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Abstract 

Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders 
such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural 
changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This 
paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted 
and deep learning-based feature extractors. While the field has seen rapid growth, a detailed 
comparative analysis of these methods has been lacking. We address this by reviewing research from 
the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational 
cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and 
macular degeneration. We also assess public OCT datasets widely used in model development. A 
unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based 
diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a 
practical, robust defense strategy that integrates with existing models and outperforms current 
solutions. Our findings emphasize the value of combining classical and deep learning methods with 
strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer 
guidance for future research and clinical integration. 

Keywords: Optical Coherence Tomography (OCT); Hand-crafted Features; Deep Learning Models; 
Adversarial Attacks; Robustness in Medical Imaging; Security in AI Model; Glaucoma Detection; 
Diabetic Retinopathy; Clinical Decision Support Systems 
 

1. Introduction 

1.1. Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is a non-invasive imaging technology essential to the 
field of ophthalmology. Developed in the early 1990s, OCT utilizes light waves to capture high-
resolution, cross-sectional images of the retina, the light-sensitive tissue at the back of the eye. This 
non-invasive technology makes it beneficial because it does not require contact with the eye, making 
it suitable for sensitive patients or those that need frequent assessments. Furthermore, the 
widespread availability of OCT has made it a standard tool in clinical settings. This allows clinicians 
to observe the retina’s layers in detail, enabling them to detect and monitor a range of ocular diseases 
[1–3]. These observations allow for the visualization of changes in the retina that might signify early 
disease stages. This is significant in diagnosing conditions such as glaucoma, where early detection 
can prevent the progression of vision loss. Moreover, OCT plays a vital role in monitoring the 
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progression of diseases like age-related macular degeneration, diabetic retinopathy, and other ill 
conditions of the eye [4–7]. 

Age-related Macular Degeneration (AMD) comes in two forms: dry and wet. Dry AMD is the 
common type and develops when parts of the macula, a small area in the center of the retina that 
ensures sharp vision, get thinner with age and tiny clumps of protein called drusen grow. This causes 
a gradual loss of central vision. Wet AMD, also refers to as Choroidal Neovascularization (CNV), is 
less common but more severe and occurs when new, abnormal blood vessels grow under the retina, 
which can leak blood and fluids. This leakage can cause rapid damage to the macula, leading to 
quicker and more serious vision loss than dry AMD. Diabetic retinopathy (DR) occurs in people who 
have diabetes. High blood sugar levels cause damage to the blood vessels in the retina. These vessels 
can swell and leak, or they can close, stopping blood from passing through. These changes can cause 
central and peripheral vision over time. Diabetic macular edema (DME) is a subset of diabetic 
retinopathy. Similar to DR, high blood sugar levels damage the small blood vessels in the retina, 
leading them to leak fluid or bleed. When this fluid accumulates in the macula, it causes swelling, 
and the vision becomes blurred. DME is a major cause of vision loss in people with diabetes [8–11]. 

Other ill conditions of the eye include a macular hole (MH) and Central Serous Retinopathy 
(CSR). A macular hole is a small break in the macula, which leads to blurring and distortion of central 
vision. These holes can develop from the natural shrinking of the vitreous gel that fills the eye or from 
injuries or other eye diseases. CSR is a condition where fluid builds up under the retina, creating a 
detachment that specifically affects the macula, leading to distorted and blurred vision. The condition 
is often stress-related and is more common in men than women. CSR usually resolves on its own, but 
severe cases might require treatment to prevent lasting damage to the retina. The OCT images above 
in Figure 1 display visualizations of the ocular disorders mentioned [18].  

 

Figure 1. Shows OCT images of various ocular disorders: (top row) AMD, CNV, CSR, DME; (bottom row) DR, 
Drusen, MH and Normal. These images are taken from [18]. 

Figure 2 presents a pair of fundus and OCT scans, emphasizing the complementary relationship 
between these two retinal imaging methods. Fundus images provide a wide-field photograph of the 
retina, which highlights key features like blood vessels and the optic disc. These features are essential 
for diagnosing diseases such as diabetic retinopathy and glaucoma. The OCT scan (below) offers a 
detailed cross-sectional view of the retina, which belongs to a specific portion of the fundus image. 
Together, these images are crucial for an eye health assessment, as the fundus image identifies 
surface-level abnormalities, while the OCT scan reveals deeper structural issues like retinal 
thickening or fluid accumulation [12]. 

Another utility of OCT in clinical settings lies in the ability to provide detailed images, which 
enables analysis of these images through a process known as feature extraction. Feature extraction 
involves identifying specific attributes or changes in the OCT images that are relevant for diagnosing 
eye conditions. 
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Figure 2. Shows the corresponding relationship between OCT and Fundus image taken from [22]. 

1.2. Feature Extraction Techniques 

In OCT image classification for ocular disorders, two main types of methods are used to analyze 
images: hand-crafted features and deep learning approaches, including Convolutional Neural 
Networks and Vision Transformers. 

Hand-crafted features involve manually designed techniques where specific details of an image 
are selected based on what is already known about eye diseases. For example, experts might choose 
to focus on certain patterns or textures in the image that typically indicate a problem. This method 
relies heavily on the knowledge and experience of specialists to identify which features are important 
for diagnosis. While it can be very effective when the disease markers are well understood, it’s less 
flexible and might not handle new or complex situations as well [23–27]. 

On the other hand, deep learning methods like CNNs and transformers automate the process of 
finding important features in images. CNNs work by processing images through multiple layers, 
each designed to recognize different features, from simple edges to more complex shapes. This allows 
the network to understand the image in a structured way, layer by layer. CNNs are particularly good 
at handling images where recognizing localized patterns is key to making a diagnosis. Transformers, 
which were originally designed for processing text, have been adapted to work with images. They 
look at the entire image at once, rather than piece by piece. This helps them understand the broader 
context and relationships within the image, which can be beneficial in complex diagnostic scenarios 
where the overall structure and layout of the image elements are important [38–67].  

Both CNNs and transformers learn from examples rather than being programmed with specific 
rules about what to look for. They need a lot of data to learn effectively and can sometimes act like 
"black boxes," making it hard to understand how they’ve reached their conclusions. The choice 
between using hand-crafted features or deep learning approaches depends on factors like the 
availability of data, how decisions are made, and how accurate the results need to be. Understanding 
these algorithms’ reliance on data brings us to the importance of OCT datasets. These datasets are 
crucial for training and testing these models, determining their effectiveness and accuracy [65–85]. 

1.3. Other Survey Literature on OCT 

Current survey literature on OCT in ocular disorders, such as [1–3] primarily concentrates on 
specific applications of deep learning and computer vision for diagnosing and analyzing retinal 
diseases. These studies explore topics like automatic segmentation, classification of retinal diseases 
through OCT images, and the use of deep learning for detecting conditions such as glaucoma and 
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age-related macular degeneration. For example, surveys like [2] and [3] delve into the technical 
methodologies of image processing and the latest advancements in algorithmic approaches using 
OCT images. Other existing literatures such as [5,6,9] emphasize the results of applying these 
advanced computational techniques without discussing the foundational feature extraction methods 
that still play a crucial role in scenarios where training data is limited or specific diagnostic features. 
Similarly, [8,10] focus on the methodological aspect of aligning OCT images to enhance the accuracy 
of longitudinal studies and treatment monitoring. Table 1 compares our survey against others in the 
area of OCT image classification for ocular disorders. 

In contrast, our survey presents a more holistic approach by bridging the gap between deep 
learning-based techniques and traditional hand-crafted feature extraction methods, a comparison 
largely absents in previous studies. While prior works such as [4,7,11] have explored deep learning 
approaches in various capacities, they lack in discussion on the comparative effectiveness of 
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) versus traditional hand-
crafted techniques. Moreover, our survey uniquely includes a comprehensive review of multiple 
OCT datasets, which is crucial for evaluating the generalizability of feature extraction methodologies. 

Our survey also provides an extensive discussion on the datasets employed in OCT-based image 
analysis. The choice of datasets significantly impacts model performance, particularly in clinical 
settings where the variability in imaging conditions, disease prevalence, and patient demographics 
can affect the reliability of automated classification models. Many existing surveys rely on a limited 
set of public datasets, such as [13–22] datasets, without critically evaluating their applicability to real-
world clinical scenarios. In contrast, our work examines the diversity of available datasets, 
highlighting their strengths and limitations in terms of sample size, and disease coverage. By doing 
so, we offer insights into how dataset selection influences model bias, generalization capability, and 
potential deployment in medical diagnostics. 

Additionally, our survey does not merely summarize existing methods but critically evaluates 
their strengths, weaknesses, and applicability under different clinical and computational constraints. 
Unlike existing studies that primarily focus on retrospective analysis, our work also identifies key 
gaps in current research and suggests new directions, particularly in areas such as adversarial attacks 
on OCT image classification and the integration of Large Language Models (LLMs) into ocular 
disease diagnostics. These aspects have been largely overlooked in previous surveys, making our 
study a valuable contribution that extends beyond conventional literature reviews. 

By addressing the intersection of deep learning and traditional feature extraction, our survey 
provides a comprehensive and balanced perspective, offering insights into the current capabilities 
and future directions of OCT image feature extraction technologies. This comparative analysis not 
only enhances understanding but also guides future research in a way that no other existing survey 
has attempted, making it a unique and essential reference for researchers in this domain. 

Table 1. compares our survey against others in the area of OCT image classification for Ocular disorders. 

Feature Comparison [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] OUR 
Covers both DL and Hand-Crafted 

Features  
- - - - - - - - - - ✓ - ✓ 

In-depth discussion on Hand-Craft 
Features 

- - - - - - - ✓ ✓ - - - ✓ 

In-depth discussion on CNNs and its 
various types 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

In-depth discussion on Vision 
Transformers 

- - - - - - - - - - ✓ - ✓ 

In-depth comparisons between types 
of CNNs 

- - - - - - - - - - ✓ ✓ ✓ 

Includes comparative analysis of DL 
and HCF - - - - - - - - - - - - ✓ 

Includes in-depth discussion of 
ocular disorders 

- - - - - - - - - - ✓ ✓ - 

Discusses latest  advancements - ✓ ✓ ✓ - - ✓ ✓ ✓ - ✓ ✓ ✓ 
Review of multiple OCT datasets - - - - - - - - - - ✓ - ✓ 
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Feature Comparison [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] OUR 
Reviews specific OCT imaging 

technique 
- - - - - - - - - - ✓ ✓ ✓ 

Identifies gaps in current research - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ 
Suggest future research into 

Adversarial Attacks 
- - - - - - - - - - - - ✓ 

Suggest future research in LLMs - - - - - - - - - - - - ✓ 

This survey has the following contributions. 

1. Provides a systematic review of the existing methods of feature extraction from OCT images, 
categorizing them into hand-crafted and deep learning-based approaches:  
i. Evaluates these methods against various performance metrics, accuracy, precision, sensitivity, 

specificity and F1 score.  
ii. Evaluates and highlights the evolution using Hand-Crafted Features to using deep learning 

techniques like CNNs and Transformers in enhancing feature extraction from OCT images. 
2. Assesses the impact of dataset choice on the performance of feature extraction methods. 
3. Explores the emerging field of adversarial conditions in medical imaging, particularly in OCT, 

to propose future directions for research that could lead to more robust, accurate, and clinically 
relevant feature extraction technologies. 
This Survey has the following sections. “Review of OCT Datasets” section presents commonly 

used datasets in OCT classification. “Hand Crafted Feature Extraction Techniques” describes recent 
feature engineered techniques in OCT Ocular disease classifications. “Deep Learning Approaches” 
section describes neural network architects for OCT Ocular disorder detections using CNNs and 
Transformers. “Comparative Analysis” Compare the performance of hand-crafted features, CNNs, 
and transformers using data from various datasets. “Future Works” discusses the potential of 
adversarial samples to test and improve the robustness of OCT classification models. “Discussion” 
analyzes the findings from the comparative and dataset review sections. “Conclusion” recaps the 
major insights of the paper. 

2. Review of OCT Datasets for Ocular Disorder Classification 

As the OCT technology has advanced, there’s been a growing need for OCT datasets. These 
collections of eye images are crucial for training and testing the accuracy of models designed to spot 
eye problems. These models are used in deep learning to analyze images. Having a variety of high-
quality OCT datasets is key to making these models as effective as possible. In this review, we will 
look at different OCT datasets used for identifying eye diseases. We will go over what makes each 
dataset unique and how they help improve the technology used in diagnosing eye conditions. 

The first dataset, referred to as Dataset 1, includes volumetric scans from 45 patients, divided 
into three groups: 15 normal patients, 15 with dry Age-related Macular Degeneration (AMD), and 15 
with Diabetic Macular Edema (DME). All SD-OCT volumes were collected using Spectralis SD-OCT 
equipment (Heidelberg Engineering Inc., Heidelberg, Germany) at Duke University, Harvard 
University, and the University of Michigan [13]. The second dataset, referred to as Dataset 2, comes 
from the Noor Eye Hospital dataset cited in reference. It includes 148 SD-OCT volumes, of which 48 
are Age-related Macular Degeneration (AMD), 50 are Diabetic Macular Edema (DME), and 50 are 
normal volumes. These were captured using the Heidelberg SD-OCT imaging system at Noor Eye 
Hospital in Tehran (NEH). Each volume contains between 19 to 61 B-scans, with each B-scan having 
a resolution of 3.5 micrometers and the overall scan dimensions being 8.9 by 7.4 mm2 [14].  

