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Abstract

Effective weed management is crucial for optimizing agricultural productivity and minimizing
environmental impacts. Weeds are most effectively managed during their seedling or early growth
stages, something that could be efficiently achieved with the aid of tools for predicting seedling
emergence. However, many persistent weed species exhibit dormant seedbanks thus complicating
prediction attempts. The number of emerged seedlings in these species is closely tied to seedbank
dormancy levels, which are influenced by seasonal variations. Thus, predictive population-based
threshold models incorporate seedbank dormancy regulation to accurately forecast seedling
“window” emergence. These models use the functional relationship between environmental cues
(i.e., temperature, light, alternating temperatures, and soil water content) and seed dormancy
behavior. Considering that these environmental signals vary among microsites in the field, these tools
can be adapted to predict weed emergence in both temporal and spatial dimensions, thus making
them suitable for site-specific weed management. The aim of this paper is to provide a framework
for dynamic, site-specific weed emergence predictions, enabling targeted weed management
practices. This kind of approach can help to improve the efficiency of herbicide applications and other
control measures, reducing costs and environmental impact while enhancing crop yields. This work
underscores the potential of integrating environmental cues into sophisticated modeling approaches
to address the complexities of weed emergence in diverse agricultural landscapes.

Keywords: germination; seed dormancy; weed emergence; population-based threshold models;
sustainable agriculture

1. Introduction

The incidence of weeds in agronomic crops causes significant reductions in the profitability of
agricultural production systems [1]. On the one hand, weeds compete with arable plants for soil
nutrients, water, and light [2-5]. On the other hand, they can affect harvesting operations, the quality
of harvested grain, and serve as a source of insects and diseases harmful to crops [6]. Understanding
these negative aspects is essential because it allows for the development of targeted and efficient
weed control strategies, reducing the negative impacts on crop yields and quality. Furthermore, it
aids in the optimization of resource use, minimizing the environmental footprint of agricultural
practices.

In the last decades, control strategies were mainly based on the use of herbicides, particularly
glyphosate [7-9]. However, the reduced availability of products to selectively control weeds, the
increase in the frequency of individuals resistant and tolerant to the application of certain herbicides,
as well as the growing pressure to reduce the use of agrochemicals due to their harmful effects on the
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environment, make it necessary to optimize the application of control measures within a framework
of more rational control strategies [10]. Despite the progress made in understanding the key processes
of weeding - such as dispersal, competition, and establishment of weeds - in recent decades, the
persistence of the problem in current agricultural systems highlights our inability to predict and
control this phenomenon with sufficient precision [11]. This is partly due to our lack of knowledge
regarding various aspects related to the regulation of weeding processes [3,12]. However, the
possibility of designing more effective integrated weed management systems depends not only on
gathering this knowledge, but also on the ability to predict in time and space, and under different
environmental and management practice scenarios, the intensity with which the weeding processes
occur [11,12]. In this sense, predicting weed emergence is of vital importance, as the seedling stage is
the most vulnerable to control practices [13,14]. To achieve this, it is necessary to understand different
aspects of weed biology underlying the emergence process, such as dormancy and germination, as a
preliminary step to develop tools to guide decision-making [4,12,15,16]. Although there is a wealth
of published information related to the study of these biological aspects in many weedy species of
agricultural importance, this knowledge is scattered and not enough efforts have been made to
integrate this information within a conceptual framework that would allow the development of
transfer tools to assist farmers and technicians in decision-making for the management of weeds
under both productive and environmental rationales.

Weed management is a critical aspect of agricultural practices, significantly impacting crop
yields and environmental sustainability. However, predicting the timing of weed emergence is
challenging due to seed dormancy and the formation of persistent seedbanks. By integrating
germination and dormancy models with site-specific weed management, growers can tailor control
strategies to local conditions, improving the timing and precision of interventions. This approach
enhances the effectiveness of weed control by addressing the unique dynamics of seedbanks in
specific fields.

2. Seed Dormancy in Weed Species

Seed dormancy is a critical factor in the persistence of weed seedbanks and the timing of weed
emergence [17]. Dormancy mechanisms allow weed seeds to remain ungerminated in the soil for
extended periods, emerging when conditions are favorable [18]. The regulation of dormancy is
influenced by various environmental cues, including temperature, light, alternating temperatures,
and seed water content [19,20]. Understanding these cues and their interactions is essential for
developing models that can predict weed emergence accurately. Seed dormancy is possibly the
process that most affects seedbank emergence dynamics in agricultural fields [4,12], and it can be
caused by one or more blockages which result in the failure to germinate even under adequate
moisture, aeration, and temperature conditions [3,21-24].

