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Article

Identifying Vital Nodes by Local g-Core on Symmetric
Networks
Letian Wang

School of Cyber Science and Technology, Shandong University, Qingdao, China, 266237; new2023_2028@outlook.com

Abstract: The H-index is a widely recognized centrality measure for nodes in symmetric networks,
defined as the maximum number of neighbors with degrees equal to or greater than the node’s own
degree. However, this metric underestimates the structural influence of "weak nodes" – low-degree
nodes connected to high-degree hubs – that often serve as critical connectors in network topology. To
address this limitation, we propose the Hα-index, which generalizes the H-index by considering the
maximum number of neighbors with degrees at least α times the node’s degree, where α ≥ 1. Based on
this refinement, we introduce two novel centrality measures: g-core and local g-core, derived through
iterative application of the Hα-index to a node’s neighbors. Extensive experiments on fifteen real-world
networks demonstrate the efficiency of our methods. Notably, the local g-core achieves 45%-105%
higher Kendall Tau correlation coefficients compared to the traditional H-index and coreness on three
benchmark networks, highlighting its superior performance in capturing node influence.

Keywords: complex networks; vital nodes; centrality; H-index; k-core

1. Introduction
The identification of influential nodes [1–6] in complex networks [7–9] remains a persistent chal-

lenge, with critical applications spanning targeted advertising on social platforms, source localization
in rumor propagation, and the selection of high-impact researchers.

In the context of scientific influence assessment, the H-index [10] has emerged as a widely adopted
metric to quantify both the quality and productivity of research output. Originally proposed by J.
E. Hirsch to characterize individual scientific contributions, the H-index has since been extended
to evaluate academic institutions and journals [11]. By integrating measures of publication quality
(impact factor) and quantity (publication count), it addresses the limitations of traditional metrics that
prioritize only one dimension.

Over the past two decades, H-index has been attracting the attention of many researchers from
the field of scientometrics [12], who proposed various improvements in different perspectives [13–27].
These advancements fall into three primary categories:

(I).Normalization and Averaging: Methods such as normalizing the H-index by the number
of authors [14], by the publication year [15], by the disciplinary field [16], as well as averaging with
citation counts[17] or geometric mean [18].

(II).Incorporation of Additional Information: Approaches that integrate auxiliary data, including
the author’s position in bylines [19], the shape of citing functions [20], subdomain distributions within
a scientist’s citation profile[21], the collaboration distance between citing and cited authors [22], excess
citations beyond H2 citations for papers [23], and the the inclusion of uncited papers [24].

(III).Temporal Evolution Analysis: Studies examining the H-index’s trajectory over a researcher’s
career, such as predictive models via regression analysis [25,26] and time window evaluations [27].

These improvements, though valuable, are closely tied to the intrinsic properties of papers and
authors, making their generalization to broader complex networks challenging.

Notably, the H-index has also captured the interest of scholars in complex networks since Lü et
al. [28] revealed the H-index relationship to degree and coreness. Specifically, Lü et al. [28] defined
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an H-operator on a group of numbers via H-index. They proved that the coreness – a centrality
measure introduced by Kitsak et al. – is the limit of the iteration of the H-operator. This seminal work
[28] has sparked widespread attention. On the one hand, it has been extended to directed networks
[29] and weighted networks [30]. On the other hand„ it has reinvigorated interest in coreness, a
computationally efficient centrality metric. Despite its utility, coreness has inherent limitations, such as
limited discrimination power and coarse-grained resolution. To address these, several refinements have
been proposed, including: mixed degree [31], shortest distance-based coreness [32], community-based
coreness [33], coreness without redundant links [34], and two-step coreness [35].

This paper investigates the limitations of the H-index in capturing the influence of weak nodes –
nodes with small degrees but high-degree neighbors. Our analysis is driven by the observation that
the H-index, which counts the number of neighbors with degree, underestimates the influence of
weak nodes. For example, consider two nodes: Node u has neighbors with degrees {3, 3, 3}, yielding
H(u) = 3. Node v has neighbors with degrees {10, 10, 10}, also yielding H(v) = 3. Although node
v is a weak node (low degree but surrounded by high-degree neighbors), it is more influential in
information propagation than node v. This illustrates a critical shortcoming of the H-index: it assigns
equal influence to nodes with structurally distinct neighbor sets.

The k-core decomposition, derived by iteratively applying the H-index to a node’s neighbors,
exacerbates this bias. Weak nodes are systematically underestimated in k-core analyses due to their
low intrinsic degrees, despite their high-degree neighbors.

To estimate the influence of weak nodes during information spreading, we propose a new
centrality, Hα-index, which is the maximum number of neighbors with at least α times the same
number of degree. This formulation emphasizes relative neighbor quality (via α) over absolute degree
thresholds, enabling nuanced influence quantification.

