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Article

Analysis on the Near-Polar and Near-Circular Periodic
Orbits Around the Moon with J2, C22 and Third-Body
Perturbations
Xingbo Xu †

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an 223002, China; xuxingbo25@hotmail.com

Abstract: A method is introduced for the numerical continuation of the lunar-type, near-circular
periodic orbits, with the background of middle-altitude lunar orbiters. In the Moon-Earth elliptic
restricted three-body problem, some near-polar near-circular lunar-type periodic orbits are numerically
continued from the Keper circular orbits by Broyden’s method. The integer ratio j/k of the mean
motions between the inner and outer orbits can be in the range [9, 150]. For the ratio j/k ∈ [38, 70],
the J2, C22 perturbations are added, and some near-polar periodic orbits are calculated. The orbital
dynamics are well explained via the first-order double-averaged system. The linear stability can be
studied by the characteristic multipliers, which are calculated from the linear variational system.

Keywords: periodic orbits; restricted three-body problem; Lidov–Kozai effect; linear stability; lunar
orbiter

1. Introduction
Nowadays, with the increasing demand for the lunar exploration and the development of the

aerospace technology, the cislunar space is becoming a new frontier for human activities. In order
to carry out long-term scientific research missions near the Moon and save fuel for placing a space
station, it is necessary to use the stable and approximately stable orbits, such as distant retrograde
orbits (DROs), near-rectlinear halo orbits (NRHOs) and near-polar frozen orbits [1]. It is a common
idea to firstly study the periodic orbits of the restricted three-body problem (RTBP), then continue the
solutions to a generalized time-periodic model, and lastly to a high-fidelity ephemeris model[2]. It is
important to study periodic orbits as they help us to understand the real motions, and there is a long
history on this study. Ever since the excellent work of H. Poincaré, periodic orbits have aroused the
attentions of many mathematicians, astronomers, celestial mechanicians, and so on[3,4].

The family of the near-polar and near-circular periodic orbits are interesting. According to
Poincaré’s classification, these periodic orbits belong to the third-type of the first kind. The existence of
this family in the elliptic RTBP is shown by Xu and Fu [5]. Theoretically, these periodic orbits are very
close to one primary. Numerically , Xu and Song [6] found that these orbits can be of high altitude,
and some other interesting phenomena were found as well. The eccentricity and the inclination of
such a periodic orbit vary periodically and satisfy the Lidov-Kozai effect. For some values of the
eccentricity of the outer orbit and the ratios of the mean motion resonances between the inner and outer
orbits, the periodic orbits can be approximately linearly stable. This assures the the judgement that the
high-altitude and near-circular polar frozen orbits are suitable to place a lunar station[7]. However, Xu
and Song [6] did not give enough details about the near-polar and near-circular lunar-type periodic
orbits. For a further study, it makes sense to study the these long-period periodic orbits in a more
accurate gravity field model.

The motion of a lunar orbiter with the altitude in the range (2000, 16000)km is mainly affected
by the gravitation of the Moon-Earth system. The Moon-Earth system can be simplified as a two-
body system, while the Moon can be considered as a triaxial ellipsoid, as the main non-spherical
perturbations come from the J2, C22 terms. The zonal coefficient J2 represents the size of the oblateness,
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and the sectorial coefficient C22 measures the equatorial ellipticity. The obliquity of the Ecliptic plane
and Moon’s Path is neglected. There is an interesting phenomenon named tidal locking for the Moon,
that is, the rotation period and the revolution period are nearly equal, and the longest axis always
passes the Earth. For lower-altitude lunar orbits, Lara et al. [8] studied the long-term dynamics of the
near-polar frozen orbits by reducing a 50-degree zonal model with the third-body effect of the Earth.
Saedeleer [9] explained the Hamiltonian system of a lunar orbiter in the Moon-Earth circular RTBP
with J2, C22 perturbations, and studied the averaged system by the Lie-Deprit method. With the same
model, Nie and Gurfil [10] studied the lunar frozen orbits in the first-order double-averaged system in
Delaunay elements by Zeipel’s method. For the frozen orbits, the slow mean orbital elements keep
nearly fixed such that the costs of the orbital corrections are reduced.

With the J2, C22 perturbations and several orders of the Legendre expansions of the third-body
perturbations, Carvalho et al. [11] studied frozen orbits and the critical inclinations of the lunar
satellites by analyzing the double-averaged system. Considering the 3rd-degree gravity harmonics of
the Moon, Tzirti et al. [12] investigated the Poincaré sections, the Fast Lyapunov Indicator Maps and
some families of periodic orbits. Tzirti et al. [13] studied the secular dynamics of low-altitude lunar
orbiters with high-degree gravity models by the frequency analysis and investigated the eccentricity-
inclination space. Considering a lunar orbiter perturbed by the J2, J3, J4 terms, El-Salam and El-Bar [14]
investigated the families of frozen orbits. In Sirwah et al. [15], the perturbing function is considered up
to the seventh zonal harmonic and the third-body perturbation of the Earth in an elliptic inclined orbit.
Then they numerically studied the frozen orbits with the arguments of the pericenter at π/2, 3π/2.
An efficient approach based on the grid search, parallelization and the evolution strategy is introduced
for computing periodic orbits in Dena et al [17]. Franz and Russell [18] introduced the database of
the symmetric periodic orbits near Moon in the model of the circular RTBP via the grid search and
unsupervised learning clustering algorithm. Legnaro and Efthymiopoulos [19] distinguished three
types of lunar orbits by the range of altitudes, and studied the secular dynamics especially the secular
resonances and the eccentricity growth of lunar satellites according to different models.

