Pre prints.org

Article Not peer-reviewed version

Exploring the 2-Part of Class Groups in
Quadratic Fields Perspectives on the
Cohen-Lenstra Conjectures

Yong Wang, Huili Zhang, Ying Zhou , Haopeng Deng, Xingyu Liu, Lingyue Li :

Posted Date: 21 November 2024
doi: 10.20944/preprints202410.0808v2

Keywords: quadratic fields; class numbers; class groups; Cohen-Lenstra conjecture

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/3637524
https://sciprofiles.com/profile/3964352
https://sciprofiles.com/profile/3912339

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2024 d0i:10.20944/preprints202410.0808.v2

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Exploring the 2-Part of Class Groups in Quadratic
Fields: Perspectives on the Cohen-Lenstra Conjectures

Yong Wang 1, Huili Zhang !, Ying Zhou 2, Haopeng Deng 3, Xingyu Liu ! and Lingyue Li *
1
2
3

School of Arts and Sciences, Guangzhou Maritime University, Guangzhou, 510725, China

Institute of Visual Informatics (IVI), Universiti Kebangsaan Malaysia (UKM)

School of Intelligent Transportation and Engineering, Guangzhou Jiaotong University, Guangzhou, 510725, China
*  Correspondence: lilingyuel7@mails.ucas.ac.cn

Abstract: Cohen and Lenstra introduced conjectures concerning the distribution of class numbers in quadratic
fields, though many of these conjectures remain unproven. This paper investigates the 2-part of class groups in
imaginary quadratic fields and examines their alignment with the Cohen-Lenstra heuristics. We provide detailed
proofs of key theorems related to ideal decompositions and modular homomorphisms, and we explore the
distribution of class groups of imaginary quadratic fields. Our analysis includes constructing imaginary quadratic
fields with prescribed 2-class groups and discussing the implications of these findings on the Cohen-Lenstra

conjecture.
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1. Introduction

Quadratic fields, denoted as K = Q(+/d) where d is a non-square integer, are foundational
structures in algebraic number theory. When d > 0, K represents a real quadratic field containing
real roots, while for d < 0, K is an imaginary quadratic field containing complex roots. The class
number of a quadratic field, a critical invariant in number theory, quantifies the deviation from unique
factorization within the ring of integers of K. This invariant is essential for theoretical advancements
in number theory and has significant implications for cryptographic systems and algebraic geometry,
given its role in analyzing factorization properties within quadratic fields.

Quadratic fields and their associated class groups are fundamental for understanding class
number distributions [1], a central issue in number theory. Imaginary quadratic fields, in particular,
have been extensively studied due to Gauss’s conjecture, which has been resolved for imaginary fields
but remains open for real quadratic fields. Specifically, the question of whether there exist infinitely
many real quadratic fields with class number one is still unresolved and is intrinsically related to the
structure of fundamental units in these fields. This question is further complicated by the growth of
the regulator in real quadratic fields, making class number computations for real fields significantly
more challenging than for imaginary fields [9].

Calculating class numbers for general number fields remains a challenging problem. Cohen
and Lenstra proposed influential conjectures regarding the statistical distribution of class numbers in
number fields, with a focus on real and imaginary quadratic fields. Their heuristics suggest that for a
given discriminant, class numbers tend to follow certain probabilistic distributions, which favor the
presence of class groups with smaller orders [6,12].

Recent advancements in the study of quadratic fields and their class groups have expanded
on Cohen and Lenstra’s initial heuristics, offering more refined insights into expected class group
distribution patterns. The Cohen-Lenstra conjectures indicate that class groups of quadratic fields,
particularly imaginary fields, are expected to follow specific statistical distributions in their p-parts.
Notably, empirical observations reveal deviations from these heuristics in the 2-part of class groups in
imaginary quadratic fields, likely due to the influence of genus theory on these structures. Modern
computational methods, including those developed by Bhargava and Shankar, enable large-scale
analysis of these distributions with increased precision, laying a robust foundation for investigating
the 2-part of class groups in imaginary quadratic fields.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Our Contribution

This study provides a detailed examination of the 2-part of class groups in imaginary quadratic
fields to assess their alignment with Cohen-Lenstra heuristics and to identify any systematic deviations.
By combining modern computational techniques with theoretical frameworks, this paper explores
structural patterns in class groups within these fields in the distribution of the 2-part. This research
contributes valuable insights to both foundational studies in quadratic fields and broader applications
in number theory and cryptography.

To contextualize the discussion of these conjectures, we first review several foundational concepts
essential to understanding the relationship between class numbers and class groups in imaginary
quadratic fields. For an imaginary quadratic field K = Q(v/—d), the class number is closely connected
to the Dedekind zeta function g (s) and the Minkowski bound, which provides a lower limit on
the class group size. Moreover, the structure of the 2-part of the class group is intricately linked
to the properties of the quadratic form class group, underscoring its importance in theoretical and
computational settings.

1.1. Significance of the Current Study

The findings of this study hold substantial implications for both theoretical number theory
and applied fields such as cryptography. Quadratic fields and their class groups are integral to
understanding algebraic number theory, and an in-depth analysis of the 2-part distribution in these
groups serves multiple important purposes.

Theoretical Impact on the Class Number Problem and Conjecture Refinement: By investigating deviations
in the 2-part distribution from expected heuristic predictions, this research addresses core questions
about class number distribution in quadratic fields. These insights are valuable for refining the Cohen-
Lenstra conjectures, which could lead to more accurate predictive models for class group distributions.
This is especially relevant for imaginary quadratic fields, where genus theory adds complexity to the
underlying structure of the 2-part.

Implications for Cryptographic Algorithm Design: The class group structures in quadratic fields have
important applications in cryptographic systems that leverage the algebraic properties of these fields.
A more detailed understanding of the 2-part distribution could inform the design and robustness
of algorithms reliant on quadratic field properties, especially for tasks involving factorization and
discrete logarithm problems.

Advancements in Large-Scale Numerical Analysis in Number Theory: This study also contributes to
the field by demonstrating the utility of large-scale, high-performance computational techniques for
analyzing class group distributions. The methodology used here sets a precedent for future studies of
algebraic structures in number theory, showing that computational approaches can yield meaningful
insights into long-standing theoretical problems.

1.2. Novel Contributions of the Study

e Theoretical Extension: This research extends Cohen-Lenstra heuristics by investigating systematic
deviations observed in the 2-part of class groups for imaginary quadratic fields. This approach
provides new structural insights into class group distributions.

* Numerical Insight: Utilizing advanced computational methodologies, this study examines class
group data at a big scale, uncovering previously unobserved distribution anomalies and periodic
behaviors in the 2-part of class groups. These findings allow for a more detailed understanding
of class group structures.

* Methodological Innovation: This study introduces refined computational techniques for examining
class group distributions with higher precision across large datasets, thereby supporting rigorous
analysis of the Cohen-Lenstra heuristics in relation to the 2-part of class groups.

* Theoretical Contribution: Through a focused exploration of genus theory’s influence on the 2-part
of class groups in imaginary quadratic fields, this work identifies deviations within the Cohen-
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Lenstra framework, suggesting that genus theory may affect class group structure, thus offering
a broadened perspective on quadratic field properties.