In an attempt to formulate a definition, Bewley and Black [25] define dormancy as an internal
characteristic of the seed that prevents germination under environmental conditions that would
otherwise have been suitable for germination. On the other hand, Vleeshouwers et al. [26], stated that
dormancy is “a characteristic of the seed, the level of which will define what conditions must be met
for the seed to germinate”. Later, Benech-Arnold et al. [3] proposed a definition of dormancy that
reinforces the intrinsic character of the phenomenon, defining it as “an internal seed condition that
prevents seed germination under water, thermal and gaseous conditions that would otherwise have
been suitable for germination to take place”. All these definitions denote that once the impedances
have been removed, germination will occur under a wide range of environmental conditions.
Depending on the timing of dormancy, dormancy can be classified into primary and secondary
dormancy [24,27]. Primary dormancy refers to the dormancy of seeds dispersed from the mother
plant, while secondary dormancy results from the reinduction of dormancy in seeds that had been
previously released from primary dormancy [27-31].

In many cases, release from primary dormancy is followed by subsequent reinductions into
secondary dormancy, determining the existence of cyclical patterns in the dormancy level (Figure 1).
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Many problematic weeds, particularly those capable of forming persistent seed banks, often exhibit
cyclical changes in dormancy [32]. For example, many spring annuals have a high dormancy level in
autumn after dispersal, which decreases during the cold winter months and then increases again in
the summer months. In contrast, winter annual species generally show an inverse temporal pattern
in their dormancy level changes [33]. This behavior highlights the adaptive value of dormancy, which
plays an important role in the adaptation of plants to their environment, allowing them to identify
the season of the year with favorable environmental conditions for plant establishment and
constraints for establishment as the presence of a dense canopy or burial at depths from where a
seedling cannot emerge [24,34].
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Figure 1. Schematic representation of seedbank dynamics for weed species with seed dormancy. Dotted arrows
and dashed lines represent seed outputs (i.e., predation, germination/death, germination/emergence), solid
arrows represent seed inputs. Blue and orange arrows represent cyclic changes between dormant and non-

dormant seeds.

3. Environmental Factors Regulating Changes in Seed Dormancy

The main environmental factors regulating weed emergence patterns are temperature and water
availability [35,36]). These factors alter the dormancy level of seed banks determining seasonal
patterns of weed emergence in the field [19]. In winter annual species, high summer temperatures act
as dormancy relievers, while low winter temperatures induce induction into secondary dormancy of
seeds [24]. This is the case for Capsela bursa-pastoris [37], Avena fatua [38], Lolium rigidum [39], Bromus
tectorum [40] and Lithospermun arvense [41] and many others. In contrast, in summer annuals, the low
temperatures experienced during winter act as dormancy relievers determining a minimum
dormancy in early spring, while the high temperatures that prevails in late spring/early summer,
produce an increase in the dormancy level determining through entrance into secondary dormancy;
this is the case of Chenopodium album L., Sysimbrium officinale L., Polygonum persicaria L. [42],
Polygonum aviculare L. [14,43,44], Ambrosia artemiisifolia L. [45], Echinochloa crus-galli [46] and many
others.

The process by which summer annual species are released from dormancy during winter is
known as “stratification” or “chilling’, and is equivalent to expose the seeds to low temperatures under
humid conditions. In the case of winter annuals, high summer temperatures acting on seeds with a
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low moisture content, alleviate dormancy; this process is called ‘after-ripening’. The moisture content
of the seeds determines whether or not the above-mentioned processes (i.e., stratification or after-
ripening) take place, as the moisture content of the seeds acts as a modulator of the effect of
temperature on the dormancy level [20,47]. For example, Wang et al. [48] observed that dormancy
release at low temperatures in Vitis vinifera was zero below 20% seed moisture and then increased to
a maximum at 40% seed moisture. In turn, Bair et al. [36] quantified the effect of soil water status on
the dormancy release in seeds of B. tectorum, observing that the inclusion of this factor in the model
developed improved the prediction made. More recently, Malavert et al. [20] quantitatively
characterized the interaction between seed water content (SWC) and stratification temperature. The
authors observed that in P. aviculare seeds, the dormancy release rate was zero below 15% SWC and
above that value, the release rate increased until it became maximal at 31% SWC. These results made
it possible to describe the modulating effect of SWC on changes in dormancy level and to test a model
that predicts adequately changes in P. aviculare dormancy level as a function of the variation in SWC
experienced by the seeds in the soil. Beyond this evidence, very few studies have attempted to
quantify the effect of soil water content on seed moisture content and how this affects the cyclical
changes in the dormancy level of seed populations.