Building on the Hα-index, we define g-core, a hierarchical decomposition that partitions the
network based on Hα-index values. This method better captures the influence of weak nodes compared
to traditional k-core.

The rest of the paper is organized as follows. Section 2 provides theoretical background on the
H-index, k-core, and collective influence centrality. Section 3 introduces Hα-index, g-core and local
g-core. Section 4 presents experiments validating the superiority of Hα-index and g-core. Section 5
discusses future research directions.

2. Classical Centrality
2.1. Notations

Let G(V, E) denote an undirected symmetric network, where V and E represent the set of nodes
and the set of edges in G, respectively. The adjacency matrix A = (auv)n×n encodes connectivity,
where n = |V| is the number of nodes in G, and auv = 1 if nodes u and v are connected, i.e., (u, v) ∈ E,
and auv = 0 otherwise. The neighborhood NG(v) of a node v is defined as the set of nodes directly
connected to v. For a node v, let kv denote its degree, i.e., |NG(v)|.

2.2. H-index Centrality

Definition 1. Let Ω = {x1, x2, . . . , xm} be a finite non-empty set of positive real numbers. Define the subset
Ty ⊆ Ω as:

Ty = {xj ∈ Ω | xj ≥ y}.

The H-operator, denoted H(Ω), is the maximum value y such that |Ty| = y.

Definition 2. Let v be a node in a graph G, and let NG(v) denote its neighborhood. The H-index of v, denoted
hv, is defined as:

hv = H({ku | u ∈ NG(v)}),

where ku is the degree of node u.
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2.3. Coreness Centrality

Coreness centrality is a network topological measure derived from k-core decomposition. It
evaluates a node’s importance based on its position within the hierarchical core structure of a network.
Nodes with higher coreness values occupy denser, more central regions of the network, playing critical
roles in maintaining global connectivity and influence.

The k-core is obtained through iterative degree-based pruning:
(1). Start with the original graph G = (V, E).
(2). Iteratively remove all nodes with degree less than k along with their incident edges.
(3). Repeat until no nodes with degree less than k remain.

The resulting subgraph is the k-core. A node v is assigned a coreness cv = k if it belongs to the
k-core but not the (k + 1)-core. This hierarchical decomposition ensures that nodes in higher k-cores
are more deeply embedded within the network’s core structure.

2.4. Closeness Centrality

Closeness centrality measures a node’s centrality based on its average distance to all other nodes
in the network. It quantifies how quickly a node can reach others, reflecting its efficiency in spreading
information or influence. Nodes with high closeness centrality are "close" to others, meaning they have
short average path lengths to all nodes.

The closeness centrality cc(v) of a node v in a connected graph G = (V, E) with n nodes is defined
as:

cc(v) =
n− 1

∑u ̸=v d(u, v)
,

where d(u, v) is the shortest path length between nodes u and v, and n− 1 normalizes the measure to
account for the number of other nodes in the network.

2.5. Collective Influence Centrality

Collective Influence (CI) is a method developed by Morone and Makse [36] for identifying highly
influential nodes in complex networks. CI quantifies a node’s influence by measuring the extent of
damage inflicted on the network’s giant connected component upon the node’s removal. The formal
definition of CI is given by:

ci(u) = (ku − 1) ∑
v∈∂D(u,l)

(kv − 1),

where ku represents the degree of node i, ∂D(i, l) denotes the set of nodes at a l-hop distance from
node u, and kv is the degree of node j.

2.6. Betweenness Centrality

Betweenness centrality is a measure of a node’s centrality in a network based on the extent to
which it lies on the shortest paths between pairs of other nodes. It quantifies a node’s role as a "bridge"
or intermediary in facilitating communication, information flow, or interactions across the network.
Nodes with high betweenness centrality are critical for maintaining connectivity and controlling the
flow of resources, as their removal can significantly disrupt network interactions.

The betweenness centrality bt(u) of a node u in a graph G = (V, E) with n nodes is defined as:

bt(u) = ∑
s ̸=t ̸=u

σ(s, t|u)
σ(s, t)

,

where σ(s, t) is the total number of shortest paths from node s to node t, and σ(s, t|u) is the number of
those shortest paths that pass through node u.
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3. Hα-Index, g-Core and Local g-Core on Symmetric Networks
Definition 3. Let Ω = {x1, x2, . . . , xm} be a finite set of positive real numbers, α ≥ 1 be a real number, and
Tα,y = {xj ∈ Ω : xj ≥ αy}. An Hα-operator Hα(Ω) is defined as the maximum value y such that |Tα,y| = y.

Definition 4. Given a node v ∈ G with neighbors NG(v), the Hα-index of v, denoted hα,v, is defined as:

hα,v = Hα({ku | u ∈ NG(v)}),

where ku denotes the degree of node u.