Creating a dataset with classes for Normal, Diabetic Macular Edema (DME), and Age-related 
Macular Degeneration (AMD) is beneficial because it covers two common and significant causes of 
vision impairment. Normal images help the model understand what a healthy retina looks like. DME 
images teach models to recognize the swelling caused by fluid accumulation from damaged blood 
vessels in diabetes. AMD images show changes in the retina due to aging, including drusen and other 
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abnormalities. Datasets 1 and 2 are effective for general screening tools and simplify the training 
process by focusing on broader categories of eye health issues. 

Dataset 3 was also obtained using the Heidelberg SD-OCT imaging system at Noor Eye Hospital 
(NEH) and is available on the Mendeley database website as referenced in [15]. It initially included 
16,822 OCT images, covering 120 volumes of Normal images, 160 volumes of Drusen, and 161 
volumes of CNV (Choroidal Neovascularization). For experiments, 12,641 images are selected, 3,234 
CNV, 3,740 Drusen, and 5,667 Normal. The selected images focus only on the most severe case 
scenarios for each category. This dataset configuration aims on changes related to AMD. Drusen are 
the early indicators of AMD and separating them into their own class allows for early detection of 
the disease before it potentially progresses to more severe stages, CNV. This setup is useful for 
specialists focused on monitoring and treating AMD, allowing for early intervention strategies and 
careful monitoring of disease progression.  

Dataset 4 is a publicly available dataset known as the UCSD Dataset [16]. This dataset contains 
108,312 OCT images in the training set and 1,000 images in the test set. Within the training dataset, 
37,206 images are CNV, 11,349 images are DME , 8,617 images are Drusen, 51,140 Normal images. A 
trimmed down version is also employed in some literature. The trimmed down version has the 
following class-count: 37,455 are CNV, 11,598 are DME, 8,866 are drusens, and 26,565 are normal, 
with a total of 84,484 OCT images. By expanding the dataset to include CNV, a major feature of wet 
AMD, adds a layer of specificity. This differentiation is crucial because CNV requires different 
treatment strategies from other types of AMD. Including CNV as a separate class helps the model to 
distinguish between the dry and wet forms of AMD alongside recognizing diabetic-related changes 
and normal conditions. 

Dataset 5 has 384 thickness maps of the total retina from individual subjects, where 269 are 
subjects with intermediate AMDs and 115 subjects are free of any ocular diseases [17]. These 
volumetric rectangular scans were obtained from Bioptigen, Inc Research Triangle Park, NC, which 
was approved by the institutional review boards of Devers Eye Institute, Duke Eye, Center, Emory 
Eye Center, and National Eye Institute. A dataset with only normal and Intermediate AMD OCT 
images, narrows the focus of the diagnostic tool. It is a simpler dataset that enhances the model’s 
ability to detect stages of AMD, particularly the intermediate stage which is often difficult to 
diagnose. 

Dataset 6 consists of 24,000 images and is divided equally into eight different categories: AMD, 
CNV, DME, MH, DR, CSR and one for healthy subjects [18]. This dataset allows for very precise 
diagnosis and is valuable in specialized care. For example, distinguishing between different types of 
AMD or recognizing characteristics of less common conditions like CSR can enable more targeted 
interventions. However, this model is required to learn from a larger volume of data, distinguishing 
subtle differences between more categories. It demands more sophisticated algorithms and greater 
processing power. Similar to Dataset 6, Dataset 7 includes 4 classes, which are Normal Macula, 
Macular edema, macular hole, and AMD [19]. Dataset 7 consists of 326 macular spectral-domain OCT 
scans collected from 136 subjects, encompassing a total of 193 eyes. The scans have an original 
resolution of either 200 x 200 x 1024 or 512 x 128 x 1024 in a 6 x 6 x 2 mm volume (width, height, and 
depth). This dataset was developed by the UPMC Eye Center, Eye and Ear Institute, Ophthalmology 
and Visual Science Research Center, Department of Ophthalmology. In a comparable dataset, [71], 
the Eye Center at Renmin Hospital of Wuhan University gathered 4,076 OCT images of DM patients, 
centered on the fovea, between 2016 and 2022. These images were obtained using an OCT device 
(Optovue RTVue, Optovue, Fremont, California, USA).  

Dataset 8 is developed by the Singapore Eye Research Institute (SERI) were collected using the 
CIRRUS™ SD-OCT device from Carl Zeiss Meditec, Inc., located in Dublin, CA. This dataset includes 
32 OCT volumes, divided into 16 cases of Diabetic Macular Edema (DME) and 16 normal cases. Each 
volume comprises 128 B-scans, with a resolution of 512 × 1024 pixels. All SD-OCT images were 
reviewed and assessed by trained graders who classified them as either normal or DME cases based 
on the evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and 
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subretinal fluid. Dataset 9 was obtained using a raster scan protocol with a 2mm scan length, 
featuring a resolution of 512x1024 pixels. These images were captured with a Cirrus HD-OCT 
machine (Carl Zeiss Meditec, Inc., Dublin, CA) at Sankara Nethralaya (SN) Eye Hospital in Chennai, 
India. For each volumetric scan, an experienced clinical optometrist (MKP) selected a fovea-centered 
image. Dataset 9 comprises 102 images of macular holes (MH), 55 images of age-related macular 
degeneration (AMD), 107 images of diabetic retinopathy (DR), and 206 normal retinal images.  

Another dataset, D10, circular OCT B-scan images, collected using the swept-source OCT device 
(DRI-OCT, Topcon, Inc., Tokyo, Japan), focus on a 3.4mm diameter circle centered on the optic disc 
and are available in various sizes. This dataset consisting of 1395 samples (697 glaucoma and 698 non-
glaucoma) from 641 participants, involving a total of 1015 eyes, with 135 eyes having follow-up data. 
Visual field tests and OCT images are provided for all participants.  The dataset categorizes samples 
into Early, Moderate, and Advanced stages, with 447, 140, and 110 samples respectively. OD (right 
eye) samples include 201 in the Early stage, 82 in the Moderate stage, and 56 in the Advanced stage. 
OS (left eye) samples include 246 in the Early stage, 58 in the Moderate stage, and 54 in the Advanced 
stage [22]. Table 2 provides a summary of the information for each dataset.  

Table 2. provides a summary of the information for each dataset. 

Dataset Classes and Counts Institutional Source or website 

1 
15 DME volume images , 15 AMD volume images, 

and 15 Normal volume images  
Duke University, Harvard University, and University of 

Michigan 

2 
48 AMD volume images , 50 DME images, 50 normal 

images 
Noor Eye Hospital in Tehran (NEH) 

3 
120 Normal volume images, 160 Drusen volume 

images, and 161 CNV volume images, 16,822 3D OCT 
images Total 

Noor Eye Hospital in Tehran (NEH) 

4* 
37,206 CNV 2D images, 11,349 DME  images 

8,617 Drusen 2D images, 51,140 Normal 2D images 
University of California San Diego, Guangzhou Women 

and Children’s Medical Center 

4 

Trimmed Down version of 4* referred to as OCT2017 
37,455 CNV 2D images, 11,598 DME 2D images, 8,866 

drusens 2D images, and 26,565 normal 2D images, 
total of 84,484 OCT images 

University of California San Diego, Guangzhou Women 
and Children’s Medical Center 

5 
269 Intermediate AMD volume images and 115 

Normal Volume images 
Boards of from Devers Eye Institute, Duke Eye, Center, 

Emory Eye Center, and National Eye Institute 

6 
3000 AMD images, 3000 CNV images, 3000 DME 

images, 3000 MH images, 3000 DR images, 3000 CSR 
images, 24,000 total 2D OCT images 

Boards of from Devers Eye Institute, Duke Eye, Center, 
Emory Eye Center, and National Eye Institute 

7 
Normal Macular (316), Macular Edema (261), Macular 

Hole (297), AMD (284) 
UPMC Eye Center, Eye and Ear Institute, Ophthalmology 

and Visual Science Research Center 

7* 
3319 OCT images Total, 1254 early DME, 991 

advanced DME, 672 severe DME and 
402 atrophic maculopathy 

Renmin Hospital of Wuhan University 

8 16 DME volume images & 16 normal volume images Singapore Eye Research Institute (SERI) 

9 
Macular holes, MH (102), AMD (55), Diabetic 

retinopathy, DR (107), and Normal retinal images 
(206) 

Cirrus HD-OCT machine (Carl Zeiss Meditec, Inc., 
Dublin, CA) at Sankara Nethralaya (SN) Eye Hospital in 

Chennai, India 

10 1395 samples (697 glaucoma and 698 non-glaucoma) 
Zhongshan Ophthalmic Center, 

Sun Yat-sen University 

Having explored the various datasets used in OCT for ocular disease predictions, we now shift 
our focus to how to effectively analyze this data. This brings us to two main techniques for extracting 
useful information from the images: hand-crafted features and deep learning. 

3. Hand-Crafted Feature Extraction Techniques 

This section aims to provide a thorough overview of various hand-crafted feature extraction 
methods that have been developed to analyze OCT images. We explore how these techniques operate 
by extracting specific, predefined features from images such as texture, shape, and intensity. These 
predefined features are known to be indicators of ocular disorders. These features are then used to 
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classify, segment, and analyze OCT data in the context of diagnosing conditions. Specifically, articles 
that will be reviewed employ techniques such as Local Binary Patterns (LBP) and Dictionary 
Learning, which have been effective in extracting meaningful features from OCT images.  

Local Binary Patterns (LBP) are a technique used to describe the local spatial patterns and texture 
of an image. In the context of OCT imaging, LBP helps in identifying fine-grained patterns within the 
retina that may indicate early signs of diseases such as macular degeneration or diabetic retinopathy. 
The method works by comparing each pixel with its neighbors and encoding these relationships into 
a binary code, which effectively captures the texture information. The classical Local Binary Patterns 
(LBP) is a texture image descriptor that emphasizes the center pixel and its neighboring pixels to 
encode structural texture information within an image. The generalized form of LBP is expressed as 
follows:  𝐿𝐵𝑃ሺ𝐼஼ሻ = ෍ 𝑓ሺ𝑖ሻ𝑠ሺ𝐼௜ − 𝐼஼ሻ௜ఢோ  ሺ1ሻ 
where IC represents the center pixel, Ii represents the adjacent surrounding pixels, f(i) = 2i, i = 0, …, 
7 with R representing a region defined by the kernel size. The function s(Ii – IC) assigns a value of 1 
if the difference between the surrounding pixel and the center pixel is greater than or equal to zero 
(T is set to zero); otherwise, it assigns a value of 0. Each kernel is placed over a pixel (IC) and 
compared to its surrounding neighbors (Ii) using the mentioned function. A binary sequence is 
generated based on these comparisons, and each sequence is assigned a corresponding to decimal 
weight of f(i). The following are works developed in the past ten or more years.  

A machine learning method has been developed to classify OCT images for three retina-related 
diseases, macular hole (MH), age-related macular degeneration (AMD), and diabetic retinopathy 
(DR), and normal (NO) OCT images. This method employs LBP to extract features from the images 
and utilizes a classifier that operates on the random forests technique to differentiate between the 
disease states and normal conditions [23]. A low-complexity feature vector connection method, 
known as slice-sum, has been introduced to reduce the computational load required by the SVM 
classifier. The detector employs only the LBP and SVM classifier, which helps minimize the hardware 
resources needed for processing [24]. A method has been developed to extract global descriptors from 
the 2D feature image for LBP and from the 3D volume OCT image. As a result, the global-LBP 
mapping technique will extract 𝑑 feature elements [25].  

A method involves a standard classification process that includes initial preprocessing steps to 
eliminate noise and flatten each B-Scan. It utilizes features like Histogram of Oriented Gradients 
(HOG) and LBP, which are extracted and then merged to form various feature vectors. These vectors 
are then input into a linear Support Vector Machines (SVM) Classifier for further analysis [26]. A 
method local texture descriptor known as Multi-Kernels Wiener Local Binary Patterns (MKW-LBP) 
for the classification of eye diseases such as Aged Macular Degeneration, Diabetic Macular Edema, 
and Normal eyes. Optimize the accuracy of this descriptor using classification techniques such as 
Support Vector Machines (SVMs), Adaboost, and Random Forest. The experimental evaluations 
demonstrate that MKW-LBP achieves superior diagnostic and recognition performance when 
compared to recent developments in texture descriptors [27]. Similar methods develop local texture 
descriptor algorithms, Multi-Size Kernels ξcho-Weighted Median Patterns (MSKξMP) and Alpha 
mean Local Binary Patterns (AMT-LBP), to avoid speckle noise and classify eye diseases like DME 
and AMD. The methods also employ Singular Value Decomposition to achieve optimal accuracy with 
SVM and Random Forest classification techniques [28,29].  

A method that presents an automatic detection method that combines discrete wavelet 
transform (DWT) image decomposition, local binary patterns (LBP) based texture feature extraction, 
and multi-instance learning (MIL). LBP is chosen for its ability to handle low contrast and low-quality 
images, minimizing the interference from the image itself on the detection method. DWT image 
decomposition supplies high-frequency components rich in details for extracting LBP texture 
features, removing redundant information unnecessary for diagnosing CSCR in the raw image [30]. 
Other hand-crafted feature extractors are also employed and are discussed below. Another method 
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is a machine learning approach that utilizes global image descriptors derived from a multi-scale 
spatial pyramid. Local features are dimension-reduced local binary pattern histograms, which 
encode texture and shape information in retinal OCT images and their edge maps. This 
representation works at multiple spatial scales and granularities, resulting in robust performance. 
Two-class support vector machine classifiers to identify the presence of normal macula and three 
specific pathologies. Additionally, to distinguish sub-types within a pathology, we build a classifier 
to differentiate full-thickness holes from pseudo-holes within the macular hole category [31]. 