Seed dormancy is a relative rather than an absolute phenomenon. The concept of relative
dormancy levels was introduced by Vegis [49] from observations obtained during the dormancy
release process: the range of temperatures permissive for germination widens to a maximum as seeds
are released from dormancy. In contrast, as dormancy is induced, the range of temperatures within
which germination can proceed narrows until germination is no longer possible at any temperature.
On this basis, Karssen [24] proposed that seasonal patterns of emergence of annual species are the
combined result of seasonal cycles in soil temperatures and physiological changes within seeds that
alter the permissive temperature range for germination. Therefore, germination in the field is
restricted to periods when soil temperature and the temperature range within which germination can
proceed overlap (Figure 2).

Thus, an increase or decrease in the dormancy level could be expressed as a widening or
narrowing of the permissive temperature range for germination. These variations in the range of
permissive temperatures for germination can be quantified from two threshold limit temperatures:
lower limit temperature (Ti) and higher limit temperature (Tn) [14,43,50]. These threshold
temperatures (Ti and Tx) vary among seeds within the same population [14,43,50]. For example, Tiso
and Theo) represent the temperatures below and above which dormancy is expressed for 50% of the
population. In summer annuals, changes in the dormancy level are due to increases or decreases in
Ti, while in winter species are due to fluctuations in Tn. For summer annual species, such as P.
aviculare, germination of a fraction of the seedbank population occurs when the increase in soil
temperature (in spring) exceeds the Ti for that fraction [26,44,51]. This proportion of the seedbank
able to emerge at a given time can be predicted if the distribution of Ti within the seed population
and its associated changes with the level of seed dormancy, are known [33,43,44], see Figure 2.
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Figure 2. Schematic representation of seasonal changes in the permissive germination thermal range and its
relationship with soil temperature dynamics for Polygonum aviculare seeds. Solid black lines indicate the mean
lower (Tis0) and grey solid line the mean higher (Thso) limits temperatures of the permissive thermal range
allowing germination. Dashed black lines indicate Ti for the 25 and 75 seed population percentiles. Dashed gray
line indicates the soil temperature (soil T9). The gray zone represents the moment when germination occurs once
the soil temperature enters in the permissive thermal range. Black arrows indicate the lowering and increase in
Ti during dormancy release and induction, respectively (originally from Probert [52], adapted from Malavert et
al. [44]. .

4. Seed Dormancy Terminating Factors

As previously mentioned, the dormancy level is constantly changing in the seedbank. Often,
when the dormancy level of a seed population is sufficiently low, certain species require exposure to
specific environmental signals that act as dormancy terminators. These signals remove the final
barriers and initiate the germination process [3,53,54]. Among the most studied dormancy-
terminating factors are light and alternating temperatures, as these typically have the greatest effect
under field conditions [55-58]. The requirement for light is associated with the possibility of detecting
gaps in the canopy or the depth to which the seeds are buried and is also regarded as an adaptation
to recurrent tillage operations in agricultural systems [3,53]. Conversely, alternating temperatures
constitute an important environmental signal for dormancy termination, since below the first
millimeters of depth in the soil, the influence of the light environment is null and, therefore,
alternating temperatures are the only way of detecting burial depth [59-61].

The changes in dormancy level not only comprise changes in the range of temperatures
permissive for germination, but also changes in the sensitivity of the seed population to the effects of
these dormancy-terminating factors [3]. For example, in the case of seeds that require light stimulus
to terminate dormancy, Batlla and Benech-Arnold [56] and Malavert et al. [57] observed that the
dynamics of changes in the dormancy level in P. aviculare seeds during stratification were associated
with changes in the light sensitivity of the seed population: sensitivity increased as dormancy
decreased and viceversa. Similarly, for seeds requiring temperature fluctuations to terminate
dormancy, Benech-Arnold et al. [62] showed that the size of the fraction in Sorghum halepense L. seed
population responding to the stimulatory effect of temperature fluctuations increased as a
consequence of a burial period under winter temperatures. The authors observed that this increase
was also accompanied by changes in the number and amplitude of fluctuating temperature cycles
required to complete exit from dormancy. S. halepense seeds that had spent one winter buried in the
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soil required exposure to fewer cycles of alternating temperatures to exit from dormancy and
acquired the ability to respond to cycles of lower thermal amplitude.