Definition 5. Let G(V, E) be a simple undirected symmetric network. For any node v ∈ V, the Hα-sequence of
v, denoted {h(t)α,v}∞

t=0, is recursively defined as:

h(t)α,v =

Hα

(
{h(t−1)

α,u | u ∈ NG(v)}
)

, t ≥ 1,

Hα({ku | u ∈ NG(v)}), t = 0.

By this definition, the Hα-index corresponds to the cardinality of the set Tα,v. This yields the
following inequality:

ht
α,v ≥ 0, ∀t. (1)

From the definition of the Hα-index, it is evident that the H-index is a specific instance of the Hα-
index. Specifically, when α = 1, the H-index coincides with the Hα-index, i.e., hv = hα,v. Furthermore,
when α = 1, the Hα-sequence ht

α,v converges to its coreness cv, as established by Lü et al. [28].

Theorem 1. For any node v ∈ V in the network G(V, E), if α > 1, then the following equation holds

h∞
α,v = 0, (2)

where h∞
α,v denotes the limit of the Hα-sequence for node v.

Proof. We prove that the Hα-sequence ht
α,v is strictly monotonic decreasing whenever ht

α,v > 0.
(1) Base Case (t = 1): By the definition of the Hα-sequence,

h1
α,v = Hα

(
{h0

α,u | u ∈ NG(v)}
)

.

Since h0
α,u = ku (the initial degree of node u), we have:

h1
α,v = Hα({ku | u ∈ NG(v)}) < kv.

This implies h1
α,v < h0

α,v, establishing the base case.
(2) Inductive Step: Assume that for some t0 ≥ 1, 0 < ht0+1

α,v < ht0
α,v. By the definition of the

Hα-sequence:
ht0+2

α,v = Hα

(
{ht0+1

α,u | u ∈ NG(v)}
)

.

Since ht0+1
α,u < ht0

α,u for all u ∈ NG(v) (by the inductive hypothesis), and Hα is a monotonic decreasing
function, it follows that:

ht0+2
α,v < Hα

(
{ht0

α,u | u ∈ NG(v)}
)
= ht0+1

α,v .

Thus, the inequality holds for t0 + 2, completing the inductive step.
(3) Conclusion: By induction, the Hα-sequence ht

α,v is strictly monotonic decreasing for all t ≥ 1
whenever ht

α,v > 0.
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(4) Convergence to Zero: Since the sequence ht
α,v is strictly decreasing and bounded below by 0

(as shown in equation (1)), the Monotone Convergence Theorem ensures:

lim
t→∞

ht
α,v = 0.

Thus, h∞
α,v = 0 as required.

Algorithm 1: H_alpha_Operator
Input: Vector c; parameter α ≥ 1
Output: Value h

Initialize h = 0;
Compute xmax = min(length(c), max(c));
for x ← xmax down to 1 do

// Check if at least x elements satisfy ci ≥ αx
Compute count = |{i | ci ≥ αx}|;
if count ≥ x then

h = x;
break;

end
end
return h;

Algorithm 2: H_alpha _Index
Input: Adjacency matrix A; parameter α ≥ 1
Output: Vector y containing Hα index of each node

Compute node degrees degree = ∑(A);
n = length(degree);
Initialize y as zero vector of size n;
for each node i = 1 to n do

// Collect degrees of neighbors of node i
n_degree = degree(A(i, :) = 1);
yi = H_alpha_Operator(n_degree, α);

end
return y;

The Hα-operator and Hα- index have been implemented and reference them as Algorithms 1 and
2. The Hα-operator computes a thresholded value h for a given vector c and a parameter α ≥ 1. It
iteratively evaluates the maximum integer x such that at least x elements in c satisfy the condition
ci ≥ αx. This process identifies a critical point where the density of values in c relative to α-scaled
thresholds is maximized. The algorithm terminates once the condition is met or exhausts the search
range, ensuring computational efficiency by limiting the search to min(length(c), max(c)). The output
h quantifies the structural resilience or dominance of values in c under the specified α-weighted
constraint, applicable in scenarios requiring threshold-based analysis of data distributions.

The Hα-index algorithm evaluates the influence of a node in a network by leveraging its neigh-
borhood structure. Given an adjacency matrix A and parameter α, it first extracts node degrees degree
from A. For each node i, it computes the degrees of its immediate neighbors n_degree and applies
the H-alpha operator to this subset. The resulting yi represents the H-alpha index of node i, reflecting
the interplay between the node’s connectivity and the α-scaled thresholding of its neighbors’ degrees.
This metric provides insights into how local network properties propagate globally, enabling the
identification of nodes whose influence is contingent on both their direct connections and the collective
behavior of their neighbors.
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Classically, the H-sequence ht
1,v converges to its coreness cv [28]. However, when extended to the

Hα-index framework, the iterative sequence converges to zero (See Theorem 1), presenting challenges
in generalizing the k-core concept. To address this, we propose accumulating the iterative values
during the convergence process, as later termination at zero indicates stronger coreness. This leads to
the following definition of g-core, where the summation of values quantifies the structural centrality.