In Section 2, we provide a new approach to do the numerical continuation of the near-polar and
near-circular periodic orbits of the elliptic RTBP, and give some numerical examples of the lunar-type
periodic orbits. In Section 3, we study the existence and stability of the near-polar and near-circular
periodic orbits in the elliptic RTBP with the J2, C22 perturbations. Some numerical examples are also
given. Finally, Section 5 concludes this work.

2. Elliptic RTBP
2.1. Scaled Hamiltonian System

With the background of the motion of a lunar orbiter in the cislunar space, we study the periodic
orbits around the smaller primary in the elliptic RTBP. Let P1 and P2 represent two mass points. The
relative orbit from P1 to P2 is a Keplerian orbit, with the semi-major axis ap, the eccentricity ep, the
mean motion np, and the time of periapsis passage τ0. Choose the units such that the gravitational
constant G = 1, the distance unit ap = 1, the total masses m1 + m2 = 1, and the mean motion np = 1.
Let µ = m2/(m1 + m2) < 1/2. Set the motion plane of primaries as the reference plane. The direction
of the major axis from P1 to P2 is set as the q1-axis. Set P2 as the origion and establish the right-handed
Cartesian coordinate system P2 − q1q2q3. The initial time is set as τ0 = 0 or τ0 = π. The sketch figure
of the frame can be referred to [5].

In the coordinate system P2 − q1q2q3, the position of P1 is denoted as Xp ∈ R3, which is also a
solution of the planar Kepler problem

Ẍp = −Xp · ∥Xp∥−3.
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Here ∥ · ∥ represent the Euclidean distance norm, and the time is t. We have ∥Xp∥ = 1 − ep cos Ep.
Denote Ep as the eccentric anomaly. The vector Xp is

Xp = (X1, X2, 0)T =
(

cos Ep − ep,
√

1 − e2
p sin Ep, 0

)T
,

where the upper T represents transpose. The position of the infinitesimal body is u ∈ R3, and its
conjugate momentum is v = u̇. The Hamiltonian dynamical system of this problem is

HP2 =
1
2
∥v∥2 − µ

∥u∥ − 1 − µ

∥u − Xp∥
+ (1 − µ)

uTXp

∥Xp∥3 . (1)

The canonical differential equation system is u̇ = ∂HP2/∂v, v̇ = −∂HP2/∂u. The 2nd-order differential
equation system can be written as

ü = −µ
u

∥u∥3 − (1 − µ)
u − Xp

∥u − Xp∥3 − (1 − µ)
Xp

∥Xp∥3 . (2)

When µ is very small, it is not convenient to get the numerical solution, as the orbit scale is too small.
The orbit of the infinitesimal body is called as the inner orbit, and the orbit of the relative orbit

of P1 is the outer orbit. Denote the orbital elements of the inner orbit as as, es, is, Ωs, ωs, ℓs, where ℓ

represents the mean anomaly. According to the symplectic scaling method, the variables can be scaled
as

u = ε2µ1/3ξ, v = ε−1µ1/3η, t = ε3s, (3)

where s is the new time, and the small parameter ε represents the closeness of the infinitesimal body to
primary P2. The new Hamiltonian is

ĤP2(ξ, η, s) =ε2µ−2/3HP2(u, v, t) =
∥η∥2

2
− 1

∥ξ∥

− ε2µ−2/3(1 − µ)

(
1

∥ε2µ1/3ξ − Xp(s)∥
− ε2µ1/3ξTXp

∥Xp∥3

)
. (4)

The new differential equation system becomes

ξ ′′ =
d2ξ

ds2 =− ξ

∥ξ∥3 − ε6(1 − µ)
ξ

∥u − Xp∥3

+ ε4(1 − µ)µ−1/3Xp

(
1

∥u − Xp∥3 − 1
∥Xp∥3

)
, (5)

where ξ ′ = η, u = ε2µ1/3ξ, and the prime represents the derivative about the scaled time s. Let âs

be the scaled variable and as = ε2µ1/3 âs. We have n2
s a3

s = µ, and n2
s ε6µâs = µ, so n̂s = ε3ns. It is

convenient to set n̂s = 1 if ε3 = np/ns. Then we get n̂p = ε3. The Kepler equation for the outer orbit
satisfies

Ep − ep sin Ep = npt = n̂ps.

The numerical solution of Eq. (5) can be calculated by the integration effectively.
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2.2. Symmetry and Periodicity

The scaled Hamiltonian system Ĥ keeps the same symmetries as the original Hamiltonian system
HP2. One time reversing symmetry R1 with respect to ξ1-axis is recalled.

R1 : (ξ1, ξ2, ξ3, η1, η2, η3, s) → (ξ1,−ξ2,−ξ3,−η1, η2, η3,−s).

There exist periodic third-body perturbations in the lunar-type orbits in the elliptic RTBP. The desired
periodic orbits can be continued from the two uncoupled Kepler orbits. The ratio of the mean motions
of the uncoupled inner and outer Kepler orbits is set to be n̂s/n̂p = ns/np = ε3, and ε3 should be a
small rational number. ε3 is set to equal k/j, where k, j ∈ N and k ≪ j. This means that the inner orbit
revolves j circles while the outer orbit revolves k circles. In order to understand the R1-symmetric
periodic solution, a proposition is summarized as follows.

Lemma 1 ([5]). For the Hamiltonian system (1) of the elliptic RTBP. The Lagrangian set L1 with respect to
R1-symmetry is

L1 = {(u, v, t) : u2 = u3 = v1 = 0, t = 0 mod π}.

