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Abstract 

Effective weed management is crucial for optimizing agricultural productivity and minimizing 
environmental impacts. Weeds are most effectively managed during their seedling or early growth 
stages, something that could be efficiently achieved with the aid of tools for predicting seedling 
emergence. However, many persistent weed species exhibit dormant seedbanks thus complicating 
prediction attempts. The number of emerged seedlings in these species is closely tied to seedbank 
dormancy levels, which are influenced by seasonal variations. Thus, predictive population-based 
threshold models incorporate seedbank dormancy regulation to accurately forecast seedling 
“window” emergence. These models use the functional relationship between environmental cues 
(i.e., temperature, light, alternating temperatures, and soil water content) and seed dormancy 
behavior. Considering that these environmental signals vary among microsites in the field, these tools 
can be adapted to predict weed emergence in both temporal and spatial dimensions, thus making 
them suitable for site-specific weed management. The aim of this paper is to provide a framework 
for dynamic, site-specific weed emergence predictions, enabling targeted weed management 
practices. This kind of approach can help to improve the efficiency of herbicide applications and other 
control measures, reducing costs and environmental impact while enhancing crop yields. This work 
underscores the potential of integrating environmental cues into sophisticated modeling approaches 
to address the complexities of weed emergence in diverse agricultural landscapes. 

Keywords: germination; seed dormancy; weed emergence; population-based threshold models; 
sustainable agriculture 
 

1. Introduction 

The incidence of weeds in agronomic crops causes significant reductions in the profitability of 
agricultural production systems [1]. On the one hand, weeds compete with arable plants for soil 
nutrients, water, and light [2–5]. On the other hand, they can affect harvesting operations, the quality 
of harvested grain, and serve as a source of insects and diseases harmful to crops [6]. Understanding 
these negative aspects is essential because it allows for the development of targeted and efficient 
weed control strategies, reducing the negative impacts on crop yields and quality. Furthermore, it 
aids in the optimization of resource use, minimizing the environmental footprint of agricultural 
practices. 

In the last decades, control strategies were mainly based on the use of herbicides, particularly 
glyphosate [7–9]. However, the reduced availability of products to selectively control weeds, the 
increase in the frequency of individuals resistant and tolerant to the application of certain herbicides, 
as well as the growing pressure to reduce the use of agrochemicals due to their harmful effects on the 
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environment, make it necessary to optimize the application of control measures within a framework 
of more rational control strategies [10]. Despite the progress made in understanding the key processes 
of weeding - such as dispersal, competition, and establishment of weeds - in recent decades, the 
persistence of the problem in current agricultural systems highlights our inability to predict and 
control this phenomenon with sufficient precision [11]. This is partly due to our lack of knowledge 
regarding various aspects related to the regulation of weeding processes [3,12]. However, the 
possibility of designing more effective integrated weed management systems depends not only on 
gathering this knowledge, but also on the ability to predict in time and space, and under different 
environmental and management practice scenarios, the intensity with which the weeding processes 
occur [11,12]. In this sense, predicting weed emergence is of vital importance, as the seedling stage is 
the most vulnerable to control practices [13,14]. To achieve this, it is necessary to understand different 
aspects of weed biology underlying the emergence process, such as dormancy and germination, as a 
preliminary step to develop tools to guide decision-making [4,12,15,16]. Although there is a wealth 
of published information related to the study of these biological aspects in many weedy species of 
agricultural importance, this knowledge is scattered and not enough efforts have been made to 
integrate this information within a conceptual framework that would allow the development of 
transfer tools to assist farmers and technicians in decision-making for the management of weeds 
under both productive and environmental rationales. 

Weed management is a critical aspect of agricultural practices, significantly impacting crop 
yields and environmental sustainability. However, predicting the timing of weed emergence is 
challenging due to seed dormancy and the formation of persistent seedbanks. By integrating 
germination and dormancy models with site-specific weed management, growers can tailor control 
strategies to local conditions, improving the timing and precision of interventions. This approach 
enhances the effectiveness of weed control by addressing the unique dynamics of seedbanks in 
specific fields. 

2. Seed Dormancy in Weed Species 

Seed dormancy is a critical factor in the persistence of weed seedbanks and the timing of weed 
emergence [17]. Dormancy mechanisms allow weed seeds to remain ungerminated in the soil for 
extended periods, emerging when conditions are favorable [18]. The regulation of dormancy is 
influenced by various environmental cues, including temperature, light, alternating temperatures, 
and seed water content [19,20]. Understanding these cues and their interactions is essential for 
developing models that can predict weed emergence accurately. Seed dormancy is possibly the 
process that most affects seedbank emergence dynamics in agricultural fields [4,12], and it can be 
caused by one or more blockages which result in the failure to germinate even under adequate 
moisture, aeration, and temperature conditions [3,21–24]. 