* New Findings from Computational Results: Through extensive numerical calculations and simula-
tion experiments, this study identifies unique characteristics in the distribution of the 2-part of
class groups within imaginary quadratic fields, establishing a foundation for future research in
class group distributions.

2. Fractional Ideals and Class Groups

Definition 1. ([2,3])Let K be a number field and Oy its ring of integers. A subset I of K is called a fractional
ideal of K if there exists a non-zero element u € K such that ul is a non-zero ideal of Ok.

Definition 2. ([4,5]) Let Ok be a Dedekind ring. A principal fractional ideal is a fractional ideal of the form
a Ok, generated by a single element « in the quotient field of O, where & # 0. The group of fractional ideals
modulo the group of principal ideals (i.e., non-zero principal fractional ideals) is called the ideal class group of
Ok. Denote by P(K) the set of all principal fractional ideals. The principal fractional ideals form a group called
the principal fractional ideal group.

Let I(K) denote the set of fractional ideals of the number field K, the quotient group Cl(K) = I(K)/P(K)
is called the ideal class group (or simply the class group) of K. An ideal class of K is an element of Cl(K).
Therefore, two fractional ideals are equivalent in K if they lie in the same coset of I(K)/P(K). Both I(K) and
P(K) are infinite abelian groups, but the quotient group CI(K) is a finite abelian group. The order of this group,
h(K) = |CI(K)]|, is called the ideal class number (or simply the class number) of K.

It can be observed that (K) is an important invariant of K. From the definition of CI(K), we have:

h(K) =1 <= I(K) = P(K) (i.e., every fractional ideal is a principal fractional ideal);
<= every ideal in Z is a principal ideal;
<= Zx is a principal ideal domain;

<= Zg is a unique factorization domain.

Thus, the size of the class number /(K) measures the difference between the Dedekind domain Qg
and a unique factorization domain.

Definition 3. ([4,5]) Let K be a field and Ok be a domain. A set {ay, ..., a,} is an integral basis of Ok (or K)
if for every element & € Ok, there is a unique representation:

a:)xloc1+..~+)xn¢xn, )\l‘GZ.

Theorem 1 (Hermite). For every given d € Z, there are only finitely many quadratic fields K such that
d(K) = d, where d(K) is the discriminant of K.

Remark 1. This theorem, first established by Hermite in 1848, is a cornerstone in the study of algebraic number
fields. It demonstrates the intrinsic finiteness in the classification of quadratic fields based on their discriminants.
A detailed proof of Hermite’s theorem can be found in Neukirch’s Algebraic Number Theory [18, Theorem 2.16,
Chapter 111, Section 2]. Moreover, this result is a special case of the Hermite-Minkowski theorem [18], which
asserts that for any fixed degree n and a discriminant bound B, there are only finitely many number fields of
degree n with discriminants satisfying |d(K)| < B. The Hermite-Minkowski theorem generalizes Hermite’s
result to number fields of arbitrary degree, offering a unifying framework for the study of finiteness properties in
algebraic number theory.

In recent years, advancements in computational techniques have allowed for the application of
Hermite’s theorem on larger datasets, affirming its utility in both theoretical and applied contexts.
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These developments include algorithmic approaches that extend the reach of Hermite’s finiteness
results to more complex quadratic fields, reinforcing the theorem'’s relevance in current number theory
research [19,20].

The Minkowski Bound and Class Group Computations

Class group computations rely on theoretical foundations provided by Theorem 1 and Dirichlet’s
class number formula [7]. Theorem 1 ensures that the search for ideal class representatives in CI(K)
can be restricted to ideals with norms bounded by the Minkowski bound M(K), reducing an infinite
problem to a finite computation. This result follows from the Hermite-Minkowski theorem, which
guarantees that every ideal class contains an ideal with norm bounded by M(K).

Step 1: Computing the Minkowski Bound

The Minkowski bound for a number field K is defined as:

M) = (2)" B agop

7T n"
where:

¢ rq: the number of real embeddings of K,

* ry: the number of pairs of complex embeddings of K,
e n=[K:Q] =ry+2r;: the degree of K,

¢ |d(K)|: the absolute value of the discriminant of K.

The Minkowski bound provides a finite upper limit on the norms of ideal representatives in CI(K).
Specifically, for every ideal class in CI(K), there exists a representative ideal whose norm is less than or
equal to M(K). This restriction, guaranteed by the Hermite-Minkowski theorem, is fundamental for
computational feasibility.

Step 2: Factoring Rational Primes
For each rational prime p < M(K), the ideal pOk in the ring of integers Ok of K can be factored
as:
pOx = p{'ps2 - - - pgt,

where:

® p1,p2,. .., pg: distinct prime ideals in Ok,
* ay,ay,...,4aq: positive integers representing the multiplicities of p; in pOk.

The norm of each p;, denoted N(p;), satisfies:

8
N(pOk) = p" = [ [N(p:)".

i=1
The splitting behavior of p in K determines the factorization:
e Inert: pOg = p1, where N(p1) = p",

* Split: pOg = p1p2 - - - pg, where N(p;) = p"/8 for all i,
¢ Ramified: pOg = p”lll, where a; > 1.

By analyzing pOk for all p < M(K), the ideal classes [p;] corresponding to these prime ideals
form a generating set for CI(K). However, ensuring the generating set is complete requires careful
verification of the independence and closure properties of these ideal classes.

d0i:10.20944/preprints202410.0808.v2
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Example: Imaginary Quadratic Fields
Let K = Q(v/—d), where d > 0 is a square-free integer. The Minkowski bound simplifies to:

M(K) = —/|d(K)].

SIS

Consider K = Q(1/—23), where d(K) = —23 and:
M(K) = %\/T ~ 3.89.

This implies we only need to consider primes p < 3:

e For p = 2: 20k = papy, where N(pp) = N(p2) = 2.
e For p = 3: 30k = p3p3, where N(p3) = N(p3) = 3.

Using these factorizations, the ideal classes [py] and [p3] generate CI(K). By solving norm equa-
tions and verifying powers of [py] and [p3], it can be shown that CI(K) is cyclic of order 3, and
h(K) = 3.

Step 3: Validation via Dirichlet’s Class Number Formula
Dirichlet’s class number formula for imaginary quadratic fields relates h(K) to |d(K)| and the
Dedekind zeta function {k(s):
w/|d(K)|

h(K) = TCK(_U/

where w is the number of roots of unity in K (w = 2 for imaginary quadratic fields). For K = Q(1/—23),
direct computation of {x(—1) confirms h(K) = 3, validating the result.

The Minkowski bound M(K) is central to class group computations, as it transforms an infinite
search into a finite problem. The Hermite-Minkowski theorem ensures this reduction is theoretically
sound, while Dirichlet’s class number formula validates the correctness of the computed class number
h(K). Together, these tools form the foundation of practical and rigorous methods for studying
algebraic number fields.

Lattice-Based Methods in Class Group Computations

After establishing the Minkowski bound M(K), we can further enhance class group computations
by employing lattice-based methods. The connection between ideals in Ok and lattices in R" provides
powerful tools for computational number theory.

Ideals as Lattices

Anideal I in Ok can be viewed as a lattice in R” via the embedding:
¢p:K—=R", ¢a)=(0q(x),...,00(a)),

where ¢; are the embeddings of K into C. For complex embeddings, we separate the real and imaginary
parts to obtain a real vector space, effectively doubling the count of complex embeddings. Therefore,
the dimension of the real vector space is n = rq + 2r».

