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Abstract: This paper presents advanced optimization techniques for Lua Parsing Expression Grammars
(LPeg) through two complementary case studies: a high-performance JSON parser and a sophisticated
Glob-to-LPeg pattern converter. We demonstrate how strategic grammar construction can dramatically
improve parsing performance without modifying the underlying LPeg library. For the JSON parser,
we implement substitution capture and table construction optimization to reduce memory allocation
overhead and improve object processing. For the Glob converter, we introduce segment-boundary sep-
aration, implement Cox’s flattened search strategy, and develop optimized braced condition handling
to prevent exponential backtracking. Comprehensive benchmarks demonstrate that our JSON parser
achieves processing speeds up to 107.8 MB/s on complex documents, consistently outperforming
dkjson and showing competitive results against rxi_json across most test cases. Our Glob-to-LPeg
converter exhibits 14-92% better performance than Bun.Glob and runs 3-14 times faster than Minimatch
across diverse pattern matching scenarios. This research provides practical optimization techniques
for LPeg-based parsers, contributing valuable strategies to the text processing ecosystem.

Keywords: LPeg; Parsing Expression Grammar; Parser optimization; JSON parsing; Glob patterns

1. Introduction

Text parsing and pattern matching are critical in modern software development, underpinning
tasks like processing configuration files, interpreting data formats, and crafting domain-specific
languages. LPeg, a Lua-based implementation of Parsing Expression Grammars (PEG), combines
PEG’s expressive power and predictability with Lua’s simplicity and adaptability in this domain.
Academic research, such as lerusalimschy (2009), delves into LPeg’s internals as a PEG-driven pattern
matching tool [1] while Medeiros (2008) dissects the parsing machine that drives its functionality [2].
Despite its robust design, LPeg’s advanced capabilities remain underutilized in practice.

This paper seeks to unlock LPeg’s potential through a dual case study approach, highlighting
advanced techniques that extend beyond basic pattern matching. By focusing on optimized grammar
design, we aim to demonstrate how these methods enhance performance while preserving code clarity
and readability. Our exploration centers on two intricate parsing challenges:

1. High-performance JSON parser: We implement a JSON parser that leverages advanced LPeg
optimizations to achieve performance comparable to hand-optimized Lua parsers. This case
study showcases techniques including table construction optimization and substitution capture.

2. Sophisticated Glob-to-LPeg converter: We develop a converter that transforms Glob patterns into
equivalent LPeg patterns, showcasing LPeg’s flexibility in handling complex pattern matching
scenarios. This study illustrates how clear separation of pattern matching rules and strategic
optimization choices can lead to both performant and maintainable code.

These studies illustrate how different LPeg grammar designs, applied to identical parsing goals,
yield diverse performance outcomes when the library’s strengths are fully leveraged. We reveal
optimization techniques for PEG-based parsers that rely on thoughtful pattern construction rather than
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altering the core library. Our work offers actionable insights into building efficient parsers without
sacrificing code quality.

The paper is organized as follows: We begin with an overview of LPeg’s core concepts to build a
basic understanding of LPeg; we also introduce existing JSON parsers and Glob matchers to provide
context for our two case studies. Next, we dive into the case studies, detailing their implementation,
optimization approaches, and technical hurdles. We then assess the performance and efficacy of our
solutions, benchmarking them against existing alternatives. Finally, we distill our findings and explore
how these LPeg techniques could apply to other parsing contexts.

Through these detailed, real-world examples, we aim to equip the Lua community with a deeper
understanding of LPeg’s capabilities, encouraging developers to harness its full power for complex
text processing and parsing challenges. The full source is available at https://github.com/brynne8
/advanced-lpeg.

2. Related Work

To lay the groundwork for exploring advanced LPeg applications, it is important to first review
the technical background. This review encompasses not only the development of LPeg but also related
parsing techniques, as well as studies on JSON parsers and Glob matchers.

2.1. Overview of LPeg

LPeg (Lua Parsing Expression Grammars) is a pattern matching library for the Lua programming
language, offering powerful parsing capabilities. LPeg was first proposed by Roberto lerusalimschy in
2008 as an efficient way to implement Parsing Expression Grammars (PEGs) in Lua. PEGs, introduced
by Ford (2004) [3], provide an alternative to context-free grammars (CFGs) for specifying the syntax of
programming languages and other structured data formats. One advantage of PEGs over CFGs is that
a PEG specification not only describes the language syntax but also inherently defines how to parse it,
eliminating the need for separate parsing algorithms or disambiguation rules that are often required
with CFGs.

LPeg’s design philosophy emphasizes simplicity, expressiveness, and efficiency. It allows devel-
opers to define grammars using a combination of pattern matching functions and operators, which
can be easily composed to create complex parsing expressions. LPeg’s core features include:

1. Pattern Matching: LPeg provides a concise and expressive syntax for defining patterns, enabling
powerful and flexible pattern matching within Lua.

2. Captures: LPeg allows capturing and extracting specific parts of the input during parsing,
enabling the construction of structured representations of the parsed data, such as abstract syntax
trees (ASTs) or Lua tables. Among its various capture types:

*  Group captures let you collect multiple related matches as a single unit

*  Match-time captures provide dynamic control over the matching process by evaluating a
function at runtime that can determine whether and how the match should proceed

¢ Accumulator captures modify previous captured values by applying a function that com-
bines the last capture with the current one.

3.  Grammar Definition: LPeg grammars are defined using a set of rules, each associating a name
with a parsing expression. These rules can be recursive, allowing the specification of complex
language constructs. However, LPeg does not support left recursion and will detect and report
such patterns as errors.

4.  Efficiency: LPeg is designed with performance in mind, featuring a fast pattern matching
engine implemented in C. It employs various optimization techniques, such as special purpose
instructions, tail call optimization and head-fail optimization, to minimize parsing overhead.

One of LPeg’s key strengths lies in its seamless integration with Lua. LPeg grammars can be
defined using Lua’s expressive and dynamic features, such as first-class functions and table construc-
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tors. This enables developers to create modular and reusable parsing components that can be easily
combined and extended.

LPeg has found widespread adoption in the Lua community for a variety of parsing tasks,
including configuration file processing, data format parsing, and the implementation of domain-
specific languages (DSLs). Its simple yet powerful API and efficient implementation have made it a
go-to choice for many Lua developers.

