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Abstract

Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders
such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural
changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This
paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted
and deep learning-based feature extractors. While the field has seen rapid growth, a detailed
comparative analysis of these methods has been lacking. We address this by reviewing research from
the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational
cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and
macular degeneration. We also assess public OCT datasets widely used in model development. A
unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based
diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a
practical, robust defense strategy that integrates with existing models and outperforms current
solutions. Our findings emphasize the value of combining classical and deep learning methods with
strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer
guidance for future research and clinical integration.

Keywords: Optical Coherence Tomography (OCT); Hand-crafted Features; Deep Learning Models;
Adversarial Attacks; Robustness in Medical Imaging; Security in AI Model; Glaucoma Detection;
Diabetic Retinopathy; Clinical Decision Support Systems

1. Introduction

1.1. Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive imaging technology essential to the
field of ophthalmology. Developed in the early 1990s, OCT utilizes light waves to capture high-
resolution, cross-sectional images of the retina, the light-sensitive tissue at the back of the eye. This
non-invasive technology makes it beneficial because it does not require contact with the eye, making
it suitable for sensitive patients or those that need frequent assessments. Furthermore, the
widespread availability of OCT has made it a standard tool in clinical settings. This allows clinicians
to observe the retina’s layers in detail, enabling them to detect and monitor a range of ocular diseases
[1-3]. These observations allow for the visualization of changes in the retina that might signify early
disease stages. This is significant in diagnosing conditions such as glaucoma, where early detection
can prevent the progression of vision loss. Moreover, OCT plays a vital role in monitoring the
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progression of diseases like age-related macular degeneration, diabetic retinopathy, and other ill
conditions of the eye [4-7].

Age-related Macular Degeneration (AMD) comes in two forms: dry and wet. Dry AMD is the
common type and develops when parts of the macula, a small area in the center of the retina that
ensures sharp vision, get thinner with age and tiny clumps of protein called drusen grow. This causes
a gradual loss of central vision. Wet AMD, also refers to as Choroidal Neovascularization (CNV), is
less common but more severe and occurs when new, abnormal blood vessels grow under the retina,
which can leak blood and fluids. This leakage can cause rapid damage to the macula, leading to
quicker and more serious vision loss than dry AMD. Diabetic retinopathy (DR) occurs in people who
have diabetes. High blood sugar levels cause damage to the blood vessels in the retina. These vessels
can swell and leak, or they can close, stopping blood from passing through. These changes can cause
central and peripheral vision over time. Diabetic macular edema (DME) is a subset of diabetic
retinopathy. Similar to DR, high blood sugar levels damage the small blood vessels in the retina,
leading them to leak fluid or bleed. When this fluid accumulates in the macula, it causes swelling,
and the vision becomes blurred. DME is a major cause of vision loss in people with diabetes [8-11].

Other ill conditions of the eye include a macular hole (MH) and Central Serous Retinopathy
(CSR). A macular hole is a small break in the macula, which leads to blurring and distortion of central
vision. These holes can develop from the natural shrinking of the vitreous gel that fills the eye or from
injuries or other eye diseases. CSR is a condition where fluid builds up under the retina, creating a
detachment that specifically affects the macula, leading to distorted and blurred vision. The condition
is often stress-related and is more common in men than women. CSR usually resolves on its own, but
severe cases might require treatment to prevent lasting damage to the retina. The OCT images above
in Figure 1 display visualizations of the ocular disorders mentioned [18].

Figure 1. Shows OCT images of various ocular disorders: (top row) AMD, CNV, CSR, DME; (bottom row) DR,
Drusen, MH and Normal. These images are taken from [18].

Figure 2 presents a pair of fundus and OCT scans, emphasizing the complementary relationship
between these two retinal imaging methods. Fundus images provide a wide-field photograph of the
retina, which highlights key features like blood vessels and the optic disc. These features are essential
for diagnosing diseases such as diabetic retinopathy and glaucoma. The OCT scan (below) offers a
detailed cross-sectional view of the retina, which belongs to a specific portion of the fundus image.
Together, these images are crucial for an eye health assessment, as the fundus image identifies
surface-level abnormalities, while the OCT scan reveals deeper structural issues like retinal
thickening or fluid accumulation [12].

Another utility of OCT in clinical settings lies in the ability to provide detailed images, which
enables analysis of these images through a process known as feature extraction. Feature extraction
involves identifying specific attributes or changes in the OCT images that are relevant for diagnosing
eye conditions.
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Figure 2. Shows the corresponding relationship between OCT and Fundus image taken from [22].

1.2. Feature Extraction Techniques

In OCT image classification for ocular disorders, two main types of methods are used to analyze
images: hand-crafted features and deep learning approaches, including Convolutional Neural
Networks and Vision Transformers.

Hand-crafted features involve manually designed techniques where specific details of an image
are selected based on what is already known about eye diseases. For example, experts might choose
to focus on certain patterns or textures in the image that typically indicate a problem. This method
relies heavily on the knowledge and experience of specialists to identify which features are important
for diagnosis. While it can be very effective when the disease markers are well understood, it’s less
flexible and might not handle new or complex situations as well [23-27].

On the other hand, deep learning methods like CNNs and transformers automate the process of
finding important features in images. CNNs work by processing images through multiple layers,
each designed to recognize different features, from simple edges to more complex shapes. This allows
the network to understand the image in a structured way, layer by layer. CNNs are particularly good
at handling images where recognizing localized patterns is key to making a diagnosis. Transformers,
which were originally designed for processing text, have been adapted to work with images. They
look at the entire image at once, rather than piece by piece. This helps them understand the broader
context and relationships within the image, which can be beneficial in complex diagnostic scenarios
where the overall structure and layout of the image elements are important [38-67].

Both CNNs and transformers learn from examples rather than being programmed with specific
rules about what to look for. They need a lot of data to learn effectively and can sometimes act like
"black boxes," making it hard to understand how they’ve reached their conclusions. The choice
between using hand-crafted features or deep learning approaches depends on factors like the
availability of data, how decisions are made, and how accurate the results need to be. Understanding
these algorithms’ reliance on data brings us to the importance of OCT datasets. These datasets are
crucial for training and testing these models, determining their effectiveness and accuracy [65-85].

1.3. Other Survey Literature on OCT

Current survey literature on OCT in ocular disorders, such as [1-3] primarily concentrates on
specific applications of deep learning and computer vision for diagnosing and analyzing retinal
diseases. These studies explore topics like automatic segmentation, classification of retinal diseases
through OCT images, and the use of deep learning for detecting conditions such as glaucoma and
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age-related macular degeneration. For example, surveys like [2] and [3] delve into the technical
methodologies of image processing and the latest advancements in algorithmic approaches using
OCT images. Other existing literatures such as [5,6,9] emphasize the results of applying these
advanced computational techniques without discussing the foundational feature extraction methods
that still play a crucial role in scenarios where training data is limited or specific diagnostic features.
Similarly, [8,10] focus on the methodological aspect of aligning OCT images to enhance the accuracy
of longitudinal studies and treatment monitoring. Table 1 compares our survey against others in the
area of OCT image classification for ocular disorders.

In contrast, our survey presents a more holistic approach by bridging the gap between deep
learning-based techniques and traditional hand-crafted feature extraction methods, a comparison
largely absents in previous studies. While prior works such as [4,7,11] have explored deep learning
approaches in various capacities, they lack in discussion on the comparative effectiveness of
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) versus traditional hand-
crafted techniques. Moreover, our survey uniquely includes a comprehensive review of multiple
OCT datasets, which is crucial for evaluating the generalizability of feature extraction methodologies.

Our survey also provides an extensive discussion on the datasets employed in OCT-based image
analysis. The choice of datasets significantly impacts model performance, particularly in clinical
settings where the variability in imaging conditions, disease prevalence, and patient demographics
can affect the reliability of automated classification models. Many existing surveys rely on a limited
set of public datasets, such as [13-22] datasets, without critically evaluating their applicability to real-
world clinical scenarios. In contrast, our work examines the diversity of available datasets,
highlighting their strengths and limitations in terms of sample size, and disease coverage. By doing
so, we offer insights into how dataset selection influences model bias, generalization capability, and
potential deployment in medical diagnostics.

Additionally, our survey does not merely summarize existing methods but critically evaluates
their strengths, weaknesses, and applicability under different clinical and computational constraints.
Unlike existing studies that primarily focus on retrospective analysis, our work also identifies key
gaps in current research and suggests new directions, particularly in areas such as adversarial attacks
on OCT image classification and the integration of Large Language Models (LLMs) into ocular
disease diagnostics. These aspects have been largely overlooked in previous surveys, making our
study a valuable contribution that extends beyond conventional literature reviews.

By addressing the intersection of deep learning and traditional feature extraction, our survey
provides a comprehensive and balanced perspective, offering insights into the current capabilities
and future directions of OCT image feature extraction technologies. This comparative analysis not
only enhances understanding but also guides future research in a way that no other existing survey
has attempted, making it a unique and essential reference for researchers in this domain.

Table 1. compares our survey against others in the area of OCT image classification for Ocular disorders.

Feature Comparison [11 [2] [3] 1[4 [51 [6] [71 [8] [9] [10] [11] [12] OUR
Covers both DL and Hand-Crafted ) ) ) ) ) ) ) ) ) ) v ) v
Features
In-depth discussion on Hand-Craft ) ) ) ) ) } v v } ) ) v
Features

In-depth discussion on CNNs and its
various types
In-depth discussion on Vision
Transformers
In-depth comparisons between types
of CNNs
Includes comparative analysis of DL
and HCF
Includes in-depth discussion of
ocular disorders
Discusses latest advancements - o v 7 - - o 77 -
Review of multiple OCT datasets - - - - - - - - - -

v v v v v v v v v v v v

NN
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Feature Comparison [11 2] [3] [4 [51 [6] [71 [81 [91 [10] [11] [12] OUR
Reviews specific OCT imaging

. - - - - - - - - 4 v/
technique

Identifies gaps in current research - v v v v v v v 7 - v v
Suggest future research into
Adversarial Attacks
Suggest future research in LLMs - - - - - - - - - - - -

NN N N

This survey has the following contributions.

1. Provides a systematic review of the existing methods of feature extraction from OCT images,

categorizing them into hand-crafted and deep learning-based approaches:

i. Evaluates these methods against various performance metrics, accuracy, precision, sensitivity,
specificity and F1 score.

ii. Evaluates and highlights the evolution using Hand-Crafted Features to using deep learning
techniques like CNNSs and Transformers in enhancing feature extraction from OCT images.

2. Assesses the impact of dataset choice on the performance of feature extraction methods.

3. Explores the emerging field of adversarial conditions in medical imaging, particularly in OCT,
to propose future directions for research that could lead to more robust, accurate, and clinically
relevant feature extraction technologies.

This Survey has the following sections. “Review of OCT Datasets” section presents commonly
used datasets in OCT classification. “Hand Crafted Feature Extraction Techniques” describes recent
feature engineered techniques in OCT Ocular disease classifications. “Deep Learning Approaches”
section describes neural network architects for OCT Ocular disorder detections using CNNs and
Transformers. “Comparative Analysis” Compare the performance of hand-crafted features, CNNs,
and transformers using data from various datasets. “Future Works” discusses the potential of
adversarial samples to test and improve the robustness of OCT classification models. “Discussion”
analyzes the findings from the comparative and dataset review sections. “Conclusion” recaps the
major insights of the paper.

2. Review of OCT Datasets for Ocular Disorder Classification

As the OCT technology has advanced, there’s been a growing need for OCT datasets. These
collections of eye images are crucial for training and testing the accuracy of models designed to spot
eye problems. These models are used in deep learning to analyze images. Having a variety of high-
quality OCT datasets is key to making these models as effective as possible. In this review, we will
look at different OCT datasets used for identifying eye diseases. We will go over what makes each
dataset unique and how they help improve the technology used in diagnosing eye conditions.

The first dataset, referred to as Dataset 1, includes volumetric scans from 45 patients, divided
into three groups: 15 normal patients, 15 with dry Age-related Macular Degeneration (AMD), and 15
with Diabetic Macular Edema (DME). All SD-OCT volumes were collected using Spectralis SD-OCT
equipment (Heidelberg Engineering Inc.,, Heidelberg, Germany) at Duke University, Harvard
University, and the University of Michigan [13]. The second dataset, referred to as Dataset 2, comes
from the Noor Eye Hospital dataset cited in reference. It includes 148 SD-OCT volumes, of which 48
are Age-related Macular Degeneration (AMD), 50 are Diabetic Macular Edema (DME), and 50 are
normal volumes. These were captured using the Heidelberg SD-OCT imaging system at Noor Eye
Hospital in Tehran (NEH). Each volume contains between 19 to 61 B-scans, with each B-scan having
a resolution of 3.5 micrometers and the overall scan dimensions being 8.9 by 7.4 mm? [14].