5. Population-Based Threshold Models

The use of predictive models in weed control strategies is becoming increasingly relevant due
to current pressures to reduce the excessive use of chemical controls in agricultural production
[46,63]. These models rely on biological timing, where germination occurs at different rates
depending on environmental conditions [64,65]). These rates are determined by the progress towards
germination as a function of the difference between environmental conditions and a minimum
threshold value, below which germination does not occur, or a maximum threshold value, above
which there is also no response [1966]. For example, the timing and likelihood of seed germination
are determined by the seed’s threshold sensitivity to environmental signals - the greater the signal
above the threshold, the faster the response.

Population-based threshold models (PBTMs) describe how individuals within a population
respond to environmental factors based on varying thresholds. In these models, each individual has
a specific threshold for responding to cues like temperature or moisture, leading to a diversity of
responses across the population [66]. As environmental conditions change, more individuals surpass
their thresholds, resulting in cumulative population-level responses, often represented as quantal
outcomes (i.e., germinated or not) [67,68]. PBTMs are useful for predicting collective behaviors in
populations, such as seed germination patterns or emergence timing, by accounting for individual
variation within a population. This kind of approach can be a robust tool for predicting how weed
populations respond to environmental shifts, making them increasingly relevant in adapting weed
control strategies to the impacts of global climate change. Some of the most used PBTMs consider
germination in the predictions; however, very few models consider changes in dormancy level in
their predictions. The most common germination models are:

6. Models to Predict Germination:

Thermal time model (TT): This model predicts germination in non-dormant seeds as a function
of soil temperature. This type of model consists of certain variables that need to be characterized to
estimate the percentage of seed population germination at a given time: base temperature (Tv),
optimum temperature (To), maximum temperature (Tm), and thermal time (TT) required for a specific
fraction of the population to germinate (i.e., 25% (TT2s), 50% (T Ts0), and 75% (TT7) of the population).
The model accumulates degree days (°Cd) per day from a Tvin a sub-optimal (i.e., Tv > To) and supra-
optimal (To > Tm) temperature range (Figure 3a). It is useful for studying germination at different
temperatures (a wide range of temperatures). This approach has been applied to species such as
Setaria (i.e., S. viridis, S. verticillata, and S. glauca; [69], and the work demonstrates that S. glauca has
lower cardinal temperatures compared to other Setfaria species. Using this model, the germination
requirements and time of emergence can be predicted to optimize weed management for these
species. In Amaranthus retroflexus, Chenopodium dlbum, Digitaria sanguinalis and Abutilon theophrasti a
similar approach was used to identify the Tv and TT to predict the cumulative emergence in the field
[70]. This type of approach has been widely used to determine Tv and TT of many weeds which is
critical for optimizing weed control timing, since knowing when a certain proportion of weed seeds
will likely emerge enables precise application of herbicides or cultivation practices.

Hydrotime (HT) model: This model focuses exclusively on the effect of water potential (W) on
seed germination. It assumes that each seed within a population has a specific base water potential
threshold for germination, which enables the modeling of population-level responses under varying
levels of water availability (Figure 3b; [71]. The model has been successfully applied to quantify the
effects of water potential on germination and to describe the variability in germination timing among
individual seeds. For example, Huarte [72] applied the hydrotime model to several non-cultivated
species, estimating key parameters such as the hydrotime constant (0u), the median base water
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potential (Wvi0), and its standard deviation (owb). This approach revealed that individual seeds differ
in their base water potential thresholds, resulting in heterogeneous germination patterns across
environmental conditions. Similarly, Tao et al. [73] applied the model to Astragalus sinicus, a forage
legume, and demonstrated that hydrotime parameters not only vary between seed lots but also
correlate with seed vigor and seedling emergence performance. In another example, Boddy et al. [68]
used the hydrotime approach with Echinochloa phyllopogon, showing how environmental data
combined with HT modeling can accurately describe temperature and moisture effects on
germination and emergence, supporting improved weed control strategies. Collectively, these
studies highlight the versatility and predictive value of the hydrotime model for understanding and
managing seed germination under water-limited and fluctuating environmental conditions.
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Figure 3. (A) Schematic representation of the relationship between germination rates (GRg= 1/tg) and
temperature at the suboptimal and the supra-optimal thermal range for 25, 50 and 75% of a seed population. (B)
Relationship between GRg and water potential for 25, 50 and 75% of a seed population. Adapted from Batla et
al. [74].