In the following sections, we will explore advanced LPeg techniques and optimizations through
two in-depth case studies: a high-performance JSON parser and a sophisticated Glob-to-LPeg converter.
These case studies will demonstrate how LPeg can be leveraged to tackle complex parsing challenges
while achieving high performance and strong expressiveness.

2.2. JSON Parsers

JSON parsing efficiency is crucial in modern software development, where applications must
handle increasingly data-rich operations. The challenges in implementing an efficient JSON parser
extend beyond simple text processing, encompassing the handling of deeply nested structures, dynamic
type management, and memory optimization. These challenges have led to various implementation
approaches across programming languages.

In various programming languages, there are dedicated JSON parsing libraries, such as
JSON.parse in JavaScript, the json library in Python, Jackson and Gson in Java, and RapidJSON
in C++. These parsers are usually implemented as handwritten recursive descent parsers or state
machines to achieve efficient parsing.

In the Lua ecosystem, common JSON parsing libraries include:

1.  dkjson: A pure Lua implementation of a JSON parser that supports parsing using LPeg.
cjson: A high-performance Lua-C library specifically designed for fast JSON parsing and genera-
tion.

3.  rxi_json: A lightweight JSON library for Lua that achieves very fast parsing performance in pure

Lua.!

These existing JSON parsing libraries in the Lua ecosystem provide a solid foundation for under-
standing different approaches to JSON parsing, from pure Lua implementations to high-performance
C libraries.

2.3. Glob Matchers

Glob patterns are primarily used for file path matching and are widely used in Unix/Linux
systems [4]. They provide a concise syntax for matching file paths through wildcards and pattern
expressions. While conceptually simple, implementing efficient and correct glob matching presents
interesting challenges, particularly regarding standardization and performance.

The implementations of glob matchers vary across programming environments, including the
built-in glob command in Unix/Linux, Python’s glob module, Node.js libraries like minimatch, and
Go’s filepath.Glob function. From analyzing these implementations, two predominant approaches
emerge: converting glob patterns to regular expressions, and implementing dedicated parsers.

The Lua ecosystem has limited options for Glob pattern matching. An early attempt, lua-glob-
pattern [5], tried to provide basic file globbing by converting glob patterns to Lua patterns, but its
functionality was constrained by the inherent limitations of Lua patterns. Subsequently, lua-glob [6]
emerged as a notable implementation built with LPegLabel (an extension of LPeg). NeoVim also
includes its own LPeg-based glob implementation, designed specifically for its environment [7].

The emergence of Microsoft’s Language Server Protocol (LSP) 3.17 specification [8] has begun
to address the historical lack of formal standardization in glob implementations, with projects like
NeoVim adopting this specification as a reference. These existing implementations, with their differ-

1 https:/ /github.com/rxi/json.lua
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ent approaches and performance characteristics, provide a valuable insights for understanding the
challenges and opportunities in glob pattern matching.

3. Notation and Conventions

To make the LPeg patterns in this paper more readable and understandable, we adopt the
same syntax used in LPeg.re (except in long strings, forms like \0 or \31 are escaped representing
specific characters), a Lua module for LPeg that allows patterns to be written in a string format closer
to standard PEG syntax. For readers who are more familiar with LPeg’s Lua API functions (such
as lpeg.P, 1peg.R, lpeg.S, etc.), please refer to the LPeg.re official documentation” for a detailed
explanation of the relationship between the two syntaxes.

In this paper, we will use the following notation conventions:

*  Repetition: p“n (1 times), p~+n (> n times), p~-n (< n times)
¢  Capture:
- Simple capture: { p }
- Anonymous group capture: {: p :}
- Named group capture: {:name: p :} (where name is the name of the capture group)
- Table capture: {| p |2}
-  Constant/predefined capture: p -> function/query/string
- Match-time capture: p => function
—  Accumulator capture: e >> function
—  Substitution capture: {~ p ~}

These conventions aim to make it easier for readers to understand and follow the examples and
case studies discussed throughout the paper.

3.1. Symbols

Throughout this paper, we use consistent symbols to enhance readability:

¢  pdenotes a pattern, which depending on context may refer to a PEG pattern or a Glob pattern
¢ srefers to the starting rule in a grammar, particularly when a grammar has only one rule
*  ¢(p) denotes the PEG transformation of a Glob pattern p, resulting in an equivalent PEG expres-
sion
Note that the transformed ¢(p) could be a grammar with several rules, in which case ¢(p) refers
to the call to the starting rule of that grammar, rather than inlining the entire grammar. Additionally,
¢(p) can be used within larger PEG expressions, combining with other PEG syntaxes.
This notation allows us to precisely describe the transformation process from Glob patterns to
their equivalent LPeg implementations, which is central to our Glob-to-LPeg converter case study.

4. Case Studies

To showcase the application of advanced LPeg techniques and demonstrate their impact on
parsing performance and pattern matching expressiveness, we have selected two representative case
studies for in-depth analysis. These case studies, focusing on a high-performance JSON parser and a
sophisticated Glob-to-LPeg converter, allow us to explore a range of LPeg optimization strategies and
extensions in practical scenarios.

As a widely used data exchange format, the implementation of a JSON parser can effectively
demonstrate LPeg’s advantages and potential for optimization when handling structured data. The
Glob-to-LPeg conversion, on the other hand, demonstrates LPeg’s flexibility and powerful features in
handling complex pattern matching problems. Through these two case studies, we can see not only

2 LPeg.re official documentation: https://www.inf.puc-rio.br/~roberto/lpeg/re.html


https://www.inf.puc-rio.br/~roberto/lpeg/re.html
https://doi.org/10.20944/preprints202504.1786.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2025 d0i:10.20944/preprints202504.1786.v1

50f21

the practical application of LPeg but also explore how to use LPeg’s features to optimize performance
and improve code quality.
Next, let’s analyze these two case studies in detail.

4.1. Case Study: JSON Parser - A Concise Example

This section describes the implementation of a JSON parser using LPeg that complies with the
ECMA-404 JSON specification [9]. The discussion begins by presenting a slightly modified version of
the Parsing Expression Grammar (PEG) description of JSON, as outlined by Yedidia [10].

doc <- JSON !.
JSON <- __ (Number / Object / Array / String / True /
False / Null) __

Object <- '{'" (String ':' JSON (',' String ':' JSON)* /
_JJ) 'y

Array <- '[' (JsoN (',' JsoN)x / __) ']

String <- __ '"' StringBody '"' __

StringBody <- ([*"\\0-\311+ / Escape+)*

Escape <- '\''" (["{I\/bfnrt] / UnicodeEscape)

UnicodeEscape <- 'u' %x%xlhx%hx

Number <- Minus? IntPart FractPart? ExpPart?