Creating a dataset with classes for Normal, Diabetic Macular Edema (DME), and Age-related
Macular Degeneration (AMD) is beneficial because it covers two common and significant causes of
vision impairment. Normal images help the model understand what a healthy retina looks like. DME
images teach models to recognize the swelling caused by fluid accumulation from damaged blood
vessels in diabetes. AMD images show changes in the retina due to aging, including drusen and other
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abnormalities. Datasets 1 and 2 are effective for general screening tools and simplify the training
process by focusing on broader categories of eye health issues.

Dataset 3 was also obtained using the Heidelberg SD-OCT imaging system at Noor Eye Hospital
(NEH) and is available on the Mendeley database website as referenced in [15]. It initially included
16,822 OCT images, covering 120 volumes of Normal images, 160 volumes of Drusen, and 161
volumes of CNV (Choroidal Neovascularization). For experiments, 12,641 images are selected, 3,234
CNV, 3,740 Drusen, and 5,667 Normal. The selected images focus only on the most severe case
scenarios for each category. This dataset configuration aims on changes related to AMD. Drusen are
the early indicators of AMD and separating them into their own class allows for early detection of
the disease before it potentially progresses to more severe stages, CNV. This setup is useful for
specialists focused on monitoring and treating AMD, allowing for early intervention strategies and
careful monitoring of disease progression.

Dataset 4 is a publicly available dataset known as the UCSD Dataset [16]. This dataset contains
108,312 OCT images in the training set and 1,000 images in the test set. Within the training dataset,
37,206 images are CNV, 11,349 images are DME , 8,617 images are Drusen, 51,140 Normal images. A
trimmed down version is also employed in some literature. The trimmed down version has the
following class-count: 37,455 are CNV, 11,598 are DME, 8,866 are drusens, and 26,565 are normal,
with a total of 84,484 OCT images. By expanding the dataset to include CNV, a major feature of wet
AMD, adds a layer of specificity. This differentiation is crucial because CNV requires different
treatment strategies from other types of AMD. Including CNV as a separate class helps the model to
distinguish between the dry and wet forms of AMD alongside recognizing diabetic-related changes
and normal conditions.

Dataset 5 has 384 thickness maps of the total retina from individual subjects, where 269 are
subjects with intermediate AMDs and 115 subjects are free of any ocular diseases [17]. These
volumetric rectangular scans were obtained from Bioptigen, Inc Research Triangle Park, NC, which
was approved by the institutional review boards of Devers Eye Institute, Duke Eye, Center, Emory
Eye Center, and National Eye Institute. A dataset with only normal and Intermediate AMD OCT
images, narrows the focus of the diagnostic tool. It is a simpler dataset that enhances the model’s
ability to detect stages of AMD, particularly the intermediate stage which is often difficult to
diagnose.

Dataset 6 consists of 24,000 images and is divided equally into eight different categories: AMD,
CNV, DME, MH, DR, CSR and one for healthy subjects [18]. This dataset allows for very precise
diagnosis and is valuable in specialized care. For example, distinguishing between different types of
AMD or recognizing characteristics of less common conditions like CSR can enable more targeted
interventions. However, this model is required to learn from a larger volume of data, distinguishing
subtle differences between more categories. It demands more sophisticated algorithms and greater
processing power. Similar to Dataset 6, Dataset 7 includes 4 classes, which are Normal Macula,
Macular edema, macular hole, and AMD [19]. Dataset 7 consists of 326 macular spectral-domain OCT
scans collected from 136 subjects, encompassing a total of 193 eyes. The scans have an original
resolution of either 200 x 200 x 1024 or 512 x 128 x 1024 in a 6 x 6 x 2 mm volume (width, height, and
depth). This dataset was developed by the UPMC Eye Center, Eye and Ear Institute, Ophthalmology
and Visual Science Research Center, Department of Ophthalmology. In a comparable dataset, [71],
the Eye Center at Renmin Hospital of Wuhan University gathered 4,076 OCT images of DM patients,
centered on the fovea, between 2016 and 2022. These images were obtained using an OCT device
(Optovue RTVue, Optovue, Fremont, California, USA).

Dataset 8 is developed by the Singapore Eye Research Institute (SERI) were collected using the
CIRRUS™ SD-OCT device from Carl Zeiss Meditec, Inc., located in Dublin, CA. This dataset includes
32 OCT volumes, divided into 16 cases of Diabetic Macular Edema (DME) and 16 normal cases. Each
volume comprises 128 B-scans, with a resolution of 512 x 1024 pixels. All SD-OCT images were
reviewed and assessed by trained graders who classified them as either normal or DME cases based
on the evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and
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subretinal fluid. Dataset 9 was obtained using a raster scan protocol with a 2mm scan length,
featuring a resolution of 512x1024 pixels. These images were captured with a Cirrus HD-OCT
machine (Carl Zeiss Meditec, Inc., Dublin, CA) at Sankara Nethralaya (SN) Eye Hospital in Chennai,
India. For each volumetric scan, an experienced clinical optometrist (MKP) selected a fovea-centered
image. Dataset 9 comprises 102 images of macular holes (MH), 55 images of age-related macular
degeneration (AMD), 107 images of diabetic retinopathy (DR), and 206 normal retinal images.

Another dataset, D10, circular OCT B-scan images, collected using the swept-source OCT device
(DRI-OCT, Topcon, Inc., Tokyo, Japan), focus on a 3.4mm diameter circle centered on the optic disc
and are available in various sizes. This dataset consisting of 1395 samples (697 glaucoma and 698 non-
glaucoma) from 641 participants, involving a total of 1015 eyes, with 135 eyes having follow-up data.
Visual field tests and OCT images are provided for all participants. The dataset categorizes samples
into Early, Moderate, and Advanced stages, with 447, 140, and 110 samples respectively. OD (right
eye) samples include 201 in the Early stage, 82 in the Moderate stage, and 56 in the Advanced stage.
OS (left eye) samples include 246 in the Early stage, 58 in the Moderate stage, and 54 in the Advanced
stage [22]. Table 2 provides a summary of the information for each dataset.

Table 2. provides a summary of the information for each dataset.

Dataset Classes and Counts Institutional Source or website
1 15 DME volume images , 15 AMD volume images, Duke University, Harvard University, and University of
and 15 Normal volume images Michigan
48 AMD vol i DME i 1
2 8 volume images , 50 images, 50 norma Noor Eye Hospital in Tehran (NEH)

images

120 Normal volume images, 160 Drusen volume
3 images, and 161 CNV volume images, 16,822 3D OCT Noor Eye Hospital in Tehran (NEH)
images Total
37,206 CNV 2D images, 11,349 DME images University of California San Diego, Guangzhou Women

.
4 8,617 Drusen 2D images, 51,140 Normal 2D images and Children’s Medical Center
Trimmed Down version of 4* referred to as OCT2017
4 37,455 CNV 2D images, 11,598 DME 2D images, 8,866 University of California San Diego, Guangzhou Women
drusens 2D images, and 26,565 normal 2D images, and Children’s Medical Center
total of 84,484 OCT images
5 269 Intermediate AMD volume images and 115 Boards of from Devers Eye Institute, Duke Eye, Center,

Normal Volume images Emory Eye Center, and National Eye Institute
3000 AMD images, 3000 CNV images, 3000 DME
6 images, 3000 MH images, 3000 DR images, 3000 CSR
images, 24,000 total 2D OCT images
Normal Macular (316), Macular Edema (261), Macular UPMC Eye Center, Eye and Ear Institute, Ophthalmology

Boards of from Devers Eye Institute, Duke Eye, Center,
Emory Eye Center, and National Eye Institute

Hole (297), AMD (284) and Visual Science Research Center

3319 OCT images Total, 1254 early DME, 991

7* advanced DME, 672 severe DME and Renmin Hospital of Wuhan University
402 atrophic maculopathy

8 16 DME volume images & 16 normal volume images Singapore Eye Research Institute (SERI)

Macular holes, MH (102), AMD (55), Diabetic Cirrus HD-OCT machine (Carl Zeiss Meditec, Inc.,
9 retinopathy, DR (107), and Normal retinal images =~ Dublin, CA) at Sankara Nethralaya (SN) Eye Hospital in

(206) Chennai, India

Zhongshan Ophthalmic Center,

10 1395 samples (697 glaucoma and 698 non-glaucoma) Sun Yat-sen University

Having explored the various datasets used in OCT for ocular disease predictions, we now shift
our focus to how to effectively analyze this data. This brings us to two main techniques for extracting
useful information from the images: hand-crafted features and deep learning.

3. Hand-Crafted Feature Extraction Techniques

This section aims to provide a thorough overview of various hand-crafted feature extraction
methods that have been developed to analyze OCT images. We explore how these techniques operate
by extracting specific, predefined features from images such as texture, shape, and intensity. These
predefined features are known to be indicators of ocular disorders. These features are then used to
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classify, segment, and analyze OCT data in the context of diagnosing conditions. Specifically, articles
that will be reviewed employ techniques such as Local Binary Patterns (LBP) and Dictionary
Learning, which have been effective in extracting meaningful features from OCT images.

Local Binary Patterns (LBP) are a technique used to describe the local spatial patterns and texture
of an image. In the context of OCT imaging, LBP helps in identifying fine-grained patterns within the
retina that may indicate early signs of diseases such as macular degeneration or diabetic retinopathy.
The method works by comparing each pixel with its neighbors and encoding these relationships into
a binary code, which effectively captures the texture information. The classical Local Binary Patterns
(LBP) is a texture image descriptor that emphasizes the center pixel and its neighboring pixels to
encode structural texture information within an image. The generalized form of LBP is expressed as
follows:

LBPUG) = ) F@sU; = 1) W

where IC represents the center pixel, Ii represents the adjacent surrounding pixels, f(i) =2i,i=0, ...,
7 with R representing a region defined by the kernel size. The function s(li — IC) assigns a value of 1
if the difference between the surrounding pixel and the center pixel is greater than or equal to zero
(T is set to zero); otherwise, it assigns a value of 0. Each kernel is placed over a pixel (IC) and
compared to its surrounding neighbors (Ii) using the mentioned function. A binary sequence is
generated based on these comparisons, and each sequence is assigned a corresponding to decimal
weight of f(i). The following are works developed in the past ten or more years.

A machine learning method has been developed to classify OCT images for three retina-related
diseases, macular hole (MH), age-related macular degeneration (AMD), and diabetic retinopathy
(DR), and normal (NO) OCT images. This method employs LBP to extract features from the images
and utilizes a classifier that operates on the random forests technique to differentiate between the
disease states and normal conditions [23]. A low-complexity feature vector connection method,
known as slice-sum, has been introduced to reduce the computational load required by the SVM
classifier. The detector employs only the LBP and SVM classifier, which helps minimize the hardware
resources needed for processing [24]. A method has been developed to extract global descriptors from
the 2D feature image for LBP and from the 3D volume OCT image. As a result, the global-LBP
mapping technique will extract d feature elements [25].

A method involves a standard classification process that includes initial preprocessing steps to
eliminate noise and flatten each B-Scan. It utilizes features like Histogram of Oriented Gradients
(HOG) and LBP, which are extracted and then merged to form various feature vectors. These vectors
are then input into a linear Support Vector Machines (SVM) Classifier for further analysis [26]. A
method local texture descriptor known as Multi-Kernels Wiener Local Binary Patterns (MKW-LBP)
for the classification of eye diseases such as Aged Macular Degeneration, Diabetic Macular Edema,
and Normal eyes. Optimize the accuracy of this descriptor using classification techniques such as
Support Vector Machines (SVMs), Adaboost, and Random Forest. The experimental evaluations
demonstrate that MKW-LBP achieves superior diagnostic and recognition performance when
compared to recent developments in texture descriptors [27]. Similar methods develop local texture
descriptor algorithms, Multi-Size Kernels Echo-Weighted Median Patterns (MSKEMP) and Alpha
mean Local Binary Patterns (AMT-LBP), to avoid speckle noise and classify eye diseases like DME
and AMD. The methods also employ Singular Value Decomposition to achieve optimal accuracy with
SVM and Random Forest classification techniques [28,29].