A two-feature-labeling method for the 3D OCT volume: the slice-chain labeling method and the 
slice-threshold labeling method. These methods are evaluated using SVM [32]. An approach utilizes 
retinal features like retinal thickness, individual retinal layer thickness, and volumes of pathologies 
such as drusen and hyper-reflective intra-retinal spots. The approach automatically extracts ten 
clinically important retinal features from segmented SD-OCT images for classification. The 
effectiveness of these features is evaluated using several classification methods, including Random 
Forest [33]. Another approach, a contrast enhancement-based adaptive denoising is used to eliminate 
speckle noise. Pixel grouping and iterative elimination, based on typical layer intensities and 
positions, are used to identify the RPE layer. Randomization techniques, followed by polynomial 
fitting and drusen removal, are then applied to estimate a baseline. Classification is determined by 
comparing the drusen height to the baseline [34]. A method for automated detection of retinal 
diseases in eyes uses Histogram of Oriented Gradients (HOG) descriptors and support vector 
machines (SVMs) to classify each image within a spectral domain (SD)-OCT volume as either normal, 
containing dry AMD, or containing DME [35].  

Finally, the following last two methods are based on dictionary learning. An approach utilizing 
HOG features of pyramid images combined with three different dictionary learning methods—
Separating the Particularity and the Commonality dictionary learning (COPAR), Fisher 
Discrimination Dictionary Learning (FDDL), and Low-Rank Shared Dictionary Learning (LRSDL) 
was investigated to achieve the highest classification accuracy of OCT images [36]. Another approach 
proposes a general framework for distinguishing normal OCT images from DME and AMD scans 
using sparse coding and dictionary learning. This includes a preprocessing and alignment technique 
for the retina to address the shortcomings of previous methods, which struggle to classify datasets 
with severely distorted retina regions. Additionally, sparse coding and structured preprocessing (SP) 
are employed, along with an SVM for classification [37]. Table 3 shows results of handcrafted-feature 
extractor work discussed. 

Table 3. List of Hand-Crafted Methods. 

Refs Method Method’s Descriptions Performance Summary 

[24] LBP Slice-Sum & SVM 
Low-complexity feature vector slice-sum with 

SVM classifier 

D5Method: Accuracy (%), Sensitivity (%), 
LBP-RIU2: 90.80, 93.85, 87.72 

[25] 3D-LBP 

Global descriptors extracted from 2D feature 
image for LBP and from the 3D volume OCT 

image. Features are fed into classifier for 
predictions 

D9,VACC% F1% SE% SP% 
Global-LBP: 81.2 78.5 68.7 93.7 
Local-LBP: 75.0 75.0 75.0 75.0 

Local-LBP-TOP: 75.0 73.3 68.7 81.2 

[26] HOG + LBP 
Histogram of Oriented Gradients (HOG) and LBP 

features are extracted combined. These features 
are fed into linear SVM Classifier 

D9,VSens, Spec, Prec, F1, Acc. 
HOG: 0.69 0.94 0.91 0.81 0.78 

HOG+PCA: 0.75 0.87 0.85 0.80 0.81 

[27] 
Multi-kernel Wiener 
local binary patterns 

(MKW-LBP) 

Image denoised using wiener filter. MKW-LBP 
descriptor calculates the mean and variance of 

neighboring pixels. SVMs, Adaboost, and 
Random Forest are used for classifications. 

D1Kernel / Classifier:  
Prec. (%), Sen. (%), spec. (%), Acc  (%),  

3 × 3 / SVM-Poly: 97.84, 97.48, 98.89, 97.86 
3 × 5 / SVM-Poly: 98.84, 98.59, 99.41, 98.85 
5 × 5 / SVM-Poly: 98.19, 98.05, 99.15, 98.33 

[28] 
Multi-Size Kernels 

Echo-Weighted Median 
Patterns (MSK-EMP) 

Image denoised using median filter and is 
flattened. MSKξMP is a variant of LBP which 

selects a weighted median pixel in a kernel and is 
applied to preprocessed image. Also employs 

Singular Value Decomposition and Neighborhood 
Component Analysis based weighted feature 

selection method.  

Classifier: prec., sens., spec, acc 
D1SVM-Poly: 0.9976, 0.9971, 0.9989, 0.9978 
D2SVM-Poly: 0.9662, 0.9663, 0.9833, 0.9669 
D3SVM: RBF: 0.8952, 0.8758, 0.9395, 0.8887 
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[29] 
Alpha Mean trim Local 
Binary Patterns (AMT-

LBP) 

Image denoised using median filter and is 
flattened. AMT-LBP is a variant of LBP which 

encodes by averages all pixel values in a kernel 
omitting highest and lowest values. SVM is 

employed for classification 

D1SVM-Poly: tr1=0, tr2=2 || SVM-Poly: 
tr1=2,  

tr2=0 ||  SVM-Poly: tr1=2, tr2=2 
precision 0.9796 || 0.9846 || 0.9710 
sensitivity 0.9751 || 0.9813 || 0.9654 
specificity 0.9887 || 0.9920 || 0.9854 
accuracy 0.9774 || 0.9836 || 0.9700 

F-measure 0.9773 || 0.9829 || 0.9680 
AUC 0.9740 || 0.9802 || 0.9697 

[30] 
H-F-V&H-LBP + T   

 

Combines discrete wavelet transform (DWT) 
image decomposition and LBP based texture 

feature extraction, and multi-instance learning 
(MIL). LBP is chosen for its ability to handle low 

contrast and low-quality images.  

D3,BAcc.: 99.58% 

[32] 
Slice-chain labeling  

Slice-threshold labeling 

OCT B-scans of a volume image are employed 
where each slice is labeled and threshold, which 

extracts features.  

D3,BD5 – Acc.: 92.50% 
D3,BD5 – Acc.: 96.36% 

[33] 
Retinal thickness 

Method 

The thickness of the retinal layers is measured, 
and each OCT image is classified according to the 

thickness.  

D3,BD1 – Acc.: 97.33%, Sen. 94.67%,  
 Spec. 100%, F1: 97.22%, AUC: 0.99 

[34] 

RPE layer detection 
and baseline estimation 

using statistical 
methods 

Pixel grouping / iterative elimination, guided by 
layer intensities are employed to detect the RPE 

layer and is enhanced by randomization 
techniques. 

D1,VAMD Acc: 100% 
Normal Acc: 93.3% 

DME Acc: 96.6% 

[35] 
Histogram of Oriented 

Gradients (HOG) 
descriptors and SVM 

Noise removal using sparsity-based block 
matching and 3D-filtering. HOG and SVM are 
employed for classification of AMD and DME.  

D1,VAMD Acc: 100% 
Normal Acc: 86.67% 

DME Acc: 100% 

[36] 
Dictionary Learning 

(COPAR), (FDDL), and 
(LRSDL) 

Image denoising, flattening the retinal curvature, 
cropping, extracting HOG features, and 

classifying using a dictionary learning approach. 

D1,VD1 – AMD Acc: 100% 
Normal Acc: 100% 
DME Acc: 95.13%  

[37] 
Sparse Coding 

Dictionary Learning  

Preprocessed retina aligning and image cropping, 
Then, image partitioning, feature extracting, 

dictionary training with sparse coding is applied 
to the OCT images. Linear SVM is utilized to 

classify images.  

D1,VD1 – AMD Acc: 100% 
Normal Acc: 100% 
DME Acc: 95.13% 

VVolume Classification, BB-scan classification, 2Two-Class Classification (Normal, DME), RI: Rotational 
Invariant, U2: Uniform Pattern, LBP: Local Binary Patterns, HOG: Histogram of Gradients: PCA: Principal 
Components Analysis: PCA, SVM-(kernel-type): Support Vector Machine (with kernel type), tr1 and tr2: Alpha 
Mean Trim Factors, D1D1, D2D2, D3D3, D4D4, D4*D4, D4-D4-(2750 each class), D5D5, D6D6, D7D7, D8D8, D9D9, D10D10. 

4. Deep Learning Approaches 

This section aims to provide a thorough overview of applications of CNNs in OCT image 
classifications. Various CNN architectures have been explored to enhance the feature extraction and 
accuracy. Typically, in CNNs the core operation is the convolution applied across multiple layers. 
The convolution at the l-th layer is mathematically expressed as: 

ℎ௜,௝ሺ௟ሻ = ෍෍𝑊௠௡ሺ௟ሻ𝑋ሺ௜ା௠ሻሺ௝ା௡ሻ௟ିଵ௡ + 𝑏ሺ௟ሻ௠ ሺ2ሻ 
where X(l) is the input feature map from the previous layer (or the raw image if it is the first layer, 
W(l) is the convolution filter  at layer l, b(l) is the bias term at layer l, hij(l) is the output feature map 
at position (i,j) for layer l. A non-linear activation function, such as ReLU, is applied to the result of 
the convolution:  𝑎௜௝ሺ௟ሻ = 𝑅𝑒𝐿𝑈 ቀℎ௜௝ሺ௟ሻቁ = max ቀ0, ℎ௜௝ሺ௟ሻቁ ሺ3ሻ 
where this operation is repeated across multiple convolutional layers, allowing the network to extract 
more features. After the convolutional layers, pooling layers, reduce the spatial dimensions:  𝑝௜௝ሺ௟ሻ = maxሺ௠,௡ሻ∈ௐ௜௡ௗ௢௪ቀ𝑎ሺ௜ା௠ሻሺ௝ା௡ሻሺ௟ሻ ቁ ሺ4ሻ 
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where the pooling window reduces the resolution of the feature map.  
Next, augmentation CNNs leverage data augmentation techniques to artificially expand the 

training dataset, improving model robustness and performance. Standard augmentation techniques 
include rotation, flipping, and cropping. Image augmentation is often used to create diverse training 
samples, reduce overfitting, and improve the model’s generalization ability. The papers reviewed 
will include techniques beyond standard methods. CNNs with specialized augmentation using 
Generative Adversarial Networks (GANs) aim to augment the training data by generating synthetic 
but realistic images. This augmentation improves the network’s ability to generalize, especially when 
the training data is scarce or imbalanced. GAN-based augmentation can be formulated as:  𝑋௔௨௚ = 𝐺ሺ𝑧ሻ ሺ5ሻ 
where G(z) is the generator network of the GAN, which produces synthetic images from a noise 
vector z and Xaug is the generated augmented image. By training CNN on both real and GAN-
generated images, the model becomes more robust to variations and improves generalization.  

Additionally, regular CNNs enhanced with residual units and inception units have shown 
significant promise. Residual units help in mitigating the vanishing gradient problem, allowing for 
deeper networks that can learn more complex features. Residual Units in CNNs help to mitigate the 
vanishing gradient problem, allowing the network to train deeper architectures. The residual block 
is defined as: 𝑦ሺ௟ሻ = 𝐹൫𝑋ሺ௟ሻ,𝑊ሺ௟ሻ൯ + 𝑋ሺ௟ሻ ሺ6ሻ 
where represents the transformations (convolutions, activations) applied to the input X(l) at layer l. 
X(l) is added directly to the output, forming a shortcut connection. Inception units, which consist of 
multiple convolutions with different kernel sizes, enable the network to capture hierarchy of features 
by processing the input in parallel. Together, these diverse CNN architectures form the backbone of 
state-of-the-art deep learning approaches for ocular disease prediction from OCT images. Inception 
Units process the input using multiple convolution filters with different sizes, enabling the network 
to capture features at multiple scales in parallel. The inception unit can be formulated as:  𝑦 = ሾ𝑓ଵ×ଵሺ𝑋ሻ,𝑓ଷ×ଷሺ𝑋ሻ,𝑓ହ×ହሺ𝑋ሻ,𝑃𝑜𝑜𝑙𝑖𝑛𝑔ሺ𝑋ሻሿ ሺ7ሻ 
where f1×1(X), f3×3(X), and f3×3(X) represents convolutions with different filter sizes, Pooling X is an 
additional pooling operation that captures larger-scale information. By combining different filter 
sizes, the inception unit allows the network to capture both fine and coarse details from the input 
image. 

Segmentation-based Attention CNNs incorporates attention mechanisms that focus on the most 
relevant regions of the OCT images, thus improving the detection of subtle pathological features. 
This approach often combines segmentation tasks with the primary classification task, ensuring that 
the network pays attention to critical areas while learning. The attention mechanism generates an 
attention map A(X), which weighs different regions of the feature map based on their relevance:  𝐴ሺ𝑋ሻ = 𝜎ሺ𝑊௔ ⋇ 𝑋ሻ ሺ8ሻ 
where σ is the generic function, typically is a sigmoid, that generates the attention weights, Wa is the 
attention filter, * denotes convolution. The attention map is applied to the feature map to emphasize 
the most relevant areas: 𝑋௔௧௧ = 𝐴ሺ𝑋ሻ ∙ 𝑋 ሺ9ሻ 
where Xatt is the attention-weighted feature map that focuses the network’s attention on critical 
regions of the OCT image. 

Ensemble CNNs are another prominent strategy, where multiple CNN models are trained 
independently, and their predictions are combined to produce a final output. Let fi(X) represent the 
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prediction of the i-th CNN in the ensemble. The final prediction y from the ensemble is computed as 
an average of all individual model outputs:  

𝑦 = 1𝑁෍𝑓௜ሺ𝑋ሻே
௜ୀଵ ሺ10ሻ 

where N is the number of CNN models in the ensemble, fi(X) is the prediction from the i-th model. 
This method employs the strengths of different models, leading to improved predictive performance 
and reduced variance. 