Minus <- -t

IntPart <- '0" / [1-9][0-9]

FractPart <- '.'" [0-9]+

ExpPart <- [eE] [+-17 [0-91+

True <- 'true'

False <- 'false'

Null <- 'null'

. <- Y%s*

Listing 1. PEG grammar for JSON

The grammar provided above is a concise representation of how one might typically define a
JSON grammar for purposes of understanding and implementation. This string-based grammar can
be directly utilized with LPeg’s re. compile to produce a JSON validator. When JSON text conforms
to this grammar, the validator returns the length of the JSON string plus one; for non-conforming
text, it returns nil. This behavior is consistent with any grammar that does not include LPeg-specific
captures.

To transform this validator into a full-fledged JSON parser, captures must be added to retain the
JSON data as a Lua table structure. Consider the following examples for Array and Number:

Array <- {[ '[' ({: JsoN :} __ ('," {: JsoN :} _ )%/ _) '1' |}
Number <- ( Minus? IntPart FractPart? ExpPart? ) -> tonumber

In this extended grammar, the Array rule captures JSON values within an outermost table capture,
thereby aggregating them into a single Lua table. The Number rule uses the tonumber function to
convert the matched string into a Lua number.

Furthermore, the UnicodeEscape rule cannot remain as currently defined. To correctly identify
UTEF-16 surrogate pairs, we need to handle two different cases:

u' -> "' (({[dD] [89aAbBl%x%x} '\u' {%x¥xhxlx})

-> surrogate / %xhxhxhx -> proc_uesc)

UnicodeEscape <- '

Here, the surrogate function handles surrogate pairs, while proc_uesc processes unicode char-
acters in the Basic Multilingual Plane.

After incorporating these captures, the parser becomes capable of generating a usable Lua table
structure from JSON data. However, the performance of this parser remains average, with potential
risks of exceeding Lua’s maximum stack limit.
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4.1.1. Optimizing Whitespace Handling

Regarding the whitespace in this JSON grammar (the __ rule in the PEG), we have some ideas for
improvement. One simple approach is to eliminate redundant matching of whitespaces. For the JSON
rule, which handles whitespace uniformly at its end, we notice that the String rule also processes
whitespace at its conclusion. We therefore consider removing the trailing whitespace part from the
String rule, and adding the necessary whitespace after it when the String exists as an Object key.
This transforms our Object rule to:

Object <- '{' (String __ ':' JSON (',' String __ ':' JSON)* / __) '}'

Additionally, we realize that the trailing whitespace in the JSON rule affects the ability of its
preceding choices to benefit from tail call optimization. Removing the trailing whitespace from the
JSON rule will improve performance and reduce the LPeg VM stack usage for JSON parsing, helping to
parse more deeply nested JSON files. The modified JSON rule becomes:

JSON <- __ (Number / Object / Array / String / True / False / Null)

Corresponding locations that use the JSON rule would then supplement it with whitespace calls.
Through these modifications, we ensure that the JSON grammar doesn’t sacrifice performance in its
formulation. This provides a solid foundation for discussing more advanced optimizations later.

4.1.2. Accumulator vs Function-Based Object Construction

LPeg’s accumulator captures provide an intuitive approach to implementing JSON object parsing
by enabling incremental construction of complex data structures. This mechanism effectively imple-
ments a fold operation within PEG, allowing us to aggregate captured values into a growing structure.
Consider this implementation using accumulator captures:

Object <- '{' -> new_table ({: String __ ':' JSON :} >> add_prop __
('," {: String __ ':' JSON :} >> add_prop __)* / __) '}’

The add_prop function serves as the accumulator, incrementally constructing the object by adding
each property. Here is its implementation, which clearly demonstrates how it processes the key-value
pairs:

function add_prop(t, a, b)

tlal] = b
return t
end

This implementation initializes an empty table via new_table, which serves as the accumulator’s
initial value. As the parser encounters each key-value pair, it invokes add_prop to incorporate the
property into the growing table. The anonymous group capture ensures proper aggregation of the
matched content, correctly binding both key and value parameters.

Considering LuaJIT’s optimization characteristics, where well-crafted Lua code can potentially
outperform C implementations, we can explore an alternative implementation strategy:

Object <- o (String __ ':vJsoN __ (', A String __ ':' JSON 2} )=
/ __) '}') -> make_table

This alternative approach employs a single function capture at the pattern’s conclusion. By
collecting all pairs first and constructing the object at once, it optimizes C-to-Lua transitions and
simplifies group captures. The corresponding make_table implementation requires careful attention:
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function make_table(...)
local arg = {...}

local len = #arg
local res = table.new(0, len / 2)

local i =1

repeat
res[argl[i]l] = argli + 1]
i=1+2

until i > len

return res

end

While this implementation incurs the overhead of creating an argument table (as Lua lacks direct
stack manipulation capabilities), it leverages strategic table management to enhance performance.
Notably, it pre-allocates the result table with precise hash space dimensioning via table.new [11],
enabling more efficient memory utilization by the Lua VM. This function-based approach demonstrates
particular efficiency when processing JSON objects with numerous key-value pairs, where the benefits
of bulk object construction become more pronounced.

4.1.3. Substitution Capture

Substitution capture, while less known, is a powerful feature of LPeg. PEG captures can be
categorized into generative and substitutive. Generative captures build larger structures from captured
components, while substitutive captures aim to replace parts of a string based on a predefined pattern.