A method that presents an automatic detection method that combines discrete wavelet
transform (DWT) image decomposition, local binary patterns (LBP) based texture feature extraction,
and multi-instance learning (MIL). LBP is chosen for its ability to handle low contrast and low-quality
images, minimizing the interference from the image itself on the detection method. DWT image
decomposition supplies high-frequency components rich in details for extracting LBP texture
features, removing redundant information unnecessary for diagnosing CSCR in the raw image [30].
Other hand-crafted feature extractors are also employed and are discussed below. Another method
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is a machine learning approach that utilizes global image descriptors derived from a multi-scale
spatial pyramid. Local features are dimension-reduced local binary pattern histograms, which
encode texture and shape information in retinal OCT images and their edge maps. This
representation works at multiple spatial scales and granularities, resulting in robust performance.
Two-class support vector machine classifiers to identify the presence of normal macula and three
specific pathologies. Additionally, to distinguish sub-types within a pathology, we build a classifier
to differentiate full-thickness holes from pseudo-holes within the macular hole category [31].

A two-feature-labeling method for the 3D OCT volume: the slice-chain labeling method and the
slice-threshold labeling method. These methods are evaluated using SVM [32]. An approach utilizes
retinal features like retinal thickness, individual retinal layer thickness, and volumes of pathologies
such as drusen and hyper-reflective intra-retinal spots. The approach automatically extracts ten
clinically important retinal features from segmented SD-OCT images for classification. The
effectiveness of these features is evaluated using several classification methods, including Random
Forest [33]. Another approach, a contrast enhancement-based adaptive denoising is used to eliminate
speckle noise. Pixel grouping and iterative elimination, based on typical layer intensities and
positions, are used to identify the RPE layer. Randomization techniques, followed by polynomial
fitting and drusen removal, are then applied to estimate a baseline. Classification is determined by
comparing the drusen height to the baseline [34]. A method for automated detection of retinal
diseases in eyes uses Histogram of Oriented Gradients (HOG) descriptors and support vector
machines (SVMs) to classify each image within a spectral domain (SD)-OCT volume as either normal,
containing dry AMD, or containing DME [35].

Finally, the following last two methods are based on dictionary learning. An approach utilizing
HOG features of pyramid images combined with three different dictionary learning methods—
Separating the Particularity and the Commonality dictionary learning (COPAR), Fisher
Discrimination Dictionary Learning (FDDL), and Low-Rank Shared Dictionary Learning (LRSDL)
was investigated to achieve the highest classification accuracy of OCT images [36]. Another approach
proposes a general framework for distinguishing normal OCT images from DME and AMD scans
using sparse coding and dictionary learning. This includes a preprocessing and alignment technique
for the retina to address the shortcomings of previous methods, which struggle to classify datasets
with severely distorted retina regions. Additionally, sparse coding and structured preprocessing (SP)
are employed, along with an SVM for classification [37]. Table 3 shows results of handcrafted-feature
extractor work discussed.

Table 3. List of Hand-Crafted Methods.

Refs Method Method’s Descriptions Performance Summary

- i ice- i D5 . % itivity (%),
[24] LBP Slice-Sum & SVM Low-complexity feature vector slice-sum with Method: Accuracy (%), Sensitivity (%)

SVM classifier LBP-RIU2: 90.80, 93.85, 87.72
Global descriptors extracted from 2D feature DIVACC% F1% SE% SP%
[25] 3D-LBP image for LBP and from the 3D volume OCT Global-LBP: 81.2 78.5 68.7 93.7
image. Features are fed into classifier for Local-LBP: 75.0 75.0 75.0 75.0
predictions Local-LBP-TOP: 75.0 73.3 68.7 81.2
Histogram of Oriented Gradients (HOG) and LBP D9VSens, Spec, Prec, F1, Acc.
[26] HOG + LBP features are extracted combined. These features HOG: 0.69 0.94 0.91 0.81 0.78
are fed into linear SVM Classifier HOG+PCA: 0.75 0.87 0.85 0.80 0.81

DiKernel / Classifier:

Prec. (%), Sen. (%), spec. (%), Acc (%),
3 x 3 /SVM-Poly: 97.84, 97.48, 98.89, 97.86
3 x 5 /SVM-Poly: 98.84, 98.59, 99.41, 98.85
5 x 5 /SVM-Poly: 98.19, 98.05, 99.15, 98.33

Image denoised using wiener filter. MKW-LBP
descriptor calculates the mean and variance of
neighboring pixels. SVMs, Adaboost, and
Random Forest are used for classifications.

Multi-kernel Wiener
[27] local binary patterns
(MKW-LBP)

Image denoised using median filter and is
flattened. MSKEMP is a variant of LBP which
Multi-Size Kernels  selects a weighted median pixel in a kernel and is
[28] Echo-Weighted Median applied to preprocessed image. Also employs
Patterns (MSK-EMP) Singular Value Decomposition and Neighborhood
Component Analysis based weighted feature
selection method.

Classifier: prec., sens., spec, acc
DISVM-Poly: 0.9976, 0.9971, 0.9989, 0.9978
D2SVM-Poly: 0.9662, 0.9663, 0.9833, 0.9669
D3SVM: RBF: 0.8952, 0.8758, 0.9395, 0.8887
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Image denoised using median filter and is
Alpha Mean trim Local flattened. AMT-LBP is a variant of LBP which
[29] Binary Patterns (AMT- encodes by averages all pixel values in a kernel
LBP) omitting highest and lowest values. SVM is
employed for classification

DISVM-Poly: tr1=0, tz=2 | | SVM-Poly:
tn=2,
t=0 || SVM-Poly: tr=2, tr=2
precision 0.9796 |1 0.9846 || 0.9710
sensitivity 0.9751 |1 0.9813 || 0.9654
specificity 0.9887 11 0.9920 || 0.9854
accuracy 0.9774 |1 0.9836 || 0.9700

F-measure 0.9773 11 0.9829 |1 0.9680
AUC 0.9740 11 0.9802 || 0.9697

Combines discrete wavelet transform (DWT)

H-F-V&H-LBP + T image decomposition and LBP based texture

[30] feature extraction, and multi-instance learning D3BAcc.: 99.58%
(MIL). LBP is chosen for its ability to handle low
contrast and low-quality images.
T B- f 1 i 1
32] Slice-chain labeling (i\Cr sc;m;o ? \llobuin; 1rrr‘13gt;:reherﬂip O}I,fidh D3BD5 — Acc.: 92.50%
Slice-threshold labeling whete eachi stice 18 fabeted a eshold, whic D3BD5 — Acc.: 96.36%
extracts features.
The thi f th inal 1 i
3 Retinal thickness det ;Cénce;i; ¢ eiretina . f?ygrs ' I;;eiisu:ef}’l D3BD1 — Acc.: 97.33%, Sen. 94.67%,
Method and eac age 15 Classtied accoramg 0 e ghec. 100%, Fl: 97.22%, AUC: 0.99
thickness.
RPE lay.er det?ctlog Pixel grouping / iterative elimination, guided by PLYAMD Acc: 100%
and baseline estimation layer intensities are employed to detect the RPE
[34] ing statistical layer and is enhanced by randomization Normal Acc: 93.3%
using statistica ayer and is enhanced by randomizatio DME Acc: 96.6%
methods techniques.
Histogram of Oriented Noise removal using sparsity-based block DLVAMD Acc: 100%
[35]  Gradients (HOG) matching and 3D-filtering. HOG and SVM are Normal Acc: 86.67%
descriptors and SVM  employed for classification of AMD and DME. DME Acc: 100%

DLVD1 — AMD Acc: 100%
Normal Acc: 100%

Dictionary Learning
[36] (COPAR), (FDDL), and

Image denoising, flattening the retinal curvature,
cropping, extracting HOG features, and

(LRSDL) classifying using a dictionary learning approach. DME Acc: 95.13%
Preprocessed retina aligning and image cropping,
Sparse Coding Then, image partitioning, feature extracting, PLVD1 — AMD Acc: 100%

Normal Acc: 100%
DME Acc: 95.13%

[37] dictionary training with sparse coding is applied
to the OCT images. Linear SVM is utilized to

classify images.

Dictionary Learning

VVolume Classification, BB-scan classification, ?Two-Class Classification (Normal, DME), RI: Rotational
Invariant, U2: Uniform Pattern, LBP: Local Binary Patterns, HOG: Histogram of Gradients: PCA: Principal
Components Analysis: PCA, SVM-(kernel-type): Support Vector Machine (with kernel type), tn and tr: Alpha
Mean Trim Factors, P'D1, P?D2, P3D3, P4D4, P+ D4, P+D4-(2750 each class), P5D5, PD6, P7’D7, PSDS, PD9, P10D10.

4. Deep Learning Approaches

This section aims to provide a thorough overview of applications of CNNs in OCT image
classifications. Various CNN architectures have been explored to enhance the feature extraction and
accuracy. Typically, in CNNs the core operation is the convolution applied across multiple layers.
The convolution at the I-th layer is mathematically expressed as:

W _ ® y1-
hyj = Z Z WonnX(izmyj+m + D @
m n

where X(1) is the input feature map from the previous layer (or the raw image if it is the first layer,
W(]) is the convolution filter at layer L, b(l) is the bias term at layer |, hij(l) is the output feature map
at position (i,j) for layer 1. A non-linear activation function, such as ReLU, is applied to the result of
the convolution:

ag.) = ReLU (hl(]l)) = max (0, hl.(]l.))

3)

where this operation is repeated across multiple convolutional layers, allowing the network to extract
more features. After the convolutional layers, pooling layers, reduce the spatial dimensions:

€))

Q)
Py = o (ald o im)
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where the pooling window reduces the resolution of the feature map.

Next, augmentation CNNs leverage data augmentation techniques to artificially expand the
training dataset, improving model robustness and performance. Standard augmentation techniques
include rotation, flipping, and cropping. Image augmentation is often used to create diverse training
samples, reduce overfitting, and improve the model’s generalization ability. The papers reviewed
will include techniques beyond standard methods. CNNs with specialized augmentation using
Generative Adversarial Networks (GANs) aim to augment the training data by generating synthetic
but realistic images. This augmentation improves the network’s ability to generalize, especially when
the training data is scarce or imbalanced. GAN-based augmentation can be formulated as:

Xaug =G(2) 5)

where G(z) is the generator network of the GAN, which produces synthetic images from a noise
vector z and Xaug is the generated augmented image. By training CNN on both real and GAN-
generated images, the model becomes more robust to variations and improves generalization.

Additionally, regular CNNs enhanced with residual units and inception units have shown
significant promise. Residual units help in mitigating the vanishing gradient problem, allowing for
deeper networks that can learn more complex features. Residual Units in CNNs help to mitigate the
vanishing gradient problem, allowing the network to train deeper architectures. The residual block
is defined as:

y® = F(X(l),W(l)) +x® (6)

where represents the transformations (convolutions, activations) applied to the input X(I) at layer 1.
X(1) is added directly to the output, forming a shortcut connection. Inception units, which consist of
multiple convolutions with different kernel sizes, enable the network to capture hierarchy of features
by processing the input in parallel. Together, these diverse CNN architectures form the backbone of
state-of-the-art deep learning approaches for ocular disease prediction from OCT images. Inception
Units process the input using multiple convolution filters with different sizes, enabling the network
to capture features at multiple scales in parallel. The inception unit can be formulated as:

¥ = [fixa(X), fax3(X), fsxs5(X), Pooling (X)] @)

where f1x1(X), £3x3(X), and £3x3(X) represents convolutions with different filter sizes, Pooling X is an
additional pooling operation that captures larger-scale information. By combining different filter
sizes, the inception unit allows the network to capture both fine and coarse details from the input
image.

Segmentation-based Attention CNNs incorporates attention mechanisms that focus on the most
relevant regions of the OCT images, thus improving the detection of subtle pathological features.
This approach often combines segmentation tasks with the primary classification task, ensuring that
the network pays attention to critical areas while learning. The attention mechanism generates an
attention map A(X), which weighs different regions of the feature map based on their relevance:

AX) = oW, % X) ()]

where o is the generic function, typically is a sigmoid, that generates the attention weights, Wa is the
attention filter, * denotes convolution. The attention map is applied to the feature map to emphasize
the most relevant areas:

Xaee = AX) - X 9

where Xatt is the attention-weighted feature map that focuses the network’s attention on critical
regions of the OCT image.

Ensemble CNNs are another prominent strategy, where multiple CNN models are trained
independently, and their predictions are combined to produce a final output. Let fi(X) represent the
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prediction of the i-th CNN in the ensemble. The final prediction y from the ensemble is computed as
an average of all individual model outputs:

y =5 ) A0 (10)
i=1

where N is the number of CNN models in the ensemble, fi(X) is the prediction from the i-th model.
This method employs the strengths of different models, leading to improved predictive performance
and reduced variance.