Multi-scale CNNs, on the other hand, process OCT images at various scales, capturing features 
at different levels of detail. This multi-resolution approach enables the network to identify both 
coarse and fine-grained features, which is particularly useful in detecting a wide range of ocular 
diseases. The multi-scale processing is defined as:  𝑦 = ൣ𝑓ோభሺ𝑋ሻ,𝑓ோమሺ𝑋ሻ, . . , 𝑓ோ಼ሺ𝑋ሻ൧ ሺ11ሻ 
where fR1(X), fR2(X), … , fRK(X) represent the convolutions applied to the input image X at lower 
(R1) to higher (RK) resolutions. The outputs from different scales are then combined, allowing the 
network to analyze features across multiple resolutions in parallel. Figure 3 shows the different types 
of CNN structures discussed above. 

 

Figure 3. Different types of CNN structures. 

4.1. CNNs 

This section explores standard and advanced CNN techniques, including residual and inception 
units, which improve feature learning and network depth, forming the methods for ocular disease 
prediction from OCT images. 

A hybrid Retinal Fine-Tuned Convolutional Neural Network (R-FTCNN) has been proposed for 
detecting retinal diseases such as diabetic macular edema, drusen, and choroidal neovascularization 
from OCT images. This study employs the R-FTCNN architecture alongside principal component 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2025 doi:10.20944/preprints202506.2449.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2449.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 38 

 

analysis (PCA) as part of its methodology. PCA was used to transform the fully connected layers of 
the R-FTCNN into principal components, and the Softmax function was applied to these principal 
components to create a new classification model [38]. An approach introduces a deep learning 
framework that leverages dual guidance between two tasks. First, a Complementary Mask Guided 
Convolutional Neural Network (CM-CNN) is employed to classify OCT B-scans, distinguishing 
between normal scans and those with drusen or CNV. This classification is guided by masks 
generated from an auxiliary segmentation task. Second, a Class Activation Map Guided UNet (CAM-
UNet) for segmenting drusen and CNV lesions, utilizing the CAM output from the CM-CNN [39]. 
Another work presents a framework for the automated detection of retinal disorders utilizing transfer 
learning. The model operates in three phases: deep fused and multilevel feature extraction using 18 
pre-trained networks and tent maximal pooling, feature selection with ReliefF, and classification with 
an optimized classifier [40].   

A technique that involves removing the final layers from the pre-trained Inception V3 model 
and utilizing the remaining portion as a fixed feature extractor. The extracted features are then fed 
into a CNN designed to learn the shifts in the feature space [41]. An automated CNN architecture, 
AOCT-Net, has been proposed for a multiclass classification system based on OCT. This system, 
incorporating a softmax classifier, is designed to classify five types of retinal diseases AMD, CNV, 
DME, drusen, and normal cases [42]. A method,  iterative fusion convolutional neural network 
(IFCNN), adopts an iterative fusion strategy, which combines features from the current convolutional 
layer with those from all previous layers in the network. This approach enables the joint utilization 
of features from different convolutional layers, leading to accurate classification of OCT images [43]. 
A work introduced OCT Deep Net2 for classifying optical coherence tomography images. This study 
performed a four-class disease classification, with OCT Deep Net2 being an extension of OCT Deep 
Net1, expanding from 30 to 50 layers. OCT Deep Net2 is a dense architecture featuring three recurrent 
modules [44]. A model, based on a capsule network, is designed to enhance classification accuracy. 
Capsules, which are groups of neurons representing different properties of the same object, use 
vectors to learn positional relations between features in images. This reportedly offers higher 
generalization performance than traditional CNNs for small affine transformations of training data, 
thus requiring far fewer training samples [45].  

A dictionary learning method to reduce image size, leveraging DAISY descriptors and Improved 
Fisher kernels to extract OCT image features. Similar to traditional downsampling methods, the 
approach functions as a form of intelligent downsampling, effectively reducing image size while 
preserving essential information [46]. A work introduced two methods for detecting retinal 
abnormalities from OCT images. The first method, termed S-DDL, offers a solution to the vanishing 
gradient problem in DDL and reduces training time. The second method utilizes the Wavelet 
Scattering Transform (WST), which incorporates predefined filters in network layers. The two 
methods are compared to each other [47].  Another method proposed a weakly supervised deep 
learning framework with uncertainty estimation to classify macula-related diseases from OCT 
images, utilizing only volume-level labels. First, a convolutional neural network (CNN) based 
instance-level classifier is iteratively refined through our proposed uncertainty-driven deep multiple 
instance learning (MIL) scheme. Then, a classifier is able to detect suspicious abnormal instances and 
create deep embeddings for those instances. Second, a recurrent neural network (RNN) uses features 
from those instances to make final predictions [48]. Another work proposed a two-stage approach for 
retinal OCT volume classification, which consists of: (1) volumetric feature extraction and (2) 
diagnostic classification. This approach utilizes a wavelet-based CNN (WCNN) feature learning 
subsystem in the feature extraction stage. The WCNN includes a spatial-frequency decomposition 
layer (SFD-layer) in the first hidden layer, which serves as feature learning in retinal OCT B-scans 
[49]. Table 4 presents the performance metrics for each of the CNN methods using the datasets 
discussed in this section. 
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Table 4. List of CNNs Methods. 

Refs Method Method’s Description Results 

[38] 

Hybrid Retinal Fine 
Tuned 

Convolutional 
Neural Network (R-

FTCNN)  

R-FTCNN is employed with Principal 
Component Analysis (PCA) used 

concurrently within this methodology. PCA 
converts the fully connected layers of the R-
FTCNN into principal components, and the 

Softmax function is then applied to these 
components to create a new classification 

model. 

D1FC1 + PCA: Acc: 1.0000, Sen.: 1.0000, Spec.: 
1.0000, Prec.: 1.0000, F1: 1.0000, AUC: 1.0000 
D4FC1 + PCA: Acc: 0.9970, Sen.: 0.9970, Spec.: 

0.9990,  Prec.: 0.9970, F1: 0.9970, AUC: 0.99999 
(61mil-parameters) 

[39] 

Complementary 
Mask Guided 
Convolutional 

Neural Network 
(CM-CNN) 

CM-CNN classifies OCT B-scans by using 
masks generated from a segmentation task. A 
Class Activation Map Guided UNet (CAM-
UNet) segments drusen and CNV lesions, 
utilizing CAM output from the CM-CNN  

D3AUC, Sen, Spe, Class Acc 
D3CNV: 0.9988, 0.9960, 0.9680, 0.9773  

D3Drusen 0.9874, 0.9120, 0.9980, 0.9693     
D3Normal 0.9999, 1, 0.9880, 0.9920 

D3Overall Acc: 0.9693 

[40] 
CNN iterative 

ReliefF +  
SVM 

DeepOCT employs multilevel feature 
extraction using 18 pre-trained networks 

combined with tent maximal pooling, 
followed by feature selection using ReliefF. 

D1Acc:1.00,  Pre:1.00,  F1:1.00,   
Rec:1.00,  MCC:1.00 

4**Acc: 0.9730, Pre: 0.9732, F1: 0.9730,  
Rec: 0.9730, MCC: 0.9641 

[41] 
Inception V3 – 
Custom Fully 

Connected layers 

Eliminating the final layers of a pre-trained 
Inception V3 model and using the remaining 

part as a fixed feature extractor. 

D1,VAMD 15/15 = 100%, DME 15/15 = 100%, NOR 
15/15 = 100% 

[42] AOCT-NET 
Utilizes a softmax classifier to distinguish 

between five retinal conditions: AMD, CNV, 
DME, drusen, and normal cases 

4+5AMD: 100%, 100%; CNV: 98.64%, 100%; DME: 
99.2%, 0.96; Drusen: 97.84%, 0.92;  

Normal: 98.56%, 0.97  

[43] 
Iterative fusion 

convolutional neural 
network (IFCNN) 

Employs iterative fusion for merging features 
from the current convolutional layer with 

those from all preceding layers in the 
network. 

D4Sensitivity., Specificity, Accuracy 
Drusen 76.8 ± 7.2, 94.9 ± 1.9, 93 ± 1.7 87.3 ± 2.2; 

CNV 87.9 ± 4.3, 96 ± 1.7, 92.4 ± 1.3, 
DME 81.9 ± 6.8, 96.3 ± 2, 94.4 ± 1, Normal 92.2 ± 

4.7 96 ± 1.6 94.8 ± 1.2. 

[44] IoT OCT Deep Net2 
Expands from 30 to 50 layers and features a 

dense architecture with three recurrent 
modules 

D4Precision, Recall, F1-Score, Acc. 0.97 
Normal:0.99, 0.93, 0.96,  
CNV: 0.95, 0.98, 0.98,   
DME: 0.96, 0.99, 0.98, 

 Drusen: 0.99, 1.00, 0.99 

[45] Capsule Network  

Composed of neuron groups representing 
different attributes, utilizes vectors to learn 

positional relationships between image 
features.  

D4Sensitivity, Specificity, Precision, F1 
CNV: 1.0, 0.9947, 1.0, 1.0,  

DME: 0.992, 0.9973, 0.992, 0.992, 
Drusen:  0.992, 0.9973, 0.992, 0.992,  

Normal: 1.0, 1.0, 1.0, 1.0 

[46] 

Dictionary Learning 
Informed Deep 

Neural Network 
(DLI-DNN) 

Downsampling by utilizing DAISY 
descriptors and Improved Fisher kernels to 

extract features from OCT images. 

D4Accuracy: 97.2%, AUC: 0984, Sensitivity: 97.1%, 
Specificity: 99.1%  

[47] 

S-DDL – 4 classes  
 
 
 

Wavelet Scattering 
Transform (WST) – 5 

classes 

S-DDL addresses the vanishing gradient 
problem and shortens training time. 

 
 

WST employs the Wavelet Scattering 
Transform  using predefined filters within 

the network layers 

D9CSR-Acc: 0.7609, Sen: 0.2381, Spec: 0.9155  

D9AMD-Acc: 0.9186, Sens: 0.8182, Spec: 0.9333 

D9MH-Acc: 0.8, Sens: 0.7, Spec: 0.8308 
D9NO-Acc: 0.9326, Sens: 0.9512, Spec: 0.9167 

D9AMD-Acc: , Sens: 1.0, Spec: 0.9216 

D9CSR-Acc: 0.9057, Sen: 0.7273, Spec: 0.9524 
D9DR-Acc: 0.9038, Sens: 0.8889,Spec: 0.9060 

D9MH-Acc: 0.9038, Sens: 0.6923, Spec: 0.9744 
D9NO-Acc: 0.9792, Sens: 0.9545, Spec: 1.0,  

OA: 82.5% 

[48]  
Multiple instance 

learning (UD-MIL) 

Employs instance-level classifier for 
iteratively deep multiple instance learning, 

where this enables the classifier. Then a 
recurrent neural network (RNN) utilizes the 

features from those instances to make the final 
predictions. 

D5Accuracy, F1, AUC 
μ=0.1, 0.971 ± 0.010, 0.980 ± 0.007, 0.955 ± 0.020 
μ=0.2, 0.979 ± 0.018, 0.986 ± 0.012, 0.970 ± 0.027 
μ=0.3, 0.979 ± 0.018, 0.986 ± 0.012, 0.970 ± 0.027 
μ=0.4, 0.979 ± 0.011, 0.986 ± 0.007, 0.975 ± 0.020 
μ=0.5, 0.979 ± 0.011, 0.986 ± 0.007, 0.975 ± 0.020 

VVolume Classification, BB-scan classification, 2CTwo-Class Classification (Normal, DME), D1D1, D2D2, D3D3, D4D4, 
D4*D4, D5D5, D6D6, D7D7, D8D8, D9D9, D10D10. 
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This section reviews papers on Segmentation-based Attention CNNs, which enhance OCT 
image analysis by using attention mechanisms to focus on critical regions, improving subtle 
pathological feature detection and integrating segmentation with classification tasks for better 
learning. 

A study introduced a method called lesion-aware CNN (LACNN) approach for retinal OCT 
image classification, utilizing retinal lesions within OCT images to guide the CNN for more accurate 
classification. The LACNN focuses on local lesion-related regions in the OCT images using a lesion 
detection network to create a soft attention map from the entire OCT image [50]. An approach 
integrates a dual-attention mechanism at multiple levels of a pre-trained deep convolutional neural 
network (CNN). It enhances focused learning by incorporating both multi-level feature-based 
attention, which targets salient coarse features, and a self-attention mechanism, which focuses on 
higher entropy regions of the finer features [51]. Another method proposes a deep architecture based 
on a perturbed composite attention mechanism, incorporating two attention modules: Multilevel 
Perturbed Spatial Attention (MPSA) and Multidimension Attention (MDA) for macular optical 
coherence tomography (OCT) image classification. MPSA enhances the salient regions of input 
images and the features from intermediate network layers by adding positive perturbations to the 
attention layers. Conversely, MDA encodes the normalized interdependency of spatial information 
across various channels of the extracted feature maps. This perturbed composite attention enables 
architecture to extract diagnostic features at different levels of feature representation [52].  