In an attempt to formulate a definition, Bewley and Black [25] define dormancy as an internal 
characteristic of the seed that prevents germination under environmental conditions that would 
otherwise have been suitable for germination. On the other hand, Vleeshouwers et al. [26], stated that 
dormancy is “a characteristic of the seed, the level of which will define what conditions must be met 
for the seed to germinate”. Later, Benech-Arnold et al. [3] proposed a definition of dormancy that 
reinforces the intrinsic character of the phenomenon, defining it as “an internal seed condition that 
prevents seed germination under water, thermal and gaseous conditions that would otherwise have 
been suitable for germination to take place”. All these definitions denote that once the impedances 
have been removed, germination will occur under a wide range of environmental conditions. 
Depending on the timing of dormancy, dormancy can be classified into primary and secondary 
dormancy [24,27]. Primary dormancy refers to the dormancy of seeds dispersed from the mother 
plant, while secondary dormancy results from the reinduction of dormancy in seeds that had been 
previously released from primary dormancy [27–31]. 

In many cases, release from primary dormancy is followed by subsequent reinductions into 
secondary dormancy, determining the existence of cyclical patterns in the dormancy level (Figure 1). 
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Many problematic weeds, particularly those capable of forming persistent seed banks, often exhibit 
cyclical changes in dormancy [32]. For example, many spring annuals have a high dormancy level in 
autumn after dispersal, which decreases during the cold winter months and then increases again in 
the summer months. In contrast, winter annual species generally show an inverse temporal pattern 
in their dormancy level changes [33]. This behavior highlights the adaptive value of dormancy, which 
plays an important role in the adaptation of plants to their environment, allowing them to identify 
the season of the year with favorable environmental conditions for plant establishment and 
constraints for establishment as the presence of a dense canopy or burial at depths from where a 
seedling cannot emerge [24,34]. 

 

Figure 1. Schematic representation of seedbank dynamics for weed species with seed dormancy. Dotted arrows 
and dashed lines represent seed outputs (i.e., predation, germination/death, germination/emergence), solid 
arrows represent seed inputs. Blue and orange arrows represent cyclic changes between dormant and non-
dormant seeds. 

3. Environmental Factors Regulating Changes in Seed Dormancy 

The main environmental factors regulating weed emergence patterns are temperature and water 
availability [35,36]). These factors alter the dormancy level of seed banks determining seasonal 
patterns of weed emergence in the field [19]. In winter annual species, high summer temperatures act 
as dormancy relievers, while low winter temperatures induce induction into secondary dormancy of 
seeds [24]. This is the case for Capsela bursa-pastoris [37], Avena fatua [38], Lolium rigidum [39], Bromus 
tectorum [40] and Lithospermun arvense [41] and many others. In contrast, in summer annuals, the low 
temperatures experienced during winter act as dormancy relievers determining a minimum 
dormancy in early spring, while the high temperatures that prevails in late spring/early summer, 
produce an increase in the dormancy level determining through entrance into secondary dormancy; 
this is the case of Chenopodium album L., Sysimbrium officinale L., Polygonum persicaria L. [42], 
Polygonum aviculare L. [14,43,44], Ambrosia artemiisifolia L. [45], Echinochloa crus-galli [46] and many 
others. 

The process by which summer annual species are released from dormancy during winter is 
known as ‘stratification’ or ‘chilling’, and is equivalent to expose the seeds to low temperatures under 
humid conditions. In the case of winter annuals, high summer temperatures acting on seeds with a 
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low moisture content, alleviate dormancy; this process is called ‘after-ripening’. The moisture content 
of the seeds determines whether or not the above-mentioned processes (i.e., stratification or after-
ripening) take place, as the moisture content of the seeds acts as a modulator of the effect of 
temperature on the dormancy level [20,47]. For example, Wang et al. [48] observed that dormancy 
release at low temperatures in Vitis vinifera was zero below 20% seed moisture and then increased to 
a maximum at 40% seed moisture. In turn, Bair et al. [36] quantified the effect of soil water status on 
the dormancy release in seeds of B. tectorum, observing that the inclusion of this factor in the model 
developed improved the prediction made. More recently, Malavert et al. [20] quantitatively 
characterized the interaction between seed water content (SWC) and stratification temperature. The 
authors observed that in P. aviculare seeds, the dormancy release rate was zero below 15% SWC and 
above that value, the release rate increased until it became maximal at 31% SWC. These results made 
it possible to describe the modulating effect of SWC on changes in dormancy level and to test a model 
that predicts adequately changes in P. aviculare dormancy level as a function of the variation in SWC 
experienced by the seeds in the soil. Beyond this evidence, very few studies have attempted to 
quantify the effect of soil water content on seed moisture content and how this affects the cyclical 
changes in the dormancy level of seed populations. 