Definition 6. The g-core of a node v is defined as

g(v) =
∞

∑
t=0

ht
α,v. (3)

Furthermore, to incorporate neighborhood influence, we introduce the local g-core, which inte-
grates the coreness metrics of adjacent nodes, enabling localized structural analysis.

Definition 7. Local g-core of a node v is defined as

lg(v) = g(v) + η ∑
u∈NG(v)

g(u), (4)

where η ∈ (0, 1) is a parameter compromising between the node v and its neighbors.

Algorithm 3: g-core Calculation
Input: Adjacency matrix A; parameter α ≥ 1
Output: Vector core containing accumulated H-alpha indices

Compute initial degrees degree = ∑(A);
Initialize hall = degree;
i = 1;
while True do

Compute hindex = H_alpha_index(A, degree, α);
if all elements of hindex are zero then

break;
end
hall = hall ∥ hindex;
// Concatenate vertically
degree = hindex;
i = i + 1;

end
core = ∑(hall);
return core;

The g-core has been implemented in Algorithm 3. The g-core algorithm iteratively refines the
structural properties of a network through successive applications of the H-alpha index. Starting with
initial node degrees, it computes the H-alpha index vector hindex and updates the degree vector for
the next iteration. This process continues until all elements in hindex become zero, signifying that
the network’s structural constraints under α-scaled thresholds are fully exhausted. The algorithm
accumulates intermediate results into a matrix hall, and the final output core is obtained by summing
all rows of hall. This cumulative measure captures the network’s progressive degradation under
iterative α-based filtering, offering a quantitative framework to assess robustness or vulnerability in
complex systems.

Table 1 presents the Hα-sequence and g-core values for the nodes in Figure 1. Node v1 in Figure 1
has neighbors with degrees {4, 4}, whereas node v6 has neighbors with degrees {2, 2}. Despite node v1

being structurally more influential than node v6, their H-indices are equal. This highlights a limitation
of the H-index and traditional coreness metrics: they fail to distinguish the true influence of nodes
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based on neighborhood diversity. In contrast, the g-core and Hα-index values of v1 are strictly greater
than those of v6, demonstrating their capacity to more effectively capture the structural significance of
nodes with heterogeneous neighborhood properties.

𝑽𝟖

𝑽𝟔 𝑽𝟕
𝑽𝟒

𝑽𝟏

𝑽𝟐𝑽𝟑

𝑽𝟓

Figure 1. Example network illustrating the Hα-index and g-core. The g-core values for nodes v1 and v6 are 5 and
3, respectively.

Table 1. The H-index, coreness, Hα-sequence and g-core, where α = 1.1.

Node v1 v2 v3 v4 v5 v6 v7 v8
h0

α,v 2 4 3 4 3 2 2 2
h1

α,v 2 2 2 2 2 1 1 1
h2

α,v 1 1 1 1 1 0 0 0
h∞

α,v 0 0 0 0 0 0 0 0
g-core 5 7 6 7 6 3 3 3
H-index 2 3 3 3 3 2 2 2
coreness 2 3 3 3 3 2 2 2

4. Experimental Results
We compare the proposed centralities with degree, H-index, coreness, closeness, betweenness,

and CI using Kendall’s tau coefficient and imprecision value on 15 real networks.

4.1. Data Sets

The experiments utilize 15 benchmark networks spanning diverse domains: (1) C. elegans neural
network [7]: A neural network of the nematode Caenorhabditis elegans. (2) Email communication
network [37]: An email network among university members. (3) Kohonen self-organizing maps
[38]: A network representing academic articles on self-organizing maps and related references. (4)
Router-level internet topology [39]: A network modeling global internet router connections. (5)
Yeast protein interactions [8]: A protein-protein interaction network in budding yeast. (6) US air
transportation system [38]: A network representing commercial airline routes in the United States. (7)
Scientometrics literature network [38]: A citation network from Scientometrics journal articles (1978-
2000). (8) Small-Griffith citation network [38]: A network of citations to works by Small, Griffith, and
their descendants. (9) Sexual activity network [40]: A social network derived from a web-based sexual
contact community. (10) Condensed matter collaboration network [41]: A collaboration network of
scientists sharing preprints in condensed matter physics (1995-2003). (11) Enron email corpus [42]:
A large-scale email communication network containing 0.5 million emails. (12) Secure information
exchange network [38]: A network of secure information exchange via routers. (13) Arxiv condensed
matter collaboration [41]: A network of collaborations among condensed matter physicists. (14) Enron
email network [42]: A network derived from 30,000+ emails in the Enron scandal. (15) General
network repository [38]: A heterogeneous collection of citation networks. For more detail, see Table 2.
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Table 2. Basic topological features of nine real networks. |V|and |E| denote the number of nodes and the number
the links, respectively. <k> and <d> represent the average degree and the average shortest distance, respectively.
C is the clustering coefficient, and r is the assortative coefficient.