Hydrothermal Time (HTT) model: This model extends the basic thermal time model by
including both temperature and water potential [67]. It calculates the accumulation of hydrothermal
time required for germination fraction (i.e., HITT25, HTTs0, HTT7s) to occur and is widely used to
simulate germination under water stress conditions. This approach was used to study the
germination and emergence of Amaranthus retroflexus in response to water and temperature stress
[75]. The hydrothermal time model has been used to assess the combined effects of temperature and
water potential on the germination of A. retroflexus, a problematic weed in agriculture. The authors
modeled the hydrothermal time required for germination under various environmental conditions,
demonstrating that water stress alters the optimal temperature for germination. The HTT model
provided a robust framework for predicting weed emergence in varying field environmental
conditions, contributing to improved timing of weed control measures.

7. Models to Predict Seed Dormancy and Germination

7.1. Stratification Thermal-Time and Dormancy Induction Thermal-Time

The germination models (i.e., TT, HT and HTT) explained above work well for non-dormant
seeds. However, when a seedbank contains seeds with dormancy, it is essential to establish functional
relationships between the environmental factors that regulate variations in the dormancy level and
the rate-change at which seeds decrease or increase dormancy. Since temperature and water
availability are the main factors that regulate these cyclical changes in dormancy level, we must
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define parameters that accurately characterize these changes. As mentioned above, the changes in
seed dormancy can be characterized through the range of temperatures within which seeds can
germinate. This range can be characterized by changes in the limit temperatures that allow
germination: Ti and Tn and their deviations (Figure 2). To establish functional relationships between
time, temperature and dormancy level, Batlla and Benech-Arnold [43] developed a Stratification
thermal-time model (Sw; Figure 4a, b) and Malavert et al. [44], Dormancy induction thermal-time (DI;
Figure 4c, d) for Polygonum aviculare. These models quantify seed dormancy release and induction for
seeds stratified at different temperatures through changes in the range of temperatures permissive
for germination as a consequence of changes in the mean lower limit temperature of the range (Tisoy;
see Figure 2). These thermal-time approaches are similar to that usual in other weed species to relate
germination or emergence processes as a function of time and temperature. However, in contrast to
common thermal-time models in which °Cd are accumulated over a Tbv, St and DI« accumulate °Cd
below or above a ceiling threshold temperature below which dormancy release or above dormancy
induction occurs [74].

These models work simultaneously in the accumulation of °Cd after dispersal (P. aviculare
disperses with a high level of dormancy in early autumn). Due to lower autumn and winter
temperatures, the St model accumulates more °Cd units (beginning to operate at soil temperatures
below 17°C), allowing the dormancy release process (Figure 4b). Then, as temperatures rise in early
spring, the DI« model begins to accumulate more °Cd than S« (operating at soil temperatures above
7.9°C) (Figure 4d). Once DI« units surpass the accumulation of St units, induction into secondary
dormancy predominates [44]. The accumulated °Cd can be used to predict how the thermal range
permissive for seed germination changes (i.e., widen and narrow) as a consequence of variations in
Ti during dormancy release and induction, in relation to soil temperature. Quantifying temperature
effects through a thermal-time approach enables predictions of the dormancy level in a seed
population exposed to the variable soil field thermal environment. These models are particularly
functional, as they predict when the ‘emergence window’ will open and close and estimate the
proportion of seeds likely to emerge within that window.
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Figure 4. Changes in the mean lower limit temperature (Tis0) for Polygonum aviculare seeds during dormancy