Multi-scale CNNs, on the other hand, process OCT images at various scales, capturing features
at different levels of detail. This multi-resolution approach enables the network to identify both
coarse and fine-grained features, which is particularly useful in detecting a wide range of ocular
diseases. The multi-scale processing is defined as:

Y = [fa, X, fo, X, -, fre (0] (11)

where fR1(X), fR2(X), ..., fRK(X) represent the convolutions applied to the input image X at lower
(R1) to higher (RK) resolutions. The outputs from different scales are then combined, allowing the
network to analyze features across multiple resolutions in parallel. Figure 3 shows the different types
of CNN structures discussed above.

Inception Unit

CNN1 »

Residual Unit Feature extraction :
CNN 2 ED
> P Feature extraction 1
R c
€ e N
D ]
CNN » : °
E_. Feature extraction E s CNNN :
| Feature extraction
Standard Feature extraction o
\ CNN Classification model : } Ensemble CNN Classification model
. y
s, Lo
s Imbalanced Classes
Multi-scale Feature extraction P
CNN Classification model P
R
E
A D
Multi-Scale \
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Feature extraction 1
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D ———— R
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Figure 3. Different types of CNN structures.

4.1. CNNs

This section explores standard and advanced CNN techniques, including residual and inception
units, which improve feature learning and network depth, forming the methods for ocular disease
prediction from OCT images.

A hybrid Retinal Fine-Tuned Convolutional Neural Network (R-FTCNN) has been proposed for
detecting retinal diseases such as diabetic macular edema, drusen, and choroidal neovascularization
from OCT images. This study employs the R-FTCNN architecture alongside principal component
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analysis (PCA) as part of its methodology. PCA was used to transform the fully connected layers of
the R-FTCNN into principal components, and the Softmax function was applied to these principal
components to create a new classification model [38]. An approach introduces a deep learning
framework that leverages dual guidance between two tasks. First, a Complementary Mask Guided
Convolutional Neural Network (CM-CNN) is employed to classify OCT B-scans, distinguishing
between normal scans and those with drusen or CNV. This classification is guided by masks
generated from an auxiliary segmentation task. Second, a Class Activation Map Guided UNet (CAM-
UNet) for segmenting drusen and CNV lesions, utilizing the CAM output from the CM-CNN [39].
Another work presents a framework for the automated detection of retinal disorders utilizing transfer
learning. The model operates in three phases: deep fused and multilevel feature extraction using 18
pre-trained networks and tent maximal pooling, feature selection with ReliefF, and classification with
an optimized classifier [40].

A technique that involves removing the final layers from the pre-trained Inception V3 model
and utilizing the remaining portion as a fixed feature extractor. The extracted features are then fed
into a CNN designed to learn the shifts in the feature space [41]. An automated CNN architecture,
AOCT-Net, has been proposed for a multiclass classification system based on OCT. This system,
incorporating a softmax classifier, is designed to classify five types of retinal diseases AMD, CNV,
DME, drusen, and normal cases [42]. A method, iterative fusion convolutional neural network
(IFCNN), adopts an iterative fusion strategy, which combines features from the current convolutional
layer with those from all previous layers in the network. This approach enables the joint utilization
of features from different convolutional layers, leading to accurate classification of OCT images [43].
A work introduced OCT Deep Net2 for classifying optical coherence tomography images. This study
performed a four-class disease classification, with OCT Deep Net2 being an extension of OCT Deep
Net1, expanding from 30 to 50 layers. OCT Deep Net2 is a dense architecture featuring three recurrent
modules [44]. A model, based on a capsule network, is designed to enhance classification accuracy.
Capsules, which are groups of neurons representing different properties of the same object, use
vectors to learn positional relations between features in images. This reportedly offers higher
generalization performance than traditional CNNs for small affine transformations of training data,
thus requiring far fewer training samples [45].

A dictionary learning method to reduce image size, leveraging DAISY descriptors and Improved
Fisher kernels to extract OCT image features. Similar to traditional downsampling methods, the
approach functions as a form of intelligent downsampling, effectively reducing image size while
preserving essential information [46]. A work introduced two methods for detecting retinal
abnormalities from OCT images. The first method, termed S-DDL, offers a solution to the vanishing
gradient problem in DDL and reduces training time. The second method utilizes the Wavelet
Scattering Transform (WST), which incorporates predefined filters in network layers. The two
methods are compared to each other [47]. Another method proposed a weakly supervised deep
learning framework with uncertainty estimation to classify macula-related diseases from OCT
images, utilizing only volume-level labels. First, a convolutional neural network (CNN) based
instance-level classifier is iteratively refined through our proposed uncertainty-driven deep multiple
instance learning (MIL) scheme. Then, a classifier is able to detect suspicious abnormal instances and
create deep embeddings for those instances. Second, a recurrent neural network (RNN) uses features
from those instances to make final predictions [48]. Another work proposed a two-stage approach for
retinal OCT volume classification, which consists of: (1) volumetric feature extraction and (2)
diagnostic classification. This approach utilizes a wavelet-based CNN (WCNN) feature learning
subsystem in the feature extraction stage. The WCNN includes a spatial-frequency decomposition
layer (SFD-layer) in the first hidden layer, which serves as feature learning in retinal OCT B-scans
[49]. Table 4 presents the performance metrics for each of the CNN methods using the datasets
discussed in this section.
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Table 4. List of CNNs Methods.

Refs Method Method’s Description Results
R-FTCNN is employed with Principal
t Analysis (PCA d
Hybrid Retinal Fine o Sf?goneih‘nn;ys;i (thC d) ;’1 5 PCA DIECT + PCA: Acc: 1.0000, Sen.: 1.0000, Spec.:
Tuned e the Sl o . 1-0000, Prec.: 10000, F1: 1.0000, AUC: 1.0000
[38]  Convolutional L o’ rii’mi . Onints dihe  FCL¥PCA: Acc: 0.9970, Sen. 0.9970, Spec:
Neural Network (R- prnepa’ componen's, 0.9990, Prec.: 0.9970, F1: 0.9970, AUC: 0.99999
Softmax function is then applied to these .
FTCNN) e (61mil-parameters)
components to create a new classification
model.
Complementary CM-CNN classifies OCT B-scans by using D3AUC, Sen, Spe, Class Acc
Mask Guided masks generated from a segmentation task. A D3CNV: 0.9988, 0.9960, 0.9680, 0.9773
[39] Convolutional Class Activation Map Guided UNet (CAM- D3Drusen 0.9874, 0.9120, 0.9980, 0.9693
Neural Network UNet) segments drusen and CNV lesions, D3Normal 0.9999, 1, 0.9880, 0.9920
(CM-CNN) utilizing CAM output from the CM-CNN D30verall Acc: 0.9693
CNN iterative DeepQCT e.mploys multi.level feature D1Acc:1.00, Pre:1.00, F1:1.00,
[40] ReliefF + extraction using 18 pre-trained networks Rec:1.00, MCC:1.00
SVM combined with tent maximal pooling, #*Acc: 0.9730, Pre: 0.9732, F1: 0.9730,
followed by feature selection using ReliefF. Rec: 0.9730, MCC: 0.9641
Inception V3 - Eliminating the final layers of a pre-trained |
VAMD 15/15 = 100%, DME 15/15 = 100%, NOR
[41] Custom Fully Inception V3 model and using the remaining MD 15/15 = 100%, DME 15/15 =100%, NO

Connected layers part as a fixed feature extractor.

15/15=100%

Utilizes a softmax classifier to distinguish
between five retinal conditions: AMD, CNV,
DME, drusen, and normal cases

[42] AOCT-NET

+#5AMD: 100%, 100%; CNV: 98.64%, 100%; DME:

99.2%, 0.96; Drusen: 97.84%, 0.92;
Normal: 98.56%, 0.97

Employs iterative fusion for merging features
Iterative fusion poy sNS

[43] convolutional neural
network (IFCNN)

from the current convolutional layer with
those from all preceding layers in the
network.

DiSensitivity., Specificity, Accuracy
Drusen76.8+7.2,949+1.9,93+1.787.3+22;
CNV 87.9+4.3,96+1.7,924+13,

DME 81.9+6.8,96.3+2,94.4+1, Normal 92.2 +
4796+1.694.8+1.2.

Expands from 30 to 50 layers and features a
[44] IoT OCT Deep Net2 dense architecture with three recurrent

modules

D4Precision, Recall, F1-Score, Acc. 0.97
Normal:0.99, 0.93, 0.96,
CNV: 0.95, 0.98, 0.98,
DME: 0.96, 0.99, 0.98,
Drusen: 0.99, 1.00, 0.99

Composed of neuron groups representing
different attributes, utilizes vectors to learn

DiSensitivity, Specificity, Precision, F1
CNV:1.0,0.9947, 1.0, 1.0,

[45] Capsule Network . K K . DME: 0.992, 0.9973, 0.992, 0.992,
positional relationships between image Drusen: 0,992 0.9973. 0.992. 0.992
featuros. ¢ 0.992,0. ,0.992, 0.992,
catures Normal: 1.0, 1.0, 1.0, 1.0
Dictionary Learning . e
D 1 til DAISY
Informed Deep ownsamping by uti ng 5 D4Accuracy: 97.2%, AUC: 0984, Sensitivity: 97.1%,
[46] descriptors and Improved Fisher kernels to i
Neural Network extract features from OCT images Specificity: 99.1%
(DLI-DNN) " ges-
DICSR-Acc: 0.7609, Sen: 0.2381, Spec: 0.9155
D9 -Acc: . .
S-DDL - 4 classes S-DDL addresses the vanishing gradient Al\é];[gf;cocg ; 26’Siir:.00'7815%;:%2285333
problem and shortens training time. DINO-Ace: 0.9326, Sens: 0.9512, Spec: 0.9167
[47] D9AMD-Acc:, Sens: 1.0, Spec: 0.9216
DICSR-Acc: 0.9057, :0.7273, :0.9524
Wavelet Scattering WST employs the Wavelet Scattering DQIC)SR_ A CC. 00990(;58 SSenn.(()) 88 8?; SS pec. (()] 995 60
Transform (WST) -5 Transform using predefined filters within DOMH- Azz 0.9038, SZnZ: O' 6923, Sp;ecc'. 0 9744
classes the network layers DINO-Acc: 0.9792, Sens: 0.9545, Spec: 1.0,
OA: 82.5%
Employs instance-level classifier for D5Accuracy, F1, AUC
iteratively deep multiple instance learning, u=0.1, 0.971 + 0.010, 0.980 + 0.007, 0.955 + 0.020
(48] Multiple instance where this enables the classifier. Then a u=0.2, 0.979 + 0.018, 0.986 + 0.012, 0.970 + 0.027

learning (UD-MIL) recurrent neural network (RNN) utilizes the
features from those instances to make the final

predictions.

u=0.3, 0.979 + 0.018, 0.986 + 0.012, 0.970 + 0.027
u=0.4, 0.979 + 0.011, 0.986 + 0.007, 0.975 + 0.020
u=0.5, 0.979 +0.011, 0.986 + 0.007, 0.975 + 0.020

VVolume Classification, BB-scan classification, 2°Two-Class Classification (Normal, DME), P'D1, P?D2, ®D3, P‘D4,

b+ D4, bSD5, PeD6, P’D7, PSDS, P°DY, P1'D10.
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This section reviews papers on Segmentation-based Attention CNNs, which enhance OCT
image analysis by using attention mechanisms to focus on critical regions, improving subtle
pathological feature detection and integrating segmentation with classification tasks for better
learning.

A study introduced a method called lesion-aware CNN (LACNN) approach for retinal OCT
image classification, utilizing retinal lesions within OCT images to guide the CNN for more accurate
classification. The LACNN focuses on local lesion-related regions in the OCT images using a lesion
detection network to create a soft attention map from the entire OCT image [50]. An approach
integrates a dual-attention mechanism at multiple levels of a pre-trained deep convolutional neural
network (CNN). It enhances focused learning by incorporating both multi-level feature-based
attention, which targets salient coarse features, and a self-attention mechanism, which focuses on
higher entropy regions of the finer features [51]. Another method proposes a deep architecture based
on a perturbed composite attention mechanism, incorporating two attention modules: Multilevel
Perturbed Spatial Attention (MPSA) and Multidimension Attention (MDA) for macular optical
coherence tomography (OCT) image classification. MPSA enhances the salient regions of input
images and the features from intermediate network layers by adding positive perturbations to the
attention layers. Conversely, MDA encodes the normalized interdependency of spatial information
across various channels of the extracted feature maps. This perturbed composite attention enables
architecture to extract diagnostic features at different levels of feature representation [52].