Seed dormancy is a relative rather than an absolute phenomenon. The concept of relative 
dormancy levels was introduced by Vegis [49] from observations obtained during the dormancy 
release process: the range of temperatures permissive for germination widens to a maximum as seeds 
are released from dormancy. In contrast, as dormancy is induced, the range of temperatures within 
which germination can proceed narrows until germination is no longer possible at any temperature. 
On this basis, Karssen [24] proposed that seasonal patterns of emergence of annual species are the 
combined result of seasonal cycles in soil temperatures and physiological changes within seeds that 
alter the permissive temperature range for germination. Therefore, germination in the field is 
restricted to periods when soil temperature and the temperature range within which germination can 
proceed overlap (Figure 2). 

Thus, an increase or decrease in the dormancy level could be expressed as a widening or 
narrowing of the permissive temperature range for germination. These variations in the range of 
permissive temperatures for germination can be quantified from two threshold limit temperatures: 
lower limit temperature (Tl) and higher limit temperature (Th) [14,43,50]. These threshold 
temperatures (Tl and Th) vary among seeds within the same population [14,43,50]. For example, Tl(50) 
and Th(50) represent the temperatures below and above which dormancy is expressed for 50% of the 
population. In summer annuals, changes in the dormancy level are due to increases or decreases in 
Tl, while in winter species are due to fluctuations in Th. For summer annual species, such as P. 
aviculare, germination of a fraction of the seedbank population occurs when the increase in soil 
temperature (in spring) exceeds the Tl for that fraction [26,44,51]. This proportion of the seedbank 
able to emerge at a given time can be predicted if the distribution of Tl within the seed population 
and its associated changes with the level of seed dormancy, are known [33,43,44], see Figure 2. 
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Figure 2. Schematic representation of seasonal changes in the permissive germination thermal range and its 
relationship with soil temperature dynamics for Polygonum aviculare seeds. Solid black lines indicate the mean 
lower (Tl(50)) and grey solid line the mean higher (Th(50)) limits temperatures of the permissive thermal range 
allowing germination. Dashed black lines indicate Tl for the 25 and 75 seed population percentiles. Dashed gray 
line indicates the soil temperature (soil Tº). The gray zone represents the moment when germination occurs once 
the soil temperature enters in the permissive thermal range. Black arrows indicate the lowering and increase in 
Tl during dormancy release and induction, respectively (originally from Probert [52], adapted from Malavert et 
al. [44]. . 

4. Seed Dormancy Terminating Factors 

As previously mentioned, the dormancy level is constantly changing in the seedbank. Often, 
when the dormancy level of a seed population is sufficiently low, certain species require exposure to 
specific environmental signals that act as dormancy terminators. These signals remove the final 
barriers and initiate the germination process [3,53,54]. Among the most studied dormancy-
terminating factors are light and alternating temperatures, as these typically have the greatest effect 
under field conditions [55–58]. The requirement for light is associated with the possibility of detecting 
gaps in the canopy or the depth to which the seeds are buried and is also regarded as an adaptation 
to recurrent tillage operations in agricultural systems [3,53]. Conversely, alternating temperatures 
constitute an important environmental signal for dormancy termination, since below the first 
millimeters of depth in the soil, the influence of the light environment is null and, therefore, 
alternating temperatures are the only way of detecting burial depth [59–61]. 

The changes in dormancy level not only comprise changes in the range of temperatures 
permissive for germination, but also changes in the sensitivity of the seed population to the effects of 
these dormancy-terminating factors [3]. For example, in the case of seeds that require light stimulus 
to terminate dormancy, Batlla and Benech-Arnold [56] and Malavert et al. [57] observed that the 
dynamics of changes in the dormancy level in P. aviculare seeds during stratification were associated 
with changes in the light sensitivity of the seed population: sensitivity increased as dormancy 
decreased and viceversa. Similarly, for seeds requiring temperature fluctuations to terminate 
dormancy, Benech-Arnold et al. [62] showed that the size of the fraction in Sorghum halepense L. seed 
population responding to the stimulatory effect of temperature fluctuations increased as a 
consequence of a burial period under winter temperatures. The authors observed that this increase 
was also accompanied by changes in the number and amplitude of fluctuating temperature cycles 
required to complete exit from dormancy. S. halepense seeds that had spent one winter buried in the 
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soil required exposure to fewer cycles of alternating temperatures to exit from dormancy and 
acquired the ability to respond to cycles of lower thermal amplitude. 