Networks |V| |E| <k> <d> C r
Celegans 297 2148 14.46 2.46 0.308 -0.163
USAir 332 2126 12.81 2.74 0.749 -0.208
SmaGr 379 914 4.82 6.04 0.798 -0.082
Metabolic 453 2025 8.94 2.66 0.646 -0.226
SciMet 1059 914 4.82 6.04 0.798 -0.082
Email 1133 5441 9.62 3.60 0.254 0.078
Moreno 1773 9131 10.30 3.38 0.721 -0.049
NS 1589 2742 3.451 7.14 0.80 -0.082
Yeast 2375 11693 9.85 5.09 0.388 0.454
Kohonen 4469 12718 5.69 3.67 0.211 -0.121
Router 5022 6258 2.49 6.45 0.033 -0.138
PGP 10680 24316 4.55 7.48 0.266 0.238
Sex 15810 38540 4.88 5.79 0.000 -0.115
Condmat 27519 116181 8.44 5.76 0.655 0.166
EmailEnron 36692 183831 10.02 3.24 0.497 -0.111

4.2. Evaluation Metrics
4.2.1. SIR Model

We utilize the standard susceptible-infected-recovered (SIR) model [43,44] to evaluate the accuracy
of the proposed centralities in identifying vital nodes. In this model, each node transitions through
three states: susceptible (S), infected (I), and recovered (R). The spreading influence of a node is defined
as the average number of recovered nodes when it serves as the infected source in the SIR process.

The simulation proceeds as follows:
(1) One node is selected as the infected seed, with all others initially susceptible.
(2) At each simulation step, infected nodes transmit the infection to susceptible neighbors with

probability β, and then transition to the recovered state with probability γ.
(3) The process terminates when no infected nodes remain.
The total number of recovered nodes at termination quantifies the seed node’s influence. The SIR

model’s approximate epidemic threshold [45] is given by:

βc =
⟨k⟩

⟨k2⟩ − ⟨k⟩ ,

where ⟨k⟩ denotes the average node degree. Simulations are conducted at β = 1.5βc, 2βc, and 2.5βc,
with γ = 1 fixed. Each result represents the average over 100 independent simulations.

4.2.2. Kendall’s Tau Coefficient

As a rank correlation metric [46], Kendall’s tau (τ) quantifies the agreement between node
rankings derived from a given centrality and the ground truth (empirical SIR influence). A higher τ

value indicates stronger correlation between the centrality ranking and the actual spreading influence.

4.2.3. Imprecision Value

This metric [47] evaluates a centrality’s ability to identify the most influential nodes. Given a
network with n nodes and a fraction p ∈ (0, 1):
M1(p): cumulative influence of the top pn nodes ranked by a centrality.
M2(p): maximum cumulative influence achievable from any pn nodes.

The imprecision value is defined as:

ε(p) = 1− M1(p)
M2(p)

.

Smaller ε(p) values indicate better performance in prioritizing high-influence nodes.
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4.3. Results of Kendall’s Tau Coefficients

Since the local g-core involves two parameters, α and η, we conduct extensive experiments to
analyze their performance across different value combinations. Specifically, we test nine values of
α = {1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2, 2.5, 3} and nine values of η = {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
Among all α-η combinations, the proposed local g-core achieves the highest performance in terms of
Kendall’s tau coefficients when α = 1.1 and η = 0.3 under the SIR simulation with infected probability
β = 2.5βc. A comprehensive summary of these results is presented in Table 3.

As shown in Table 3, the local g-core outperforms existing centrality measures across all fifteen
real-world networks in terms of Kendall’s tau coefficients. Notably, on the networks NS, PGP, and
Router, the Kendall’s tau coefficients of local g-core are 45-105% higher than those of classical coreness.