LPeg’s substitution capture falls into the latter category. Within a substitution capture, all cap-
tures replace the original matched content rather than generating results directly. This technique is
particularly useful in scenarios like handling escapes within strings. Without substitution capture, the
rules related to String might look like this:

String <- __ '"" {]| StringBody |} -> fast_merge '"'
StringBody <- ({ [*"\\0-\31]+ } / Escape+)*
Escape <- '\'" ({["{I\/1} / [bfnrt] -> str_esc / UnicodeEscape)

UnicodeEscape <- 'u' (({[dD] [89aAbBl%x%x} '\u' {/x%x%x%x}) -> surrogate

/ hxhxhxlx -> proc_uesc)

Due to the presence of Escape, StringBody generates multiple string fragments. To merge these
fragments efficiently, table capture is used to gather them into a Lua table, which is then merged using
the fast_merge function (actually table.concat®). This approach is faster than concatenating strings
individually, given Lua’s inefficiency with the .. operator for large-scale string concatenation. Using
substitution capture simplifies and accelerates this process:

String <- __ '™ {” StringBody ~} '"'
StringBody <- ([~"\\0-\31]+ / Escape+)*
Escape <- '\'" => '"* (["{I\/] / [bfnrt] -> str_esc / UnicodeEscape)

UnicodeEscape <- 'u' -> '' (({[dD] [89aAbBlY%x%x} '\u' {hx¥hxlxlkx})
-> surrogate / Yxkx%xhx -> proc_uesc)

Substitution capture optimizes the getcaptures phase by reducing memory allocation overhead,
which is particularly beneficial for large JSON files. In generative capture, each fragment generates a
Lua string, necessitating memory allocation and deallocation. Substitution capture, by contrast, uses
lual_Buffer to merge C strings, significantly reducing the memory burden.

3 The fast_merge alias is used to better emphasizing the intention of using this function.
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4.2. Case Study: Glob-to-LPeg Converter - An In-Depth Analysis

The JSON parser case study exemplifies a relatively straightforward application of LPeg op-
timization, providing a foundation for understanding basic concepts. However, the challenge of
converting Glob patterns to LPeg representations introduces a more intricate problem, meriting a
thorough exploration. This expanded case study enables us to delve into a wider array of LPeg features
and optimization strategies within a practical context.

Glob patterns offer a concise yet powerful syntax for file path matching. The vim.glob.to_lpeg
converter in the NeoVim project [7], which translates Glob patterns into corresponding LPeg patterns,
highlights the potential of such conversions, though it leaves room for improvement. In this section,
we propose Peglob, a more comprehensive converter from Glob to LPeg, aiming to enhance the
functionality and precision of existing tools.

4.2.1. Overview of Glob Grammar

According to the LSP 3.17 specification [8], Glob patterns incorporate various special characters
and syntaxes, including:

* xto match one or more characters in a path segment

¢ 7 to match on one character in a path segment

* ** to match any number of path segments, including none

¢ {3} to group conditions (e.g. *.ts, js matches all TypeScript and JavaScript files)

¢ [] to declare a range of characters to match in a path segment (e.g., example. [0-9] to match on
example.O, example.1,...)

e [!...] tonegate arange of characters to match in a path segment (e.g., example. [!0-9] to match
on example.a, example.b, but not example.0)

The LSP specification provides a broad definition of Glob patterns without enforcing a strict gram-
mar. To implement a well-defined PEG version of Glob patterns, we apply the following constraints:

* A Glob pattern must match an entire path, with partial matches considered failures.

*  The pattern only determines success or failure, without specifying which parts correspond to
which characters.

* A path segment is the portion of a path between two adjacent path separators (/), or between the
start/end of the path and the nearest separator.

¢ The *x (globstar) pattern matches zero or more path segments, including intervening separators
(/). Within pattern strings, ** must be delimited by path separators (/) or pattern boundaries
and cannot be adjacent to any characters other than /. If ** is not the final element, it must be
followed by /.

e {} (braced conditions) contains valid Glob patterns as branches, separated by commas. Commas
are exclusively used for separating branches and cannot appear within a branch for any other
purpose. Nested {} structures are allowed, but {} must contain at least two branches—zero or
one branch is not permitted.

e In[lorl[!...],acharacter range consists of character intervals (e.g., a-z) or individual characters
(e.g., w). A range including / won’t match that character.

4.2.2. Pattern Analysis and Implementation Strategy

The key to efficient Glob pattern matching lies in a fundamental architectural decision: strictly
separating in-segment pattern matching from segment-crossing behaviors. This separation simplifies
both implementation and optimization while maintaining pattern matching correctness.

Within a path segment, patterns operate in a well-defined, constrained environment. Patterns in a
segment can be categorized into two types:

1.  Fixed-length patterns: Including string literals, single character wildcards (?7), and character
classes ([1)


https://doi.org/10.20944/preprints202504.1786.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2025 d0i:10.20944/preprints202504.1786.v1

9of21

2. Variable-length patterns: Including star (*) and globstar (**)

This classification guides our implementation strategy, particularly in handling path segments
efficiently. Within path segments, patterns alternate between fixed-length Word constructs and variable-
length Star operators, forming the basis of our matching algorithm.

This controlled scope of segment-level matching allows us to safely apply sophisticated opti-
mizations without risking unintended interactions with segment-crossing patterns. The separation of
concerns ensures that our optimization strategies remain effective while maintaining pattern matching
correctness.

The handling of segment-crossing patterns, particularly the globstar (**) operator, becomes
cleaner through this separation. The globstar operator is treated as a distinct element that operates
purely at the segment boundary level. This clarity of purpose makes the implementation both more

robust and more maintainable.

Segment-Level Pattern Matching

In path segment matching, patterns alternate between Word and Star, as outlined in the syntax
diagram at Figure 1. Both lookfor and to_seg_end operate as accumulator captures, folding over the
matched text to incrementally build the result. The Segment grammar splits into two branches: the
first begins with Word as the initial accumulator value, while the second starts with an empty string
(denoted by an empty circle in the railroad diagram).

> (Star ‘ CheckBnd

|
I lookfor
|
|

Word ‘ Star

A\ 4

Star )—(Checand)

Figure 1. Syntax of Segment. The gray boxes represent accumulator captures, and the nodes inside them show the
applied pattern.
A constraint in this syntax is CheckBnd, enforced whenever a Star appears at the end of a Segment

match:
CheckBnd <- &'/' / '.

This rule prevents globstar patterns from erroneously spanning segment boundaries by requiring
either a forward slash (/) or the end of input. By doing so, it confines star matching to within a single

segment, ensuring precise control over pattern scope.
The foundation of fixed-length pattern matching lies in the Word rule:

Word <- !'x'" {| FIRST WordAux |}
WordAux <- Branch / (Simple+ Branch?)
Simple <- Token+ Boundary?

Token  <- Ques / Class / Escape / Literal

Here, Word establishes the basis for matching fixed-length patterns. An optimization comes from
the FIRST rule, which extracts a deterministic first character when possible:

FIRST <- {:F: '' => get_first :}

function get_first(s, i)
if letter:match(s, i) then return true, s:sub(i, i)
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else return false end
end

Due to LPeg’s limitations, extracting the first character requires match-time capture, as other
capture types cannot capture the character without consuming it.