5. Population-Based Threshold Models 

The use of predictive models in weed control strategies is becoming increasingly relevant due 
to current pressures to reduce the excessive use of chemical controls in agricultural production 
[46,63]. These models rely on biological timing, where germination occurs at different rates 
depending on environmental conditions [64,65]). These rates are determined by the progress towards 
germination as a function of the difference between environmental conditions and a minimum 
threshold value, below which germination does not occur, or a maximum threshold value, above 
which there is also no response [1966]. For example, the timing and likelihood of seed germination 
are determined by the seed’s threshold sensitivity to environmental signals - the greater the signal 
above the threshold, the faster the response. 

Population-based threshold models (PBTMs) describe how individuals within a population 
respond to environmental factors based on varying thresholds. In these models, each individual has 
a specific threshold for responding to cues like temperature or moisture, leading to a diversity of 
responses across the population [66]. As environmental conditions change, more individuals surpass 
their thresholds, resulting in cumulative population-level responses, often represented as quantal 
outcomes (i.e., germinated or not) [67,68]. PBTMs are useful for predicting collective behaviors in 
populations, such as seed germination patterns or emergence timing, by accounting for individual 
variation within a population. This kind of approach can be a robust tool for predicting how weed 
populations respond to environmental shifts, making them increasingly relevant in adapting weed 
control strategies to the impacts of global climate change. Some of the most used PBTMs consider 
germination in the predictions; however, very few models consider changes in dormancy level in 
their predictions. The most common germination models are: 

6. Models to Predict Germination: 

Thermal time model (TT): This model predicts germination in non-dormant seeds as a function 
of soil temperature. This type of model consists of certain variables that need to be characterized to 
estimate the percentage of seed population germination at a given time: base temperature (Tb), 
optimum temperature (To), maximum temperature (Tm), and thermal time (TT) required for a specific 
fraction of the population to germinate (i.e., 25% (TT25), 50% (TT50), and 75% (TT75) of the population). 
The model accumulates degree days (ºCd) per day from a Tb in a sub-optimal (i.e., Tb > To) and supra-
optimal (To > Tm) temperature range (Figure 3a). It is useful for studying germination at different 
temperatures (a wide range of temperatures). This approach has been applied to species such as 
Setaria (i.e., S. viridis, S. verticillata, and S. glauca; [69], and the work demonstrates that S. glauca has 
lower cardinal temperatures compared to other Setaria species. Using this model, the germination 
requirements and time of emergence can be predicted to optimize weed management for these 
species. In Amaranthus retroflexus, Chenopodium álbum, Digitaria sanguinalis and Abutilon theophrasti a 
similar approach was used to identify the Tb and TT to predict the cumulative emergence in the field 
[70]. This type of approach has been widely used to determine Tb and TT of many weeds which is 
critical for optimizing weed control timing, since knowing when a certain proportion of weed seeds 
will likely emerge enables precise application of herbicides or cultivation practices. 

Hydrotime (HT) model: This model focuses exclusively on the effect of water potential (Ψ) on 
seed germination. It assumes that each seed within a population has a specific base water potential 
threshold for germination, which enables the modeling of population-level responses under varying 
levels of water availability (Figure 3b; [71]. The model has been successfully applied to quantify the 
effects of water potential on germination and to describe the variability in germination timing among 
individual seeds. For example, Huarte [72] applied the hydrotime model to several non-cultivated 
species, estimating key parameters such as the hydrotime constant (θH), the median base water 
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potential (Ψb(50)), and its standard deviation (σΨb). This approach revealed that individual seeds differ 
in their base water potential thresholds, resulting in heterogeneous germination patterns across 
environmental conditions. Similarly, Tao et al. [73] applied the model to Astragalus sinicus, a forage 
legume, and demonstrated that hydrotime parameters not only vary between seed lots but also 
correlate with seed vigor and seedling emergence performance. In another example, Boddy et al. [68] 
used the hydrotime approach with Echinochloa phyllopogon, showing how environmental data 
combined with HT modeling can accurately describe temperature and moisture effects on 
germination and emergence, supporting improved weed control strategies. Collectively, these 
studies highlight the versatility and predictive value of the hydrotime model for understanding and 
managing seed germination under water-limited and fluctuating environmental conditions. 