A one-stage attention-based method was proposed for retinal OCT image classification and
segmentation using bounding box level supervision. Specifically, the classification network generates
a heatmap using Gradient-weighted Class Activation Mapping and incorporates the proposed
attention block. Transformation consistency is employed to ensure that the predicted heatmap
remains consistent for the same input after image transformation [53]. A study presents an efficient
Global Attention Block (GAB) for feed-forward convolutional neural networks (CNNs). The GAB
creates an attention map across three dimensions for any intermediate feature map and then
computes adaptive feature weights by multiplying the attention map with the input feature map.
This GAB can be integrated into any CNNs [54]. Another work proposes a B-scan attentive
convolutional neural network (BACNN). BACNN is a CNN-based feature extraction module that is
employed to extract spatial feature representations from the B-scans. Subsequently, a self-attention
module aggregates these features according to their clinical relevance, resulting in a discriminative
high-level feature vector for reliable diagnosis [55].

4.2. CNN with Attention

This section reviews papers on Segmentation-based Attention CNNs, which enhance OCT
image analysis by using attention mechanisms to focus on critical regions, improving subtle
pathological feature detection and integrating segmentation with classification tasks for better
learning.

A study introduced a method called lesion-aware CNN (LACNN) approach for retinal OCT
image classification, utilizing retinal lesions within OCT images to guide the CNN for more accurate
classification. The LACNN focuses on local lesion-related regions in the OCT images using a lesion
detection network to create a soft attention map from the entire OCT image [50]. An approach
integrates a dual-attention mechanism at multiple levels of a pre-trained deep convolutional neural
network (CNN). It enhances focused learning by incorporating both multi-level feature-based
attention, which targets salient coarse features, and a self-attention mechanism, which focuses on
higher entropy regions of the finer features [51]. Another method proposes a deep architecture based
on a perturbed composite attention mechanism, incorporating two attention modules: Multilevel
Perturbed Spatial Attention (MPSA) and Multidimension Attention (MDA) for macular optical
coherence tomography (OCT) image classification. MPSA enhances the salient regions of input
images and the features from intermediate network layers by adding positive perturbations to the
attention layers. Conversely, MDA encodes the normalized interdependency of spatial information
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across various channels of the extracted feature maps. This perturbed composite attention enables
architecture to extract diagnostic features at different levels of feature representation [52].

A one-stage attention-based method was proposed for retinal OCT image classification and
segmentation using bounding box level supervision. Specifically, the classification network generates
a heatmap using Gradient-weighted Class Activation Mapping and incorporates the proposed
attention block. Transformation consistency is employed to ensure that the predicted heatmap
remains consistent for the same input after image transformation [53]. A study presents an efficient
Global Attention Block (GAB) for feed-forward convolutional neural networks (CNNs). The GAB
creates an attention map across three dimensions for any intermediate feature map and then
computes adaptive feature weights by multiplying the attention map with the input feature map.
This GAB can be integrated into any CNNs [54]. Another work proposes a B-scan attentive
convolutional neural network (BACNN). BACNN is a CNN-based feature extraction module that is
employed to extract spatial feature representations from the B-scans. Subsequently, a self-attention
module aggregates these features according to their clinical relevance, resulting in a discriminative
high-level feature vector for reliable diagnosis [55].

4.3. CNN Ensembles and Multiscale

This section reviews papers on Ensemble CNNs and Multiscale approaches. Ensemble CNNs
involve independently training multiple CNN models and combining their predictions to produce a
final output. Multiscale approaches process OCT images at various scales, capturing features at
different levels of detail.

An approach proposes a 6G-enabled IoMT method that minimizes human involvement in
medical facilities while delivering rapid diagnostic results. This method utilizes transfer learning to
extract features from medical images and is enhanced by feature selection by employing operators
from the hunger games search [56]. Another work proposes a framework that leverages deep
ensemble learning, wherein the input fundus and OCT scans are processed through a deep CNN.
The deep CNN first recognizes and processes the scans, which are then fed into a second layer of the
CNN model to extract essential feature descriptors from both images. These extracted descriptors are
concatenated and passed to a supervised hybrid classifier such as support vector machines, and naive
Bayes models. These classifiers are combined to achieve accurate classification [57]. Another
approach involves combining features from various resolutions, leading to the next discussion, multi-
scale CNNs.

A method of employing a multi-scale deep feature fusion (MDFF) based classification approach
using CNNss for reliable diagnosis. The MDFF technique captures inter-scale variations in the images,
providing the classifier with discriminative information [58]. A proposed architecture is a multiscale
and multipath CNN comprising six convolutional layers. The multiscale convolution layer enables
the network to generate local structures capturing both sparse local and detailed global structures
[59]. Another paper introduces multiscale (CNN) architecture for the accurate diagnosis of AMD. The
proposed architecture consists of a multiscale CNN with seven convolutional layers designed to
classify images as either AMD or normal. The multiscale convolution layer allows for the generation
of numerous local structures with various filter sizes [60]. Finally, a method proposes a novel multi-
scale CNN with a feature pyramid network (FPN). The model leverages multi-scale receptive fields
to enhance the accurate detection of retinal pathologies of varying scales in OCT images [61]. Due
to the advantages of utilizing both ensemble and multi-scaling techniques, the following papers
implement a combination of these approaches.

A method proposes a multi-stage classification network based on a multi-scale (pyramidal)
feature ensemble architecture. Initially, a scale-adaptive neural network generates multi-scale inputs
for feature extraction and ensemble learning. Larger input sizes capture more global information,
while smaller input sizes focus on local details. Subsequently, a feature pyramidal architecture is
designed to extract multi-scale features, utilizing DenseNet as the backbone [62]. A similar approach
presents a system based on a multi-scale convolutional mixture of expert (MCME) ensemble model.
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The proposed MCME modular model employs a new cost function for discriminative learning of
image features by applying CNNs on multiple scales. MCME maximizes the likelihood function of
the training data set and ground truth by using a Gaussian mixture model [63]. Finally, an approach
proposed a Deep Multi-scale Fusion CNN (DMF-CNN) that encodes multi-scale disease
characteristics. Specifically, multiple CNNs with different receptive fields are utilized to obtain scale-
specific feature representations from the OCT images. These representations are then fused to extract
cross-scale discriminative features for classification. Additionally, a joint multi-loss optimization
strategy is employed to collectively learn scale-specific and cross-scale complementary information
during training [64]. Table 5 presents the performance metrics for each of the specialized CNN
methods discussed above.

4.4. CNN Augmentations

In this section, we review papers on CNN classification, focusing on how specialized
augmentation enhances the model’s generalization by generating diverse training samples. A method
proposes a surrogate-assisted classification method for automatically classifying retinal OCT images
using convolutional neural networks (CNNs). The process involves image denoising, followed by
thresholding and morphological dilation to extract masks, which are used to generate surrogate
images for training the CNN model. The final prediction for a test image is determined by averaging
the outputs from the CNN model on these surrogate images [65]. Another approach developed a
semi-supervised classifier based on a GAN for automated diagnosis using limited labeled data. This
framework includes a generator and a discriminator, where adversarial learning between the two
helps creates a generalizable classifier capable of predicting progressive retinal diseases such as age-
related macular degeneration and diabetic macular edema [66]. A work introduces an unsupervised
framework using a GAN to achieve fast and reliable super resolution. Adversarial learning with cycle
consistency and identity mapping priors ensures the preservation of spatial correlation, color, and
texture details in the generated HR images, which are then used for classification tasks [67].

Table 5. List of CNN with Attention, Ensemble, Multi-scale and Augmentation Methods.

Refs. Method Method’s Descriptions Results

D4 Acc Prec

Drusen 93.6+1.4 70.0 £5.7

LACNN concentrates on local lesion- CNV 927+15 93.5%13
Lesion-aware specific regions by utilizing a lesion DME 96.6+ 0.2 86.4+1.6
[50] convolutional neural  detection network to generate a soft

network (LACNN) attention map over the entire OCT Normal  97.4+02  948=+1.1

image. Di0verall ACC: 90.1 + 1.4, Overall Sensitivity: 86.8 +
1.3
D2Qverall Sensitivity: 99.33 + 1.49, Overall PR: 99.39 +
1.36,
F1,99.33 +1.49, AUC: 99.40 + 1.34

A dual-attention mechanism is applied
Multi-Level Dual-  at multiple levels a CNN and integrates D1Acc: 95.57, Prec: 95.29, Recall: 96.04, F1: 0.996
[51] Attention Based CNN  multi-level feature-based attention D2Acc: 99.62 (+/- 0.42), Prec: 99.60 (+/- 0.39),
(MLDA-CNN) emphasizes high-entropy regions Recall: 99.62 (+/- 0.42), F1: 0.996, AUC: 0.9997
within the finer features.

MPSA emphasizes key regions in input

Multilevel Perturbed images and intermediate network D1Acc: 100%, Prec: 100%, Recall: 100%
Spatial Attention la ersgb erturbating to the attention D2Acc: 99.79 (+/- 0.43), Prec: 99.80 (+/- 0.41),
(52] (MPSA) & layers l\}jﬂgA ca turesg the information Recall: 99.78 (+/- 0.43)
Multidimension Y aCI:oss dif fer}::nt channels of the DiAcc: 92.62 (+/- 1.69), Prec: 89.96 (+/- 3.16),
Attention (MDA) Recall: 88.53 (+/- 3.26)
extracted feature maps.
One-stage attention- . S D4 Acc SE Spec
One-stage attention-based classification P!
based framework H . here th
31 \veakly supervised and segmentation, where the CNV 936+19 90.1+38 965+14
. . classification network generates a
lesion segmentation DME  948+12 865+15 964+2.1
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DRUSEN 946+14 71.5+4.8 969+1.2
NORMAL 971+1.0 963+1.5 98.9+0.3

D40A:90.9+1.0,0S:86.3+1.8, OP:85.5+1.6

GAB generates an attention map across

three dimensions for any intermediate

Efficient Global
(54] Attent;(c)lr(:rlgloclf (g AB) feature map and computes adaptive D#Accuracy: 0.914, Recall: 0.9141,
and Inception feature weights by multiplying the Specificity: 0.9723, F1: 0.915, AUC: 0.9914
P attention map with the input feature
map.
DiSen: 97.76 + 2.07, Spec: 95.61 + 4.35, Acc: 97.12 +2.78,
BACNN employs a self-attention D2 Sens Spec Acc
B-scan attentive ~ module to aggregate extracted features ' pec '
[55] convolutional neural  based on their clinical significance, AMD 92.0+44 95.0+0.1 932+27
network (BACNN)  producing high-level feature vector for
diagnosis. DME 100.0+0.0 989+24 99.3+15
Normal 87.8+4.3 93.2+2.3 92.2+2.3
D4 Acc. Recall Prec
Leverages transfer learning for feature gy 99.69 99.69 99.69
(56] 6G-enabled IoMT extraction and optimized through
method — MobileNetV3 feature selection using Hunger Games XGB 99.38 99.38 994
search algorithm. KNN 9959 9959  99.59
RF 99.38 99.38 99.4
A secondary layer within the CNN
Deep Ensemble CNN + model to extract key feature D .. s
f A
SVM, Naive Bayes, descriptors, where they are Sensivity, Specificity, Accuracy
571 Artificial Neural ~ subsequently concatenated and fed into ANN: 0.96, 0.90,0.93 1 SVM: 0.94,0.91, 0.91
B:0.93,0.90,091 || E le: 0.97, 0.92, 0.94
Network a supervised hybrid classifier SVM and NB: 0.93,0.50, 0.9 nsemble: 0.97, 092, 0.9
naive Bayes models
D4 Sens. Spec. Acc
Mutisale decp L g the (00 BT
f i DFF g
(58] feature ﬁésli]olg M ) classifier with discriminative DME 94.14 98.97 98.33
information DR 9049 9832 9752
NO 96.9 89.26 97.85
Precision Recall Accu.
Multiscale and MDFF captures variations across
D1-2C 0.969 0.967 0.9666
[59] multipath CNN with different scales and are fed into a
six convolutional layers classifier D2-2C 0.99 0.99 0.9897
D4-2C 0.998 0.998 0.9978
The architecture consists of a Precision Recall F1-score Accuracy AUC
Multiscale CNN with multiscale CNN with seven D1-2C 0.9687, 0.9666, 0.9666, 0.9667, 1.0000
[60] seven convolutional convolutional layers allowing for the D22€ (0,9803, 0.9795, 0.9795, 0.9795, 0.9816
layers generation of numerous local D4-2C 0,9973, 0.9973, 0.9973, 0.9973, 0.9999
structures with various filter sizes D9-2¢ 0.9810 0.9808 0.9809 0.9808 0.9971
Accuracy (%) Sensitivity (%) Specificity (%)
X Combines a feature pyramid network D2FPN-VGG16:92.0+1.6,91.8+1.7,95.8 + 0.9
Multi-scale CNNbased = p\1y 1, by utilizing multi-scale  92FPN-ResNet50: 90.1 2.9, 89.8 + 2.8, 94.8 + 1.4
[61] on the feature pyramid Y &
network receptive fields providing end-to-end ~ P2FPN-DenseNet: 90.9 + 1.4, 90.5+1.9, 952 +0.7
training D2FPN-EfficientNetB0: 87.8 + 1.3, 86.6 + 1.8, 93.3 + 0.8
D4FPN-VGG16: 98.4, 100, 97.4
A multi-scale feature ensemble
. Mu;tl—;clale (pyrarl?lldal) ;rcl;ltecture elmploymlig a scale; D1 Ace= 99.69%, Sen=99.71%, Spec.= 99.87%
eature ensemble adaptive neural network generates D4 Accy=97.79%, Sen=95.55%, Spec.~99.72%
architecture (MSPE) multi-scale inputs for feature extraction
and ensemble learning.
. IIA‘:il“r'lsjieixmr fI\ﬁMiiml’derln‘il:hies N C(;Stiflu“é;o;]‘ P2Precision: 99.39 121, Recall: 99.36 = 1.33,
[e3] conyoutona © foreature fearming by app-ying LS F1:99.34 + 1.34, AUC: 0.998