Captured via LPeg’s named group mechanism, this first-character information drives the lookfor
function, which generates tailored LPeg search patterns. When a deterministic first character is
identified, lookfor produces an optimized pattern (sopt); otherwise, it defaults to a plain pattern

(Splain) :

Splain <~ P /. Splain

Sopt <= p / . (Mfirst(p) .)* sopt

The lookfor function’s ability to produce sopt is key to its efficiency. When a deterministic
first character is identified, sopt Optimizes the search by skipping positions in the input where the
current character doesn’t match the pattern p’s required starting character. This skipping false starts
technique, adapted from lerusalimschy’s work [1], boosts performance by avoiding unnecessary
matching attempts, unlike the slower s;,i,, which lacks this optimization.

Handling star patterns within segments poses a distinct challenge. Drawing on Cox’s insight
into pattern matching structure [12], we avoid nested matching—which often leads to exponential
backtracking—and instead flatten the lookfor function calls. For instance, a pattern like axb?cx*x is
processed as sequential calls—a lookfor(b?c) lookfor (x)—rather than a nested structure like a
lookfor(b?c lookfor(x)). This flattening preserves correctness while significantly reducing com-
plexity. The lookfor function’s accumulator capture maintains state across the matching process, and
its use of sopt ensures that the search for each subsequent pattern benefits from the false-start-skipping
optimization tailored to Glob semantics.

For star patterns at segment ends, the to_seg_end function translates them into a greedy match
([~/1%), appended to the existing grammar. Since the star is terminal, it consumes all remaining
characters within the segment boundary, with CheckBnd ensuring no overreach beyond the slash or
input end.

The Word rule also integrates the Branch rule to support braced conditions, introducing variable-
length elements. While this departs from strict fixed-length matching, it raises complexities addressed
later in Section 4.2.3.

Together, these components—the deterministic character extraction of FIRST, the pattern gener-
ation and optimization of lookfor, and Cox’s flattened search strategy—form a robust framework
for segment-level pattern matching. By enforcing strict segment boundaries and leveraging these
optimizations, the system efficiently handles complex patterns while maintaining semantic accuracy.

Cross-Segment Pattern Matching

With segment-level matching established as a foundation, we can construct higher-level gram-
matical structures. In our Glob grammar, the topmost layer consists of the Glob and Element rules, as
shown in Listing 2. The Glob rule handles both absolute paths (beginning with slash) and local paths
(beginning with Element). Consequently, the Glob rule starts with an optional Element.

The rules Glob, Element, and DSeg each incorporate EOF handling to ensure proper termination:
EOF functions as a boundary marker for these rules. The first branch of the Element rule ending
(slash eof / eof?) is deliberately designed this way to ensure that a slash not followed by EOF
is handled by the (slash Element)* portion of the Glob rule. Each rule maintains strict boundary
awareness, avoiding consumption of input required by other rules.

Element, functioning as a fundamental matching unit, provides an abstraction that can be repeated
at the higher level (Glob rule) while integrating globstar patterns with ordinary Segment groups
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Glob <- Element? (slash Element)* (slash? eof)

Element <- DSeg / DSEnd / Segment (slash Segment)*
(slash eof / eof?)

DSeg <- 'sx/' (Element / eof)

DSEnd <— tkx!' 0,

Listing 2. The topmost rules of our Glob-to-LPeg converter, Peglob. The captures are removed to present a clear
grammar. DSeg and DSEnd rules are used to process globstars.

(structured as Segment (slash Segment)*). Regarding the downward functionality, we must first
examine how globstar semantics are implemented in our PEG grammar.

We categorize globstars into two types based on their position: globstars appearing at the pattern’s
end are processed by the DSEnd (double-star ending) rule, as they do not involve searching for
subsequent patterns. For globstars in other positions, we employ the DSeg (double-star segment)
rule, which processes the globstar together with the following slash, forming a segment-like structure
(though its function is inherently cross-segment).

This differentiation enables simpler handling of straightforward cases. The DSEnd rule directly
translates a terminal globstar into a greedy match (.*), which consumes all remaining input. The
DSeg processing is more complex, transforming the globstar and its continuation (the Element or EOF
matched in the rule) into a search structure. For a pattern like **/p, the resulting PEG takes the form:

s<—o(p)/ [7/1x /s

While this search represents a form of lazy matching for ¢(p), its second branch efficiently skips
in-segment content since we only need to determine whether globstar’s continuation can be matched
from a certain segment head. By restricting the globstar’s continuation to a single Element, we mirror
the flattened search strategy discussed earlier. By enabling Element to match Segment groups, DSeg’s
search need only concern itself with matching this portion, without considering subsequent glob
pattern matching.

The use of Segment groups rather than individual Segments addresses an important edge case.
Consider a Glob pattern like */b/d/* and a path /a/b/c/b/d/e. If the last Element branch matched
only a single Segment, after matching /a/b, the grammar would expect /d, but encountering /c would
cause the match to fail since the prior /b cannot be backtracked.

This design allows our glob matcher to avoid backtracking at the cross-segment level. Combined
with segment-level optimizations, this establishes a robust foundation for efficient pattern matching
across both segment and path levels.

4.2.3. Braced Conditions and Expansion

Braced conditions ({}) introduce branching complexity that requires careful handling. While our
initial approach aimed to handle complex structures without expansion, practical considerations led
us to implement brace expansion as a preprocessing step.

Brace expansion, a Unix shell feature, simplifies input by specifying similar string parameters. For
example, enable_{audio,video} expands to enable_audio and enable_video. The expansion rules
are as follows: comma-separated segments within braces represent alternatives, generating all possible
combinations. These alternatives accumulate in a Cartesian product and expand in left-to-right order.
Unmatched braces and special characters are treated as literals [13].