release and induction. (a) Changes in Tis0) during dormancy release for seeds stored at 1.6, 7 and 12°C, plotted
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against days of storage and (b) against stratification thermal time (S«). The dotted lines in (a) were fitted linear
equations for each storage temperature with R2 values of 0.98 (1.6°C), 0.84 (7°C) and 0.96 (12°C). The fitted line
in (b) (Tiso)=-0.007 St +18.07. Inset in (b) is estimated values of standard deviation of the lower limit temperature
(om) for P. aviculare seeds stored at 1.6, 7 and 12°C plotted against the In(S«/100)/Ts, where St is the stratification
thermal time and Ts is the daily mean storage or soil temperature. The line was fitted according to equation ot
=-11.28 (In (S+/100)/Ts)? + 23.91 (In (S+/100)/Ts) with an R? of 0.9. (¢) Changes in Tis0 during dormancy induction
for seeds stored at 10, 15, 20, 25 and 30°C plotted against days of storage and (d) against dormancy induction
thermal time (DI«). The dashed lines in (c) were fitted by linear equations for each storage temperature with R?
values of 0.96 (10°C), 0.99 (15°C), 0.87 (20°C), 0.89 (25°C) and 0.96 (30°C), while the dotted straight line indicates
the mean higher limit temperature for seed germination of the seed population (The0). The fitted bilinear line in
(d) is the result of repeated regression analysis to obtain the threshold ‘dormancy induction temperature’ (Tupr)
with the best fit according to equation Tiso) = 0.12 DI« + 7.5, if DIt > 96.5°Cd Tis0) = 18°C (Figures a and b adapted
from Batlla and Benech-Arnold [43]; figures ¢ and d adapted from Malavert et al. [44].

Recently, the effect of seed moisture content on the rate of dormancy release and induction in P.
aviculare seeds was incorporated (Figure 5; [20]). This approach allowed the identification of two seed
water content (SWC) thresholds: a minimum value of SWC required to activate metabolic processes
in the seeds (the rate at which the process takes place is minimal) and a value which maximizes the
velocity of the processes that leads either to dormancy release or to dormancy induction (i.e., 31%)
(Figure 5b). The inclusion of the effect of SWC on dormancy changes improved the prediction of
seedling emergence in relation to predictions made using only temperature as a driver of dormancy
changes [20].
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Figure 5. (a) Estimated values of the lower-limit temperature for seed germination (Tis0) as estimated from
germination curves at 15°C for Polygonum aviculare seeds stratified at 5°C under different seed water content
(SWCQ) as a function of Stratification thermal-time units (St). The dotted-lines were adjusted by linear equations
for each SWC with the following R? values: 0.98 (22%), 0.99 (29.8%), 0.98 (35.4%) and 0.97 (45.7%) respectively
(P-value <0.0001, slope test). (b) Dormancy release rate of P. aviculare seeds expressed as the decrease in Tiso) per
accumulated S units during stratification at 5°C as a function of SWC. The full black line represents the changes

in dormancy release rate. The vertical dashed line represents the SWC threshold value (15%) above which the
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seeds can perceive the dormancy release effect of low stratification temperatures. (c) Final germination for seeds
incubated at 15°C as a function of time during induction into secondary dormancy under different SWC. (d)
Estimated values of the Tiso) as estimated from germination curves at 15°C for seeds induced into secondary
dormancy at 20°C under different SWC as a function of dormancy induction thermal-time units (DI«). The full
black line represents the changes in dormancy induction rate, expressed as an increase in Tis0) per accumulated
DIk unit when SWC is above 24%. The dashed line represents the changes in dormancy induction rate, expressed

as increase in Tii0) per accumulated DI unit when SWC is below 24%. Adapted from Malavert et al. [20].

7.2. After-Ripening Thermal-Time Models

After-ripening (AR) thermal-time models are crucial for understanding the temperature-driven
dynamics of seed dormancy release under dry conditions. As explained above, this mechanism is
common in winter annuals. More recently, Batlla et al. [76] developed a model for Arabidopsis thaliana
that associates temperature with dormancy cycling, predicting how seasonal soil temperature
fluctuations influence after-ripening and enable germination under favorable conditions. Similarly,
Christensen et al. [40] modeled Bromus tectorum by simulating dormancy loss during AR process
through variations in the base water potential ({10). In the case of Lithospermum arvense, Chantre et
al. [41] developed an AR thermal-time model that parameterizes germination taking into account
primary dormancy release. Their findings revealed that the rate of dormancy release increases with
temperature, making the model a valuable tool for predicting weed emergence. This research
demonstrated the potential of AR thermal-time models to support weed management strategies by
optimizing predictions of dormancy loss and germination timing based on environmental conditions
in autumn-winter species.

The PBTMs offer a promising approach to predicting weed emergence by incorporating the
dynamics of seed dormancy and environmental cues. These models use the functional relationships
between environmental factors and weed emergence patterns to forecast the timing and extent of
seedling emergence. By integrating site-specific environmental data, such as soil temperature and
moisture levels, these models can provide precise predictions tailored to specific agricultural
landscapes.