A one-stage attention-based method was proposed for retinal OCT image classification and 
segmentation using bounding box level supervision. Specifically, the classification network generates 
a heatmap using Gradient-weighted Class Activation Mapping and incorporates the proposed 
attention block. Transformation consistency is employed to ensure that the predicted heatmap 
remains consistent for the same input after image transformation [53]. A study presents an efficient 
Global Attention Block (GAB) for feed-forward convolutional neural networks (CNNs). The GAB 
creates an attention map across three dimensions for any intermediate feature map and then 
computes adaptive feature weights by multiplying the attention map with the input feature map. 
This GAB can be integrated into any CNNs [54]. Another work proposes a B-scan attentive 
convolutional neural network (BACNN). BACNN is a CNN-based feature extraction module that is 
employed to extract spatial feature representations from the B-scans. Subsequently, a self-attention 
module aggregates these features according to their clinical relevance, resulting in a discriminative 
high-level feature vector for reliable diagnosis [55]. 

4.2. CNN with Attention 

This section reviews papers on Segmentation-based Attention CNNs, which enhance OCT 
image analysis by using attention mechanisms to focus on critical regions, improving subtle 
pathological feature detection and integrating segmentation with classification tasks for better 
learning. 

A study introduced a method called lesion-aware CNN (LACNN) approach for retinal OCT 
image classification, utilizing retinal lesions within OCT images to guide the CNN for more accurate 
classification. The LACNN focuses on local lesion-related regions in the OCT images using a lesion 
detection network to create a soft attention map from the entire OCT image [50]. An approach 
integrates a dual-attention mechanism at multiple levels of a pre-trained deep convolutional neural 
network (CNN). It enhances focused learning by incorporating both multi-level feature-based 
attention, which targets salient coarse features, and a self-attention mechanism, which focuses on 
higher entropy regions of the finer features [51]. Another method proposes a deep architecture based 
on a perturbed composite attention mechanism, incorporating two attention modules: Multilevel 
Perturbed Spatial Attention (MPSA) and Multidimension Attention (MDA) for macular optical 
coherence tomography (OCT) image classification. MPSA enhances the salient regions of input 
images and the features from intermediate network layers by adding positive perturbations to the 
attention layers. Conversely, MDA encodes the normalized interdependency of spatial information 
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across various channels of the extracted feature maps. This perturbed composite attention enables 
architecture to extract diagnostic features at different levels of feature representation [52].  

A one-stage attention-based method was proposed for retinal OCT image classification and 
segmentation using bounding box level supervision. Specifically, the classification network generates 
a heatmap using Gradient-weighted Class Activation Mapping and incorporates the proposed 
attention block. Transformation consistency is employed to ensure that the predicted heatmap 
remains consistent for the same input after image transformation [53]. A study presents an efficient 
Global Attention Block (GAB) for feed-forward convolutional neural networks (CNNs). The GAB 
creates an attention map across three dimensions for any intermediate feature map and then 
computes adaptive feature weights by multiplying the attention map with the input feature map. 
This GAB can be integrated into any CNNs [54]. Another work proposes a B-scan attentive 
convolutional neural network (BACNN). BACNN is a CNN-based feature extraction module that is 
employed to extract spatial feature representations from the B-scans. Subsequently, a self-attention 
module aggregates these features according to their clinical relevance, resulting in a discriminative 
high-level feature vector for reliable diagnosis [55]. 

4.3. CNN Ensembles and Multiscale 

This section reviews papers on Ensemble CNNs and Multiscale approaches. Ensemble CNNs 
involve independently training multiple CNN models and combining their predictions to produce a 
final output. Multiscale approaches process OCT images at various scales, capturing features at 
different levels of detail.  

An approach proposes a 6G-enabled IoMT method that minimizes human involvement in 
medical facilities while delivering rapid diagnostic results. This method utilizes transfer learning to 
extract features from medical images and is enhanced by feature selection by employing operators 
from the hunger games search [56]. Another work proposes a framework that leverages deep 
ensemble learning, wherein the input fundus and OCT scans are processed through a deep CNN. 
The deep CNN first recognizes and processes the scans, which are then fed into a second layer of the 
CNN model to extract essential feature descriptors from both images. These extracted descriptors are 
concatenated and passed to a supervised hybrid classifier such as support vector machines, and naïve 
Bayes models. These classifiers are combined to achieve accurate classification [57]. Another 
approach involves combining features from various resolutions, leading to the next discussion, multi-
scale CNNs.   

A method of employing a multi-scale deep feature fusion (MDFF) based classification approach 
using CNNs for reliable diagnosis. The MDFF technique captures inter-scale variations in the images, 
providing the classifier with discriminative information [58]. A proposed architecture is a multiscale 
and multipath CNN comprising six convolutional layers. The multiscale convolution layer enables 
the network to generate local structures capturing both sparse local and detailed global structures 
[59]. Another paper introduces multiscale (CNN) architecture for the accurate diagnosis of AMD. The 
proposed architecture consists of a multiscale CNN with seven convolutional layers designed to 
classify images as either AMD or normal. The multiscale convolution layer allows for the generation 
of numerous local structures with various filter sizes [60]. Finally, a method proposes a novel multi-
scale CNN with a feature pyramid network (FPN). The model leverages multi-scale receptive fields 
to enhance the accurate detection of retinal pathologies of varying scales in OCT images  [61]. Due 
to the advantages of utilizing both ensemble and multi-scaling techniques, the following papers 
implement a combination of these approaches.  

A method proposes a multi-stage classification network based on a multi-scale (pyramidal) 
feature ensemble architecture. Initially, a scale-adaptive neural network generates multi-scale inputs 
for feature extraction and ensemble learning. Larger input sizes capture more global information, 
while smaller input sizes focus on local details. Subsequently, a feature pyramidal architecture is 
designed to extract multi-scale features, utilizing DenseNet as the backbone [62]. A similar approach 
presents a system based on a multi-scale convolutional mixture of expert (MCME) ensemble model. 
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The proposed MCME modular model employs a new cost function for discriminative learning of 
image features by applying CNNs on multiple scales. MCME maximizes the likelihood function of 
the training data set and ground truth by using a Gaussian mixture model [63]. Finally, an approach 
proposed a Deep Multi-scale Fusion CNN (DMF-CNN) that encodes multi-scale disease 
characteristics. Specifically, multiple CNNs with different receptive fields are utilized to obtain scale-
specific feature representations from the OCT images. These representations are then fused to extract 
cross-scale discriminative features for classification. Additionally, a joint multi-loss optimization 
strategy is employed to collectively learn scale-specific and cross-scale complementary information 
during training [64]. Table 5 presents the performance metrics for each of the specialized CNN 
methods discussed above. 

4.4. CNN Augmentations 

In this section, we review papers on CNN classification, focusing on how specialized 
augmentation enhances the model’s generalization by generating diverse training samples. A method 
proposes a surrogate-assisted classification method for automatically classifying retinal OCT images 
using convolutional neural networks (CNNs). The process involves image denoising, followed by 
thresholding and morphological dilation to extract masks, which are used to generate surrogate 
images for training the CNN model. The final prediction for a test image is determined by averaging 
the outputs from the CNN model on these surrogate images [65]. Another approach developed a 
semi-supervised classifier based on a GAN for automated diagnosis using limited labeled data. This 
framework includes a generator and a discriminator, where adversarial learning between the two 
helps creates a generalizable classifier capable of predicting progressive retinal diseases such as age-
related macular degeneration and diabetic macular edema [66]. A work introduces an unsupervised 
framework using a GAN to achieve fast and reliable super resolution. Adversarial learning with cycle 
consistency and identity mapping priors ensures the preservation of spatial correlation, color, and 
texture details in the generated HR images, which are then used for classification tasks [67]. 

Table 5. List of CNN with Attention, Ensemble, Multi-scale and Augmentation Methods. 

Refs. Method Method’s Descriptions Results 

[50] 
Lesion-aware 

convolutional neural 
network (LACNN) 

LACNN concentrates on local lesion-
specific regions by utilizing a lesion 
detection network to generate a soft 
attention map over the entire OCT 

image. 

D4 Acc Prec 

Drusen 93.6 ± 1.4 70.0 ± 5.7 

CNV 92.7 ± 1.5 93.5 ± 1.3 

DME 96.6 ± 0.2 86.4 ± 1.6 

Normal 97.4 ± 0.2 94.8 ± 1.1 
D4Overall ACC: 90.1 ± 1.4, Overall Sensitivity: 86.8 ± 

1.3  
D2Overall Sensitivity: 99.33 ± 1.49, Overall PR: 99.39 ± 

1.36, 
 F1, 99.33 ± 1.49, AUC: 99.40 ± 1.34 

[51] 
Multi-Level Dual-

Attention Based CNN 
(MLDA-CNN) 

A dual-attention mechanism is applied 
at multiple levels a CNN and integrates 

multi-level feature-based attention 
emphasizes high-entropy regions 

within the finer features. 

D1Acc: 95.57, Prec: 95.29, Recall: 96.04, F1: 0.996 

D2Acc: 99.62 (+/- 0.42), Prec: 99.60 (+/- 0.39),  
Recall: 99.62 (+/- 0.42), F1: 0.996, AUC: 0.9997 

[52] 

Multilevel Perturbed 
Spatial Attention 

(MPSA) & 
Multidimension 

Attention (MDA) 

MPSA emphasizes key regions in input 
images and intermediate network 

layers by perturbating to the attention 
layers. MDA captures the information 

across different channels of the 
extracted feature maps.  

D1Acc: 100%, Prec: 100%, Recall: 100% 
D2Acc: 99.79 (+/- 0.43), Prec: 99.80 (+/- 0.41),  

Recall: 99.78 (+/- 0.43) 
D4Acc: 92.62 (+/- 1.69), Prec: 89.96 (+/- 3.16),  

Recall: 88.53 (+/- 3.26) 

[53] 

One-stage attention-
based framework 

weakly supervised 
lesion segmentation 

One-stage attention-based classification 
and segmentation, where the 

classification network generates a 

D4 Acc SE Spec 

CNV 93.6 ± 1.9 90.1 ± 3.8 96.5 ± 1.4 

DME 94.8 ± 1.2 86.5 ± 1.5 96.4 ± 2.1 
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heatmap through Grad-CAM and 
integrates the proposed attention block. DRUSEN 94.6 ± 1.4 71.5 ± 4.8 96.9 ± 1.2 

NORMAL 97.1 ± 1.0 96.3 ± 1.5 98.9 ± 0.3 
D4OA: 90.9 ± 1.0, OS: 86.3 ± 1.8, OP: 85.5 ± 1.6 

[54] 
Efficient Global 

Attention Block (GAB) 
and Inception 

GAB generates an attention map across 
three dimensions for any intermediate 
feature map and computes adaptive 
feature weights by multiplying the 

attention map with the input feature 
map.  

 

D4*Accuracy: 0.914, Recall: 0.9141,  
Specificity: 0.9723, F1: 0.915, AUC: 0.9914 

 

[55] 
B-scan attentive 

convolutional neural 
network (BACNN) 

BACNN employs a self-attention 
module to aggregate extracted features 

based on their clinical significance, 
producing high-level feature vector for 

diagnosis. 

D1Sen: 97.76 ± 2.07, Spec: 95.61 ± 4.35, Acc: 97.12 ± 2.78, 

D2 Sens. Spec. Acc. 

AMD 92.0 ± 4.4 95.0 ± 0.1 93.2 ± 2.7  

DME 100.0 ± 0.0 98.9 ± 2.4 99.3 ± 1.5 

Normal 87.8 ± 4.3 93.2 ± 2.3 92.2 ± 2.3 
 

[56]  
6G-enabled IoMT 

method – MobileNetV3 

Leverages transfer learning for feature 
extraction and optimized through 

feature selection using Hunger Games 
search algorithm. 

D4 Acc. Recall Prec 

SVM 99.69 99.69 99.69 

XGB 99.38 99.38 99.4 

KNN 99.59 99.59 99.59 

RF 99.38 99.38 99.4 
 

[57] 

Deep Ensemble CNN + 
SVM, Naïve Bayes, 

Artificial Neural 
Network 

A secondary layer within the CNN 
model to extract key feature 
descriptors, where they are 

subsequently concatenated and fed into 
a supervised hybrid classifier SVM and 

naïve Bayes models 

D4Sensivity, Specificity, Accuracy 
ANN: 0.96, 0.90, 0.93  || SVM: 0.94, 0.91, 0.91  
NB: 0.93, 0.90, 0.91 || Ensemble: 0.97, 0.92, 0.94 

[58] 
Multi-scale deep 

feature fusion (MDFF) 
CNN 

MDFF technique captures inter-scale 
variations in the images, providing the 

classifier with discriminative 
information 

D4 Sens. Spec.  Acc. 

CNV 96.6 98.73 97.78 

DME 94.14 98.97 98.33 

DR 90.49 98.32 97.52 

NO 96.9 89.26 97.85 
 

[59] 
Multiscale and 

multipath CNN with 
six convolutional layers 

MDFF captures variations across 
different scales and are fed into a 

classifier  

 Precision Recall Accu. 