Table 3. Kendall’s tau coefficients comparing nine centralities. For each network, the infection probability is set as
β = 2.5βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.82 0.85 0.81 0.59 0.64 0.84 0.85 0.86 0.86
Email 0.88 0.91 0.88 0.78 0.68 0.91 0.91 0.93 0.96
Kohonen 0.64 0.66 0.67 0.73 0.51 0.69 0.67 0.68 0.79
Metabolic 0.65 0.69 0.71 0.55 0.45 0.70 0.69 0.72 0.76
Moreno 0.68 0.71 0.71 0.76 0.55 0.81 0.74 0.80 0.83
NS 0.46 0.48 0.44 0.40 0.30 0.64 0.53 0.62 0.64
PGP 0.45 0.47 0.47 0.68 0.30 0.55 0.50 0.73 0.75
Router 0.33 0.31 0.32 0.61 0.32 0.38 0.33 0.66 0.67
SciMet 0.84 0.88 0.87 0.79 0.66 0.85 0.88 0.90 0.91
SmaGr 0.73 0.76 0.76 0.66 0.60 0.78 0.77 0.78 0.82
USAir 0.75 0.78 0.78 0.78 0.57 0.80 0.79 0.83 0.86
Yeast 0.66 0.69 0.69 0.66 0.37 0.76 0.70 0.79 0.80
Sex 0.52 0.57 0.59 0.74 0.45 0.60 0.61 0.72 0.79
Condmat 0.63 0.68 0.67 0.73 0.37 0.79 0.71 0.84 0.85
EmailEnron 0.49 0.50 0.50 0.60 0.43 0.58 0.53 0.58 0.63

Table 3 also demonstrates that Hα-index slightly better than the classical H-index in terms of
Kendall’s tau coefficients. This suggests that considering weak nodes is useful in finding vital nodes.
Kendall’s tau coefficients of nine centralities when the infected probability β = 1.5βc, 2.0βc are pre-
sented in Tables A1 and A2 in Appendix A.

4.4. Results of Imprecision Value

The imprecision value focuses exclusively on the most critical nodes in a network. In all experi-
ments, we analyze the top 10% most influential nodes, corresponding to p = 0.1 in the imprecision
value. The parameters α and η for the local g-core are identical to those used in Section 3.3. Among all
α-η combinations, the proposed centralities demonstrate strong performance when α = 1.1, η = 0.3,
and the infection probability in the SIR simulation is set to β = 2.5βc. These results are summarized in
Table 4.

As shown in Table 4, the local g-core outperforms the remaining centralities across ten real-world
networks, while the g-core achieves the best performance on four networks. The imprecision values
for nine centralities under infection probabilities β = 1.5βc and β = 2.0βc are detailed in Tables A3–A4
of the Appendix.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 May 2025 doi:10.20944/preprints202505.1114.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1114.v1
http://creativecommons.org/licenses/by/4.0/


10 of 15

Table 4. Imprecision values comparing nine centralities. For each network, the infection probability is set as
β = 2.5βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.0103 0.0119 0.1508 0.0470 0.0255 0.0103 0.0161 0.0100 0.0032
Email 0.0048 0.0050 0.0301 0.0198 0.0393 0.0046 0.0081 0.0023 0.0004
Kohonen 0.1558 0.1376 0.1365 0.1648 0.2603 0.1025 0.1308 0.1204 0.0795
Metabolic 0.0556 0.0164 0.0268 0.0370 0.1995 0.0338 0.0158 0.0126 0.0187
Moreno 0.0289 0.0112 0.0160 0.0385 0.1748 0.0214 0.0140 0.0094 0.0099
NS 0.1597 0.2134 0.2477 0.2068 0.2174 0.0955 0.2001 0.1717 0.1404
PGP 0.1268 0.0911 0.1157 0.1866 0.5298 0.0427 0.0861 0.0302 0.0316
Router 0.1385 0.1330 0.1304 0.1379 0.1957 0.0650 0.1255 0.0710 0.0555
SciMet 0.0248 0.0086 0.0310 0.0835 0.1044 0.0210 0.0110 0.0067 0.0059
SmaGr 0.0330 0.0100 0.0434 0.1020 0.0988 0.0221 0.0220 0.0148 0.0141
USAir 0.0062 0.0057 0.0063 0.0218 0.1875 0.0062 0.0057 0.0027 0.0027
Yeast 0.0825 0.0779 0.0858 0.3466 0.6353 0.0448 0.0768 0.0026 0.0090
Sex 0.1363 0.0772 0.0494 0.0772 0.2434 0.0428 0.0714 0.0267 0.0243
Condmat 0.0730 0.0254 0.0802 0.0744 0.2735 0.0253 0.0214 0.0142 0.0100
EmailEnron 0.0502 0.0254 0.0204 0.0492 0.2551 0.0245 0.0238 0.0196 0.0154

4.5. Parameters of Local g-Core

This subsection investigates how the parameters α and η in the local g-core influence Kendall’s tau
coefficients. For brevity, we omit analysis of imprecision values, as their trends are highly consistent
with the results presented here.

Figure 2 shows the Kendall’s tau coefficients of the local g-core when α = 1.1, η ∈ (0.01, 0.5), and
β = 2.5βc. As illustrated, the coefficients achieve their maximum at η = 0.3 across nearly all networks.
Similar patterns are observed for β = 1.5βc and 2.0βc under identical α and η values.