of expert (MCME)
ensemble model

at multiple scales. Maximizing a
likelihood function for the training
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dataset and ground truth using a
Gaussian mixture model.

D2Sensitivity (%), Precision (%), F1 Score, OS, OP/OF1
AMD: 99.62 +0.27, 99.54 £ 0.17, 99.58 + 0.16, 99.58 +
0.23
DME: 99.45 + 0.59, 99.45 + 0.38, 99.45 + 0.35, 99.59 +
0.20
Normal: 99.68 + 0.22, 99.75 + 0.41, 99.71 + 0.20, 99.60 +
0.22
0A:99.60 +0.21, AUC: 0.997 +0.002
D4Sensitivity (%), Precision (%), F1 Score
CNV:97.33 £1.05,97.05 + 1.19, 97.18 + 0.32
DME: 93.22 + 3.22, 96.26 +2.17, 94.65 + 1.09
Drusen: 89.29 +3.59, 87.73 + 3.84, 88.34 + 1.27
Normal: 97.62 +1.11, 97.49 + 1.30, 97.55 + 0.49,
OS/OP/OF1/OA: 94.37 +1.16, 94.64 + 0.90, 94.43 + 0.59,
96.03 £ 0.43

DMEF-CNN uses multiple CNNs with
varying receptive fields to extract scale-
specific features which are then extract

cross-scale features. Additionally, a
joint scale-specific and cross-scale

Deep Multi-scale
[64]  Fusion CNN (DMF-

CNN) multi-loss optimization strategy is

employed.

Denoising, thresholding and

morphological dilation are performed

Surrogate-assisted P1Denoised: Acc: 95.09%, Sen. 96.39%, Spec: 93.60%

i hich
(651 CNN onimages to create masks, which 0 oo A cc: 95.09% Sen. 96.39%, Spec: 93.60%
produce surrogate images for training
the CNN model.
D2 Sen (%) Spec (%) Acc (%)
AMD 98.38 £ 0.69 97.79 £ 0.68 97.98 +0.61
CNN and Semi- * * *
[66] .
supervised GAN DME 96.96+1.32  99.23+0.36  98.61 +0.49

Normal  96.96+0.73  99.12+0.64  98.26 +0.67
OS/OSp/OA: 97.43 + 0.68, 98.71 + 0.34, 97.43 + 0.66

VVolume Classification, BB-scan classification, 2°Two-Class Classification (Normal, DME), P'D1, P2D2, P3D3, P4D4,
b¥D4,b5D5, PD6, 7D7, PSDS, P°DY, P1PD10, OA: Overall Accuracy, OS: Overall Sensitivity, OP: Overall Precision,
OF1: Overall F1 '2¢4: Binary classifications with AMD and Normal classes, NB: Naive Bayes, RF: Random Forest,
Support Vector Machine: SVM.

4.5. Transformers

While CNNs and their variations have significantly advanced image processing, transformers
have elevated them to new heights. Vision Transformers (ViTs), derived from the transformer
architecture in Natural Language Processing (NLP), achieve outstanding benchmark results on
ImageNet datasets, representing a significant leap forward in computer vision.

In a standard ViT architecture, the input image is first divided into fixed-size patches, which are
then flattened and linearly projected into embeddings. Let x, € R*W*¢ represent an input image of
height H, width W, and C channels. The image is split into patches of size P x P, resulting in N=H °
W / P2, patches, where each patch is a vector of x, € RP*“. These patches are linearly embedded using:

zh=x5"Ei=12,..,N (12)

where x, e R#°O*? is the learnable embedding matrix, and z{ represents the patch embeddings of
dimension D. Next, a positional encoding is added to retain spatial information:

zo = [XLE; X2E; ...; xXYE| + Ejoq (13)

where E,,; € RV? is the positional encoding matrix. The sequence of patch embeddings is then fed
into a standard transformer encoder, consisting of multiple layers of multi-head self-attention
(MHSA) and feedforward networks (FFN). For each layer ], the self-attention mechanism is computed
as:

T
Attention(Q,K,V) = softmax (QK )V (14)

/Dx
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Q=2_,Wy, K=2_,Wg, and v =z,_,w, are the query, key, and value matrices, respectively, and Dx is
the dimensionality of the key. The output of the self-attention mechanism is passed through a
feedforward network:

z] = MHSA(z,_1) + 7,4 (15)
z] = FFN(Z')) + z (16)

After the final transformer layer, the class token (a learnable embedding added to the input
sequence) is extracted and passed to a classifier for the final prediction. The following are reviews of
papers in the application of Transformers to OCT images for predicting eye disorders.

An approach hybrid ConvNet-Transformer network (HCTNet) begins with a low-level feature
extraction module, utilizing a residual dense block to generate features that facilitate network
training. Following this, two parallel branches, one using a Transformer and the other a ConvNet are
designed to capture the global and local contexts of the OCT images. Finally, a feature fusion module
with an adaptive reweighting mechanism is employed to combine these global and local features for
accurate OCT image categorization [68]. A method introduces an interpretable Swin-Poly ViT
network for automated retinal OCT image classification. By shifting the window partition, the Swin-
Poly Transformer establishes connections between adjacent nonoverlapping windows from the
previous layer, allowing it to flexibly model multi-scale features. Additionally, the Swin-Poly
Transformer adjusts the significance of polynomial bases to refine cross-entropy, enhancing the
accuracy of retinal OCT image classification [69]. A study proposes Focused Attention, which uses
iterative conditional patch resampling to generate interpretable predictions via high-resolution
attribution maps, addressing the low-resolution issue of existing Transformer attribution methods.
A survey involving four retinal specialists validated both the superior interpretability of Vision
Transformers compared to CNN attribution maps and the relevance of Focused Attention as a lesion
detector [70]. A method utilizing Vision Transformer can more effectively capture global information
through its self-attention mechanism and exhibits less bias towards local texture features. The
classifier is redesigned using logits eights and the loss function as the logit cross-entropy function
with L2 norm [71].

A paper introduces a technique called the model-based transformer (MBT). This technique
leverages pre-trained models, specifically the ViT and Swin Transformer for OCT image
classification, and the Multiscale ViT for OCT video classification. The proposed method represents
OCT data using an approximate sparse representation technique, then estimates the optimal features
for classification [72]. Another paper introduces a framework called the Structure-Oriented
Transformer (SoT) designed to enhance the relationship modeling between lesions and the retina
regions. A model-oriented filter highlights the entire retina structure and guide relationship
construction. Then employ a pre-trained ViT to model the relationships among all feature patches
through transfer learning. Additionally, to optimize the use of all output tokens, a vote classifier is
employed for obtaining final grading results [73]. Similarly, another approach proposes an OCT
Multihead Self-Attention (OMHSA) block to process OCT image information using a hybrid CNN-
ViT approach. OMHSA incorporates local information extraction into the self-attention calculation
and adds local information to the transformer model. A neural network architecture, named
OCTFormer, is employed by repeatedly stacking convolutional layers and OMHSA blocks at each
stage [74]. Another study introduces a hybrid SqueezeNet-Vision Transformer (SViT) model, which
leverages the strengths of both SqueezeNet and Vision Transformer (ViT). This model captures both
local and global features of OCT images, enabling more accurate classification while maintaining
lower computational complexity [75].

An article that proposes a Deep Relation Transformer (DRT) for glaucoma diagnosis by
combining OCT and Vision Field (VF) information. This model introduces a deep reasoning
mechanism to explore implicit pairwise relations between OCT and VF data both globally and
regionally. Also, three successive modules are developed to extract and collect information for
glaucoma diagnosis: the Global Relation Module, the Guided Regional Relation Module, and the
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Interaction Transformer Module [22]. A fusion model called ‘Conv-ViT” employs transfer learning-
based CNN models, such as Inception-V3 and ResNet-50, to process texture information by
calculating the correlation of nearby pixels. Additionally, a vision transformer model is integrated to
process shape-based features by determining the correlation between long-distance pixels [76].
Another article proposes a ViT-based cross-modal multi-contrast network for integrating color
fundus photographs (CFP) and optical coherence tomography (OCT) images. The approach employs
multi-contrast learning to extract features from cross-modal data for diagnosis. Subsequently, a
channel fusion head captures the semantically shared information across different modalities and the
similarity features among patients within the same category [77].

Another set of architects involves the following. An approach proposes a deep learning model
based on the Swin Transformer V2 to diagnose fundus diseases swiftly and accurately. This method
leverages the calculation of self-attention within local windows to reduce computational complexity
and enhance classification efficiency. Additionally, the PolyLoss function was introduced to further
boost the model’s accuracy [78]. A method called lesion-localization convolution transformer (LLCT)
uses customized feature maps generated by a convolutional neural network (CNN) as the input
sequence for a self-attention network. This design leverages CNN’s ability to extract image features
and the transformer’s capacity to consider global context and dynamic attention. Part of the model
undergoes backpropagation to calculate the gradient as a weight parameter, which is then multiplied
and summed with the global features generated during the forward propagation process to
accurately locate the lesion [79]. An proposed a stitching approach to find an optimal model by
combining two MedViT family models. This method, known as stitchable neural networks, is an
efficient architecture search algorithm. It creates a candidate model in the search space by inserting a
linear layer between each pair of stitchable layers, with each layer in the pair being selected from one
of the input models [80]. Finally in another study, a deep learning framework that utilizes the
diagnostic potential of 3D OCT imaging for automated glaucoma detection. The framework
integrates a pre-trained Vision Transformer on retinal data for slice-wise feature extraction and a
bidirectional Gated Recurrent Unit (GRU) to capture inter-slice spatial dependencies. This dual-
component approach allows for an analysis of both local details and global structural integrity [81].
Table 6 presents the performance metrics for each of the transformer methods discussed above.

The following are short works presented at conferences which are slight modification to ViT. A
work proposed a CAD method using a base vision transformer to analyze OCT images and
distinguish between AMD, DME, and normal eyes [82]. An approach aimed to develop a deep
learning algorithm to distinguish between drusen and the double-layer sign (DLS) based on cross-
sectional structural OCT B-scans, using a Vision Transformer (ViT) model trained on eyes images
[83]. Another conference proposes an end-to-end Transformer-based framework designed to
efficiently classify volumetric data of varying lengths. By randomizing the input volume-wise
resolution (number of slices) during training, we enhance the learnable positional embedding’s
ability to adapt to each volume slice [84]. Finally, another ViT is proposed using a symmetrical cross-
entropy loss function can minimize the effect of noise on the training set and prevent overfitting [85].

Table 6. List of Transformer Methods employed.