D1-2C 0.969 0.967 0.9666 

D2-2C 0.99 0.99 0.9897 

D4-2C 0.998 0.998 0.9978 
 

[60] 
Multiscale CNN with 
seven convolutional 

layers 

The  architecture consists of a 
multiscale CNN with seven 

convolutional layers allowing for the 
generation of numerous local 

structures with various filter sizes 

Precision Recall F1-score Accuracy AUC 
D1-2C 0.9687, 0.9666, 0.9666, 0.9667, 1.0000 
D2-2C 0.9803, 0.9795, 0.9795, 0.9795, 0.9816 
D4-2C 0.9973, 0.9973, 0.9973, 0.9973, 0.9999 

D9-2C 0.9810 0.9808 0.9809 0.9808 0.9971 

[61] 
Multi-scale CNN based 
on the feature pyramid 

network 

Combines a feature pyramid network 
(FPN) and by utilizing multi-scale 

receptive fields providing end-to-end 
training 

Accuracy (%) Sensitivity (%) Specificity (%) 
D2FPN-VGG16: 92.0 ± 1.6, 91.8 ± 1.7, 95.8 ± 0.9  

D2FPN-ResNet50: 90.1 ± 2.9, 89.8 ± 2.8, 94.8 ± 1.4  
D2FPN-DenseNet: 90.9 ± 1.4, 90.5 ± 1.9, 95.2 ± 0.7  

D2FPN-EfficientNetB0: 87.8 ± 1.3, 86.6 ± 1.8, 93.3 ± 0.8 
D4FPN-VGG16: 98.4, 100, 97.4 

[62] 
Multi-scale (pyramidal) 

feature ensemble 
architecture (MSPE) 

A multi-scale  feature ensemble 
architecture employing a scale-

adaptive neural network generates 
multi-scale inputs for feature extraction 

and ensemble learning. 

D1Acc= 99.69%, Sen= 99.71%, Spec.= 99.87% 
D4Accy=97.79%, Sen=95.55%, Spec.=99.72% 

[63] 

Multi-scale 
convolutional mixture 

of expert (MCME) 
ensemble model 

MCME model utilizes a cost function 
for feature learning by applying CNNs 

at multiple scales. Maximizing a 
likelihood function for the training 

D2Precision: 99.39 ± 1.21, Recall: 99.36 ± 1.33,  
F1: 99.34 ± 1.34, AUC: 0.998 
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dataset and ground truth using a 
Gaussian mixture model. 

[64] 
Deep Multi-scale 

Fusion CNN (DMF-
CNN) 

DMF-CNN uses multiple CNNs with 
varying receptive fields to extract scale-
specific features which are then extract 

cross-scale features. Additionally, a 
joint scale-specific and cross-scale 
multi-loss optimization strategy is 

employed. 
 

D2Sensitivity (%), Precision (%), F1 Score, OS, OP/OF1 
AMD: 99.62 ± 0.27, 99.54 ± 0.17, 99.58 ± 0.16, 99.58 ± 

0.23 
DME: 99.45 ± 0.59, 99.45 ± 0.38, 99.45 ± 0.35, 99.59 ± 

0.20 
Normal: 99.68 ± 0.22, 99.75 ± 0.41, 99.71 ± 0.20, 99.60 ± 

0.22 
OA: 99.60 ± 0.21, AUC: 0.997 ± 0.002 

D4Sensitivity (%), Precision (%), F1 Score  
CNV: 97.33 ± 1.05, 97.05 ± 1.19, 97.18 ± 0.32 
DME: 93.22 ± 3.22, 96.26 ± 2.17, 94.65 ± 1.09 

Drusen: 89.29 ± 3.59, 87.73 ± 3.84, 88.34 ± 1.27  
Normal: 97.62 ± 1.11, 97.49 ± 1.30, 97.55 ± 0.49,  

OS/OP/OF1/OA: 94.37 ± 1.16, 94.64 ± 0.90, 94.43 ± 0.59, 
96.03 ± 0.43 

[65] 
Surrogate-assisted 

CNN 

Denoising, thresholding and 
morphological dilation are performed 

on images to create masks, which 
produce surrogate images for training 

the CNN model. 

D1Denoised: Acc: 95.09%, Sen. 96.39%, Spec: 93.60% 
D1Surrogate: Acc: 95.09%, Sen. 96.39%, Spec: 93.60% 

[66] 
CNN and Semi-
supervised GAN 

 

D2 Sen (%) Spec (%) Acc (%) 

AMD 98.38 ± 0.69 97.79 ± 0.68 97.98 ± 0.61 

DME 96.96 ± 1.32 99.23 ± 0.36 98.61 ± 0.49 

Normal 96.96 ± 0.73 99.12 ± 0.64 98.26 ± 0.67 
OS/OSp/OA: 97.43 ± 0.68, 98.71 ± 0.34, 97.43 ± 0.66 

VVolume Classification, BB-scan classification, 2CTwo-Class Classification (Normal, DME), D1D1, D2D2, D3D3, D4D4, 
D4*D4, D5D5, D6D6, D7D7, D8D8, D9D9, D10D10, OA: Overall Accuracy, OS: Overall Sensitivity, OP: Overall Precision, 
OF1: Overall F1 1-2C#: Binary classifications with AMD and Normal classes, NB: Naïve Bayes, RF: Random Forest, 
Support Vector Machine: SVM. 

4.5. Transformers 

While CNNs and their variations have significantly advanced image processing, transformers 
have elevated them to new heights. Vision Transformers (ViTs), derived from the transformer 
architecture in Natural Language Processing (NLP), achieve outstanding benchmark results on 
ImageNet datasets, representing a significant leap forward in computer vision.  

In a standard ViT architecture, the input image is first divided into fixed-size patches, which are 
then flattened and linearly projected into embeddings. Let 𝑥௣ ∈ ℝு×ௐ×஼ represent an input image of 
height H, width W, and C channels. The image is split into patches of size P × P, resulting in N = H ⋅ 
W / P2, patches, where each patch is a vector of 𝑥௣ ∈ ℝ௉మ஼. These patches are linearly embedded using:  𝑧଴௜ = 𝑥௣௜ ∙ 𝐸, 𝑖 = 1,2, … ,𝑁 ሺ12ሻ 
where 𝑥௣ ∈ ℝ(௣మ஼)×஽ is the learnable embedding matrix, and 𝑧଴௜  represents the patch embeddings of 
dimension D. Next, a positional encoding is added to retain spatial information: 𝑧଴ = ൣ𝑥௣ଵ𝐸;  𝑥௣ଶ𝐸; … ; 𝑥௣ே𝐸൧ + 𝐸௣௢௦ (13) 

where 𝐸௣௢௦ ∈ ℝே×஽ is the positional encoding matrix. The sequence of patch embeddings is then fed 
into a standard transformer encoder, consisting of multiple layers of multi-head self-attention 
(MHSA) and feedforward networks (FFN). For each layer l, the self-attention mechanism is computed 
as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ𝑄𝐾்ඥ𝐷௞ቇ𝑉 (14) 
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𝑄 = 𝑍௟ିଵ𝑊ொ , 𝐾 = 𝑍௟ିଵ𝑊௄, and 𝑉 = 𝑍௟ିଵ𝑊௏   are the query, key, and value matrices, respectively, and Dk is 
the dimensionality of the key. The output of the self-attention mechanism is passed through a 
feedforward network: 𝑧௟ᇱ = 𝑀𝐻𝑆𝐴(𝑧௟ିଵ) + 𝑧௟ିଵ (15) 𝑧௟ᇱ = 𝐹𝐹𝑁(𝑧′௟) + 𝑧௟ (16) 

After the final transformer layer, the class token (a learnable embedding added to the input 
sequence) is extracted and passed to a classifier for the final prediction. The following are reviews of  
papers in the application of Transformers to OCT images for predicting eye disorders.  

An approach hybrid ConvNet-Transformer network (HCTNet) begins with a low-level feature 
extraction module, utilizing a residual dense block to generate features that facilitate network 
training. Following this, two parallel branches, one using a Transformer and the other a ConvNet are 
designed to capture the global and local contexts of the OCT images. Finally, a feature fusion module 
with an adaptive reweighting mechanism is employed to combine these global and local features for 
accurate OCT image categorization [68]. A method introduces an interpretable Swin-Poly ViT 
network for automated retinal OCT image classification. By shifting the window partition, the Swin-
Poly Transformer establishes connections between adjacent nonoverlapping windows from the 
previous layer, allowing it to flexibly model multi-scale features. Additionally, the Swin-Poly 
Transformer adjusts the significance of polynomial bases to refine cross-entropy, enhancing the 
accuracy of retinal OCT image classification [69]. A study proposes Focused Attention, which uses 
iterative conditional patch resampling to generate interpretable predictions via high-resolution 
attribution maps, addressing the low-resolution issue of existing Transformer attribution methods. 
A survey involving four retinal specialists validated both the superior interpretability of Vision 
Transformers compared to CNN attribution maps and the relevance of Focused Attention as a lesion 
detector [70]. A method utilizing Vision Transformer can more effectively capture global information 
through its self-attention mechanism and exhibits less bias towards local texture features. The 
classifier is redesigned using logits eights and the loss function as the logit cross-entropy function 
with L2 norm [71].  

A paper introduces a technique called the model-based transformer (MBT). This technique 
leverages pre-trained models, specifically the ViT and Swin Transformer for OCT image 
classification, and the Multiscale ViT for OCT video classification. The proposed method represents 
OCT data using an approximate sparse representation technique, then estimates the optimal features 
for classification [72]. Another paper introduces a framework called the Structure-Oriented 
Transformer (SoT) designed to enhance the relationship modeling between lesions and the retina 
regions. A  model-oriented filter highlights the entire retina structure and guide relationship 
construction. Then employ a pre-trained ViT to model the relationships among all feature patches 
through transfer learning. Additionally, to optimize the use of all output tokens, a vote classifier is 
employed for obtaining final grading results [73]. Similarly, another approach proposes an OCT 
Multihead Self-Attention (OMHSA) block to process OCT image information using a hybrid CNN-
ViT approach. OMHSA incorporates local information extraction into the self-attention calculation 
and adds local information to the transformer model. A neural network architecture, named 
OCTFormer, is employed by repeatedly stacking convolutional layers and OMHSA blocks at each 
stage [74]. Another study introduces a hybrid SqueezeNet-Vision Transformer (SViT) model, which 
leverages the strengths of both SqueezeNet and Vision Transformer (ViT). This model captures both 
local and global features of OCT images, enabling more accurate classification while maintaining 
lower computational complexity [75].  

An article that proposes a Deep Relation Transformer (DRT) for glaucoma diagnosis by 
combining OCT and Vision Field (VF) information. This model introduces a deep reasoning 
mechanism to explore implicit pairwise relations between OCT and VF data both globally and 
regionally. Also, three successive modules are developed to extract and collect information for 
glaucoma diagnosis: the Global Relation Module, the Guided Regional Relation Module, and the 
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Interaction Transformer Module [22]. A fusion model called ‘Conv-ViT’ employs transfer learning-
based CNN models, such as Inception-V3 and ResNet-50, to process texture information by 
calculating the correlation of nearby pixels. Additionally, a vision transformer model is integrated to 
process shape-based features by determining the correlation between long-distance pixels [76]. 
Another article proposes a ViT-based cross-modal multi-contrast network for integrating color 
fundus photographs (CFP) and optical coherence tomography (OCT) images. The approach employs 
multi-contrast learning to extract features from cross-modal data for diagnosis. Subsequently, a 
channel fusion head captures the semantically shared information across different modalities and the 
similarity features among patients within the same category [77].  

Another set of architects involves the following. An approach proposes a deep learning model 
based on the Swin Transformer V2 to diagnose fundus diseases swiftly and accurately. This method 
leverages the calculation of self-attention within local windows to reduce computational complexity 
and enhance classification efficiency. Additionally, the PolyLoss function was introduced to further 
boost the model’s accuracy [78]. A method called lesion-localization convolution transformer (LLCT) 
uses customized feature maps generated by a convolutional neural network (CNN) as the input 
sequence for a self-attention network. This design leverages CNN’s ability to extract image features 
and the transformer’s capacity to consider global context and dynamic attention. Part of the model 
undergoes backpropagation to calculate the gradient as a weight parameter, which is then multiplied 
and summed with the global features generated during the forward propagation process to 
accurately locate the lesion [79]. An proposed a stitching approach to find an optimal model by 
combining two MedViT family models. This method, known as stitchable neural networks, is an 
efficient architecture search algorithm. It creates a candidate model in the search space by inserting a 
linear layer between each pair of stitchable layers, with each layer in the pair being selected from one 
of the input models [80]. Finally in another study, a deep learning framework that utilizes the 
diagnostic potential of 3D OCT imaging for automated glaucoma detection. The framework 
integrates a pre-trained Vision Transformer on retinal data for slice-wise feature extraction and a 
bidirectional Gated Recurrent Unit (GRU) to capture inter-slice spatial dependencies. This dual-
component approach allows for an analysis of both local details and global structural integrity [81]. 
Table 6 presents the performance metrics for each of the transformer methods discussed above.  

The following are short works presented at conferences which are slight modification to ViT. A 
work proposed a CAD method using a base vision transformer to analyze OCT images and 
distinguish between AMD, DME, and normal eyes [82]. An approach aimed to develop a deep 
learning algorithm to distinguish between drusen and the double-layer sign (DLS) based on cross-
sectional structural OCT B-scans, using a Vision Transformer (ViT) model trained on eyes images 
[83]. Another conference proposes an end-to-end Transformer-based framework designed to 
efficiently classify volumetric data of varying lengths. By randomizing the input volume-wise 
resolution (number of slices) during training, we enhance the learnable positional embedding’s 
ability to adapt to each volume slice [84]. Finally, another ViT is proposed using a symmetrical cross-
entropy loss function can minimize the effect of noise on the training set and prevent overfitting [85]. 

Table 6. List of Transformer Methods employed. 