If a solution Z(Z1, t) satisfies Z1 ∈ L1 and Z(Z1, kπ) ∈ L1 with k ∈ N, then the solution is R1-symmetric
and periodic with a period T = 2kπ. For the Hamiltonian system (4), the corresponding Lagrangian set L

(1)
1 is

L
(1)

1 = {(ξ, η, s) : ξ2 = ξ3 = η1 = 0, s = 0 mod π},

and the scaled periodic solution has a period T̂ = 2jπ with j ∈ N. The ratio of the mean motions of the outer
and inner orbits is k/j. The periodicity conditions used in this paper can be written as

Ẑ1 ∈ L
(1)

1 , Ẑ(Ẑ1, jπ) ∈ L
(1)

1 . (6)

According to the description in Xu and Song [6], there exist both near-polar and planar R1-
symmetric near-circular lunar-type periodic orbits in the elliptic RTBP. However, Xu and Song [6] did
not give enough details of the numerical continuation of such periodic orbits. The difficulty lies at the
fact that the accumulated integration errors are relatively large when the infinitesimal body is very
close to primary P2 and the integration time is long. For the Hamiltonian system (1), the initial values
to be continued can be written as

Z0 =
(

u0
1, u0

2, u0
3, v0

1, v0
2, v0

3

)T
=
(
±µ1/3(k/j)2/3, 0, 0, 0, 0,±µ1/3(k/j)−1/3

)T
.

The scale of the lunar-type orbits are small but the velocities are relatively big. For the Hamiltonian
system (4), the initial values to be continued can be written as

Ẑ0 =
(

ξ0
1, ξ0

2, ξ0
3, η0

1 , η0
2 , η0

3

)T
= (±1, 0, 0, 0, 0,±1)T.

In this paper, the scaled variables are used and more numerical continuation results can be achieved.
The continuation scenario is still based on the combination of the periodicity conditions and Broyden’s
method with a line search. This means that Ẑ0 is expected to be continued to

Ẑ1 = (±1 + δ1, 0, 0, 0, δ2,±1 + δ3; s0)
T, s0 = 0, jπ,

such that

ξ2(δ1, δ2, δ3, sT/2) = 0, ξ3(δ1, δ2, δ3, sT/2) = 0, η1(δ1, δ2, δ3, sT/2) = 0,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 March 2025 doi:10.20944/preprints202503.0050.v1

https://doi.org/10.20944/preprints202503.0050.v1


5 of 17

where δ1, δ2, δ3 ∈ R are small quantities, and sT/2 = s0 + jπ.

2.3. Some Periodic Orbits

The numerical solutions of Eq.(5) are calculated by the variable step-size Runge-Kutta 7-8 routine
with the double precision. The routines of Broyden’s method are referred to Press, et al. [16] and
the precision is guaranteed at 10−8. So the periodic orbits can keep the precision of 10−8. Let P1, P2

represent the Earth and the Moon, respectively. Let µ = 0.0121505843947, ep = 0.0549. Set j/k as
the ratio of the mean motions between the uncoupled inner and outer orbits. The real length of the
semi-major axis of the outer orbit is about A = 328900.5597km. The real length of the semi-major axis
of the inner orbit is about Aa0km with a0 = µ1/3(k/j)2/3. The altitude is defined as the difference of
Aa0 and the real length of the longer equatorial semi-major axis 1738.1km. The high altitude zone is
defined in the range about between 5000km and 20000km. In this zone, the third-body perturbation
of the Earth is dominant. In the theoretical proof of the existence of the near-polar and near-circular
periodic orbits in the elliptic RTBP, the small parameter ε3 = k/j is supposed to be small enough. One
question is that how small is ε3 is when the periodic orbits can be calculated. Such periodic orbits are
numerically investigated with ε3 in the range 9 ≤ j/k ≤ 150. In Figure 1 and Figure 2, it is found that
the argument of pericenter ω rotates and oscillates. Figure 3 is for the case j/k = 37. All these orbital
elements are very symmetric. The details of the figures are shown in the image captions. Some more
initial values for the periodic orbits are shown in Table 1. The type of the initial values are defined by
the signs of the values of ξ1, η3 and cos Ep.

0.98

0.99

1

1.01

1.02

1.03

0 10 20 30 40 50 60

0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60

1.54

1.59

1.64

0 10 20 30 40 50 60

−0.01

0

0.01

0 10 20 30 40 50 60

−3.5

−1.75

0

1.75

3.5

0 10 20 30 40 50 60

−3.5

−1.75

0

1.75

3.5

0 10 20 30 40 50 60

Figure 1. The orbital elements a, e, i, Ω, ω, E of a high-altitude, near-polar, near-circular lunar-type periodic orbit
in the Moon-Earth elliptic RTBP with j/k = 9. The period is 18π in the scaled time s. The type of the initial values
is +++. The altitude approximates 15738km.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 March 2025 doi:10.20944/preprints202503.0050.v1

https://doi.org/10.20944/preprints202503.0050.v1


6 of 17

0.99

1

1.01

0 20 40 60 80 100

0

0.005

0.01

0.015

0 20 40 60 80 100

1.55

1.59

1.63

0 20 40 60 80 100

−0.0025

0

0.0025

0 20 40 60 80 100

−3.5

−1.75

0

1.75

3.5

0 20 40 60 80 100

−3.5

−1.75

0

1.75

3.5

0 20 40 60 80 100

Figure 2. The orbital elements a, e, i, Ω, ω, E of a high-altitude, near-polar, near-circular lunar-type periodic orbit
in the Moon-Earth elliptic RTBP with j/k = 16. The period is 32π in the scaled time s. The type of the initial
values is −−+. The altitude approximates 10170km.
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Figure 3. A high-altitude, near-polar, near-circular lunar-type periodic orbit with j/k = 37. The period is 74π

in the scaled time s. The type of the initial values is − − +. The altitude approximates 5071.7km. The orbit
in the scaled Cartesian coordinates is shown in the left graph, and a pair of the Poincaré-Delaunay elements