For imaginary quadratic fields (K = Q(\/Td) withd > 0), wehaver; =0andr, =1,s0n = 2.
The ring of integers Ok can be embedded into R? by mapping each element to a point in the plane via
the embedding ¢.

Lattice Reduction and the LLL Algorithm

The Lenstra—Lenstra-Lovéasz (LLL) lattice reduction algorithm [21] is a polynomial-time algorithm
that, given a basis for a lattice, finds a reduced basis consisting of relatively short and nearly orthogonal
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vectors. Applying the LLL algorithm to the lattice corresponding to an ideal I allows us to find a short
vector in I, which corresponds to an element of small norm in I.

Consider an imaginary quadratic field K = Q(+/—d), where d is a positive, square-free integer.
The ring of integers Ok consists of elements of the form a 4 bw, where a,b € Z and

V—d ifd=2,3 (mod4),

w = —
@ ifd=1 (mod 4).

Anideal I C Ok can be expressed as
IZZ'DC1+Z-062,

for some &1, a2 € Ok. Via the embedding ¢, the ideal I corresponds to a lattice A} C R? with basis
vectors ¢(aq) and ¢(ap).

Applying the LLL algorithm to this lattice yields a reduced basis {b}, b}, where b} corresponds
to an element of I with relatively small norm. This facilitates the search for principal ideals and
representatives of ideal classes with minimal norm.

Computational Advantages

Integrating lattice reduction methods into class group computations offers several advantages:

e Efficiency: Lattice reduction algorithms can significantly reduce the computational complexity of
finding small-norm representatives of ideal classes.

® Precision: By working with reduced bases, we improve numerical stability in computations
involving embeddings.

o Structural Insights: Lattice methods provide geometric interpretations of algebraic structures,
aiding in the visualization and understanding of the class group.

Application to the 2-Part of Class Groups

For the 2-part of class groups, lattice-based methods are particularly effective. By focusing on
ideals whose norms are powers of 2, we can utilize lattice reduction to identify relationships between
ideals and to detect elements of order 2 in CI(K).

Furthermore, the interplay between the lattice structure of Ok and genus theory allows us to better
understand the deviations observed in the 2-part distributions from the Cohen-Lenstra heuristics.

The lattice-based approach enhances the computation of class groups in imaginary quadratic fields
by constructing lattices corresponding to ideals and applying lattice reduction algorithms like LLL. This
method not only improves computational efficiency and accuracy but also provides deeper insights
into the structure of class groups, particularly the 2-part. By finding small-norm representatives, we
can more effectively analyze the generators and relations within the class group.

Definition 4. Ifp € T, the norm of p is defined as N(p) = |A/p|.

Definition 5. Let G1 and Gy be A-modules. We write Gy C G to indicate that Gy is a submodule of Gy.
Ifp € T is a prime ideal of A, and G is a finite A-module, the p-rank of G, denoted by r,(G), is defined as
the dimension of the vector space G /pG over the field A/p. Explicitly:

p(G) = dim,,, (G/pG).

Definition 6. Let k be a positive integer or 0. If k # oo and G is a finite A-module, then si(G) (or s{(G))
represents the number of A-epimorphisms from A to G. Define:

Sk(G) := {@ € Homu (A, G) : ¢ is an epimorphism},  s¢(G) = |Sk(G)|.
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The value s(G) quantifies the number of surjective homomorphisms from a free module A to G.

If G is a finite A-module, then wy(G) = s¢(G)|G|¥|Aut(G)|! is the k-weight, and w(G) =
Weo(G) = |Aut(G)|~L. If p € T, let:

) = T1 (1 - (Np)*i), oo (p) = H(l — (Np)’i).

1<i<k i>1
Definition 7. Since every finite A-module G can be written as G = @; A/p;’, define:
xa(G) =TTw"
1
If A =7, then x7(G) = nZ, where n = |G|. Let a be an integral ideal, and define the k-weight wy.(x) of a as:

w(a) = ) wi(G), w(a) = weo(a),

G(a)

where Y () denotes summation over G up to A-isomorphism with x 4(G) = .

The concept of x 4 (G) provides a compact way to encode the structure of G using ideals. The k-weight wy.(«)
measures the contribution of all modules associated with w to certain combinatorial or arithmetic quantities, such
as lattice point enumeration in ideal-related spaces.

Definition 8. Let G be an abelian group and p a prime number. If for every a € G there exists n > 1 such that
p"a = 0, then G is called a p-primary group. For a general abelian group G, let G, = {a € G : n > 1, p"a = 0}
denote the p-part of G.

Theorem 2. Every finite abelian group is a direct sum of finite cyclic groups of prime power order. More
generally, every finite abelian group is a direct sum of finite cyclic groups. (see [8, Theorem 5.13 ]).

Definition 9. A module | is called projective if there exists another module M such that F =2 | @ M, where F
is a free module (see Chapter 111, Section 4 in [22]).

Theorem 3. If ] is a finitely generated projective module over a principal ideal domain (PID), then | is free.

Proof. By definition, a module | is projective if and only if it is a direct summand of a free module.
That is, there exists a free module F and a module M such that F 22 | ® M. In other words, F can be
decomposed as the direct sum of | and another module M.

Since ] is a finitely generated module over a principal ideal domain (PID), we apply the structure
theorem for finitely generated modules over a PID (see [22] Theorem 7.3). The structure theorem states
that every finitely generated module E over a PID can be decomposed as:

EgEtor@F;

where Ei is the torsion submodule (elements annihilated by some nonzero element of the ring), and
F is a free module.

For ], since it is a direct summand of a free module and free modules are torsion-free, | itself is
torsion-free. This implies that the torsion part Eyo is trivial, i.e., Etor = 0. Thus, | is free. O

Definition 10. Let S be a subset of A. Then S is called a multiplicatively closed set in A, if S satisfies the
following two conditions:

1. 1€ S;
2. Ifa,be S, thenab € S,

d0i:10.20944/preprints202410.0808.v2
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Suppose A is a domain and S is a multiplicatively closed set of A. Then S~!A represents the
localization of A with respect to S, and is defined as:

/
14 .— {:;reA,seS, g:géﬂuESsuchthatu(rs’—sr’) —0}.

Addition and multiplication in S~! A are defined as follows:

a b at-+bs a\ (b ab
sTET e (s)<t>_st'

Let p be a prime ideal of A, and let S, = A\ p. Then S, 1A is called the localization of A at p, and is
denoted A,. It is a local ring.

If ] is a projective A-module, define the localization of ] at S as S~!J. In this case, S~!J is a
projective module over S~!A. The localization of a Dedekind domain is a principal ideal domain.
Moreover, projective modules over a principal ideal domain are free, so projective modules over a
Dedekind domain are locally free [11].

Definition 11. Suppose ] is a finitely generated projective A-module and T is a set of non-zero prime ideals of
A. If p € T, the rank of | at p is defined as the rank of |, as a free module over Ay, where [, and Ay, are the
localizations of | and A at p. In general, the rank is a local function on T, but for Dedekind domains, the rank is
constant.

Theorem 4. ([11]) If A is a Dedekind domain and ] is a projective module, then | = A @ I, where I is a
non-zero ideal and rank(J) = n+ 1.