 
Figure 3. (A) Schematic representation of the relationship between germination rates (GRg= 1/tg) and 
temperature at the suboptimal and the supra-optimal thermal range for 25, 50 and 75% of a seed population. (B) 
Relationship between GRg and water potential for 25, 50 and 75% of a seed population. Adapted from Batla et 
al. [74]. 

Hydrothermal Time (HTT) model: This model extends the basic thermal time model by 
including both temperature and water potential [67]. It calculates the accumulation of hydrothermal 
time required for germination fraction (i.e., HTT25, HTT50, HTT75) to occur and is widely used to 
simulate germination under water stress conditions. This approach was used to study the 
germination and emergence of Amaranthus retroflexus in response to water and temperature stress 
[75]. The hydrothermal time model has been used to assess the combined effects of temperature and 
water potential on the germination of A. retroflexus, a problematic weed in agriculture. The authors 
modeled the hydrothermal time required for germination under various environmental conditions, 
demonstrating that water stress alters the optimal temperature for germination. The HTT model 
provided a robust framework for predicting weed emergence in varying field environmental 
conditions, contributing to improved timing of weed control measures. 

7. Models to Predict Seed Dormancy and Germination 

7.1. Stratification Thermal-Time and Dormancy Induction Thermal-Time 

The germination models (i.e., TT, HT and HTT) explained above work well for non-dormant 
seeds. However, when a seedbank contains seeds with dormancy, it is essential to establish functional 
relationships between the environmental factors that regulate variations in the dormancy level and 
the rate-change at which seeds decrease or increase dormancy. Since temperature and water 
availability are the main factors that regulate these cyclical changes in dormancy level, we must 
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define parameters that accurately characterize these changes. As mentioned above, the changes in 
seed dormancy can be characterized through the range of temperatures within which seeds can 
germinate. This range can be characterized by changes in the limit temperatures that allow 
germination: Tl and Th and their deviations (Figure 2). To establish functional relationships between 
time, temperature and dormancy level, Batlla and Benech-Arnold [43] developed a Stratification 
thermal-time model (Stt; Figure 4a, b) and Malavert et al. [44], Dormancy induction thermal-time (DItt; 
Figure 4c, d) for Polygonum aviculare. These models quantify seed dormancy release and induction for 
seeds stratified at different temperatures through changes in the range of temperatures permissive 
for germination as a consequence of changes in the mean lower limit temperature of the range (Tl(50); 
see Figure 2). These thermal-time approaches are similar to that usual in other weed species to relate 
germination or emergence processes as a function of time and temperature. However, in contrast to 
common thermal-time models in which ºCd are accumulated over a Tb, Stt and DItt accumulate ºCd 
below or above a ceiling threshold temperature below which dormancy release or above dormancy 
induction occurs [74]. 

These models work simultaneously in the accumulation of ºCd after dispersal (P. aviculare 
disperses with a high level of dormancy in early autumn). Due to lower autumn and winter 
temperatures, the Stt model accumulates more ºCd units (beginning to operate at soil temperatures 
below 17ºC), allowing the dormancy release process (Figure 4b). Then, as temperatures rise in early 
spring, the DItt model begins to accumulate more ºCd than Stt (operating at soil temperatures above 
7.9ºC) (Figure 4d). Once DItt units surpass the accumulation of Stt units, induction into secondary 
dormancy predominates [44]. The accumulated ºCd can be used to predict how the thermal range 
permissive for seed germination changes (i.e., widen and narrow) as a consequence of variations in 
Tl during dormancy release and induction, in relation to soil temperature. Quantifying temperature 
effects through a thermal-time approach enables predictions of the dormancy level in a seed 
population exposed to the variable soil field thermal environment. These models are particularly 
functional, as they predict when the ‘emergence window’ will open and close and estimate the 
proportion of seeds likely to emerge within that window. 