Before delving deeper, let’s examine how braced conditions are transformed into PEG. Braced
conditions in Glob patterns are analogous to alternation in regular expressions. Therefore, our approach
to handling braced conditions mirrors Medeiros’s [14] treatment of alternation. For Glob patterns R, S,
and T, the expression {R, S} T transforms into PEG form following this derivation:

¢({R,S}T) = @(RT) / ¢(ST)
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For instance, the glob pattern {foo,bar}baz transforms into the PEG ’foo’ ’baz’ / ’bar’
’baz’. To further illustrate this concept, consider a more complex example: the glob pattern
{ab,c{d,e}}fg. We first expand the braced conditions, then combine them with the subsequent
pattern:

ab
{ab,c{d,e}}fg = | cd |fg = ’ab’ *fg’ / ’cd’ 'fg’ / ’ce’ 'fg’
ce

This means that when we transform braced conditions into PEG, we must consume the full
pattern that follows the braced condition, to construct the equivalent ordered choices structure in
PEG.* We've designed a two-level PEG structure to handle braced condition transformations.

At the lower level, the CondList and Cond grammar rules work together to implement true Unix
shell-style brace expansion:

CondList <- ('{' Cond (',' Cond)+ '}")
Cond <- ([*,{}]+ / CondList)+ / e

Here, & denotes an empty string. By folding captures on CondList and Cond, we derive an
expanded list of strings in a table format.

At a higher level, these expansion results are concatenated and transformed into LPeg through
concat_tail in the Branch rule:

Branch <- (CondList {.*}) -> concat_tail

This covers the basic processing logic for braced conditions. In the glob grammar, braced con-
ditions are embedded within the Word rule through the WordAux rule. This design choice is critical
because braced conditions can vary in scope—either staying within a single path segment or extending
across multiple segments—depending on their internal patterns. By integrating them into WordAux,
the grammar accommodates these differences seamlessly, without requiring significant changes to its
core structure.

Moreover, this integration ensures that braced conditions are handled consistently with standard
Word patterns, even in segments that include the star (*). This consistency allows the 1ookfor function
to operate reliably across all cases. As a result, the grammar correctly parses braced conditions without
complicating its structure.

Corner Cases with Star and Globstar

The interaction between brace expansion and star/globstar patterns creates several important
corner cases:

® Scenario1: ...*{x/p, ...}, where expansion results in a star before and after the brace merging
into a globstar.

®  Scenario 2: ...x*x{*p, ...}, where the globstar takes precedence over the star, converting into
three tokens: **, *, and p.

®  Scenario 3: .. .**{*x/p}, which, regardless of expansion, results in two globstars followed by /p.

® Scenario 4: ...q{/**/p, ...}, where q is a Word not ending in a star or globstar. This scenario

expands into a valid pattern (q/**/p).
Our handling of these cases ensures consistent behavior while maintaining the system’s overall
integrity:

1. By keeping the content before the first brace unchanged and expanding the content afterward,
star merging is prevented. While this approach may differ from some other Glob matchers, such
patterns are rare in practice.

4 Even with Section 4.2.3.2 optimizations, we consume at least to the segment’s end
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2. Scenarios involving globstar precedence are avoided by our grammar constraints, as they would
produce invalid patterns according to our globstar positioning rules.

3. Double globstar cases, while syntactically valid, are semantically meaningless due to our con-
straints on globstar behavior. The system correctly identifies and rejects such patterns.

4. Valid combinations with path separators match correctly, maintaining consistent matching se-
mantics even with variable-length content.

Performance Optimization for Braced Conditions

Embedding braced conditions within Word can create expansive Word patterns with variable-
length content, clashing with the original intent of Word rules meant for fixed-length patterns. When
the lookfor function searches for such a pattern, it might have to scan to the match’s end, since each
branch in the PEG transformation includes content from the current position to EOF. This inefficiency
pushes for an optimization to trim down the tail content in each branch, especially when certain
conditions make the trailing part unnecessarily heavy, while keeping the transformation equivalent.

To address this, we propose an optimization strategy for specific scenarios where:

e  Constraint 1: After the pattern is brace expanded, no branch within the braced condition contains
/ or **,

e  Constraint 2: The "tail" (all characters after the braced condition) has a prefix ending with /. This
prefix, excluding its last character, contains neither /, {, nor *x*.

Under these constraints, we can transform the pattern matching to reduce the search space while

maintaining correctness:

Alp(BiT)/9(B2T)/ .../ ¢(ByT)]
=Al¢'(B1P)/¢'(B2P)/ .../ ¢'(BxP)]9(Q)

Where:

*  ¢(p) represents the corresponding PEG of the Glob pattern p

e ¢'(p) converts to PEG and transforms EOF matches into &’/ lookahead predicates

*  Ais the fixed-length pattern before the grouping condition

® By, By,..., By are the expanded branches

®  Tis the tail string

¢ Pis the prefix of the tail string meeting the constraints, with the last / character removed
*  (Qis the remainder of T after removing P

The transformation maintains correctness because:

No branches contain / or *#, so grouping conditions don’t cross segment boundaries
Constraint 2 ensures P doesn’t cross segment boundaries

B;P remains within a segment

The successful match of Q is independent of branch selection

At least one B;P matches the character before the first /

Gl @

To implement this optimization in braced conditions, we need to modify the previously defined
Branch rule. Since we need to dynamically determine the matching length of the Branch rule, we
utilize LPeg’s match-time capture. The modified Branch rule becomes:

Branch <- { CondList } => check_opt -> concat_tail

The added check_opt function evaluates the braced condition and subsequent tail against the
two constraints mentioned above. If the conditions are met, it identifies the cut position to split the tail
string T into P and Q. This match-time capture will only consume up to the cut position rather than
continuing to EOF, allowing the concat_tail function to merge only the B;P portion.
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Figure 2. Glob pattern with the path to match on the top, and the transformed syntax (diagram depiction) below.
By, By and T, P, Q correspond to the patterns marked in the diagram. Empty circle means matching empty string
in the diagram.

Ipeg
~ 2501 B rxi_json
% mm dkjson
Z 2001 cjson
o
o}

9 150
0]
2100}
4
©
o 50 -

Figure 3. Parsing speeds (in MB/s) of various JSON parsers

Figure 2 illustrates this concept with a concrete example. The middle section shows a glob
pattern containing a braced condition. After matching the braced condition {Edit,View}, check_opt
immediately verifies whether the branches Edit and View satisfy Constraint 1, and whether the prefix
of T (in this case, Stat/) meets Constraint 2. Upon confirmation, it determines the cut position,
dividing T into P and Q, before invoking concat_tail to generate the ordered choice grammar
structure.