Q2 = −
√

2
√

a(1 −
√

1 − e2) sin ω, P2 =
√

2
√

a(1 −
√

1 − e2) cos ω are drawn in the right graph.
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Table 1. Some initial values of the near-polar, near-circular, lunar-type periodic orbits in the elliptic RTBP.

j/k,type1 ξ1 η2 η3

9/1,+±+ 0.99620440178 -0.06082772318 ±1.0157184687
9/1,−±+ -0.99470649817 0.06185840160 ±1.0154002218
10/1,+±− 0.99910153226 -0.050852737 ±1.0072154827
10/1,−±− -0.99837950690 0.0506041258 ±1.0087412525
16/1,+±+ 0.99925242695 -0.035922494 ±1.0043641526
16/1,−±+ -0.99851083910 0.0360488668 ±1.0047376373
36/1,+±− 1.00010727626 -0.0146998968 ±1.0003869346
36/1,−±− -0.99974967250 0.0147026686 ±1.0007698831
37/1,+±+ 0.99999430950 -0.0157684742 ±1.0006628074
37/1,−±+ -0.99962561652 0.0157786232 ±1.0009929915
50/1,+±+ 1.0000454998 -1.16852281E-2 ±1.0003121582
50/1,+±+ -0.999748470093 1.169015346E-2 ±1.000591975
50/1,+±− 1.00010809345 -1.05990235E-2 ±1.00014917507
50/1,−±− -0.99981879968 1.060132171E-2 ±1.00044900515

120/1,+±+ 1.000063875 -4.87551E-3 ±0.999997510
120/1,−−+ -0.9999007299785 4.8763318183E-3 -1.000158994073
150/1,+++ 1.00005889302967 -3.900799586228E-3 0.99998031895716
150/1,−−+ -0.99991304641419 3.225120713516E-3 -1.0001276778590

1 The types are defined by the signs of ξ1, η3, cos Ep.

3. Elliptic RTBP with J2, C22 Perturbations
3.1. The Model and Numerical Experiment

The usual orbital elements are the semi-major axis a, the eccentricity e, the inclination i, the
longitude of the ascending node Ω, the argument of the periapsis ω, and the mean anomaly M.
The eccentric anomaly is notated as E(e, M), and the true anomaly is notated as f (e, M). If just the
perturbations of J2, C22 are added to the RTBP, the application of this model is for the case of the
altitude about in the range (2000, 5000)km. The non-spherical perturbing function is usually expressed
by orbital elements. It is necessary to transform the perturbing function into the form of Cartesian
coordinates for the convenience of the computation of the near-circular periodic orbits. For a massless
artificial satellite in the Moon-centered inertial coordinate frame, the position is notated as u, and the
conjugate momentum is v = u̇. The Hamiltonian system of a lunar orbiter can be written in a form of
perturbations of the RTBP,

HP2JC = HP2(u, v, t) +HJ2 −HC22, (7)

where

HJ2 = J2
µa2

m
r3 P2(sin φ), HC22 = C22

µa2
m

r3 P22(sin φ) · cos 2(Ω − fp + ψ),

am ≈ 1738.1/328900.5597, J2 ≈ 2.0322356 × 10−4, C22 ≈ 2.2381388 × 10−5,

r = ∥u∥, np = 1, sin φ =
u3

r
, P2(sin φ) =

3u2
3

2r2 − 1
2

,

cos φ cos ψ = cos( f + ω), cos φ sin ψ = sin( f + ω) cos i,

P22(sin φ) = 3 cos2 φ, cos 2(Ω − fp + ψ) = 2 cos2(Ω − fp + ψ)− 1,
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and

P22(sin φ) cos 2(Ω − fp + ψ) = 6[cos φ cos(Ω − fp + ψ)]2 − 3 cos2 φ

= 6{cos φ · [cos(Ω − fp) cos ψ − sin(Ω − fp) sin ψ]}2 − 3 cos2 φ)

= 6[cos( f + ω) cos(Ω − fp)− sin( f + ω) cos i sin(Ω − fp)]
2 − 3 cos2 φ

=
6
r2 (u1 cos fp + u2 sin fp)

2 − 3 cos2 φ.

In order to better understand the angles φ and ψ, Figure 4 is recomanded for reading. In the Lunar
inertial coordinate frame P2 − q1q2q3, the longitude of the ascending node of the infinitesimal satellite
is Ω, and the latitude is φ. The prime meridian is set at the direction of the longest semi-major axis
of the ellipsoid. The longitude of the satellite is Ω − fp + ψ in the rotating frame P2 − x1x2x3. The
Earth is always on the x1-axis. Besides, fp is notated as the true anomaly of the outer orbit, P2(·) is the
2nd-order Legendre polynomial, and P22(·) is the unnormalized associative Legendre polynomial.