 

Figure 4. Changes in the mean lower limit temperature (Tl(50)) for Polygonum aviculare seeds during dormancy 
release and induction. (a) Changes in Tl(50) during dormancy release for seeds stored at 1.6, 7 and 12°C, plotted 
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against days of storage and (b) against stratification thermal time (Stt). The dotted lines in (a) were fitted linear 
equations for each storage temperature with R2 values of 0.98 (1.6°C), 0.84 (7°C) and 0.96 (12°C). The fitted line 
in (b) (Tl(50) = −0.007 Stt + 18.07. Inset in (b) is estimated values of standard deviation of the lower limit temperature 
(σTl) for P. aviculare seeds stored at 1.6, 7 and 12°C plotted against the ln(Stt/100)/Ts, where Stt is the stratification 
thermal time and Ts is the daily mean storage or soil temperature. The line was fitted according to equation σTl 
= −11.28 (ln (Stt/100)/Ts)2 + 23.91 (ln (Stt/100)/Ts) with an R2 of 0.9. (c) Changes in Tl(50) during dormancy induction 
for seeds stored at 10, 15, 20, 25 and 30°C plotted against days of storage and (d) against dormancy induction 
thermal time (DItt). The dashed lines in (c) were fitted by linear equations for each storage temperature with R2 
values of 0.96 (10°C), 0.99 (15°C), 0.87 (20°C), 0.89 (25°C) and 0.96 (30°C), while the dotted straight line indicates 
the mean higher limit temperature for seed germination of the seed population (Th(50)). The fitted bilinear line in 
(d) is the result of repeated regression analysis to obtain the threshold ‘dormancy induction temperature’ (TuDI) 
with the best fit according to equation Tl(50) = 0.12 DItt + 7.5, if DItt ≥ 96.5°Cd Tl(50) = 18°C (Figures a and b adapted 
from Batlla and Benech-Arnold [43]; figures c and d adapted from Malavert et al. [44]. 

Recently, the effect of seed moisture content on the rate of dormancy release and induction in P. 
aviculare seeds was incorporated (Figure 5; [20]). This approach allowed the identification of two seed 
water content (SWC) thresholds: a minimum value of SWC required to activate metabolic processes 
in the seeds (the rate at which the process takes place is minimal) and a value which maximizes the 
velocity of the processes that leads either to dormancy release or to dormancy induction (i.e., 31%) 
(Figure 5b). The inclusion of the effect of SWC on dormancy changes improved the prediction of 
seedling emergence in relation to predictions made using only temperature as a driver of dormancy 
changes [20]. 

 

Figure 5. (a) Estimated values of the lower-limit temperature for seed germination (Tl(50)) as estimated from 
germination curves at 15ºC for Polygonum aviculare seeds stratified at 5ºC under different seed water content 
(SWC) as a function of Stratification thermal-time units (Stt). The dotted-lines were adjusted by linear equations 
for each SWC with the following R2 values: 0.98 (22%), 0.99 (29.8%), 0.98 (35.4%) and 0.97 (45.7%) respectively 
(P-value <0.0001, slope test). (b) Dormancy release rate of P. aviculare seeds expressed as the decrease in Tl(50) per 
accumulated Stt units during stratification at 5ºC as a function of SWC. The full black line represents the changes 
in dormancy release rate. The vertical dashed line represents the SWC threshold value (15%) above which the 
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seeds can perceive the dormancy release effect of low stratification temperatures. (c) Final germination for seeds 
incubated at 15ºC as a function of time during induction into secondary dormancy under different SWC. (d) 
Estimated values of the Tl(50) as estimated from germination curves at 15ºC for seeds induced into secondary 
dormancy at 20ºC under different SWC as a function of dormancy induction thermal-time units (DItt). The full 
black line represents the changes in dormancy induction rate, expressed as an increase in Tl(50) per accumulated 
DItt unit when SWC is above 24%. The dashed line represents the changes in dormancy induction rate, expressed 
as increase in Tl(50) per accumulated DItt unit when SWC is below 24%. Adapted from Malavert et al. [20]. 

7.2. After-Ripening Thermal-Time Models 

After-ripening (AR) thermal-time models are crucial for understanding the temperature-driven 
dynamics of seed dormancy release under dry conditions. As explained above, this mechanism is 
common in winter annuals. More recently, Batlla et al. [76] developed a model for Arabidopsis thaliana 
that associates temperature with dormancy cycling, predicting how seasonal soil temperature 
fluctuations influence after-ripening and enable germination under favorable conditions. Similarly, 
Christensen et al. [40] modeled Bromus tectorum by simulating dormancy loss during AR process 
through variations in the base water potential (ψb(50)). In the case of Lithospermum arvense, Chantre et 
al. [41] developed an AR thermal-time model that parameterizes germination taking into account 
primary dormancy release. Their findings revealed that the rate of dormancy release increases with 
temperature, making the model a valuable tool for predicting weed emergence. This research 
demonstrated the potential of AR thermal-time models to support weed management strategies by 
optimizing predictions of dormancy loss and germination timing based on environmental conditions 
in autumn-winter species. 