Refs. Method Method’s Descriptions Results
HCT-Net employs feature Acc. Sen.
extraction modules via residual
. dense block. Next, two parallel D1 (%) (%) Prec. (%)
Hybrid branches, a Transformer and
ConvNet- S AMD 9594 82.6 95.08
ConvNet are utilized to capture
[68]  Transformer .
both global and local contexts in the DME 86.61 80.22 85.29
network . .
(HCTNet) OCT images. A feature fusion
N module with an adaptive Norm
reweighting mechanism integrates al 89.81 93.39 85.22
these global and local features. OA: 86.18%, OS: 85.40%, OP: 88.53%
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Acc Sen. Prec.

D4 (%) (%) (%)
CNV 94.6 92.23 95.53
DME 96.14 87.96 84.42

Druse
n 95.54 77.36 79.00
Norm
al 96.84 96.73 93.5
OA: 91.56%, OS: 88.57%, OP: 88.11%
Recal
D4 Acc. Prec. 1
1.000 1.000

CNV 0 0.9960 0
0.996 0.996
DME 0 1.0000 0

Druse  1.000 1.000
n 0 0.9960 0
Norm  0.996 0.996
al 0 1.0000 0
0.998 0.998
Ave. 0 0.9980 0
Recal
Swin-Poly Transformer shifts
window partitions and connects D6 Acc. Prec. 1
adjacent non-overlapping windows 1.000

Interpretable from the previous layer, allowing it
Swin-Poly to flexibly capture multi-scale AMD  1.0000  1.0000 0
Transformer features. The model refines cross-
network entropy by adjusting the
importance of polynomial bases, CNV 0.9489  0.9389 1
thereby improving the accuracy of
retinal OCT image classification.

[69]
0.957

1.000

CSR 1.0000  1.0000 0
0.945

DME 0.9439  0.9512 7
1.000

DR 1.0000  0.9972 0
Druse 0.911

n 0.9200  0.9580 4
0.997

MH 1.0000  1.0000 1
Norm 0.957

al 0.9563  0.9254 1
0.971

Ave. 09711  0.9713 1
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Acc Spec. Recall
D4 %) %) (%)
Focused Attention employs T2T-
Focus.ed iterative c.ondltlonal patch ViT 14 94.40 98.13 94.40
[70] Attention resampling to produce
Transformer interpretable predictions through T2T-
high-resolution attribution maps.
ViT_19 93.20 97.73 93.20
T2T-
ViT_24 93.40 97.80 93.40
Acc Sen. Spec.
Captures global features via self- b7 (%) (%) (%)
attention mechanism reduCing Early DME 90.87 87.03 93.02
ViT with Logit reliance on local texture features.
[71] ,g Adjusting classifier’s logit weights Advanced
Loss Function d modified loei
and modified to a logit cross- DME 89.96 88.18 90.72
entropy function with L2
regularization as loss function. Severe DME 94.42 63.39 98.4
maculopathy ~ 95.13 89.42 96.66
OA: 87.3%
Model-Based D4 Acc. Recall
ViT (MBT-ViT), Approxm}afe spa'rse re.pres.entahon MBT ViT  0.8241 0.8138
Model-Based =~ MBT utilizes ViT Swin ViT and
72] ViT (MBT- Multiscale ViT for OCT video MBT
SwimT), classification. Then estimates key SwinT 0.8276 08172
Multi-Scale features before performing data win ’ ’
Model-Based classification. MBT M
ViT (MBT-ViT)
ViT 0.9683 0.9667
SoT employs guidance mechanism B-ac Sen Spe
Structure-  that acts as a filter to emphasize the 0.993  0.992
73] Oriented entire retinal structure. Utilizes
Transformer Vote Classifier, which optimizes the P1SoT 5 5 0.9955
(SoT) utilization of all output tokens to D5 0993  0.992
generate the final grading results.
SoT 5 5 0.9955
D4 ACC  Prec. Sen.
OCT
OMHSA enhances self-attention ~ Former-
n}e;hanlstr.n by 1rtlc0rtI'Jorat1r}11g local T 9436 9475 9437
OCT Multihead  TOTmAation ex .rac ion, where a
. network architecture, called OCT
[74]  Self-Attention . .
(OMHSA) OCTFormer and is built by R
repeatedly stacking convolutional ormer=
layers and OMHSA blocks at each S 96.67 96.78 96.68
stage.
OCT
Former-
B 9742 9747 97.43
SViT combines SqueezeNet and ViT
Squeeze Vision to capture local and global features,
(73] transformer which enables more precise D5 Acc.: 0.9990, Sen.: 0.9990, Prec.: 1.000
(S-ViT) classification while maintaining
lower computational complexity.
Deep Relation DRT integrates both OCT and
[22]  Transformer Vision Flelld (VF) data, where this DIOAblation Study
(DRT) model incorporates a deep

reasoning mechanism to identify
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pairwise relationships between

OCT and VF. Back- Acc Sen
bone (%) (%) Spec (%)
Light 88.31.
ResNet 0 93.7+3.5  82.4+4.1
ResNet- 87.6+2.
18 3 93.1+24  82.1+4.3
ResNet-  87.2+1.
34 6 90.4+5.0  83.9+£3.6
Decision
Integrates Inception-V3 and Feature Level Level
.ResNet-.50 to capture tfexture D4 Concatenation Conc.
Conv-ViT — information by evaluating the
6] i (c:.)nvf ! V3 relationships between nearby Acc. 94.46% 87.38%
feeption pixels. A Vision Transformer
and ResNet50 Prec. 0.94 0.87
processes shape-based features by
analyzing correlations between Recall 0.94 0.86
distant pixels.
F1
Score 0.94 0.86
Acc SE
D4 (%) (%) SP (%)
ViT Cross-modal multi-contrast
network integrates color fundus ~ Norm
h hs (CFP), which utili
Multi-contrast PPOt08raphs (CEP), which utilizes = 995 9938 100
[77] Network multi-contrast learning to extract
features. Then a channel fusion CNV 100 100 100
head then aggregates across
different modalities. DR 995 100 9942
AMD 100 100 100
All 99.75  99.84  99.85
D4 Acc.  Recall Spec.
CNV 0.999 1.00 0.996
DME 0.999 1.00 1.00
DRUSEN  1.00 1.00 1.00
NORMA
L 1.00 1.00 1.00
Swin Swin Transformer V2-based D6 Acc Recall Spec.
78] Transformer V2 leverages self-attention within local AMD 1.00 1.00 1.00
with Poly Loss  windows while using a PolyLoss ' ' '
function function CNV 0.989 0.949 0.995
CSR 1.00 1.00 1.00
DME 0992 0977 0.995
DR 1.00 1.00 1.00
DRUSEN 0988  0.934 0.995
MH 1.00 1.00 1.00
NORMA
L 0.991 0.98 0.992
Lesion- LLCT combines CNN-extracted
[79] e§10n‘ feature maps with a self-attention o o o,
localization D4 Acc (%) Sens (%) Spec. (%)

network to capture both local and
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convolution  global image context. The model
. . CNV  981+19 994+03 97.6 2.7
transformer uses backpropagation to adjust
(LLCT) weights, enhancing lesion detection DME 996+0.2 99.6+0.0 995+ 0.3
by integrating global features from
forward propagation. Druse
n 981+23 92885 99.9+0.2
Norm  99.6+0.6 98.8+17 99.9+0.2
D4 Spec. Acc.
micro
Stitching approach combines two )
MedViT models to find an optimal MedViT 0.928 +0.002 0.828 +0.007
architecture. This method inserts a tiny
(80] Stitched linear layer between pairs of
MedViTs stitchable layers, with each layer MedViT 0.933 +0.002 0.841 +0.007
selected from one of the input micro
models, creating a candidate model
in the search space. MedViT 0.987 +0.001 0.977 +0.002
tiny
MedViT 0.986 + 0.002 0.977 £ 0.004
Combines a pre-trained Vision D4 ACC SEN SPE
Bidirectional Transformer for slice-wise feature
! gi:elc;ma extraction with a bidirectional GRU ~ ResNet34+ 87.39 (=
[81] Recurrent Unit to capture inter-slice spatial GRU 1.73) 92.03 72.86
(GRU) dependencies, enabling analysis of
both local details and global ViT-large + 90.27 (+
structural integrity. GRU 1.44) 9425 7818

VVolume Classification, BB-scan classification, 2°Two-Class Classification (Normal, DME), P'D1, P2D2, P3D3, P4D4,
D¥D4 (full set) D5, P°D6, P’D7, P7"D7%, PSD8, #"D4 (2750 each class) , P°D9, P1'D10, OA: Overall Accuracy, OS:
Overall Sensitivity, OP: Overall Precision, OF1: Overall F1 2¢4: Binary classifications with AMD and Normal
classes, NB: Naive Bayes, RF: Random Forest, Support Vector Machine: SVM.

5. Comparative Analysis

In this section, we discuss the performances of hand-crafted features, CNNs, and Transformer
models in predicting ocular disorders using OCT data across a series of well-established datasets.
Figure 4 presents an overview of various techniques discussed with their corresponding classification
accuracies. Focusing first on Dataset D4, which is crucial for distinguishing between the dry and wet
forms of Age-related Macular Degeneration (AMD) and recognizing diabetic-related changes and
normal conditions, we observe a range of techniques with varying effectiveness. For example, the
Multi-contrast Network achieves a high accuracy of 99.75%, indicating its robustness in handling the
complexities of D4. Similarly, models like HCTNet and Conv-ViT also perform well, with accuracies
of 91.56% and 94.46%, respectively. These high accuracies suggest that these techniques are well-
suited for applications requiring precise differentiation between similar conditions, such as
distinguishing dry AMD from wet AMD, which is critical for appropriate treatment planning.

In the context of D2 and D5, which cater to broader screening processes and more specialized
monitoring for AMD, several techniques stand out. For instance, the LBP Slice + Sum & SVM
technique applied to D5 achieves an accuracy of 87.3%, which is particularly useful for detecting
intermediate stages of AMD which is a challenging task for many models. D2, which focuses on
general screening, sees strong performances from CNN-based methods such as MPSA (99.62%) and
D2FPN-DenseNet (90.9%). These techniques are valuable in clinical settings where quick and reliable
screening is essential for early intervention. On the other hand, D3, designed for AMD monitoring,
benefits from techniques like Interpretable Swin-Poly, which offers an accuracy of 99.8%. This high
level of accuracy is crucial for specialists who require reliable tools to monitor disease progression
and adjust treatment plans accordingly.
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For the remaining datasets (D1, D6, D7, D8, and D9), the figure highlights a diverse set of
techniques tailored to specific clinical needs. D1, for example, is well-served by traditional CNN
approaches like R-FTCNN and CNN iterative ReliefF, both achieving perfect accuracies of 100%,
making them highly effective for general screening purposes. D6, which involves distinguishing
between different types of AMD and less common conditions like CSR, benefits from advanced
models like Stitched Tiny MedViTs with an accuracy of 98.6%, offering doctors a reliable tool for
targeted interventions. Meanwhile, D7*, which includes a variety of diabetic macular edema (DME)
stages, finds MSK-EMP with an accuracy of 96.62% particularly suitable, aiding in precise diagnosis
and treatment decisions. Finally, for D9, which covers a broader range of conditions, techniques like
ViT with Logit Loss Function (87.3%) and Interpretable Swin-Poly (97.31%) offer substantial
accuracy, providing clinicians with dependable tools for diagnosing diverse retinal conditions. Each
technique’s suitability is closely tied to its ability to support doctors in making informed decisions,
whether through accurate screening, detailed monitoring, or distinguishing between subtle
variations in retinal diseases.

R-FTCHN
100

CNN iterative Reliefr
100

Handcraft
Features

CNNs

= z
T Vit
a7 »F

Figure 4. presents a radial bar plot comparing the performance of various techniques used in OCT ocular
disorder detection across multiple datasets, indicated as D1 through D9. Each bar represents a specific technique,
with the length of the bar corresponding to the classification accuracy (%) achieved by that technique. The
techniques are color-coded based on the type of method: Handcrafted Features are shown in red, CNNs in blue,
and ViT in green.
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6. Future Work

Future research in ocular disorder predictions using OCTs should focus on two key areas:
making deep learning models stronger against adversarial attacks in medical imaging and exploring
how Large Language Models (LLMs) can be integrated into diagnostic processes.

6.1. Medical Imaging with Adversarial Samples

As the field of medical imaging continues to evolve, new challenges arise in improving ocular
disorder diagnostic tools. One emerging concern is the susceptibility of deep learning models to
adversarial samples, which is to intentionally crafted input data designed to fool models into making
incorrect predictions. In OCT images, even slight perturbations can lead to misclassifications by
models. This is dangerous in a clinical setting, where a misdiagnosis can have serious implications
for patient outcomes. The growing recognition of these vulnerabilities has prompted researchers to
explore defense mechanisms and adversarial training strategies to improve model resilience [27] and
[86-98]. The following is a review of works related to adversarial samples in OCT and other medical
imaging diagnostics.