8. Application of PBTMs in Site-Specific Weed Management

The PBTMs could be applied in site-specific weed control to predict weed emergence in fields
with landscape heterogeneity. This variability most likely leads to weed patches that justify site-
specific weed control as a more efficient methodology both from an economic and environmental
standpoint. Indeed, factors such as soil temperature and soil water content, previously pointed out
as modulators of seed dormancy and germination, can be expected to vary with the position in
topography, thus determining variations in weed emergence intensity and temporality. These models
could be useful for forecasting the timing and proportion of weeds likely to germinate/emerge
differentially based on the part of the topography where they are located, provided we are able to
trace the dynamics of soil water content and soil temperature in the various topographic positions.
These models consider the changes in seed dormancy as a function of soil temperature and soil water
content to accurately forecast the time window for seedling emergence and to provide a notion of the
size of the emergence that is taking place within that window. The application of PBTMs in
developing georeferenced weed emergence maps enhances precision agriculture by optimizing
herbicide use, targeting high-risk areas, and minimizing application in low-risk zones.

For a case study, we selected a location in the agricultural region of Buenos Aires province, in
General La Madrid, in the southern part of the province (Lat -37.48; Long -61.41). For the simulation
(see Simulation model approach section in Data supplementary; Table S1), we considered two years
with contrasting rainfall patterns (i.e., cold-wet (2017; using daily soil temperature and soil moisture
data from the NASA POWER database) and a dry winter (2023), in which water restriction values
were hypothetical, designed to represent realistic but conservative conditions for stratification. We
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assume that P. aviculare seeds are homogeneously distributed in the field. Based on this assumption,
the model was run from May 1st, when seed dispersion had ended (i.e., around March-April).

To explore how topographic variation influences P. aviculare emergence size, simulations were
performed across a range of elevation levels (320, 315, 302, 290, 279, and 260 m), using stratification
and dormancy induction thermal-time models (S« and DI«) and incorporating soil water content
(SWC) dynamics. A 20% emergence threshold was used to define the decision point for chemical
control, as it represents a balance between effective weed suppression (translated into the economic
benefit of yield increase) and the cost of herbicide plus application. This threshold aligns with the
concept of economic thresholds in weed science, which define the weed density or emergence level
at which the cost of control equals the potential crop yield loss prevented [77-79]. In the absence of
P. aviculare specific thresholds, this 20% level is supported by empirical studies showing that action
thresholds between 15-25% weed emergence or coverage can optimize yield and input efficiency in
cereal systems [80,81]. Two contrasting scenarios were simulated: 1) one assuming unrestricted water
availability, and 2) another assuming limited soil moisture (see Table S2 and Table S3, Data
Supplementary). In the first scenario, the model predicts emergence above the 20% threshold (Figure
6) across all topographic positions from June 17th onwards (Figure S1; Data supplementary).

4802m
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Each pixel = 4.71 m? < a15m

290m 289 aeom
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Emergence in the different elevations (m)

B Emergence<20%
I Emergence > 20%

Figure 6. Heatmap showing the simulated emergence proportion of Polygonum aviculare at different altitudes in
General La Madrid, Buenos Aires Province, under non-limiting soil moisture conditions. In this scenario,
emergence exceeded the 20% threshold across all altitudes. The emergence window started on June 17th and
closed on September 26th (2017), lasting 103 days. This result reflects optimal stratification and germination
conditions. The maps was obtained from Google Earth climate data were retrieved from the NASA POWER

database.