5. Evaluation

To comprehensively evaluate the effectiveness of the LPeg optimization techniques and the
Glob-to-LPeg conversion method proposed in this paper, we designed a series of experiments. These
experiments aim to test the performance of our JSON parser and Glob-to-LPeg converter from different
angles and compare them with existing solutions. All experiments were conducted in a controlled
environment using an Intel Core i7-8550U processor, 8GB DDR4 2400MHz RAM, running Alpine Linux
v3.18 with Lua]IT 2.1.0-beta3 and LPeg 1.1.0. Each benchmark included 3 warmup runs to account for
JIT behavior and was executed 10 times to ensure statistical significance.

5.1. JSON Parser Performance

We evaluated our optimized LPeg JSON parser’s performance against existing JSON parsers
(cjson, dkjson, and rxi_json) using a diverse set of JSON files ranging from 64KB to 3MB with varying
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structural complexities from [15]. As shown in Figure 3, our implementation demonstrated competitive
performance, particularly excelling in processing documents with complex structural patterns and
diverse content types.

The parser showed remarkable efficiency in handling documents with high structural density
and deep nesting patterns. For string-dominated documents like gsoc-2018.json and instruments.json,
our implementation achieved parsing speeds of 107.80 MB/s and 82.41 MB/s respectively, signifi-
cantly outperforming rxi_json. This advantage extended to documents with mixed content types, as
demonstrated in github_events.json (83.94 MB/s) and instruments.json (82.41 MB/s), where our parser
efficiently handled varying combinations of strings, numbers, and nested structures.

While the C-based cjson maintained its performance lead due to its lower-level implementation,
our LPeg-based parser consistently outperformed dkjson and showed competitive results against
rxi_json across most test cases. The only exception was update-center.json, where the relatively uniform
structure appeared to favor rxi_json’s parsing approach. These results validate our optimization
strategy and demonstrate the viability of LPeg-based parsing for performance-critical JSON processing

tasks.
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Figure 4. Impact of optimization techniques on JSON parsing performance. Configurations: fullopt (fully
optimized), nomtab (without table construction optimization), nosubst (without substitution capture), noopt (no
optimizations).

We also analyzed the contribution of different optimization techniques to overall performance
by evaluating the impact of two key optimizations: table creation (via make_table) and substitution
capture. Four diverse datasets were considered—canada.json for numerical processing, twitter.json
for Unicode handling, twitterescaped.json for escape sequence processing, and marine_ik.json for
complex nested structures—with performance measured as the median decoding time under four
configurations: fully optimized, without table creation, without substitution capture, and with no
optimizations, as depicted in Figure 4.
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For the string-heavy datasets, the benefits of these optimizations were pronounced. In twitter.json,
the fully optimized median was 5.81 ms; however, disabling table construction optimization increased
this to 8.63 ms (about a 49% slowdown), while omitting substitution capture nearly doubled the time to
12.27 ms (an increase of roughly 111%). Similarly, for twitterescaped.json, the fully optimized median
of 16.93 ms rose to 19.14 ms without table construction optimization (a 13% increase) and to 20.55 ms
without substitution capture (around a 21% slowdown).

In contrast, canada.json exhibited minimal sensitivity to these optimizations—with median times
varying by less than 2.5%—indicating limited benefit for numerical data. The marine_ik.json dataset,
while structurally complex, showed moderate performance degradation: its fully optimized median
of 93.7 ms increased to 99.38 ms (roughly a 6% slowdown) when table creation was disabled and to
103.99 ms (about an 11% increase) without substitution capture, reaching 113.33 ms when both were
removed. These findings underscore that optimization effectiveness is highly data-dependent, with
string-heavy JSON benefiting significantly from substitution capture, numerically-dominated content
showing negligible response to optimizations, and structurally complex data exhibiting moderate but
meaningful improvements.

5.2. Glob-to-LPeg Converter Evaluation

We evaluated the correctness and performance of our Glob-to-LPeg converter, Peglob, focusing
on how our architectural decisions affected real-world usage. Using the Bun.js Glob test suite as
our foundation, we categorized test cases into six groups: basic patterns, star patterns, globstar
patterns, brace expansions, Unicode patterns, and extension patterns. We selected this test suite
for its comprehensive coverage of edge cases and complex pattern interactions, including intricate
combinations of stars, globstars, character classes, and brace expansions.

We made two specific modifications to the test suite:

1.  Removed tests with invalid surrogate pairs that would trigger exceptions in Lua’s string handling
2. Excluded bash-specific extension tests that fall outside our formal Glob grammar specification

Correctness was assessed using accuracy (proportion of correct matches) and precision (propor-
tion of true matches among claimed true matches) for each test case category. These are calculated
as:

e Accuracy: (TP +TN)/(TP + TN + FP + FN)
e Precision: TP/ (TP + FP)

Here, TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives) are
standard evaluation metrics.

Accuracy Heatmap Precision Heatmap

100
Basic Pattern 66.04 71.70 90.57 I Basic Pattern 48.57 65.71
- 80
Star 4 Star 89.29 96.43
g Globstar -60 g Globstar 100.00 100.00
> >
= =
§ Brace Expansion 54.46 29.70 -40 E Brace Expansion 58.33 51.39
Unicode Pattern 72.73 36.36  45.45 Unicode Pattern 70.00 30.00
-20
Extension 41.67 EPARE I Extension : 17.65  17.65 | 100.00
1 I T 0
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Figure 5. Correctness of glob matchers
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As shown in Figure 5, Peglob demonstrates exceptional reliability across standard glob patterns,
achieving perfect 100% accuracy and precision in basic patterns, star patterns, and Unicode handling.
Its robustness extends to complex cases with impressive results in globstar patterns (98.46% accuracy,
100% precision) and brace expansions (98.02% accuracy, 97.22% precision). These results validate
our architectural decisions, particularly our strict grammar specification which deliberately rejects
all extension patterns—ensuring predictable behavior for standard glob patterns at the expense of
specialized extensions that allow ** within path segments.

Comparative analysis reveals distinct trade-offs among existing implementations. Lua-glob-
pattern excels with extension patterns (100% precision, 79.17% accuracy) but significantly underper-
forms with brace expansions (1.39% precision), revealing fundamental limitations in Lua’s pattern
matching. The LPeg-based implementations show varying specializations: NeoVim’s matcher handles
globstar patterns well (95.38% accuracy, 100% precision) but struggles with basic patterns (66.04% ac-
curacy), while lua-glob achieves perfect precision in globstar matching (100%) but falls short in overall
consistency, particularly with Unicode (36.36% accuracy). This performance landscape highlights the
challenge of balancing comprehensive glob feature support with reliable pattern interpretation—a
balance where Peglob’s grammar-driven approach demonstrates clear advantages for standard use
cases.