Figure 2. Kendall’s tau coefficients of local g-core on the fifteen real networks when α = 1.1 and η ∈ (0.01, 0.5).
For each network, the infected probability is set as β = 2.5βc. The fifteen networks from left to right are in the
same order as the networks in Table 2.

Figure 3 presents the Kendall’s tau coefficients under η = 0.3, α ∈ (1.1, 3), and β = 2.5βc. The
data reveal that the maximum coefficient occurs at α = 1.1 on almost all networks. Consistency in
performance is maintained across β = 1.5βc and 2.0βc.

To evaluate the combined impact of α and η, Figure 4 displays the Kendall’s tau coefficients for
the Celegans network across all α-η combinations. The results confirm that α = 1.1 and η = 0.3
consistently yield optimal performance for β = 2.5βc, 1.5βc, and 2.0βc.
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Figure 3. Kendall’s tau coefficients of local g-core on the fifteen real networks when η ∈ (0.01, 0.5) and α ∈ (1.1, 3).
For each network, the infected probability is set as β = 2.5βc.

Figure 4. Kendall’s tau coefficients of local g-core on the network Celegns when η ∈ (0.01, 0.5) and α ∈ (1.1, 3).
From left to right, the infected probability β is set as β = 1.5βc, 2.0βc, 2.5βc.

5. Conclusions
This paper addresses the challenge of identifying vital nodes in complex networks, where most

existing centrality measures inadequately account for weak nodes. To address this limitation, we
propose a novel Hα-index, defined as the maximum number of neighbors whose degrees exceed α times
the degree of the focal node. By iteratively applying the Hα-index to a node’s neighbors, we derive
two novel centrality measures: the g-core and local g-core. Experimental results demonstrate that
these centralities outperform existing methods in real-world networks, offering a robust framework
for node prioritization.

Future research will extend this framework to weighted networks. While the theoretical properties
of the Hα-index and g-core in weighted networks align closely with those in unweighted networks,
nuanced differences in their behavior and computational dynamics warrant further investigation. This
extension will enhance the applicability of our approach to a broader class of networked systems.
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Appendix A

Table A1. Kendall’s tau coefficients comparing nine centralities. For each network, the infection probability is set
as β = 1.5βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.69 0.73 0.71 0.63 0.54 0.74 0.74 0.74 0.77
email 0.81 0.85 0.84 0.81 0.64 0.87 0.86 0.89 0.91
Kohonen 0.65 0.66 0.67 0.71 0.52 0.69 0.67 0.67 0.77
Metabolic 0.56 0.59 0.61 0.58 0.40 0.64 0.59 0.60 0.67
Moreno 0.62 0.63 0.64 0.74 0.52 0.75 0.66 0.70 0.75
NS 0.50 0.51 0.47 0.37 0.33 0.70 0.54 0.66 0.70
PGP 0.51 0.51 0.51 0.59 0.34 0.60 0.52 0.71 0.72
Router 0.32 0.28 0.29 0.60 0.32 0.37 0.30 0.64 0.65
SciMet 0.77 0.80 0.81 0.81 0.62 0.81 0.81 0.83 0.85
SmaGr 0.63 0.65 0.66 0.66 0.55 0.69 0.66 0.67 0.73
USAir 0.70 0.73 0.73 0.76 0.53 0.74 0.75 0.77 0.81
Yeast 0.69 0.71 0.70 0.61 0.39 0.77 0.71 0.74 0.76
Sex 0.48 0.52 0.53 0.72 0.42 0.56 0.54 0.62 0.70
Condmat 0.56 0.61 0.61 0.72 0.33 0.74 0.63 0.76 0.76
EmailEnron 0.49 0.49 0.49 0.49 0.43 0.53 0.51 0.51 0.53