Note. This theorem provides a general method for determining the rank of projective modules
over Dedekind domains.

3. Ideal Decompositions and Modular Homomorphisms

In this section, we delve into the foundational aspects of ideal decompositions and modular
homomorphisms, which are essential for understanding the structure of class groups and their auto-
morphisms. We provide detailed proofs of key theorems, following the exposition in [6].

Let A = Ok denote the ring of integers of a number field K, and let I represent the set of non-zero
prime ideals of A.

3.1. Main Theorem and Proof

Theorem 5. Suppose | is a projective A-module with rank k, and G is a finite A-module with x o(G) =, then:
(i) The number of A-module epimorphisms from ] to G is equal to s(G);

. _ (») _ (») .
(i) 5¢(G) = (N)' Iy, (m?ﬁéﬂp)) and w(G) =TTy 0 o) " AT
(i) #{H < ] : J/H = G} = (N)*w(G);

(iv) limy_, o wi(G) = w(G).

Proof. (i) Let S, be the set of prime ideals in A excluding all prime ideals that are not divisible by «.
Define S, 1A, Sy 17, and Sy LG as the localization of A, ], and G, respectively. For convenience, denote
Ay, Ju, and G, as SDle, Sojlf, and S;lG, respectively.

At this time, A, is a semi-local Dedekind domain, and a semi-local Dedekind domain is a principal
ideal domain. Therefore, ], as an A,-module is a free module, so we have [, = A’;, and there exists a
module isomorphism ¢ : J, — Ak.

Thus, any A,-module surjection from J, to G, can be transformed into a surjection from A’; to Gy
via this isomorphism. Conversely, any A,-module surjection from A% to G, can be transformed into
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a surjection from J, to G, via the isomorphism. Therefore, the number of A,-module epimorphisms
from J, to Gy is equal to sx(G,). O

To prove (i) in general, the following concepts and theorems are needed.

Definition 12. Localization of mapping: Let ¢ : M — N be an A-module homomorphism. Then the localization
of ¢ at « is defined as:
Gu:SgIM = SN, m/uvs @(m)/u, u€S,.

Proposition 1. Suppose  : A — Ay is the natural localization mapping. Then it has the following properties:

(i) Forany ideal I C A, it holds that
I= ¢_1(I)AIX’

and the mapping I — ¥~ (1) is an injection from the set of ideals of A, to the set of ideals of A, which
maps prime ideals to prime ideals.
(ii) Suppose N is an ideal of A. Then N has the form ¢~1(I), where I C A,, if and only if

N =y L(NA,).

That is, ifa € A and au € N for some u € A, then a € N. This correspondence I — ~1(I) is an
isomorphism from the prime ideals of A, to the prime ideals of A that are not contained in x. A similar
result holds for any module and its submodules.

Proof. For the proof, see ([2] p. 61-63). O

This property indicates the existence of a natural mapping between a ring and its localization,
which establishes a correspondence between ideals in the ring and ideals in the local ring. This
facilitates the examination of ideals and prime ideals in the local ring following localization. Moreover,
for Dedekind domains, where prime ideals coincide with maximal ideals, one only needs to consider
the unique maximal ideal in the local ring, thus establishing a corresponding relationship between the
local ring and its original counterpart.

Theorem 6. If ¢ : M — N is an A-module isomorphism, then ¢ is injective, surjective, or bijective if and
only if for every maximal ideal « of A, the localized mapping @, : Sy 'M — SN is injective, surjective, or
bijective, respectively.

Proof. For the proof of the theorem, see [2, p. 67-68]. O

By applying Theorem 6 and Proposition 1, one can prove Theorem 5(i) by replacing M with A¥
and N with G.

Lemma 1. If ¢ € Homy (AX,G), let g : (A/p)* — G/pG be defined as $(3) = ¢(g), where g € A* and
g € (A/p)k. Then g is surjective if and only if @ is surjective.

Proof. First, we prove that the definition of @ is reasonable. Suppose g1 = 22,50 g2 — g1 = 0, and we
have:

?(32) —?(81) = ¢(g2) — @(g1) = ¢(g2 — 1) = 0.

It is obvious that @ is an A/p-module homomorphism.
Now, since G is a p-group, we can express G = ®;A/p% and pG = §;pA/p%. Thus, for any
¢ € Homy (AX,G), we have:
¢ = ®Homy (AF, A/p%).

d0i:10.20944/preprints202410.0808.v2
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Therefore, we can write ¢ = (¢1,¢2,...,¢¢) and ¢ = (@1, ¢2,..., ¢t), where each ¢; = mo ¢. It
follows that @ is surjective if and only if each ; is surjective. [

Theorem 7. The equality s{(G) = skA/p(G/pG) -#{p € Hom, (A, G) : ¢ = 0} holds.

Proof. Define:
@ : 5(G) — S2/P(G/pG), ¢ — .

It is clear that ® is surjective. By the fundamental theorem of homomorphisms, we have:
Sk(G)/Ker® = 52/P(G /pG),

where Ker® = {¢ € Homy4 (AK,G) : ¢ = 0}.
Thus, we conclude that:

s{(G) = sP(G/pG) - #{¢ € Hom4(AK,G) : § = 0}.
This proves the theorem . [J
Choose a set of basis {e, ey, - - , ¢} for AK. Since g = 0 <= Im¢ C pG <= ¢(¢;) € pG for every i

and each e;, the number of ¢ is given by |pG|. Therefore,

_ el
#{¢ € Homa (A%, G) : 9 = 0} = pGlF = IS
{o Al )19 =0} = |pG| G/pGFF
Let r = r,(G), then G/pG is a vector space over A/p of dimension r. Thus, G/pG = (A/p)", and
consequently |G/pG| = (Np)". Therefore,
GIF _ (Na)*

k _ _
PG = e = (N

On the other hand, sf/ P (G/pG) represents the number of k x r matrices with rank r over A/p. This is
equivalent to counting the number of linearly independent r-dimensional vectors (v1, vy, ...,7,) in
(A/p)k. '

Since a vector space of dimension i has (Np)' elements over A/p, it follows that:

kr
S0/P(G/pG) = ((NB)* — 1)(NpE = Np) -+~ (Np)F = (Np)r 1) = (NRLT(R),
Me—r(p)
Hence, Theorem 5 (ii) is established.
Proof of Theorem 5 (iii):
LetY ={H CJ:]J/H = G} and X = {Kerg : ¢ € Homy(],G), ¢ is surjective}. We assert that
Y=X.
Clearly, X C Y. To complete the proof, we need only show that Y C X.
Suppose H € Y. Then there exists an A-module isomorphism ¢q : J/H — G. Combining this with the
natural projection 77 : | — J/H, we obtain ¢ = ¢ o t € Hom (], G), which is surjective, and

Kerp = Kerrt = H.
Thus, Y C X, proving that Y = X. Therefore, we have

#{H<]:J/H= G} =#{Kerp: ¢ € Homy(],G), ¢ is surjective}.
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Since Ker¢gy = Kerg, <= 3o € Aut(J) such that ¢, = 0 o ¢1, we deduce that
#{Kerg : is suriective} — —K(G) Sk nark
erg : ¢ € Homy(J, G), ¢ is surjective} = Aut(G)] wi(G) - |G| ™" = (Na)*wi(G).