Refs. Method Method’s Descriptions Results 

[68] 

Hybrid 
ConvNet-

Transformer 
network 

(HCTNet) 

HCT-Net employs feature 
extraction modules via residual 
dense block. Next, two parallel 
branches, a Transformer and 

ConvNet are utilized to capture 
both global and local contexts in the 

OCT images. A feature fusion 
module with an adaptive 

reweighting mechanism integrates 
these global and local features. 

D1 

Acc. 

(%) 

Sen. 

(%) Prec. (%) 

AMD 95.94 82.6 95.08 

DME 86.61 80.22 85.29 

Norm

al 89.81 93.39 85.22 
OA: 86.18%, OS: 85.40%, OP: 88.53% 
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D4 

Acc 

(%) 

Sen.  

(%) 

Prec.  

(%) 

CNV 94.6 92.23 95.53 

DME 96.14 87.96 84.42 

Druse

n 95.54 77.36 79.00 

Norm

al 96.84 96.73 93.5 
OA: 91.56%, OS: 88.57%, OP: 88.11% 

[69] 

Interpretable 
Swin-Poly 

Transformer 
network 

Swin-Poly Transformer shifts 
window partitions and connects 

adjacent non-overlapping windows 
from the previous layer, allowing it 

to flexibly capture multi-scale 
features. The model refines cross-

entropy by adjusting the 
importance of polynomial bases, 

thereby improving the accuracy of 
retinal OCT image classification. 

D4 Acc. Prec. 

Recal

l 

CNV 

1.000

0 0.9960 

1.000

0 

DME 

0.996

0 1.0000 

0.996

0 

Druse

n 

1.000

0 0.9960 

1.000

0 

Norm

al 

0.996

0 1.0000 

0.996

0 

Ave. 

0.998

0 0.9980 

0.998

0 

D6 Acc. Prec. 

Recal

l 

AMD 1.0000 1.0000 

1.000

0 

CNV 0.9489 0.9389 

0.957

1 

CSR 1.0000 1.0000 

1.000

0 

DME 0.9439 0.9512 

0.945

7 

DR 1.0000 0.9972 

1.000

0 

Druse

n 0.9200 0.9580 

0.911

4 

MH 1.0000 1.0000 

0.997

1 

Norm

al 0.9563 0.9254 

0.957

1 

Ave. 0.9711 0.9713 

0.971

1 
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[70] 
Focused 

Attention 
Transformer 

Focused Attention employs 
iterative conditional patch 

resampling to produce 
interpretable predictions through 
high-resolution attribution maps. 

D4* 

Acc. 

(%)  

Spec. 

(%) 

Recall 

(%) 

T2T-

ViT_14 94.40 98.13 94.40 

T2T-

ViT_19 93.20 97.73 93.20 

T2T-

ViT_24 93.40 97.80 93.40 
 

[71] 
ViT with Logit 
Loss Function 

Captures global features via self-
attention mechanism reducing 

reliance on local texture features. 
Adjusting classifier’s logit weights 

and modified to a logit cross-
entropy function with L2 

regularization as loss function. 

D7* 

Acc 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Early DME 90.87 87.03 93.02 

Advanced 

DME 89.96 88.18 90.72 

Severe DME 94.42 63.39 98.4 

maculopathy 95.13 89.42 96.66 
OA: 87.3% 

[72] 

Model-Based 
ViT (MBT-ViT), 

Model-Based 
ViT (MBT-
SwimT), 

Multi-Scale 
Model-Based 

ViT (MBT-ViT) 

Approximate sparse representation 
MBT utilizes ViT Swin ViT and 
Multiscale ViT for OCT video 

classification. Then estimates key 
features before performing data 

classification. 

D4 Acc. Recall 

MBT ViT 0.8241 0.8138 

MBT 

SwinT 0.8276 0.8172 

MBT_M

ViT 0.9683 0.9667 
 

[73] 

Structure-
Oriented 

Transformer 
(SoT) 

SoT employs guidance mechanism 
that acts as a filter to emphasize the 

entire retinal structure. Utilizes 
Vote Classifier, which optimizes the 

utilization of all output tokens to 
generate the final grading results.  

 B-acc Sen Spe 

D1SoT 

0.993

5 

0.992

5 0.9955 

D5 

SoT 

0.993

5 

0.992

5 0.9955 
 

[74] 
OCT Multihead 
Self-Attention 

(OMHSA) 

OMHSA enhances self-attention 
mechanism by incorporating local 

information extraction, where a 
network architecture, called 
OCTFormer and is built by 

repeatedly stacking convolutional 
layers and OMHSA blocks at each 

stage. 

D4 ACC Prec. Sen. 

OCT 

Former-

T 94.36 94.75 94.37 

OCT 

Former-

S 96.67 96.78 96.68 

OCT 

Former-

B 97.42 97.47 97.43 
 

[75] 
Squeeze Vision 

transformer  
(S-ViT) 

SViT combines SqueezeNet and ViT 
to capture local and global features, 

which enables more precise 
classification while maintaining 

lower computational complexity. 

 
D5 Acc.: 0.9990, Sen.: 0.9990, Prec.: 1.000 

[22] 
Deep Relation 
Transformer 

(DRT) 

DRT integrates both OCT and 
Vision Field (VF) data, where this 

model incorporates a deep 
reasoning mechanism to identify 

D10Ablation Study 
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pairwise relationships between 
OCT and VF.  Back-

bone    

Acc 

(%)    

  Sen 

(%)    Spec (%) 

Light 

ResNet   

88.3±1.

0  

 

93.7±3.5  

 

82.4±4.1  

ResNet-

18      

87.6±2.

3    

  

93.1±2.4 

 

82.1±4.3  

ResNet-

34      

87.2±1.

6   90.4±5.0  

 

83.9±3.6  
 

[76] 
Conv-ViT – 

inception V3 
and ResNet50 

Integrates Inception-V3 and 
ResNet-50 to capture texture 

information by evaluating the 
relationships between nearby 
pixels. A Vision Transformer 

processes shape-based features by 
analyzing correlations between 

distant pixels. 

D4    

Feature Level  

Concatenation 

Decision 

Level  

Conc. 

Acc. 94.46% 87.38% 

Prec. 0.94 0.87 

Recall 0.94 0.86 

F1 

Score   0.94 0.86 
 

[77] 
Multi-contrast 

Network 

ViT Cross-modal multi-contrast 
network integrates color fundus 

photographs (CFP), which utilizes 
multi-contrast learning to extract 
features. Then a channel fusion 

head then aggregates across 
different modalities.  

D4 

Acc 

(%)   

SE 

(%)   SP (%)  

Norm

al     99.5 99.38 100 

CNV   100 100 100 

DR 99.5 100 99.42 

AMD   100 100 100 

All    99.75 99.84 99.85 
 

[78] 

Swin 
Transformer V2 
with Poly Loss 

function 

Swin Transformer V2-based 
leverages self-attention within local 

windows while using a PolyLoss 
function  

D4 Acc. Recall Spec. 

CNV 0.999 1.00 0.996 

DME 0.999 1.00 1.00 

DRUSEN 1.00 1.00 1.00 

NORMA

L 1.00 1.00 1.00 
    

D6 Acc. Recall Spec. 

AMD 1.00 1.00 1.00 

CNV 0.989 0.949 0.995 

CSR 1.00 1.00 1.00 

DME 0.992 0.977 0.995 

DR 1.00 1.00 1.00 

DRUSEN 0.988 0.934 0.995 

MH 1.00 1.00 1.00 

NORMA

L 0.991 0.98 0.992 
 

[79] 
Lesion-

localization 

LLCT combines CNN-extracted 
feature maps with a self-attention 
network to capture both local and 

D4 Acc (%) Sens (%) Spec. (%) 
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convolution 
transformer 

(LLCT) 

global image context. The model 
uses backpropagation to adjust 

weights, enhancing lesion detection 
by integrating global features from 

forward propagation. 

CNV 98.1 ± 1.9 99.4 ± 0.3 97.6 ± 2.7 

DME 99.6 ± 0.2 99.6 ± 0.0 99.5 ± 0.3 

Druse

n 98.1 ± 2.3 92.8 ± 8.5 99.9 ± 0.2 

Norm 99.6 ± 0.6 98.8 ± 1.7 99.9 ± 0.2 
 

[80] 
Stitched 
MedViTs 

Stitching approach combines two 
MedViT models to find an optimal 
architecture. This method inserts a 

linear layer between pairs of 
stitchable layers, with each layer 

selected from one of the input 
models, creating a candidate model 

in the search space. 

D4 Spec. Acc. 

micro 

MedViT 0.928 ± 0.002 0.828 ± 0.007 

tiny 

MedViT 0.933 ± 0.002 0.841 ± 0.007 

micro 

MedViT 0.987 ± 0.001 0.977 ± 0.002 

tiny 

MedViT 0.986 ± 0.002 0.977 ± 0.004 
 

[81] 

Bidirectional 
Gated 

Recurrent Unit 
(GRU) 

Combines a pre-trained Vision 
Transformer for slice-wise feature 

extraction with a bidirectional GRU 
to capture inter-slice spatial 

dependencies, enabling analysis of 
both local details and global 

structural integrity. 

D4 ACC SEN SPE 

ResNet34 + 

GRU 

87.39 (± 

1.73) 92.03 72.86 

ViT-large + 

GRU 

90.27 (± 

1.44) 94.25 78.18 
 

VVolume Classification, BB-scan classification, 2CTwo-Class Classification (Normal, DME), D1D1, D2D2, D3D3, D4D4, 
D4*D4 (full set) D5D5, D6D6, D7D7, D7*D7*, D8D8, 4**D4 (2750 each class) , D9D9, D10D10, OA: Overall Accuracy, OS: 
Overall Sensitivity, OP: Overall Precision, OF1: Overall F1 1-2C#: Binary classifications with AMD and Normal 
classes, NB: Naïve Bayes, RF: Random Forest, Support Vector Machine: SVM. 

5. Comparative Analysis 

In this section, we discuss the performances of hand-crafted features, CNNs, and Transformer 
models in predicting ocular disorders using OCT data across a series of well-established datasets. 
Figure 4 presents an overview of various techniques discussed with their corresponding classification 
accuracies. Focusing first on Dataset D4, which is crucial for distinguishing between the dry and wet 
forms of Age-related Macular Degeneration (AMD) and recognizing diabetic-related changes and 
normal conditions, we observe a range of techniques with varying effectiveness. For example, the 
Multi-contrast Network achieves a high accuracy of 99.75%, indicating its robustness in handling the 
complexities of D4. Similarly, models like HCTNet and Conv-ViT also perform well, with accuracies 
of 91.56% and 94.46%, respectively. These high accuracies suggest that these techniques are well-
suited for applications requiring precise differentiation between similar conditions, such as 
distinguishing dry AMD from wet AMD, which is critical for appropriate treatment planning. 

In the context of D2 and D5, which cater to broader screening processes and more specialized 
monitoring for AMD, several techniques stand out. For instance, the LBP Slice + Sum & SVM 
technique applied to D5 achieves an accuracy of 87.3%, which is particularly useful for detecting 
intermediate stages of AMD which is a challenging task for many models. D2, which focuses on 
general screening, sees strong performances from CNN-based methods such as MPSA (99.62%) and 
D2FPN-DenseNet (90.9%). These techniques are valuable in clinical settings where quick and reliable 
screening is essential for early intervention. On the other hand, D3, designed for AMD monitoring, 
benefits from techniques like Interpretable Swin-Poly, which offers an accuracy of 99.8%. This high 
level of accuracy is crucial for specialists who require reliable tools to monitor disease progression 
and adjust treatment plans accordingly. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2025 doi:10.20944/preprints202506.2449.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2449.v1
http://creativecommons.org/licenses/by/4.0/


 26 of 38 

 

For the remaining datasets (D1, D6, D7, D8, and D9), the figure highlights a diverse set of 
techniques tailored to specific clinical needs. D1, for example, is well-served by traditional CNN 
approaches like R-FTCNN and CNN iterative ReliefF, both achieving perfect accuracies of 100%, 
making them highly effective for general screening purposes. D6, which involves distinguishing 
between different types of AMD and less common conditions like CSR, benefits from advanced 
models like Stitched Tiny MedViTs with an accuracy of 98.6%, offering doctors a reliable tool for 
targeted interventions. Meanwhile, D7*, which includes a variety of diabetic macular edema (DME) 
stages, finds MSK-EMP with an accuracy of 96.62% particularly suitable, aiding in precise diagnosis 
and treatment decisions. Finally, for D9, which covers a broader range of conditions, techniques like 
ViT with Logit Loss Function (87.3%) and Interpretable Swin-Poly (97.31%) offer substantial 
accuracy, providing clinicians with dependable tools for diagnosing diverse retinal conditions. Each 
technique’s suitability is closely tied to its ability to support doctors in making informed decisions, 
whether through accurate screening, detailed monitoring, or distinguishing between subtle 
variations in retinal diseases. 

 

Figure 4. presents a radial bar plot comparing the performance of various techniques used in OCT ocular 
disorder detection across multiple datasets, indicated as D1 through D9. Each bar represents a specific technique, 
with the length of the bar corresponding to the classification accuracy (%) achieved by that technique. The 
techniques are color-coded based on the type of method: Handcrafted Features are shown in red, CNNs in blue, 
and ViT in green. 
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6. Future Work 

Future research in ocular disorder predictions using OCTs should focus on two key areas: 
making deep learning models stronger against adversarial attacks in medical imaging and exploring 
how Large Language Models (LLMs) can be integrated into diagnostic processes. 