The PBTMs offer a promising approach to predicting weed emergence by incorporating the 
dynamics of seed dormancy and environmental cues. These models use the functional relationships 
between environmental factors and weed emergence patterns to forecast the timing and extent of 
seedling emergence. By integrating site-specific environmental data, such as soil temperature and 
moisture levels, these models can provide precise predictions tailored to specific agricultural 
landscapes. 

8. Application of PBTMs in Site-Specific Weed Management 

The PBTMs could be applied in site-specific weed control to predict weed emergence in fields 
with landscape heterogeneity. This variability most likely leads to weed patches that justify site-
specific weed control as a more efficient methodology both from an economic and environmental 
standpoint. Indeed, factors such as soil temperature and soil water content, previously pointed out 
as modulators of seed dormancy and germination, can be expected to vary with the position in 
topography, thus determining variations in weed emergence intensity and temporality. These models 
could be useful for forecasting the timing and proportion of weeds likely to germinate/emerge 
differentially based on the part of the topography where they are located, provided we are able to 
trace the dynamics of soil water content and soil temperature in the various topographic positions. 
These models consider the changes in seed dormancy as a function of soil temperature and soil water 
content to accurately forecast the time window for seedling emergence and to provide a notion of the 
size of the emergence that is taking place within that window. The application of PBTMs in 
developing georeferenced weed emergence maps enhances precision agriculture by optimizing 
herbicide use, targeting high-risk areas, and minimizing application in low-risk zones. 

For a case study, we selected a location in the agricultural region of Buenos Aires province, in 
General La Madrid, in the southern part of the province (Lat -37.48; Long -61.41). For the simulation 
(see Simulation model approach section in Data supplementary; Table S1), we considered two years 
with contrasting rainfall patterns (i.e., cold-wet (2017; using daily soil temperature and soil moisture 
data from the NASA POWER database) and a dry winter (2023), in which water restriction values 
were hypothetical, designed to represent realistic but conservative conditions for stratification. We 
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assume that P. aviculare seeds are homogeneously distributed in the field. Based on this assumption, 
the model was run from May 1st, when seed dispersion had ended (i.e., around March-April). 

To explore how topographic variation influences P. aviculare emergence size, simulations were 
performed across a range of elevation levels (320, 315, 302, 290, 279, and 260 m), using stratification 
and dormancy induction thermal-time models (Stt and DItt) and incorporating soil water content 
(SWC) dynamics. A 20% emergence threshold was used to define the decision point for chemical 
control, as it represents a balance between effective weed suppression (translated into the economic 
benefit of yield increase) and the cost of herbicide plus application. This threshold aligns with the 
concept of economic thresholds in weed science, which define the weed density or emergence level 
at which the cost of control equals the potential crop yield loss prevented [77–79]. In the absence of 
P. aviculare specific thresholds, this 20% level is supported by empirical studies showing that action 
thresholds between 15–25% weed emergence or coverage can optimize yield and input efficiency in 
cereal systems [80,81]. Two contrasting scenarios were simulated: 1) one assuming unrestricted water 
availability, and 2) another assuming limited soil moisture (see Table S2 and Table S3, Data 
Supplementary). In the first scenario, the model predicts emergence above the 20% threshold (Figure 
6) across all topographic positions from June 17th onwards (Figure S1; Data supplementary). 

 
Figure 6. Heatmap showing the simulated emergence proportion of Polygonum aviculare at different altitudes in 
General La Madrid, Buenos Aires Province, under non-limiting soil moisture conditions. In this scenario, 
emergence exceeded the 20% threshold across all altitudes. The emergence window started on June 17th and 
closed on September 26th (2017), lasting 103 days. This result reflects optimal stratification and germination 
conditions. The maps was obtained from Google Earth climate data were retrieved from the NASA POWER 

database. 