Thus, Theorem 5 (iii) is proved.
Proof of Theorem 5(iv): From Theorem 5(ii), taking the limit as k — +o0, we obtain:

. 1 : 1k (p) 1
Iim wi(G) = ———— lim = .
L o6 = a0 m) T A

Thus, Theorem 5 (iv) holds.
Lemma 2. If ¢; € Homy (A", Gy) is surjective, then
#{g € Homy (A", G) : ¢ is surjective and ¢| ;i = g1} = st,(G/G1)|Gy[*2.
For a proof, see [6, Lemma 3.3].
Theorem 8. When k1, ky # oo and G is a finite A-module, we have

Sk+k, (G) = Y sk, (G1)sk, (G/G1)|Gy 2.
G1CG

Proof. Suppose A1*k2 = Ak1 x A%z For a given a = (ay,a3) € AR x AR2 and ¢ € Hom (AR *k2, G),
define
g1: A% 5 G, g1(a) = 9(a,0);

pr: AR = G, @a(a) = 9(0,a7).
Thus, ¢(a1,az) = ¢(a1,0) + ¢(0,a2) = ¢1(a1) + ¢2(az), and we conclude that

Stk (G) = ). #Ho € Hom (A%, G) : ¢ is surjective and ¢(A") = G }.
G1CG

Thus, we have

Suk(G) =Y. ). #ec Hom 4 (AM17%2, G) : ¢ is surjective and @l 4 = 1}
G1CG g1€5, (G)

O

Theorem 9. Let a be a non-zero ideal of A. For any ky # oo, we have

Wey+ky = 3(NB) 210y, (B)w, (af™).
Bla

For a proof, see [6, Theorem 3.6].

Theorem 10. Let a be a non-zero ideal of A. For any k, we have

;wk(m = (Na)wy11(x).
Bla

In particular, Y g, w(B) = N(a)w(a).
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Proof. Note that s1(G) # 0 if and only if G = A/«, where a is a non-zero ideal of A. According to
the fundamental theorem of modular homomorphisms, we have G = A/Kerp where ¢ € s1(G) and
s1(A/a) =2 Aut(A/a). Therefore, s1(A/a) = |Aut(A/«)|. By Theorem 3.5, setting k1 = kand k, =1,

we obtain:
o) = 2 o ey~ w
o) = TNB) (B o)
= D98 (B (Va5 )
= DB (BN @) N(B)

Thus, we conclude that Y4, wi(B) = (Na)wy (). Taking the limit as k — oo, we find Y g, w(B) =
N(@)w(x). O

Theorem 11. Let p € T be a prime ideal.
(i) When Re(s) > —1, we have:

o NG) = T (1- ) 7))

i>0 1<j<k
(i) If A (S) = Ck(s) = Ly wi(a) (Na)~° where Re(s) > 0, then:

Ti(s) = T Cals+7),

1<j<k
where { 4 (s) is the Dedekind zeta function of A.
Proof. (i) For k = 1, since wy(«) = 1/Na and N(p™) = (Np)™, we have:
Y wi(p))(Np) ™ = Y (Np)~(Np) "

i>0 i>0

_ Z(Np)fi(lJrs)

i>0
= (1 (Np) )

For k > 2, using Theorems 3.5 and 3.6 and the fact that N(p™) = (Np)™, we obtain:

Y wi(p)(Np) ™™ = 3 3 we 1 (p') (Np) ~(Np) "

i>0 i>01<i

=Y (Np) "+ Y w1 (p')

i>0 1<i

Y Y (Np) )y (o)

1>0i>1

= Y g () (Np) 1D (1 () 49) T
>0

v
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Continuing this process, we have:

« = g (Np) 10 T (1= () 0%))

1>0 1<j<k
— H <1 _ (Np)f(jJrs)) . Z(Np)fl(s+k+l)
1<j<k 1>0

(ii) For k = 1, we have:
C1(s) = Y wi(a) (Na) ™ = Y (Na) ") = 04 (s + 1),

For k > 2, we calculate:

=Y we(a)(Na) ™ = Y ¥ wj_1 () (Na) =1+

% Bl
—Zzwk 1(B)(NB) () (Ny) =179, (e = By)

= Zwkfl B)~ 1)z 4 (s +1)
B
=laGs+1) Y w2 (B)Y(NB) CH,(s +2),..

=0a(+1)Cals+2) - Cals+k—1) Y wi (B)(NB)~ KD,
B

Since w(B) = (NB)~!, we conclude that:

= H éA(s+j).

1<j<k
Thus, the theorem is proved. O

4. On the 2-Part of Class Groups in Imaginary Quadratic Fields and Connections to the
Cohen-Lenstra Conjecture

In this chapter, we compute the 2-part of the class group in imaginary quadratic fields and compare
the results with the Cohen-Lenstra conjecture. From these calculations, we derive new conjectures.
Before presenting these conjectures, we introduce some foundational concepts and properties to aid
understanding.

We begin with the concept of partitions. For any natural number, there exists a corresponding
partition, so that each natural number can be expressed as a sum of partitions. For example:

6=6+0=5+1=4+2=4+1+1=---

Thus, a partition can represent a natural number n = (n;),n; > ny > --- > n > 0.

Let Q) represent the set of partitions of natural numbers, and define G, as the set of all finite abelian
p-groups (up to isomorphism). For any finite abelian p-group, it can be expressed as @;(Z/p% )",
wherel <i <k, k>0,eg >e >---> ¢ >0,and r; > 0. There is a natural isomorphism between
these two sets: G, = ()
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4.1. Theorem and Conjectures

Theorem 12. Let G = @;(Z/p%)"i, (1 <i < k), wherek > 0,e; > e, > --- > ¢ > 0, and r; > 0. Then
the order of the automorphism group Aut(G) is given by:

|Aut(G)| = ( H H (1 _p5)> H pmin(e[,e]v)rirj.

1<i<k1<s<r, 1<i,j<k
In particular, if H = Aut((Z/p°)"), then |H| = prze [Th<s<,(1=p~°).

Proof. For a detailed proof, see [12] [Theorem 2.1]. O

Conjecture 1 (Cohen-Lenstra). Suppose p is an odd prime, and let D*(X) denote the number of real or
imaginary quadratic fields whose absolute discriminant is less than X. Let G be a finite abelian p-group. Then:

[{Ke DH(X): ClL(K) =G}
PHE) = Jim, )]

exists, and AT (G) = cT|Aut(G)| 7G|, while A= (G) = ¢~ |Aut(G)|~!, where c* and ¢~ are constants
independent of G.

An instance of the Cohen-Lenstra conjecture posits that nearly all cyclic groups (97.7575%) form
the odd part of the class groups of imaginary quadratic fields. Though this conjecture remains
unproven, it offers significant insights. Notably, Cohen and Lenstra did not make a conjecture about
the 2-part of the class group, as Gauss’s genus theory suggests non-randomness. However, later work
indicated that the Cohen-Lenstra conjecture’s principle of inverse proportions to automorphism group
orders might still apply to higher ranks like 4-rank and 8-rank. To further explore the 2-part of class
groups in quadratic fields, we introduce additional concepts.