For the second scenario in the same location, a water restriction during stratification (i.e., cold-
dry winter year, 2023) was simulated (see Table S2, Supplementary Data). Under this scenario, SWC
was assumed to fluctuate between <15 and 22% throughout the stratification period. These values fall
within the range previously identified as the threshold below which dormancy release is either absent
or occurs at a minimal rate in P. aviculare seeds [20]. This water limitation affected only dormancy
dynamics, not germination directly, since the model assumes that germination occurs only after
dormancy is lifted and favorable temperature and moisture conditions are met with. In this scenario,
the simulation results showed that: i) under cold-dry winter conditions, the model predicts a delay
in the onset of emergence, shifting the window to late July (28/07) and early August (08/08) in the
lower topographic positions (279 m and 260 m), as opposed to earlier emergence observed in the
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cold-wet (2017) simulation (i.e., emergence start at 15/06 for 279 and 260 m). Despite this delay,
emergence still exceeded the 20% threshold in these lower areas (Figure 7, red pixels). ii) The model
predicts that the maximum emergence proportion reaches 24% at 279 m and 42% at 260 m,
respectively (Figure S2; Supplementary Data). iii) The emergence window closes approximately 22
days later (August 22nd) and is narrower than in the previous simulation, which extended from June
15th to September 26th, 2017 (103 days in total). This simulation indicates that although at low
topographic positions emergence exceeds the 20% indicated as a threshold, under low soil water
content, the emergence window becomes more limited in duration, and the overall proportion of
seeds able to germinate is reduced as compared with a cold-wet year. In contrast, at higher
topographic positions (i.e, 290 to 320 m), the emergence remained below the 20% threshold,
precluding chemical control.

This spatial heterogeneity in emergence allows for site-specific herbicide applications, as
spraying can be restricted to zones that exceed the control threshold: only the lower topographic
positions (260-279 m) would require herbicide treatment in dry years, while higher areas would be
spared, potentially reducing herbicide use by up to 60-70%, depending on field topography. This
model demonstrates that, even when thermal stratification requirements are met with, if water
content is limiting for dormancy release, P. aviculare emergence above the 20% threshold would be
confined to low topographic positions, where water accumulates and allows dormancy release
through S accumulation. Although the model focused on soil moisture as the main driver of
stratification process, topographic variation could also influence soil temperature and, consequently,
emergence patterns. This spatial variation supports the use of georeferenced weed emergence maps
and variable-rate sprayers to selectively target areas with higher emergence, reducing chemical use
in low-risk zones. Such strategies improve weed control efficiency, reduce costs, and minimize
environmental impact.

Emergence in the different elevations (m)

B Emergence<20%
I Emergence > 20%

Figure 7. Heatmap showing the simulated emergence proportion of Polygonum aviculare at different altitudes in
General La Madrid, Buenos Aires Province, under water-limited conditions. Only the lowest altitudes (260 m
and 279 m, in red) exceeded the 20% emergence threshold, while higher altitudes remained below it (orange and
blue), reflecting spatial variability in soil moisture. The emergence window was delayed (starting between July
28th and August 8th) and shortened, closing on August 22nd (2023). The map was obtained from Google Earth
and climate data were retrieved from the NASA POWER database.

In addition to site-specific herbicide applications, weed control in P. aviculare can be further
optimized through adjustments site-specific in wheat density and sowing date. In wet winters with
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high predicted weed emergence, increasing wheat sowing density can enhance crop competition,
reducing light availability and space for weeds.

9. Conclusions

The problem of troublesome weeds in agricultural fields has increased in recent years [82]. In
this regard, the use of Population-Based Threshold Models (PBTMs) in site-specific weed
management could represent a significant advancement in agricultural practices, offering a valuable
approach for controlling weed emergence with precision and minimum economic and environmental
cost [66,83-85]. By integrating dynamic, multidimensional field information, such as soil
temperature, soil water content, and topographic variations, and incorporating seedbank dormancy
dynamics into these models, PBTMs provide accurate predictions of weed “emergence windows”
and proportions [33]. This approach could reduce the risks associated with traditional weed
management practices by shifting toward more economically and environmentally sustainable
solutions [86], enabling optimized herbicide applications, minimizing input costs, and reducing
environmental impact.

Future research should focus on integrating PBTMs with technological advances in agriculture.
Precision farming tools, like autonomous machines (self-driving tractors and sprayers), can follow
herbicide application maps from PBTMs to target high weed-pressure areas, reducing unnecessary
herbicide use. Drones can provide real-time aerial imagery to monitor weeds and assess herbicide
effectiveness. Sensors in agricultural machinery can gather data on soil moisture, temperature, and
weed emergence, enhancing PBTMs accuracy and enabling precise herbicide application
adjustments. Machine Learning (ML) and Artificial Intelligence (AI) can analyze large datasets,
improving weed emergence predictions and refining herbicide use. Additionally, Decision Support
Systems (DSS) could provide guidance on herbicide applications, incorporating PBTMs outputs and
real-time data on weed density, crop health, and weather. Integrating PBTMs with farm management
software would allow farmers to manage pest and weed control in one platform (i.e., cellular
applications apps), simplifying decision-making and improving overall farm efficiency.
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