For performance testing, we used VSCode 1.97.0’s source code repository, comprising 7,894 file
paths. We designed 10 challenging patterns (shown in Listing 3) to test real-world performance scenar-
ios. We believe real-world performance is the most valuable metric as it involves a mix of matching and
non-matching paths. We deliberately created high-difficulty test cases because performance differences
in glob matching typically emerge from stars, globstars, and braced conditions, so our examples
extensively combine these syntaxes while remaining practical.

1  {src,extensions}/**/test/**/{fixtures,browser,common}/**/*.{ts, js}

2 {extensions,src}/**/{media,images,icons}/**/*.{svg,png,gif, jpg}

3 {.github,build,test}/**/{workflows,azure—pipelines,integration,smoke}/**/*.{ymlj

-~ ,yaml,json}

4 src/vs/{base,editor,platform,workbench}/test/{browser,Common,node}/**/[a—z]*[tTJ
- Jest.ts
src/vs/workbench/{contrib,services}/**/*{Editor,Workspace,Terminal}*.ts
{extensions,src}/**/{markdown, json, javascript,typescript}/**/*.{ts, json}
**/{electron—sandbox,electron—main,browser,node}/**/{*[sS]ervice*,*[cC]ontrolleJ
~ T*}.ts

8 {src,extensions}/#**/{common,browser,electron-sandbox}/**/*{[cClontribution, [sS]

- ervicel}.ts
9 src/vs/{base,platform,workbench}/**/{test,browser}/**/*{[mM]odel,[cC]ontroller}J
-~ *.ts

10 extensions/**/{browser,common,node}/{**/*[sS]ervicex*,**x/*[pPlrovider*}.ts

~N o O

Listing 3. Patterns used to benchmark Glob matchers

We compared Peglob with Bun.Glob” and Minimatch®, excluding other Lua glob libraries that
couldn’t correctly handle most of our test patterns. We chose Bun.Glob partly because it met our
correctness requirements, thanks in part to our feedback to the Bun team.” Minimatch, a JavaScript
library that excels in correctness, represents a typical approach of converting globs to equivalent regular
expressions. Importantly, our benchmark measured only the final matching speed, not including time
spent converting globs to LPeg objects or regular expressions.

Using Bun v1.2.4-canary.13+6aa62fe4b which includes the skip_brace bugfix after Bun 1.2.3 that ported the Rust crate
fast-glob.

Using Minimatch 10.0.1, run in Bun environment for consistent comparison.

Github Issue: Inconsistent Glob Pattern Matching Results in Bun 1.2.2 and 1.2.3-canary. https://github.com/oven-sh/bun/
issues/17512
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Figure 6. Glob performance against VSCode dataset (lower is better)

The results demonstrate that our optimized Peglob implementation consistently outperformed
both competitors across all test patterns. Peglob is 14% to 92% faster than Bun.Glob and 3 to 14 times
as fast as Minimatch. The performance gap between Peglob and its competitors widens as pattern
complexity increases, with Bun.Glob struggling with specific patterns (e.g. Pattern 7 and Pattern 8)
and Minimatch showing high computational overhead across all scenarios.

Beyond real-world scenarios, we also evaluated Peglob’s performance in extreme cases prone to
backtracking. We designed five test groups to measure processing speed when gradually increasing
variable-length elements for large inputs, inspired by Cox’s work [12]. Each test group contains two
scenarios: one where the pattern is expected to match the input (requiring less backtracking), and
another where the pattern is expected not to match (potentially triggering extensive backtracking in
unoptimized implementations).

The results in Figure 7 show Minimatch lacks optimizations for these situations, demonstrating
what performance would look like without relevant optimizations. Both Peglob and Bun.Glob per-
formed excellently, avoiding excessive backtracking. For the last test group, specifically designed to
test braced condition optimization effectiveness, Peglob’s performance remained remarkably stable.
Without our braced condition optimization, Peglob would exhibit exponential time complexity due to
numerous branches after brace expansion.

These consistent results across correctness and performance metrics demonstrate that our formal
grammar specification and architectural decisions successfully balance robustness with efficiency, while
our optimization strategies deliver significant performance improvements without compromising
reliability.

6. Conclusion

This paper has explored advanced techniques for leveraging LPeg’s capabilities through two case
studies: a high-performance JSON parser and a sophisticated Glob-to-LPeg pattern converter.

Our JSON parser analysis revealed that substitution capture significantly improves efficiency
by reducing memory allocation overhead, particularly for string-heavy JSON documents. The table
construction optimization demonstrated measurable performance improvements for object-intensive
documents by pre-allocating hash space and optimizing C-to-Lua transitions. These optimizations
enabled our parser to outperform other pure Lua implementations while highlighting areas where
native C implementations still maintain advantages.

The Glob-to-LPeg converter case study demonstrated how a comprehensive approach to pattern
matching can lead to effective results. By establishing a formal grammar specification, implementing
Cox’s flattened search strategy, optimizing braced conditions, and carefully handling edge cases, we
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Figure 7. Glob performance in edge cases (lower is better). Each row shows one test group with matching scenarios
(left: patterns expected to match; right: patterns expected not to match, potentially triggering backtracking). Note:
Bun.Glob results in the last two rows (testing braced conditions) stop at 1 = 10, reflecting its documented limit of
10 nested brace levels.[16]
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developed a solution that consistently performed well in both real-world and stress-test scenarios. Our
evaluation against the VSCode repository showed Peglob performing 14% to 92% faster than Bun.Glob
and 3 to 14 times faster than Minimatch across diverse pattern matching challenges. The architectural
decision to separate in-segment pattern matching from segment-crossing behaviors proved particularly
effective, enabling targeted optimizations while maintaining pattern matching correctness.

These case studies illustrate that PEG-based parsers can be substantially optimized through
technique selection and grammar construction without modifying the underlying library. They also
demonstrate that systematic analysis of pattern matching problems can lead to implementations that
excel in both performance and maintainability.

Future research could explore enhancing LPeg’s memory management efficiency and extending
these optimization techniques to other complex parsing domains. Our work provides practical insights
for implementing efficient parsers while maintaining code clarity and reliability, contributing to the
advancement of text processing capabilities in the Lua ecosystem.
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