6.1. Medical Imaging with Adversarial Samples 

As the field of medical imaging continues to evolve, new challenges arise in improving ocular 
disorder diagnostic tools. One emerging concern is the susceptibility of deep learning models to 
adversarial samples, which is to intentionally crafted input data designed to fool models into making 
incorrect predictions. In OCT images, even slight perturbations can lead to misclassifications by 
models. This is dangerous in a clinical setting, where a misdiagnosis can have serious implications 
for patient outcomes. The growing recognition of these vulnerabilities has prompted researchers to 
explore defense mechanisms and adversarial training strategies to improve model resilience [27] and 
[86–98]. The following is a review of works related to adversarial samples in OCT and other medical 
imaging diagnostics.  

The previously introduced MKW-LBP [27] has demonstrated robustness under adversarial 
conditions, including Gaussian noise. OCT images were tested with Gaussian noise at varying levels 
to evaluate the descriptor’s performance. A study explores the effects of image degradation on some 
DL models employed for skin cancer detection. First, pepper noises are introduced as an adversarial 
attack. Then, a texture descriptor, Ordered Statistics Local Binary Patterns (OS-LBP), is utilized for 
CNN models training. The models are employed to identify potential skin cancer areas to mitigate 
the effects of image degradations [86]. In a similar study, a work investigates the impact of contrast 
degradation on DL models for wireless capsule endoscopic (WCE) image analysis, highlighting the 
effects of contrast reductions on classification accuracy. To address this issue, Color Quaternion 
Modulus and Phase Patterns (CQ-MPP), is proposed, which extracts features from WCE images and 
identifies potential cancerous regions, even under reduced contrast [87]. A study demonstrates 
various medical image computing tasks employing DL models. Adversarial examples, such as Fast 
Gradient Sign Method (FGSM), are utilized to train and benchmark model robustness by comparing 
different architectures for tasks including skin lesion classification and whole brain segmentation 
[88]. A work employs adversarial examples, including Basic Iterative Method (BIM), Projected 
Gradient Descent (PGD), and FGSM, from clean examples by utilizing features from various DNN 
layers. It employs techniques such as detection subnetworks based on activations, logistic regression 
detectors using Kernel Density (KD) and Bayesian Uncertainty features, and the Local Intrinsic 
Dimensionality (LID) of adversarial subspaces [89].  

Some works offer insights into medical image adversarial attacks from the viewpoints of both 
generating and detecting these attacks. Specifically, it examines whether existing medical deep 
learning models are susceptible to gradient-based adversarial attacks. It focuses on three 
representative medical image classifications, skin cancer detection from photographic images, 
referable diabetic retinopathy detection from OCT images, and pneumonia detection from chest X-
rays. While evaluating the vulnerability of DNN models to both nontargeted and targeted attacks, as 
well as their robustness through adversarial retraining [90–93]. A study proposes a frequency 
constraint-based adversarial attack by injecting perturbations into high-frequency information while 
preserving low-frequency content. This technique is tested on four 3D CT, 2D chest X-ray, 2D breast 
ultrasound, and 2D thyroid ultrasound datasets with varying imaging modalities and 
dimensionalities [10]. A Model Ensemble Feature Fusion (MEFF) approach is designed to counter 
adversarial attacks by employing feature fusion by combining features extracted from different deep 
learning models. Subsequently trains machine learning classifiers using the fused features, utilizing 
a concatenation method to merge the extracted features [95].  

A study introduces a robust multi-view classification method that uses a dissonance measure 
for adversarial samples. Specifically, the method applies the evidential dissonance measure in 
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subjective logic to evaluate the quality of data views under adversarial attacks. The work proposes a 
dissonance-aware belief integration strategy for multi-view information fusion, incorporating an 
inter-view evidential gradient penalty in the learning objective [96]. A medical morphological 
knowledge-guided adversarial training strategy is proposed, where this approach involves training 
a surrogate model with an augmented dataset using guided filtering to capture the model’s attention. 
Then it is followed by a gradient normalization-based prior knowledge injection module to transfer 
this attention to the main classifier and concludes with a distributionally optimization-based strategy 
to enhance adversarial attack resistance in the main classifier [97]. A work which adds imperceptible 
noise to a 3D MRI brain image can introduce significant errors in predicting age, and this can be done 
even for large batches of images with a single perturbation. Furthermore, a hybrid model, which 
combines deep learning with image segmentation techniques, is designed to be robust to adversarial 
perturbations [98].  

Given the challenges posed by adversarial attacks on OCT image-based deep learning models, 
enhancing their robustness is crucial for more reliable ocular disease predictions. One promising 
direction for future work involves integrating Large Language Models (LLMs) into the diagnostic 
process, potentially improving model interpretability and providing more accurate diagnoses. Table 
7 summarizes the techniques discussed above. 

Table 7. Provides Adversarial Samples and Techniques employed in Medical Imaging. 

Ref Adversarial Samples introduced Modality Technique Employed  

[27] 
Gaussian Distributed Noise with 

various noise levels  
OCT images  

MKW-LBP local descriptor with SVM and 
Random forest  classifiers  

[86] 
Pepper Noises with various noise 

densities 
Skin Cancer Images 

OS-LBP codes skin cancer images and is used to 
train CNN models. Trained models are employed
for identifying potential skin cancer areas and to 

mitigate the effects of image degradation.   

[87] Contrast Degradations  Endoscopic Images  

Encodes WCE images using CQ-MPP and is used 
to train CNN models. Trained are employed for 
identifying areas of lesions and to mitigate the 

effects contrast degradations.   

[88] Fast Gradient Sign Method (FGSM)   Skin cancer images, MRI 
Adversarial Training using Inception for skin 

cancer classification and Brain tumors 
segmentations 

[89] 

FGSM Perturbations, Basic Iterative 
Method (BIM), Projected Gradient 

Descent (PGD), Carlini and Wagner 
(CW) Attack 

Eye Fundus, Lung X-
Rays, Skin Cancer images 

KD models normal samples within the same class 
as densely clustered in a data manifold, whereas 

adversarial samples are distributed more 
sparsely outside the data manifold. LID is a 

metric used to describe the dimensional 
properties of adversarial subspaces in the vicinity 

of adversarial examples. 

[94] Frequency constraint-based adversarial 
attack 

3D-CT, a 2D chest X-Ray 
image dataset, a 2D 
breast ultrasound 

dataset, and a 2D thyroid 
ultrasound  

A perturbation constraint, known as the low-
frequency constraint, is introduced to limit 

perturbations to the imperceptible high-
frequency components of objects, thereby 

preserving the similarity between the adversarial 
and original examples. 

[95] Model Ensemble Feature Fusion (MEFF) 
Fundoscopy, Chest X-

Ray, Dermoscopy 

MEFF approach is designed to mitigate 
adversarial attacks in medical image applications 

by combining features extracted from multiple 
deep learning models and training machine 

learning classifiers using these fused features. 

[96] Multi-View Learning Natural RGB Images 

A multi-view classification method with an 
adversarial sample uses the evidential 

dissonance measure in subjective logic to 
evaluate the quality of data views when 

subjected to adversarial attacks. 

[97] 
Medical morphological knowledge-

guided 
Lung CT Scans 

This approach trains a surrogate model with an 
augmented dataset using guided filtering to 
capture the model’s attention, followed by a 

gradient normalization-based prior knowledge 
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Ref Adversarial Samples introduced Modality Technique Employed  
injection module to transfer this attention to the 

main classifier. 

6.2. Incorporation of Large Language Models 

There is growing interest in using Large Language Models (LLMs) like GPT’s, BERT [99], and 
Llama [100] in medical diagnostics. Traditionally used for tasks involving language, LLMs are now 
being explored for their potential to interpret medical data and support clinical decisions. By 
combining LLMs with medical imaging, such as OCT scans, we hope to create advanced diagnostic 
systems that can analyze both visual and text-based information, making predictions more accurate. 
Several recent studies have started investigating how LLMs can be applied in medical diagnostics, 
and in the following sections, we will review works that discuss the use of LLMs in diagnostic 
models. 

A work proposes DeepDR-LLM system comprises two modules: Module I (LLM module), which 
provides personalized recommendations for diabetes patients, and Module II (DeepDR-Transformer 
module), which handles image quality assessment, DR lesion segmentation, and DR/DME grading 
from fundus images. There are two integration modes for the modules within the system. In the 
physician-involved mode, Module II’s outputs assist physicians in generating DR/DME diagnoses, 
while in the automated mode, the results, including DR grade, DME grade, and lesion presence, are 
directly classified by Module II [101]. A digital ophthalmologist app was developed using GPT-4V 
and its performance was evaluated with a dataset containing 60 images across 60 ophthalmic 
conditions and 6 modalities, including slit-lamp, scanning laser ophthalmoscopy (SLO), fundus 
photography of the posterior pole (FPP), optical coherence tomography (OCT), fundus fluorescein 
angiography (FFA), and ocular ultrasound (OUS). The chatbot was tested with ten open-ended 
questions per image, addressing examination identification, lesion detection, diagnosis, and decision 
support [102].  

In a study, 1226 fundus fluorescein angiography reports and their corresponding diagnoses 
written in Chinese were collected, and ChatGPT was tested with four prompting strategies: direct 
diagnosis, diagnosis with a step-by-step reasoning process, and in both Chinese and English [103]. 
Finally, a study highlights the exciting potential of using ChatGPT in ophthalmology, particularly in 
areas such as clinical decision-making, education, and research. However, it acknowledges the 
limitations, including the risk of generating incorrect outputs and concerns over data security. The 
study recommends vigilance, particularly in ensuring accuracy, addressing ethical considerations, 
and maintaining data privacy [104]. 

6.3. Proposals for Future Research 

Future research in the application of (OCT) for ocular disorder prediction could benefit greatly 
from the inclusion of OCT images corrupted by various types of noise, such as Gaussian, salt and 
pepper, uniform, speckle or Rayleigh noise, shown in Figure 5. Incorporating these noisy images into 
datasets can help assess the robustness of deep learning models under less-than-ideal conditions, 
which are common in real-world clinical settings. Additionally, LLMs could be employed to assist in 
identifying different types of noise, enabling automated preprocessing techniques. This approach 
could complement traditional noise reduction strategies by providing more precise noise recognition, 
leading to model performance.  

Another promising direction for future research involves the incorporation of adversarial testing 
into OCT feature extraction frameworks. Adversarial attacks, which involve small, carefully crafted 
perturbations to input data, can degrade model performance, particularly in medical imaging 
applications. Therefore, methods and frameworks designed to test the resilience of OCT models 
against these attacks are essential. Preprocessing techniques to remove adversarial samples could be 
developed to safeguard model integrity. These techniques might include adversarial training, where 
models are exposed to adversarial examples during training, or using denoising autoencoders to filter 
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out perturbations. By addressing the challenge of adversarial robustness, future models can be made 
more reliable, maintain high accuracy and sensitivity even under clinical conditions. 

 

Figure 5. Gaussian, salt and pepper, uniform, speckle and Rayleigh noise (by rows) are added to the Normal, 
AMD, and DME (by columns), where first column are the originals. Images taken from D1. 

7. Discussion  

The findings of this paper highlight the progress made in the application of OCT for the 
diagnosis of ocular disorders. The comparative analysis of hand-crafted feature extraction methods 
and deep learning techniques reveals clear differences in their respective strengths and weaknesses. 
While traditional feature extraction methods rely heavily on domain knowledge and expert 
intervention, they tend to be more rigid and less adaptable to variations in data. In contrast, deep 
learning approaches, particularly CNNs, have demonstrated superior ability to automatically learn 
relevant features from raw data, making them more robust to data variations. The evaluation of 
various CNN architectures, including those incorporating attention mechanisms and multi-scale 
feature extraction, further underlines the potential of deep learning in improving the prediction of 
ocular disorders. 

Despite the promising results from deep learning models, several challenges remain, especially 
in their application to real-world scenarios. One key concern is the vulnerability of deep learning 
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models to adversarial noises and perturbations, which can degrade their performance. These 
adversarial conditions are a significant gap identified in this study. This highlights the need for 
further research into making these models more resilient to small, intentionally designed changes in 
input data. Additionally, while CNNs have shown potential for image analysis, their performance 
may vary depending on the dataset used, and their reliance on large-annotated datasets remains a 
limitation in clinical settings where data availability may be scarce. 

Looking ahead, the integration of deep learning techniques with OCT imaging has potential for 
improving early detection of ocular disorders. The ability to automate feature extraction from OCT 
images not only reduces the need for manual intervention but also accelerates the diagnostic process. 
Future research should also focus on enhancing model robustness through techniques such as 
adversarial training and data augmentation to mitigate the impact of noisy or incomplete data. By 
overcoming current limitations, the use of OCT in conjunction with deep learning has the potential 
to improve ocular disorder diagnosis leading to better outcomes. 

8. Conclusions 

In conclusion, this paper presents a comprehensive review of the methodologies employed in 
OCT image analysis for the early diagnosis of ocular disorders, comparing traditional hand-crafted 
feature extraction techniques with emerging deep learning models. It is evident that while deep 
learning approaches, particularly CNNs, offer significant advantages in terms of automatic feature 
extraction and model robustness. However, there are still challenges related to data quality and 
adversarial attacks. The findings underscore the importance of advancing OCT image feature 
extraction methods, particularly through the integration of handcraft and deep learning, to enhance 
diagnostic accuracy. Future research should focus on improving model resilience, refining 
preprocessing techniques, and exploring innovative ways to handle noisy or adversarial data, which 
will contribute to the broader adoption of OCT imaging in clinical practice. 
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