorem, the only possibility is that T (h̃,M)
is a round 3–sphere.

Together with the analytic variation argument (Section (2.2)), this geometric rigidity completes
the proof that among all fixed–volume slices, the spherical black hole horizon uniquely maximizes the
area.

Appendix B. Saddle Action in 1+1+2 Decomposition of Spacetime
We derive the saddle action for the simplest case Λ = 0 in a 1+1+2 split of spacetime and show

that it reproduces the standard result in the D-dimension [18]. The Euclidean saddle metric in the
1+1+2 split is

ds2 = N2(r)dφ2 + h(r)dr2 + r2dΩ2 (A6)

Here, the coordinates (φ, r) span the base 1+1 geometry. The coordinate φ is the Euclidean time
taken to be periodic with period 2π so that there is no conical singularity at the Euclidean horizon.
dΩ2 = dθ2 + sin2 θdϕ2 is the metric on the unit 2-sphere (the “2” of the 1+1+2 split). A fixed volume
constraint determines the size of the ball so that the Euclidean horizon is at r = RV . Regularity at
r = RV fixes the lapse function to be (for Λ = 0 saddle, h(r) = 1)

N(r) =
1

2RV
(R2

V − r2), h(r) = 1. (A7)

Now, the saddle action in 1+1+2 spherical decomposition (for a static and spherically symmetric metric)
is

I = − 1
16πG

∫
dθdϕ sin θ d2x

√
g(2)r2

[
R(2) − 4

r
∇2r

− 2
r2 (∇r)2 +

2
r2

] (A8)

Note that for a static spacetime, the extrinsic curvature tensor Kij and its trace K vanish. Therefore,
only the 2D decomposition of the 4D Ricci scalar appears in the above equation. Since −4r∇2r =

−2∇2(r2) + 2r∇2r and −2∇2(r2) is a total derivative term, we can write (after performing ϕ and θ

integration)

Ieff = − 1
4G

∫
d2x

√
g(2)[r2R(2) + 2(∇r)2 + 2] + Ibdy (A9)
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The total derivative term Iboundary is cancelled by the Gibbons-Hawking-York boundary term IGHY

(see (B.1)). The “1+1”-base metric is the (φ, r)-subspace given as

ds2
(2) = N2(r)dφ2 + dr2, (A10)

N(r) =
1

2RV
(R2

V − r2). (A11)

This means that the 2D Ricci scalar is given as

R(2) = −2N′′(r)
N(r)

=
4

R2
V − r2

. (A12)

Putting the integrand together, the bulk action becomes

Ibulk = − 1
4G

∫
dφdrN(r)

[
4r2

R2
V − r2

+ 4
]

= − 1
4G

[2RV ](2π)(RV) = −
πR2

V
G

(A13)

Since A = 4πR2
V , we get the saddle action as

Isaddle = − AV
4G

. (A14)

which is the same as that obtained in the D-dimension.

Appendix B.1. Cancellation of the Bulk-Boundary Term via GHY Boundary Term

The term −2∇2(r2) can be written as

Iboundary = − 1
4G

[
− 2

∫
d2x

√
g(2)∇2(r2)

]
=

1
G

∫
∂M

ds r na∇a(r),
(A15)

where na is the unit normal to the boundary, and ds is the induced line element on the 1D boundary of
the 2D base. The full 4D Gibbons-Hawking-York (GHY) boundary term is given as

IGHY = − 1
8πG

∫
∂M4

√
γK, (A16)

where γ is the induced metic on the 3D boundary and K is the trace of the extrinsic curvature. In 1+1+2
spherical reduction, the extrinsic curvature decomposes as

K(4) = K(2) +
2na∇ar

r
, (A17)

where K(2) is the extrinsic curvature of the boundary in the 2D base. Thus, the GHY boundary term
becomes

IGHY = − 1
2G

∫
∂M2

ds r2K(2) − 1
G

∫
∂M2

ds r na∇ar. (A18)

The second term cancels the boundary term arising from the bulk. The first term is there to ensure a
well-posed variational problem. However, in the limit, the York boundary is set to zero, the first term
vanishes, and we only have contributions from the bulk.
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Appendix C. Spectrum of Metric Perturbations on the Round 3-Sphere
In this appendix we summarize why only the quadrupole (ℓ = 2) modes yield nontrivial, source-

free metric perturbations on S3, and why the ℓ = 0, 1 deformations are excluded.

Appendix C.1. Transverse–Traceless Gauge and Lichnerowicz Operator

Let gab be the round metric on S3 of radius R, satisfying

Rab =
2

R2 gab. (A19)

Consider a small perturbation

gab → gab + hab, (A20)

imposed in transverse–traceless (TT) gauge:

∇ahab = 0, ha
a = 0. (A21)

The linearized, source-free Einstein equation on an Einstein manifold Rab = Λgab reads(
∆L − 2nK

)
hab = 0, (A22)

where

n = 3, K =
1

R2 , (A23)

∆L hab = −∇2hab − 2 Ra
c
b

d hcd + 2Λ hab. (A24)

Appendix C.2. Tensor Harmonic Spectrum on S3

One can expand TT–tensors in tensor spherical harmonics h(ℓ)ab labeled by ℓ = 0, 1, 2, . . . , which
satisfy

∆L h(ℓ)ab = µℓ h(ℓ)ab , (A25)

µℓ =
ℓ(ℓ+ 2)− 2

R2 . (A26)

Inserting into the linearized equation gives the eigenvalue condition

µℓ = 2nK =⇒ ℓ(ℓ+ 2)− 2 = 6,

=⇒ ℓ = 2 (ℓ = −4 discarded). (A27)

Hence the only nontrivial solution of (∆L − 2nK)hab = 0 in TT gauge on S3 is the quadrupole
mode ℓ = 2.

Appendix C.3. Exclusion of ℓ = 0, 1 Modes

• ℓ = 0 (monopole): A constant rescaling

hab ∝ gab (A28)

changes the volume rather than shape; in TT gauge ha
a = 0 forbids such a trace mode.

• ℓ = 1 (dipole): These correspond to infinitesimal diffeomorphisms (Killing vectors) on S3,

hab = ∇aξb +∇bξa, (A29)
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which can be entirely removed by a coordinate redefinition. In TT gauge one requires ∇ahab = 0,
and one finds no non-gauge ℓ = 1 TT tensors.

Therefore, when restricting to physical, source-free metric perturbations of the round S3, only the
ℓ = 2 harmonics survive, justifying the truncation to the quadrupole sector in the main text.
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