With the help of the symplectic scaling,

u → ε2µ1/3ξ, v → ε−1µ1/3η, t → ε3s, J2 → ε6 J̃2, C22 → ε6C̃22,

and the Legendre polynomial expansion[5], the Hamiltonian (7) becomes

H̃P2JC = ĤP2(ξ, η, s) + ε6(ĤJ2 − ĤC22)

= ĤP2
0 + ε6(Ĥ1 + ĤJ2 − ĤC22) +O(ε8), (8)

where

Ĥ1 = − (1 − µ)r2

∥Xp∥3 P2(cos θ), r = ∥ξ∥,

ĤJ2 = ã2
m J̃2

(
3ξ2

3
2r5 − 1

2r3

)
,

ĤC22 = ã2
mC̃22

(
6x̃2

1
r5 − 3

r3 +
3ξ2

3
r5

)
,

x̃1 = ξ1 cos fp + ξ2 sin fp, ãm = ε−2µ−1/3am,

cos θ =
ξ

∥ξ∥ · Xp

∥Xp∥
=

1
r
(ξ1 cos fp + ξ2 sin fp) =

x̃1

r
.

The relations between the scaled rectangular coordinates and the osculating orbital elements are
r = a(1 − e2)/(1 + e cos f ),
u1 = r cos( f + ω) cos Ω − r sin( f + ω) cos i sin Ω,
u2 = r cos( f + ω) sin Ω + r sin( f + ω) cos i cos Ω,
u3 = r sin( f + ω) sin i,

Here, x̃1 = r cos θ, and cos θ can be expressed as

cos θ = cos( f + ω) cos(Ω − fp)− cos i sin( f + ω) sin(Ω − fp)

=(I1 + I2) cos( f + ω) cos(Ω − fp)− (I1 − I2) sin( f + ω) sin(Ω − fp)

=I1 cos( f + ω + Ω − fp) + I2 cos( f + ω − Ω + fp),

where

I1 =
1
2
(1 + cos i), I2 =

1
2
(1 − cos i).
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According to the knowledge of the complex variable functions, the real triangular functions can be
replaced by the complex exponential functions, such that the powers of the real triangular functions
are easy to be calculated. By this method, we get

cos2 θ =
I2
1
2

cos 2( f + ω + Ω − fp) +
I2
2
2

cos 2( f + ω − Ω + fp) +
I2
1 + I2

2
2

+ I1 I2
[
cos 2( f + ω) + cos 2(Ω − fp)

]
.

Now, it is convenient to apply the Hamiltonian system (8) both for the numerical computation of the
periodic orbits and for the analysis of the first-order perturbed system. By numerical experiment, It
is found that ω is near 0 when cos Ep = −1 and ω is near π when cos Ep = 1. An example is given
in Figure 5. Some more initial values of these frozen periodic orbits can be found in Table 2. It is
interesting to explain the phenomenon in the first-order double-averaged system.

q1

q2

q3

P2

x1

x2

Ω − fp

ψ

φ

Figure 4. Lunar inertial coordinate frame P2 − q1q2q3 and Lunar equatorial rotating frame P2 − x1x2x3.
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Figure 5. The orbital elements of a Lunar periodic orbit of "+++(1)" type with j/k = 50/1. The altitude is about
3833.0km.
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Figure 6. The orbital elements of a Lunar periodic orbit of "−+−(1)" type with j/k = 70/1. The altitude is about
2713.8km.
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Table 2. Some initial values of the near-polar, near-circular, lunar frozen periodic orbits in the elliptic RTBP
perturbed by the J2, C22 terms.

j/k,type1 ξ1 η2 η3

38,+++ 0.999996415501457 -1.53265760125584E-2 1.00063234441343
38,+−+ 0.999996323959347 -1.53265221246967E-2 -1.00063243652928
38,−++ -0.999631537537576 1.53360715507054E-2 1.00096137315743
38,−−+ -0.999631572957102 1.53361607836104E-2 -1.00096133644985
38,++− 1.00010457611908 -1.39262375517334E-2 1.00034505669525
38,+−− 1.00010457613606 -1.39262375145222E-2 -1.00034505667884
38,−+− -0.999755336066306 1.39291300677261E-2 1.00071623453464
38,−−− -0.999755336071655 1.39291298616095E-2 -1.00071623453208
50,+++ 1.00004036237187 -1.16399095055137E-2 1.00032604091855
50,+−+ 1.00004036442821 -1.16399055608615E-2 -1.00032603891154
50,−++ -0.999736185844210 1.16448719424375E-2 1.00061301131761
50,−−+ -0.999736185751775 1.16448718613465E-2 -1.00061301141084
50,++− 1.00010324877502 -1.06014270499141E-2 1.00016221064751
50,+−− 1.00010324742691 -1.06015693670615E-2 -1.00016221050752
50,−+− -0.999806261225514 1.06039245231929E-2 1.00046973982848
50,−−− -0.999806260045887 1.06039241923682E-2 -1.00046974101071

50,+++(1) 1.00004772495397 -1.16437280686876E-2 1.00031865811095
50,−++(1) -0.999727871097841 1.16482584577867E-2 1.00062129340388
50,−−+(1) -0.999727871210650 1.16482585774023E-2 -1.0006212932898344
50,++−(1) 1.000047724953971 -1.16437280686877E-2 1.00031865811095
50,+−−(1) 1.000047723820043 -1.16437303795379E-2 -1.00031865921609