Table A2. Kendall’s tau coefficients comparing nine centralities. For each network, the infection probability is set
as β = 2.0βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.78 0.82 0.79 0.61 0.61 0.81 0.82 0.83 0.84
Email 0.86 0.89 0.87 0.79 0.67 0.90 0.90 0.93 0.95
Kohonen 0.64 0.66 0.66 0.74 0.51 0.69 0.66 0.67 0.79
Metabolic 0.60 0.63 0.65 0.56 0.43 0.67 0.64 0.67 0.73
Moreno 0.65 0.68 0.68 0.76 0.53 0.80 0.71 0.76 0.81
NS 0.46 0.47 0.44 0.39 0.30 0.66 0.52 0.63 0.66
PGP 0.46 0.48 0.48 0.65 0.32 0.57 0.50 0.73 0.75
Router 0.31 0.28 0.29 0.63 0.30 0.36 0.30 0.64 0.65
SciMet 0.81 0.85 0.85 0.80 0.64 0.84 0.85 0.88 0.89
SmaGr 0.68 0.71 0.71 0.66 0.57 0.74 0.71 0.72 0.78
USAir 0.74 0.77 0.77 0.75 0.56 0.79 0.78 0.81 0.85
Yeast 0.66 0.69 0.68 0.64 0.37 0.76 0.69 0.77 0.77
Sex 0.48 0.52 0.54 0.75 0.41 0.56 0.56 0.66 0.74
Condmat 0.60 0.65 0.64 0.74 0.35 0.78 0.67 0.81 0.81
EmailEnron 0.49 0.50 0.50 0.56 0.43 0.56 0.52 0.55 0.59
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Table A3. Imprecision values comparing nine centralities. For each network, the infection probability is set as
β = 2.0βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.0278 0.0259 0.29 0.0784 0.0669 0.0278 0.0309 0.0221 0.0187
Email 0.0202 0.0086 0.0581 0.0476 0.1 0.0138 0.0139 0.0052 0.0038
Kohonen 0.1338 0.1221 0.131 0.1249 0.202 0.0919 0.1215 0.12 0.0789
Metabolic 0.0623 0.0305 0.0294 0.0378 0.172 0.0472 0.043 0.0321 0.0294
Moreno 0.0561 0.0344 0.0299 0.0336 0.1977 0.0336 0.0364 0.029 0.0223
NS 0.2135 0.2371 0.2831 0.3389 0.2983 0.0964 0.1953 0.1707 0.1189
PGP 0.1257 0.0968 0.1074 0.1316 0.5708 0.0359 0.0905 0.034 0.035
Router 0.1934 0.1939 0.1963 0.1262 0.2125 0.1194 0.1922 0.1303 0.0921
SciMet 0.0707 0.0351 0.0446 0.1093 0.1871 0.0453 0.0347 0.0304 0.0262
SmaGr 0.075 0.0529 0.0694 0.088 0.1058 0.05 0.0685 0.0468 0.0343
USAir 0.0111 0.0155 0.0216 0.0359 0.2136 0.0111 0.0155 0.007 0.007
Yeast 0.0954 0.0779 0.0714 0.4438 0.7509 0.0466 0.0768 0.0099 0.0194
Sex 0.2244 0.1582 0.1225 0.0481 0.3132 0.0978 0.1528 0.0898 0.072
Condmat 0.1634 0.082 0.1127 0.1019 0.4202 0.0515 0.0766 0.0192 0.0287
EmailEnron 0.0938 0.0733 0.0684 0.065 0.2466 0.0626 0.072 0.0677 0.0576

Table A4. Imprecision values comparing nine centralities. For each network, the infection probability is set as
β = 1.5βc, with parameters α = 1.1 and η = 0.3. The maximum value in each row is highlighted in boldface to
indicate the best performance. Abbreviations: CN (coreness), CC (closeness), BT (betweenness), CI (collective
influence), Hα-index (Hα), GC (g-core), and LGC (local g-core).

Networks Degree H-index CN CC BT CI Hα GC LGC
Celegans 0.0214 0.0153 0.2181 0.0585 0.0494 0.0214 0.0098 0.0128 0.0093
Email 0.0101 0.006 0.0422 0.0333 0.0634 0.0089 0.0103 0.0028 0.0009
Kohonen 0.1584 0.1333 0.1483 0.1291 0.2332 0.0961 0.1335 0.1281 0.0736
Metabolic 0.0464 0.0272 0.035 0.038 0.2058 0.0306 0.0181 0.0239 0.0248
Moreno 0.0369 0.0187 0.0182 0.0377 0.1759 0.025 0.0181 0.0136 0.0127
NS 0.1961 0.2743 0.3073 0.2905 0.2723 0.1025 0.232 0.198 0.1514
PGP 0.1303 0.0957 0.1124 0.1714 0.5518 0.0397 0.0903 0.0321 0.0334
Router 0.1748 0.1807 0.1797 0.129 0.2114 0.1025 0.1758 0.1111 0.0761
SciMet 0.0411 0.0146 0.0335 0.0956 0.1397 0.0311 0.0173 0.0145 0.011
SmaGr 0.0461 0.0306 0.0535 0.0995 0.1164 0.0387 0.0371 0.0238 0.0206
USAir 0.0099 0.0131 0.0197 0.0365 0.2044 0.0099 0.0131 0.0053 0.0053
Yeast 0.1072 0.0894 0.0845 0.4123 0.7032 0.0582 0.0856 0.0083 0.0209
Sex 0.1842 0.1185 0.0861 0.0583 0.2876 0.0666 0.1132 0.054 0.0439
Condmat 0.1107 0.0444 0.0969 0.0881 0.3422 0.0337 0.0393 0.0122 0.0138
EmailEnron 0.0611 0.0373 0.0326 0.0453 0.2458 0.0306 0.0363 0.0315 0.0236
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