The previously introduced MKW-LBP [27] has demonstrated robustness under adversarial
conditions, including Gaussian noise. OCT images were tested with Gaussian noise at varying levels
to evaluate the descriptor’s performance. A study explores the effects of image degradation on some
DL models employed for skin cancer detection. First, pepper noises are introduced as an adversarial
attack. Then, a texture descriptor, Ordered Statistics Local Binary Patterns (OS-LBP), is utilized for
CNN models training. The models are employed to identify potential skin cancer areas to mitigate
the effects of image degradations [86]. In a similar study, a work investigates the impact of contrast
degradation on DL models for wireless capsule endoscopic (WCE) image analysis, highlighting the
effects of contrast reductions on classification accuracy. To address this issue, Color Quaternion
Modulus and Phase Patterns (CQ-MPP), is proposed, which extracts features from WCE images and
identifies potential cancerous regions, even under reduced contrast [87]. A study demonstrates
various medical image computing tasks employing DL models. Adversarial examples, such as Fast
Gradient Sign Method (FGSM), are utilized to train and benchmark model robustness by comparing
different architectures for tasks including skin lesion classification and whole brain segmentation
[88]. A work employs adversarial examples, including Basic Iterative Method (BIM), Projected
Gradient Descent (PGD), and FGSM, from clean examples by utilizing features from various DNN
layers. It employs techniques such as detection subnetworks based on activations, logistic regression
detectors using Kernel Density (KD) and Bayesian Uncertainty features, and the Local Intrinsic
Dimensionality (LID) of adversarial subspaces [89].

Some works offer insights into medical image adversarial attacks from the viewpoints of both
generating and detecting these attacks. Specifically, it examines whether existing medical deep
learning models are susceptible to gradient-based adversarial attacks. It focuses on three
representative medical image classifications, skin cancer detection from photographic images,
referable diabetic retinopathy detection from OCT images, and pneumonia detection from chest X-
rays. While evaluating the vulnerability of DNN models to both nontargeted and targeted attacks, as
well as their robustness through adversarial retraining [90-93]. A study proposes a frequency
constraint-based adversarial attack by injecting perturbations into high-frequency information while
preserving low-frequency content. This technique is tested on four 3D CT, 2D chest X-ray, 2D breast
ultrasound, and 2D thyroid ultrasound datasets with varying imaging modalities and
dimensionalities [10]. A Model Ensemble Feature Fusion (MEFF) approach is designed to counter
adversarial attacks by employing feature fusion by combining features extracted from different deep
learning models. Subsequently trains machine learning classifiers using the fused features, utilizing
a concatenation method to merge the extracted features [95].

A study introduces a robust multi-view classification method that uses a dissonance measure
for adversarial samples. Specifically, the method applies the evidential dissonance measure in
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subjective logic to evaluate the quality of data views under adversarial attacks. The work proposes a
dissonance-aware belief integration strategy for multi-view information fusion, incorporating an
inter-view evidential gradient penalty in the learning objective [96]. A medical morphological
knowledge-guided adversarial training strategy is proposed, where this approach involves training
a surrogate model with an augmented dataset using guided filtering to capture the model’s attention.
Then it is followed by a gradient normalization-based prior knowledge injection module to transfer
this attention to the main classifier and concludes with a distributionally optimization-based strategy
to enhance adversarial attack resistance in the main classifier [97]. A work which adds imperceptible
noise to a 3D MRI brain image can introduce significant errors in predicting age, and this can be done
even for large batches of images with a single perturbation. Furthermore, a hybrid model, which
combines deep learning with image segmentation techniques, is designed to be robust to adversarial
perturbations [98].

Given the challenges posed by adversarial attacks on OCT image-based deep learning models,
enhancing their robustness is crucial for more reliable ocular disease predictions. One promising
direction for future work involves integrating Large Language Models (LLMs) into the diagnostic
process, potentially improving model interpretability and providing more accurate diagnoses. Table
7 summarizes the techniques discussed above.

Table 7. Provides Adversarial Samples and Techniques employed in Medical Imaging.

Ref Adversarial Samples introduced Modality Technique Employed
Gaussian Distributed Noise with . MKW-LBP local descriptor with SVM and
. . OCT images
various noise levels

(27] Random forest classifiers

OS-LBP codes skin cancer images and is used to
train CNN models. Trained models are employed
for identifying potential skin cancer areas and to
mitigate the effects of image degradation.
Encodes WCE images using CQ-MPP and is used
to train CNN muodels. Trained are employed for
identifying areas of lesions and to mitigate the
effects contrast degradations.

Pepper Noises with various noise

(86] densities

Skin Cancer Images

[87] Contrast Degradations Endoscopic Images

Adversarial Training using Inception for skin
[88]  Fast Gradient Sign Method (FGSM)  Skin cancer images, MRI cancer classification and Brain tumors
segmentations

KD models normal samples within the same class
as densely clustered in a data manifold, whereas
adversarial samples are distributed more
sparsely outside the data manifold. LID is a
metric used to describe the dimensional
properties of adversarial subspaces in the vicinity
of adversarial examples.

FGSM Perturbations, Basic Iterative
Method (BIM), Projected Gradient Eye Fundus, Lung X-
Descent (PGD), Carlini and Wagner Rays, Skin Cancer images
(CW) Attack

[89]

A perturbation constraint, known as the low-
frequency constraint, is introduced to limit
perturbations to the imperceptible high-

3D-CT, a 2D chest X-Ray

. . image dataset, a 2D
Frequency constraint-based adversarial 8

[94] breast ultrasound .
attack . frequency components of objects, thereby
dataset, and a 2D thyroid . . .
preserving the similarity between the adversarial
ultrasound ..
and original examples.
MEFF approach is designed to mitigate
adversarial attacks in medical image applications
Fundoscopy, Chest X-

[95] Model Ensemble Feature Fusion (MEFF) by combining features extracted from multiple
Ray, Dermoscopy

deep learning models and training machine
learning classifiers using these fused features.

A multi-view classification method with an
adversarial sample uses the evidential
[96] Multi-View Learning Natural RGB Images dissonance measure in subjective logic to
evaluate the quality of data views when
subjected to adversarial attacks.

This approach trains a surrogate model with an
Medical morphological knowledge-
guided

(97] Lung CT Scans augmented dataset using guided filtering to

capture the model’s attention, followed by a
gradient normalization-based prior knowledge
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Ref Adversarial Samples introduced Modality Technique Employed

injection module to transfer this attention to the
main classifier.

6.2. Incorporation of Large Language Models

There is growing interest in using Large Language Models (LLMs) like GPT’s, BERT [99], and
Llama [100] in medical diagnostics. Traditionally used for tasks involving language, LLMs are now
being explored for their potential to interpret medical data and support clinical decisions. By
combining LLMs with medical imaging, such as OCT scans, we hope to create advanced diagnostic
systems that can analyze both visual and text-based information, making predictions more accurate.
Several recent studies have started investigating how LLMs can be applied in medical diagnostics,
and in the following sections, we will review works that discuss the use of LLMs in diagnostic
models.

A work proposes DeepDR-LLM system comprises two modules: Module I (LLM module), which
provides personalized recommendations for diabetes patients, and Module II (DeepDR-Transformer
module), which handles image quality assessment, DR lesion segmentation, and DR/DME grading
from fundus images. There are two integration modes for the modules within the system. In the
physician-involved mode, Module II's outputs assist physicians in generating DR/DME diagnoses,
while in the automated mode, the results, including DR grade, DME grade, and lesion presence, are
directly classified by Module II [101]. A digital ophthalmologist app was developed using GPT-4V
and its performance was evaluated with a dataset containing 60 images across 60 ophthalmic
conditions and 6 modalities, including slit-lamp, scanning laser ophthalmoscopy (SLO), fundus
photography of the posterior pole (FPP), optical coherence tomography (OCT), fundus fluorescein
angiography (FFA), and ocular ultrasound (OUS). The chatbot was tested with ten open-ended
questions per image, addressing examination identification, lesion detection, diagnosis, and decision
support [102].

In a study, 1226 fundus fluorescein angiography reports and their corresponding diagnoses
written in Chinese were collected, and ChatGPT was tested with four prompting strategies: direct
diagnosis, diagnosis with a step-by-step reasoning process, and in both Chinese and English [103].
Finally, a study highlights the exciting potential of using ChatGPT in ophthalmology, particularly in
areas such as clinical decision-making, education, and research. However, it acknowledges the
limitations, including the risk of generating incorrect outputs and concerns over data security. The
study recommends vigilance, particularly in ensuring accuracy, addressing ethical considerations,
and maintaining data privacy [104].

6.3. Proposals for Future Research

Future research in the application of (OCT) for ocular disorder prediction could benefit greatly
from the inclusion of OCT images corrupted by various types of noise, such as Gaussian, salt and
pepper, uniform, speckle or Rayleigh noise, shown in Figure 5. Incorporating these noisy images into
datasets can help assess the robustness of deep learning models under less-than-ideal conditions,
which are common in real-world clinical settings. Additionally, LLMs could be employed to assist in
identifying different types of noise, enabling automated preprocessing techniques. This approach
could complement traditional noise reduction strategies by providing more precise noise recognition,
leading to model performance.

Another promising direction for future research involves the incorporation of adversarial testing
into OCT feature extraction frameworks. Adversarial attacks, which involve small, carefully crafted
perturbations to input data, can degrade model performance, particularly in medical imaging
applications. Therefore, methods and frameworks designed to test the resilience of OCT models
against these attacks are essential. Preprocessing techniques to remove adversarial samples could be
developed to safeguard model integrity. These techniques might include adversarial training, where
models are exposed to adversarial examples during training, or using denoising autoencoders to filter
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out perturbations. By addressing the challenge of adversarial robustness, future models can be made
more reliable, maintain high accuracy and sensitivity even under clinical conditions.

R AT L
.
S

Figure 5. Gaussian, salt and pepper, uniform, speckle and Rayleigh noise (by rows) are added to the Normal,

AMD, and DME (by columns), where first column are the originals. Images taken from D1.

7. Discussion

The findings of this paper highlight the progress made in the application of OCT for the
diagnosis of ocular disorders. The comparative analysis of hand-crafted feature extraction methods
and deep learning techniques reveals clear differences in their respective strengths and weaknesses.
While traditional feature extraction methods rely heavily on domain knowledge and expert
intervention, they tend to be more rigid and less adaptable to variations in data. In contrast, deep
learning approaches, particularly CNNs, have demonstrated superior ability to automatically learn
relevant features from raw data, making them more robust to data variations. The evaluation of
various CNN architectures, including those incorporating attention mechanisms and multi-scale
feature extraction, further underlines the potential of deep learning in improving the prediction of
ocular disorders.

Despite the promising results from deep learning models, several challenges remain, especially
in their application to real-world scenarios. One key concern is the vulnerability of deep learning
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models to adversarial noises and perturbations, which can degrade their performance. These
adversarial conditions are a significant gap identified in this study. This highlights the need for
further research into making these models more resilient to small, intentionally designed changes in
input data. Additionally, while CNNs have shown potential for image analysis, their performance
may vary depending on the dataset used, and their reliance on large-annotated datasets remains a
limitation in clinical settings where data availability may be scarce.

Looking ahead, the integration of deep learning techniques with OCT imaging has potential for
improving early detection of ocular disorders. The ability to automate feature extraction from OCT
images not only reduces the need for manual intervention but also accelerates the diagnostic process.
Future research should also focus on enhancing model robustness through techniques such as
adversarial training and data augmentation to mitigate the impact of noisy or incomplete data. By
overcoming current limitations, the use of OCT in conjunction with deep learning has the potential
to improve ocular disorder diagnosis leading to better outcomes.

8. Conclusions

In conclusion, this paper presents a comprehensive review of the methodologies employed in
OCT image analysis for the early diagnosis of ocular disorders, comparing traditional hand-crafted
feature extraction techniques with emerging deep learning models. It is evident that while deep
learning approaches, particularly CNNs, offer significant advantages in terms of automatic feature
extraction and model robustness. However, there are still challenges related to data quality and
adversarial attacks. The findings underscore the importance of advancing OCT image feature
extraction methods, particularly through the integration of handcraft and deep learning, to enhance
diagnostic accuracy. Future research should focus on improving model resilience, refining
preprocessing techniques, and exploring innovative ways to handle noisy or adversarial data, which
will contribute to the broader adoption of OCT imaging in clinical practice.
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