60,+++ 1.00005445614547 -9.69443727684011E-3 1.00020411562384
60,+−+ 1.00005445666738 -9.69443733030811E-3 -1.00020411510206
60,−++ -0.999780858404711 9.69780610332384E-3 1.00046714423176
60,−−+ -0.999780830682264 9.69781696395454E-3 -1.00046717183446
60,++− 1.00009836808750 -8.86151811506304E-3 1.00009091857796
60,+−− 1.00009836626972 -8.86152667714532E-3 -1.00009092031881
60,−+− -0.999829057478298 8.86344960938257E-3 1.00036671317776
60,−−− -0.999829058314773 8.86344660447464E-3 -1.00036671236851
70,+++ 1.00006122089056 -8.32258582949308E-3 1.00013342805500
70,+−+ 1.00006122070046 -8.32258595263936E-3 -1.00013342824388
70,−++ -0.999807148471916 8.32518964348363E-3 1.00038049962717
70,−−+ -0.999807149512763 8.32518602724036E-3 -1.00038049861647
70,++− 1.00009370579491 -7.65010043854636E-3 1.00005034663127
70,+−− 1.00009370571585 -7.65010142502368E-3 -1.00005034670266
70,−+− -0.999842137241648 7.65183065190509E-3 1.00030621538970
70,−−− -0.999842137612930 7.65182240120627E-3 -1.00030621508136

70,−+−(1) -0.99980224406757 8.326726523174E-3 1.000385394761
1 The types are defined by the signs of ξ1, η3 = ξ̇3, cos Ep.

3.2. First-Order Averaged System

The scaled canonical Delaunay elements are introduced in order to do the Von Zeipel transform
and get the first-order averaged system.

ℓ = M, g = ω, h = Ω, L =
√

a, G = L
√

1 − e2, H = G cos i.

The completely expansion of the perturbed system in the Delaunay elements is difficult, so the mean
anomaly ℓ is usually contained in E(e(L, G), M) and f (e(L, G), M). Hansen coefficients are usually
taken in use in the elliptic expansion[3],

( r
a

)n
exp im f =

∞

∑
k=−∞

Xn,m
k (e) exp ikM.
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We remove the hats above the Hamiltonian notations in (8). Let r2 = ∥Xp∥. After elimination of the
fast variable M, we get

H̄1 = − (1 − µ)a2

r3
2

{
15
4

e2
1

[
I2
1 cos 2(ω + Ω − fp) + I2

2 cos 2(ω − Ω + fp) + I1 I2 cos 2ω
]

+

(
1 +

3
2

e2
)[

3
4
(I2

1 + I2
2 ) +

3
2

I1 I2 cos 2(Ω − fp)−
1
2

]}
.

H̄J2 =
J̃2 ã2

m
L3G3

(
3
4

sin2 i − 1
2

)
, H̄C22 = −3C̃22 ã2

m
2L3G3 · sin2 i · cos 2(Ω − fp).

Consider that the second fast variable is fp, these terms above can be averaged again as

¯̄H1 = − (1 − µ)L4

L3
2G3

2

{
15
16

(
1 − G2

L2

)(
1 − H2

G2

)
cos 2g +

1
16

(
5 − 3G2

L2

)(
3H2

G2 − 1
)}

,

¯̄HJ2 = H̄J2 =
J̃2 ã2

m
L3G3

(
1
4
− 3H2

4G2

)
, ¯̄HC22 = 0, L2 = 1, G2 =

√
1 − e2

p.

The canonical differential equations of the first-order averaged system are

dℓ
ds

=
1
L3 + ε6 ∂( ¯̄H1 +

¯̄HJ2)

∂L
,

dg
ds

= ε6 ∂( ¯̄H1 +
¯̄HJ2)

∂G
,

dh
ds

= ε6 ∂( ¯̄H1 +
¯̄HJ2)

∂H
,

dL
ds

= 0,
dG
ds

= −15(1 − µ)L4

8G3
2

e2 sin2 i · sin 2g,
dH
ds

= 0. (9)

For a further step, we have

dℓ
ds

=
1
L3 − ε6 (1 − µ)L3

G3
2

[
15
8
(1 + e2) sin2 i · cos 2g +

1
8
(7 + 3e2)(3 cos2 i − 1)

]
− ε6 3 J̃2 ã2

m
4L4G3 (1 − 3 cos2 i),

dg
ds

=− ε6 3(1 − µ)L4

8G3
2G

[
5(− sin2 i + e2) cos 2g + (1 − e2 − 5 cos2 i)

]
− ε6 3 J̃2 ã2

m
4L3G4 (1 − 3 cos2 i) + ε6 3 J̃2 ã2

m
2L3G4 cos2 i,

dh
ds

=− ε6 3(1 − µ)L4

8G3
2G

(
−5e2 cos 2g + 2 + 3e2

)
cos i − ε6 3 J̃2 ã2

m
2L3G4 cos i.

In the near-polar and near-circular frozen orbits, the orbital elements a, e, i, Ω are almost constants
with small periodic amplitudes. Substitute the initial unperturbed orbital elements into the differential
equation about ġ, we have

dg
ds

≈ 1.5ε6 cos 2g − 0.75J2 ã2
m.

If g is fixed at 0 or π, we have ε6 ≈ 1.5 × 10−5, but it can just happen for the low-altitude lunar orbits.
In order to understand the periodic behaviors of these frozen orbits, we resort to Poincaré-

Delaunay elements, as they are effective for near-circular and near-polar orbits.{
Q1 = ℓ+ g, Q2 = −

√
2(L − G) sin g, Q3 = h,

P1 = L, P2 =
√

2(L − G) sin g, P3 = H.
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The first-order double averaged system in the Poincaré-Delaunay elements can be written as

K f = − 1
2P2

1
+ ε6(−c1K1 + c2K2), c1 =

(1 − µ)

16G3
2

, c2 =
J̃2 ã2

m
4

, (10)

where

K1 = P4
1 (15A1A2 +A3), K2 =

8
P3

1 G3
two

− 96P2
3

P3
1 G5

two
,

A1 = 1 − G2
two

4P2
1

− 4P2
3

G2
two

+
P2

3
P2

1
, A2 =

2P2
2

P2
2 + Q2

2
− 1,

A3 = −5 +
3G2

two
4P2

1
+

60P2
3

G2
two

− 9P2
3

P2
1

, Gtwo = 2P2
1 − P2

2 − Q2
2 = 2G.