4.2. Directed Graphs and the 2-Rank of Class Groups

Definition 13. Let G = (V, E) be a directed graph, where V. = V; U V, is a partition of V. The partition is
odd if there exists v € Vy such that the number of arcs from vy to vertices in V; is odd, or there exists vy € Vp
such that the number of arcs from v, to vertices in Vj is odd. Otherwise, the partition is even. A graph G is said
to be odd if every non-trivial partition of V is odd.

Let K = Q(v/—D), where D > 2 is an imaginary quadratic field, and let r, be the 2-rank of the
class group CI(K). According to Gauss’s genus theory, r; = t — 1, where t is the number of distinct
prime factors of D. Define the directed graph G(D), where the vertices are the prime factors of D, and
there exists an arc ﬁﬁ; if (%) = —1, where (%) is the Legendre symbol.

Definition 14. Let M(G) = diag(dy, ..., dm) — A(G), where d;; = Z}":l a;j and A(G) is the adjacency
matrix. Define r = ranky, (M(G)).

Lemma 3. [13] The graph G is odd if and only if r = m — 1.

Theorem 13. [13] Let K = Q(v/—D) with D > 2, and let t be the number of distinct prime factors of D. Then
211 |hy if and only if the directed graph G(D) is odd.

Proposition 2. There exists an imaginary quadratic field with an arbitrarily large absolute discriminant such
that the 2-part of its class group is a 2-Sylow subgroup of order 16.

Proof. According to Theorem 14, we know that if the directed graph G(D) is odd for t = 5, we can
obtain a 2-Sylow subgroup of order 16.
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LetK = Q(v/—D),withp; =3,p2 =5,p3 =7, p4 = 11,and p5s = p. ThenD =3 x5x 7 x 11 x p,
and —D =1 (mod 4). The matrix is given by:

0 0 0 0 ais
0 0 1 0 ajs
M(G) = 1 1 0 0 ass
0 0 1 0 ass

as1 4asp asz asg 0

According to Lemma 2, to make the graph G(D) odd, we need the rank of the matrix M(G) to be 4.

Take a special case: let a15 = 0,425 = 0,451 = 0,a5p = 0,453 = 1,a54 = 1. That s, (3) =1, (5) =1,

P 14
(&) =1,(8) =1, (%) — 1,and (%) -1
For the congruence equation (§> =land (§) = 1, we get the solution p = 1 (mod 12). For

p
(%) =1land (£) =1, wegetp =1,49 (mod 60). Taking p = 1 (mod 60), and combining this with
(Z) = —1and (§) = —1, we get p = 61,481,901 (mod 4620). At this time, —D =3 x5 x 7 x 11 =1

(mod 4). According to the prime number theorem in Dirichlet’s arithmetic progression, there are
infinitely many such prime numbers. Thus, the proposition is proved. [

By Proposition 4.1, one can construct an infinite number of imaginary quadratic fields where the 2-part
of the class group forms a 2-Sylow subgroup of order 16. Similarly, there exist infinitely many 2-Sylow
subgroups of order 8 that can be constructed. In accordance with the principles of the Cohen-Lenstra
conjecture, investigations into the 2-part of class groups can be conducted to explore whether they
exhibit behavior analogous to the conjecture’s predictions. Numerical calculations were performed
separately for real and imaginary quadratic fields, focusing on the orders of their respective 4th, 8th,
16th, and 32nd-order Sylow subgroups.

4.3. Computational Tools and Environment

This study conducts numerical simulations on a large set of imaginary quadratic fields K =
Q(v/—d), where the discriminant d is chosen within the range of 1 to 10%. The numerical simulations
were performed on a high-performance computing platform using the following tools:

e SageMath: SageMath was utilized to compute the specific structure of the 2-part of class groups.
Its extensive number theory libraries facilitate efficient computations for ideal decomposition

and class group calculations.
* Class Group Computation: The 2-part of the class group is the core of this study, and the computa-

tional process includes:

1. 2-Part Extraction: For each imaginary quadratic field, the class group is computed, and
elements related to the 2-part of the class group (i.e., elements of order a power of 2) are

extracted.
2. Statistical Deviation Analysis: The computed results are compared with statistical predictions

from the Cohen-Lenstra heuristics to assess conformity. Specifically, deviations in the
predicted versus actual frequency distribution of the 2-part of class groups are examined.

4.4. 2-Sylow Group Structures and Numerical Results

The structure of the 2-Sylow subgroups of the class groups for imaginary quadratic fields can
be categorized based on their orders. The possible structures and the orders of their automorphism
groups are as follows:
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Order 4
The possible 2-Sylow subgroups of order 4 are:

7/AZ, Z1]27® ZL/27.
The orders of their corresponding automorphism groups are:

* 7/4Z: The automorphism group has order ¢(4) = 2, where ¢ is Euler’s totient function.
* 7/27 & 7Z/2Z: The automorphism group is isomorphic to GL(2, IF‘Z), which has order 6.

Order 8
The possible 2-Sylow subgroups of order 8 are:

Z/82, Z/AZL®T/2Z, (Z/2Z)°.
The orders of their corresponding automorphism groups are:

e 7./8Z: The automorphism group has order ¢(8) = 4.
o 7/AZ & Z/2Z: The automorphism group has order 8.
e (Z/27)3: The automorphism group is isomorphic to GL(3, F), which has order 168.

Order 16
The possible 2-Sylow subgroups of order 16 are:

7/16Z, Z/8L&7/2Z, (Z/AZ)*, Z/AZ& (Z/27)%, (Z/27)
The orders of their corresponding automorphism groups are:

e 7./16Z: The automorphism group has order ¢(16) = 8.

7,/87 @ 7./ 2Z: The automorphism group has order 16.

(Z./AZ)?: The automorphism group has order 96.

Z/AZ ® (Z./27)*: The automorphism group has order 192.

(Z/2Z)*: The automorphism group is isomorphic to GL(4, F,), which has order 20160.

Order 32
The possible 2-Sylow subgroups of order 32 are:

7/327, 7/16Z&7/27, 7/8Z&T/AZ, 7./8Z& (Z/27)%

(Z/4Z)? © Z/27, T./AZ & (Z/2Z)°, (Z/27)°.

The orders of their corresponding automorphism groups are:

Z/327Z: The automorphism group has order ¢(32) = 16.

Z/16Z @ 7./ 2Z: The automorphism group has order 32.

7./87 @ 7./ 4Z: The automorphism group has order 192.

7./87 @ (Z/27)?: The automorphism group has order 384.

(Z/AZ)? ® Z/27: The automorphism group has order 11520.

7./AZ7 & (Z./27)3: The automorphism group has order 46080.

(Z/2Z): The automorphism group is isomorphic to GL(5, F,), which has order 99916800.

Tables 1-4 provide numerical results for the frequencies of different 2-Sylow subgroup structures
in the class groups of imaginary quadratic fields, while Tables 5-7 present the corresponding results
for real quadratic fields, covering various discriminant bounds X.
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Table 1. Frequencies of 2-Sylow subgroups of order 4 in class groups of imaginary quadratic fields.

X [4] [2,2]
102 4 1
103 35 40

3x10% 103 129
5x 103 181 176
8 x 10° 292 379

10* 349 480

3 x 10* 941 1438
5x10% | 1513 2334
8x10* | 2402 3878
10° 2967 4889
3x10° | 8257 14657
5x10° | 13898 24459
8x10° | 21469 39115
100 26559 48931
3x100 | 76146 145945
5x 10° | 124395 242094

Table 2. Frequencies of 2-Sylow subgroups of order 8 in class groups of imaginary quadratic fields.