For the second scenario in the same location, a water restriction during stratification (i.e., cold-
dry winter year, 2023) was simulated (see Table S2, Supplementary Data). Under this scenario, SWC 
was assumed to fluctuate between <15 and 22% throughout the stratification period. These values fall 
within the range previously identified as the threshold below which dormancy release is either absent 
or occurs at a minimal rate in P. aviculare seeds [20]. This water limitation affected only dormancy 
dynamics, not germination directly, since the model assumes that germination occurs only after 
dormancy is lifted and favorable temperature and moisture conditions are met with. In this scenario, 
the simulation results showed that: i) under cold-dry winter conditions, the model predicts a delay 
in the onset of emergence, shifting the window to late July (28/07) and early August (08/08) in the 
lower topographic positions (279 m and 260 m), as opposed to earlier emergence observed in the 
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cold-wet (2017) simulation (i.e., emergence start at 15/06 for 279 and 260 m). Despite this delay, 
emergence still exceeded the 20% threshold in these lower areas (Figure 7, red pixels). ii) The model 
predicts that the maximum emergence proportion reaches 24% at 279 m and 42% at 260 m, 
respectively (Figure S2; Supplementary Data). iii) The emergence window closes approximately 22 
days later (August 22nd) and is narrower than in the previous simulation, which extended from June 
15th to September 26th, 2017 (103 days in total). This simulation indicates that although at low 
topographic positions emergence exceeds the 20% indicated as a threshold, under low soil water 
content, the emergence window becomes more limited in duration, and the overall proportion of 
seeds able to germinate is reduced as compared with a cold-wet year. In contrast, at higher 
topographic positions (i.e., 290 to 320 m), the emergence remained below the 20% threshold, 
precluding chemical control. 

This spatial heterogeneity in emergence allows for site-specific herbicide applications, as 
spraying can be restricted to zones that exceed the control threshold: only the lower topographic 
positions (260–279 m) would require herbicide treatment in dry years, while higher areas would be 
spared, potentially reducing herbicide use by up to 60–70%, depending on field topography. This 
model demonstrates that, even when thermal stratification requirements are met with, if water 
content is limiting for dormancy release, P. aviculare emergence above the 20% threshold would be 
confined to low topographic positions, where water accumulates and allows dormancy release 
through Stt accumulation. Although the model focused on soil moisture as the main driver of 
stratification process, topographic variation could also influence soil temperature and, consequently, 
emergence patterns. This spatial variation supports the use of georeferenced weed emergence maps 
and variable-rate sprayers to selectively target areas with higher emergence, reducing chemical use 
in low-risk zones. Such strategies improve weed control efficiency, reduce costs, and minimize 
environmental impact. 

 
Figure 7. Heatmap showing the simulated emergence proportion of Polygonum aviculare at different altitudes in 
General La Madrid, Buenos Aires Province, under water-limited conditions. Only the lowest altitudes (260 m 
and 279 m, in red) exceeded the 20% emergence threshold, while higher altitudes remained below it (orange and 
blue), reflecting spatial variability in soil moisture. The emergence window was delayed (starting between July 
28th and August 8th) and shortened, closing on August 22nd (2023). The map was obtained from Google Earth 
and climate data were retrieved from the NASA POWER database. 

In addition to site-specific herbicide applications, weed control in P. aviculare can be further 
optimized through adjustments site-specific in wheat density and sowing date. In wet winters with 
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high predicted weed emergence, increasing wheat sowing density can enhance crop competition, 
reducing light availability and space for weeds. 

9. Conclusions 

The problem of troublesome weeds in agricultural fields has increased in recent years [82]. In 
this regard, the use of Population-Based Threshold Models (PBTMs) in site-specific weed 
management could represent a significant advancement in agricultural practices, offering a valuable 
approach for controlling weed emergence with precision and minimum economic and environmental 
cost [66,83–85]. By integrating dynamic, multidimensional field information, such as soil 
temperature, soil water content, and topographic variations, and incorporating seedbank dormancy 
dynamics into these models, PBTMs provide accurate predictions of weed “emergence windows” 
and proportions [33]. This approach could reduce the risks associated with traditional weed 
management practices by shifting toward more economically and environmentally sustainable 
solutions [86], enabling optimized herbicide applications, minimizing input costs, and reducing 
environmental impact. 

Future research should focus on integrating PBTMs with technological advances in agriculture. 
Precision farming tools, like autonomous machines (self-driving tractors and sprayers), can follow 
herbicide application maps from PBTMs to target high weed-pressure areas, reducing unnecessary 
herbicide use. Drones can provide real-time aerial imagery to monitor weeds and assess herbicide 
effectiveness. Sensors in agricultural machinery can gather data on soil moisture, temperature, and 
weed emergence, enhancing PBTMs accuracy and enabling precise herbicide application 
adjustments. Machine Learning (ML) and Artificial Intelligence (AI) can analyze large datasets, 
improving weed emergence predictions and refining herbicide use. Additionally, Decision Support 
Systems (DSS) could provide guidance on herbicide applications, incorporating PBTMs outputs and 
real-time data on weed density, crop health, and weather. Integrating PBTMs with farm management 
software would allow farmers to manage pest and weed control in one platform (i.e., cellular 
applications apps), simplifying decision-making and improving overall farm efficiency. 
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