The canonical differential equations can be calculated with the help of a symbolic computation
software like the wxMaxima.

dQ1

ds
=

∂K f

∂P1
=

1
P3

1
+ ε6

(
−c1

∂K1

∂P1
+ c2

∂K2

∂P1

)
,

dQi
ds

=
∂K f

∂Pi
= ε6

(
−c1

∂K1

∂Pi
+ c2

∂K2

∂Pi

)
, i = 2, 3,

dP2

ds
= −

∂K f

∂Q2
= −ε6

(
−c1

∂K1

∂Q2
+ c2

∂K2

∂Q2

)
,

dPj

ds
=

∂K f

∂Qj
= 0, j = 1, 3.

The key parts of the differential equations of the first-order double averaged Hamiltonian system K f

(10) are as follows.

dQ1

ds
=

1
P3

1
− ε6 3c2

P4
1

(
8

G2
two

− 96P2
3

G5
two

)
+ ε6 c2

P3
1

(
960P2

3

G6
two

− 32
G3

two

)

− ε64c1P3
1 (15A1A2 +A3)− ε6c1P4

1

[
15A2 ·

(
G2

two
2P3

1
+

16P2
3

G3
two

− Gtwo

P2
1

− 2P2
3

P3
1

)
− 3G2

two
2P3

1
− 240P2

3

G3
two

+
3Gtwo

P2
1

+
18P2

3

P3
1

]
.

dQ2

ds
=ε6 c2

P3
1

(
32

G3
two

− 960P2
3

G6
two

)
P2 − ε6c1P4

1

[
15

(
Gtwo

P2
1

− 16P2
3

G3
two

)
A2P2

+

(
240P2P2

3

G3
two

− 60Q2
2A1

(P2
2 + Q2

2)
2
− 3Gtwo

P2
1

)
P2

]
.

dQ3

ds
= −ε6 192c2P3

P3
1 G5

two
− ε6c1P4

1

[
15A2

(
2P3

P2
1

− 8P3

G2
two

)
+

120P3

G2
two

− 18P3

P2
1

]
.

dP2

ds
=− ε6 c2

P3
1

(
32

G3
two

− 960P2
3

G6
two

)
Q2 + ε6c1P4

1

[
15

(
Gtwo

P2
1

− 16P2
3

G3
two

)
A2Q2

+

(
240P2

3

G3
two

− 60P2
2A1

(P2
2 + Q2

2)
2
− 3Gtwo

P2
1

)
Q2

]
.
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In the first-order double-averaged system, P1 and P3 are constants. Set P1 = 1 and P3 = 0, we
have Q3 ≡ Q3(0). The differential equations about Q2, P2 can be simplified as

d
ds

(
Q2

P2

)
= ε6

{
32c2

G3
two

− c1

[
15A2Gtwo − 246 + 18(P2

2 + Q2
2)
]}( 0 1

−1 0

)(
Q2

P2

)
.

Suppose Q2(0) = P2(0) = 0, then Q2(t) = P2(t) = 0. We have dQ1
ds = 1 + ε6(8c1 − 10c2). So there exist

polar-type and circular periodic orbits in the first-order double-averaged system.

4. Linear Stability
The Hamiltonian system ĤP2JC is

ĤP2JC =
∥η∥

2
− 1

∥ξ∥ − ε2µ−2/3(1 − µ)

(
1
r3

− ε2µ1/3ξTXp

r3
2

)

+ J2 ã2
m

(
3ξ2

3
2r5 − 1

2r3

)
− C22 ã2

m

(
6x̃2

1
r5 − 3

r3 +
3ξ2

3
r5

)
,

where

r = ∥ξ∥, r2 = ∥Xp(s)∥, r3 = ∥ε2µ1/3ξ − Xp∥,

x̃1 = ξ1 cos fp + ξ2 sin fp, fp = fp
(
Ep(nps, ep), ep

)
.

The 2nd-order differential equations are

d2ξ

ds2 =− ξ

r3 − ε6(1 − µ)
ξ

r3
3
+ ε4(1 − µ)µ−1/3Xp

(
1
r3

3
− 1

r3
2

)
− J2 ã2

mV1 + C22 ã2
mV2,

where ãm = ε−2µ−1/3am, and

V1 =
∂

∂ξ

(
3ξ2

3
2r5 − 1

2r2

)
, V2 =

∂

∂ξ

(
6x̃2

1
r5 − 3

r3 +
3ξ2

3
r5

)
.

The canonical differential equations of the Hamiltonian system ĤP2JC are

dξ

ds
= η,

dη

ds
= −∂ĤP2JC

∂ξ
=

d2ξ

ds2 . (11)

The solution is notated as ξ = ξ(s, ξ0, η0), η = η(s, ξ0, η0). The fundamental solution matrix of the
linear variational equations is notated as

Φ = Φ(s, ξ0, η0) =

(
∂ξ
∂ξ0

∂ξ
∂η0

∂η
∂ξ0

∂η
∂η0

)
.