X [16] [82] [44] [422] [2222]
102 0 0 0 0 0
10% 7 6 0 0 0
104 60 103 8 54 1

15x10* | 82 126 14 59 1
31242 100 143 16 60 1
31243 100 143 16 60 1

10° 100 143 16 60 1

5x10° | 100 143 16 60 1
8x10° | 100 143 16 60 1

106 100 143 16 60 1

3x10° | 100 143 16 60 1
5x10° | 100 143 16 60 1
8x10° | 100 143 16 60 1
107 100 143 16 60 1
3x107 | 100 143 16 60 1
108 100 143 16 60 1

Table 3. Frequencies of 2-Sylow subgroups of order 16 in class groups of imaginary quadratic fields.

X [16] [82] [44] [422] [22272]
102 0 0 0 0 0
10° 7 6 0 0 0
10* 60 103 8 54 1

15x10* | 82 126 14 59 1
31242 100 143 16 60 1
31243 100 143 16 60 1

10° 100 143 16 60 1
5x10° | 100 143 16 60 1
8x10° | 100 143 16 60 1
10° 100 143 16 60 1
3x10° | 100 143 16 60 1
5x10° | 100 143 16 60 1
8x10° | 100 143 16 60 1
107 100 143 16 60 1
3x107 | 100 143 16 60 1
108 100 143 16 60 1
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Table 4. Frequencies of 2-Sylow subgroups of order 32 in class groups of imaginary quadratic fields.

X [32] [162] [84] [822] [442] [42222] [22222]
10° 1 0 0 0 0 0 0
3x 103 6 9 0 0 0 0 0
5 x 103 17 18 0 4 0 0 0
104 32 47 5 26 1 3 0
3 x 10% 98 165 22 117 5 12 0
5x10% | 145 222 42 147 10 15 0
105 181 266 60 160 13 15 0
1.6x105 | 186 273 60 160 13 15 0
164802 | 186 273 60 160 13 15 0
164803 | 187 273 60 160 13 15 0
3x105 | 187 273 60 160 13 15 0
5x10° | 187 273 60 160 13 15 0
106 187 273 60 160 13 15 0
5x10° | 187 273 60 160 13 15 0
107 187 273 60 160 13 15 0
5x107 | 187 273 60 160 13 15 0
108 187 273 60 160 13 15 0

Similar computations were performed for real quadratic fields K = Q(v/d), with d > 0. The
numerical results are presented in Tables 5-7.

Table 5. Frequencies of 2-Sylow subgroups of order 8 in class groups of real quadratic fields.

X [8] [4,2] [2,2,2]
103 1 0 0
3x10° 5 3 0
5x 103 11 9 11
104 34 28 5
3 x 10* 118 136 43
5 x 10% 212 267 93
10° 437 641 287
5x10° | 2224 3971 2354
106 4432 8561 5627
107 43074 101697 85661
108 412562 1131993 1131993

Table 6. Frequencies of 2-Sylow subgroups of order 16 in class groups of real quadratic fields.

X [16] [8,2] [44] [422] [2222]
103 0 0 0 0 0

5 x 103 0 0 0 0 0
104 1 0 0 0 0

5 x 10% 38 46 2 21 0
10° 84 137 10 63 2

3 x 10° 126 569 56 312 29

5 x 10° 545 1073 101 640 81
100 1106 2260 254 1529 249

5x10° | 5431 12180 1654 10983 2695
107 10771 25400 3654 25012 7590
108 103719 283124 48799 352085 148636
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Table 7. Frequencies of 2-Sylow subgroups of order 32 in class groups of real quadratic fields.

X 321 1621 [BAl 8221 [442] [42222] [222272]
103 0 0 0 0 0 0 0
3x10% 0 0 0 0 0 0 0
5% 103 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0
3 x 104 1 1 0 0 0 0 0
5 x 10% 3 3 0 0 0 0 0
105 15 7 1 3 0 0 0
5 x 10° 89 188 33 128 4 19 0
100 225 464 94 385 23 75 0
107 2689 6310 1505 6363 675 2285 142
108 25888 70594 18728 88398 12891 47300 6980

4.5. Results and Analysis

Distribution Characteristics

From the aforementioned tables, it is evident that the occurrence of 2-Sylow subgroups with
higher orders (such as order 16 and 32) is relatively infrequent, and their frequencies increase gradually
as the discriminant increases.

By computing the 2-part of the class group across different imaginary quadratic fields, this study
finds notable deviations from the statistical predictions of the Cohen-Lenstra heuristics in certain
intervals:

e Tor fields with smaller discriminants (e.g., d < 10°), the distribution of the 2-part of the class
group aligns reasonably well with the Cohen-Lenstra predictions.

* However, as the discriminant increases beyond 10°, the deviation becomes more pronounced.
Notably, the frequency of larger 2-part class groups exceeds the expected values from the Cohen-
Lenstra heuristics, suggesting that factors like genus theory may enhance the cumulative effect
of the 2-part in large discriminants.

Influence of Genus Theory

Further analysis indicates that this deviation may be associated with genus theory in imaginary
quadratic fields. For certain discriminant forms (such as d = 3 (mod 4)), the behavior of the 2-part
of the class group is more complex, suggesting that genus theory may influence the structure and
distribution of class groups. By classifying discriminants of different types, we observe that genus
theory has a more significant impact on the 2-part of class groups, especially when the properties of
the field are complex.

This large-scale numerical simulation reveals the distribution patterns of the 2-part of class groups
in imaginary quadratic fields with large discriminants, clearly identifying deviations from the Cohen-
Lenstra heuristics and potential sources of these discrepancies. Analyzing these deviations provides
empirical support for refining and extending the Cohen-Lenstra heuristics and highlights the substan-
tial influence of genus theory on class group structure. These findings deepen our understanding of
algebraic number theory and offer new insights for the design of cryptographic algorithms based on
class group structures.

Claim 1. The observations depicted in Tables 1-7 do not fully align with the predictions of the Cohen-
Lenstra heuristics as X increases. For instance, in the case of the 2-Sylow subgroups of order 16 in the class
groups of imaginary quadratic fields, the frequency of [16] is notably lower compared to [8,2].

We propose that this phenomenon may be explained by the fact that for Z./16Z, the absolute discriminant
tends to have fewer prime factors than for 7./8Z & 7./ 27. This difference in prime factorization leads to a
lower frequency of occurrence for the former compared to the latter. It is crucial to distinguish between real
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and imaginary quadratic fields, as they exhibit significantly different characteristics. Our calculations further
support this distinction, showing that only nine imaginary quadratic fields have a class number of 1. In contrast,
there appear to be infinitely many real quadratic fields (approximately 75%) with a class number of 1.

The class number /(K) of a number field K is given by the class number formula:

_ 21(27)2Rg

— wy/[d(K)[

where r; is the number of real embeddings, ; is the number of pairs of complex conjugate embeddings,
Rk is the regulator of K, wk is the number of roots of unity in K, and d(K) is the discriminant of K.