The system of the linear variational equations is

dΦ
ds

=

(
O3 I3

B O3

)
Φ, B = −∂2ĤP2JC

∂ξ∂ξ0
, (12)

where I3 is a 3 × 3 identical matrix, O3 is a 3 × 3 zero matrix, and

B = B1 + ε6(1 − µ)B2 − ε6(1 − µ)B3 − J2 ã2
mB4 + C22 ã2

mB5,
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B1 =

 b11 b12 b13

b12 b22 b23

b13 b23 b33

, bii = − 1
r3 +

3ξ2
i

r5 , bij =
3ξiξ j

r5 ,

B2 =

 b̂11 b̂12 b̂13

b̂12 b̂22 b̂23

b̂13 b̂23 b̂33

, b̂ii = − 1
r3

3
+

3ui(ui − Xi)

r5
3

, b̂ij =
3ui(uj − Xj)

r5 ,

B3 =

 b̃11 b̃12 b̃13

b̃12 b̃22 b̃23

b̃13 b̃23 b̃33

, b̃ij =
3Xi(uj − Xj)

r5
3

,

B4 =

 b̄11 b̄12 b̄13

b̄12 b̄22 b̄23

b̄13 b̄23 b̄33

, b̄ii =
2
r5

3
− 15ξ2

3
2r7 − 12ξ2

i
r8 +

105ξ2
i ξ2

3
2r9 ,

b̄12 =
105ξ1ξ2ξ2

3
2r9 − 12ξ1ξ2

r8 , b̄i3 = −15ξiξ3

2r7 − 12ξiξ3

r8 +
105ξ2

i ξ2
3

2r9 ,

b̄33 =
3
r5

3
+

2
r6

3
− 75ξ2

3
2r7 − 12ξ2

3
r8 +

105ξ4
3

2r9 , i = 1, 2,

B5 =

 b̌11 b̌12 b̌13

b̌12 b̌22 b̌23

b̌13 b̌23 b̌33

, b̌i =
9
r5 − 15ξ2

3 + 30x̃2
1 + 45ξ2

i
r7 +

105ξ2
i ξ2

3 + 210ξ2
i x̃2

1
r9 ,

b̌11 = b̌1 +
12 cos2 fp

r5 − 120x̃1ξ1 cos fp

r7 , b̌22 = b̌2 +
12 sin2 fp

r5 − 120x̃1ξ2 sin fp

r7 ,

b̌12 =
6 sin 2 fp

r5 − 60x̃1(ξ1 sin fp + ξ2 cos fp) + 45ξ1ξ2

r7 +
105ξ1ξ2ξ2

3 + 210x̃2
1ξ1ξ2

r9 ,

b̌i3 = −60x̃1ξ3 cos fp + 75ξiξ3

r7 +
105ξiξ

2
3 + 210x̃2

1ξiξ3

r9 , i = 1, 2,

b̌33 =
15
r5 − 120ξ2

3 + 30x̃2
1

r7 +
105ξ4

3 + 210x̃2
1ξ2

3
r9 .

The initial values for Eq. (12) is the 6 × 6 identical matrix. The Equations (11) and (12) should be
integrated together. The scaled time for the numerical integration is the period Tjk = 2jπ/k of a
periodic orbit. However, the whole information of a symmetric periodic orbit can be gotten by the
integration of a half period.

the monodromy matrix can by calculated by the following formula[6]

Φ(2jπ) = Φ(jπ)Γ1Φ−1(jπ)Γ1, Γ1 = diag{1,−1,−1,−1, 1, 1}.

There are three pairs of conjugate eigenvalues for the matrix Φ(2jπ). If one periodic orbit is linearly
stable, the eigenvalues are in the unit circle. If not, at least one eigenvalue will be far away from the
unit circle. One index to describe the stability is the summation of the moduli of the eigenvalues. The
eigenvalues of Φ(2jπ) are also called characteristic multipliers. For just a few examples, the summation
of the moduli of the multipliers can be calculated directly from the eigenvalues of Φ(2jπ). With the
J2, C22 and the third-body perturbations, the stability index for the periodic orbit of (j/k = 38,+++)-
type is about 24, and 114 for the case (j/k = 50,+++), 590 for the case (j/k = 60,+++) case, and
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3778 for the case (j/k = 70,+++). In the elliptic RTBP, the linear stability index is about 7 for the
case (j/k = 9,+++). This reveals that it saves fuel at the high-altitude orbits.

5. Discussion
The paper provides a lot information about the near-polar, near-circular, lunar-type periodic orbits

in the Moon-Earth elliptic restricted three-body problem with J2, C22 and third-body perturbations.
Some periodic orbits are calculated and the orbital dynamics are well explained by the first-order
double-averaged system. The symplectic scaling technique is introduced, and the small parameter
ε3 = k/j represents the small ratio of the mean resonances between the inner orbit of the infinitesimal
body and the outer orbit of the relative motion of the Earth. The linear stability index is introduced
and the linear variational equations are calculated. The scaled Hamiltonian system can also be applied
to the study of the near-planar lunar orbits.

More work can be done based on this paper. For high-altitude orbits, the perurbation from the
Sun can be added to the Hamiltonian system, and the J2, C22 perturbations can be neglected. The
quasi-bicircular model of the Moon-Earth-Sun system can be applied. The asymmetric periodic orbits
can be studied with the aim of finding stable orbits. It is interesting to study the analytical solutions
and the evolution of the orbits. The formulas of this paper can also be adjusted to study the orbits
around a satellite of one planet.
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