In imaginary quadratic fields (r; = 0), Rx = 1, and wg is small (either 2, 4, or 6). In real quadratic

fields (r; = 2), Rx depends on the size of the fundamental unit, which can vary greatly. The complexity
in calculating R for real quadratic fields contributes to greater uncertainties in their class numbers
compared to imaginary quadratic fields.
More generally, if p divides the order of the Galois group of the field, the predictions of the Cohen-
Lenstra heuristics may not hold. However, in the case of imaginary quadratic fields, Gerth provided
useful results for the behavior of class groups [10]. Additionally, there are significant results for certain
real quadratic fields [17].

4.6. Conjectures and Predictions

Based on our numerical results and analysis, we propose the following conjectures and predic-
tions:

Conjecture 14. The distribution of the 2-part of the class groups of imaginary quadratic fields deviates from
the predictions of the Cohen-Lenstra heuristics for large discriminants due to the increasing influence of genus
theory and the structure of the discriminants. Specifically, as the discriminant d increases, the probability that
the 2-Sylow subgroup of the class group has a higher rank than predicted increases.

Conjecture 15. For imaginary quadratic fields K = Q(v/—d) withd =3 (mod 4), the frequency of 2-Sylow
subgroups of the form (7 /2Z)" with higher r increases more rapidly compared to fields with d = 1,2 (mod 4).

Conjecture 16. The influence of genus theory becomes dominant in the distribution of the 2-part of the class
group for discriminants d with many small prime factors, leading to a higher probability of larger 2-Sylow
subgroups.

4.7. On the Cohen-Lenstra Conjectures in Higher-Degree Number Fields

In the previous sections, we derived several conclusions from analyzing the 2-part of the class
group in quadratic fields. We now extend this analysis to higher-degree number fields. When the
extension degree n > 2, there exist Cohen-Lenstra-type conjectures for these cases [14-16]. Here, we
present the Cohen-Lenstra heuristics for number fields of degree .

Conjecture 17 (Generalized Cohen-Lenstra Heuristics). Let n be a positive integer, and let S be a permuta-
tion group acting on a set of n elements. Let r1 and ry satisfy n = ry + 2r, where r1 denotes the number of real
embeddings and ry denotes the number of pairs of complex conjugate embeddings. Let D(X) denote the set of
number fields K of degree n with discriminant |d(K)| < X. Let p be a prime number such that p does not divide
|S|, and let G be a finite abelian p-group. Then:

im {K € D(X) : CI,(K) = G}|
X—rc0 ID(X)]

d0i:10.20944/preprints202410.0808.v2
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exists and is proportional to
1 1

[Aut(G)] |Gl T

where Cl,(K) denotes the p-part of the class group of K.

Theorem 18. Let n = 3 and G = Z/pZ. If p = 2 (mod 3), then for all cyclic cubic fields K, the p-rank
rp(K) := dimg, (Cl,(K)) is even.

Proof. Let Gal(K/Q) = C3 = (o) be the cyclic group of order 3 acting on CI,(K). Since p # 1
(mod 3), the action of ¢ on Cl,(K) satisfies 0> = 1, and p does not divide 3. Therefore, the eigenvalues
of o acting on Cl,(K) ® Fj, are all equal to 1, implying that ¢ acts trivially.

Thus, Cl,(K) is a module over [, with trivial Cz-action. The dimension 7, (K) is the rank of Cl,(K)
as an [F-vector space. Since the action of ¢ is trivial, the group Cl,(K) decomposes into eigenspaces
corresponding to the irreducible representations of C3, and the dimensions of these eigenspaces must
sum to an even number when p = 2 (mod 3). Therefore, 7, (K) must be even. [

This theorem suggests that for certain G, the automorphism must be compatible with the Galois action,
especially when K is a Galois extension.

Conjecture 19 (Refined Cohen-Lenstra Heuristics). Let ¢ be an odd prime number, and let S = Cy. Let
D(X) be the set of number fields K with Galois group C, and discriminant |d(K)| < X. Let p be a prime
different from ¢, and let G be a finite abelian p-group equipped with an action of C,. Then:

L [{K € D(X): Cly(K) = G|
X—c0 ID(X)|

exists and is proportional to
1 1

Autc,(G) |G-

where Autc,(G) denotes the automorphisms of G commuting with the Cg-action.

Consider a special case where n = 3,/ = 3, and S = Cs. Then, for p # 3, the conjecture simplifies to:

lim Y KeD(X) Prp(K) _ (1+p 12 ifp=1 (mod 3),
X=eo  [D(X)] 1+p2  ifp=2 (mod3).

This study extends the Cohen-Lenstra heuristics to higher-degree number fields, demonstrating
that the distribution of finite p-class groups is significantly influenced by the structure of the automor-
phism group Autc, (G). Specifically, for a finite group G, the probability that the p-class group CI,,(K)
of a number field K from a set D(X) is isomorphic to G adheres to:

i {K € D(X): Cl,(K) = G}| 1 1
X5 ID(X)] = Autg,(G) |G T

This result highlights that the distribution of p-class groups depends not only on the order and
structure of G, but also on the size of its automorphism group respecting the Cy-action. As the size of
the automorphism group Autc, (G) increases, the likelihood of finding Cl,(K) = G decreases, with
this probability diminishing rapidly with the increasing order of G.
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Extensions and Observations

We predict that the Cohen-Lenstra heuristics will continue to hold in broader algebraic settings,
particularly in infinite Galois extensions, though several factors will influence the distribution of
p-class groups:

1. Ramification of Primes: The behavior of primes, particularly p, in the extension will critically
affect the class group structure. In extensions where p splits or ramifies completely, deviations

from the heuristics’ predictions may occur.

2. Galois Group Structure: The structure of the Galois group of the extension will influence class
group distributions. Abelian Galois groups are likely to conform to classical predictions, while
non-abelian Galois groups may introduce new patterns.

3. Effect of Automorphism Groups: The significance of automorphism groups Autc,(G) increases
in infinite extensions. For non-abelian extensions or cases with complex automorphism structures,
class group distributions may diverge from expectations.

Overall, while the distribution of p-class groups is expected to follow the inverse proportionality
described above, factors such as ramification and Galois group structure play crucial roles. These
insights generalize the Cohen-Lenstra heuristics to more complex algebraic extensions, providing new
perspectives on class group distributions.

5. Conclusions

This study combines numerical simulations with rigorous theoretical analysis to explore the
distributional properties of the 2-part of class groups in imaginary quadratic fields. Our comprehen-
sive examination reveals significant deviations from the predictions of the Cohen-Lenstra heuristics,
particularly concerning the 2-primary component of class groups. Genus theory emerges as a critical
factor in these deviations, indicating that class group structures exhibit complex behaviors not fully
accounted for by existing heuristic frameworks. This underscores the influential role of genus the-
ory in shaping class group distributions and provides a refined perspective on the applicability and
limitations of heuristic predictions in algebraic number theory.

The insights presented here lay a solid foundation for future investigations into class group
distribution phenomena. Promising directions include expanding the scope to fields with larger
discriminants, non-abelian extensions, and higher-degree number fields, which may reveal further
structural patterns and deviations across various algebraic settings. Furthermore, developing predic-
tive models that incorporate genus-theoretic effects could enable more precise forecasts of class group
behaviors, enhancing our understanding of underlying distributional patterns. Such models could
significantly improve the framework for studying class group distributions, contributing to broader
advancements in the field of algebraic number theory.
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