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Abstract

Planck’s constant /1 has long been introduced axiomatically in quantum mechanics, with its numerical
value fixed empirically. Yet its structural necessity and intrinsic relation to the topology of phase space
remain unresolved. In this work we develop a phase-ontological framework—the (2-model—in which
monodromy provides the fundamental mechanism of quantization. The structural chain is established
as Topology — Monodromy — Quantization Rules — 7 as universal coherence threshold.
Within this perspective, i is not derived as a numerical constant but identified as a universal unit
of minimal coherent action that calibrates the model’s internal parameters. This formulation yields
a unified topological explanation for (i) the inevitability of quantized action and (ii) the dichotomy
of bosonic versus fermionic statistics, interpreted as trivial and nontrivial monodromy, respectively.
Consistency of the coherence criterion with foundational quantum experiments and even recent high-
energy anomalies demonstrates that the (3-model offers a coherent bridge between topology, phase
coherence, and the structural foundations of quantum theory.

Keywords: Planck constant f;; monodromy; geometric quantization; phase topology; (3-model; spin;
coherence threshold; structural invariants

1. Introduction

Planck’s constant 7 has remained one of the most fundamental, yet axiomatically introduced,
elements of quantum mechanics for more than a century. Since its appearance in the early works of
Planck and Bohr, 71 has served as the defining scale separating the quantum from the classical domain.
Its numerical value is known with extraordinary precision, but the structural necessity of i—why such
a constant must exist at all—remains unexplained within the standard framework. Equally unresolved
is the simultaneous emergence of two distinct quantum statistics, bosonic and fermionic, and their
intrinsic connection to the quantization of action.

Historically, several major approaches have sought to formalize the role of 7 in physical theory. In
the canonical quantization program, initiated by Dirac [1,2], i appears axiomatically in the canonical
commutation relations,

[x,p] = ih,

which serve as the bridge between classical Hamiltonian mechanics and quantum theory. In the
language of symplectic geometry, i sets the scale for the phase-space cell and thus enforces discreteness.
Yet it enters the theory without deeper justification for its universality.

In geometric quantization, developed by Kostant [3], Souriau [4], and Woodhouse [5], i arises as
the unit of flux required for the integrality condition of the symplectic form, ensuring the existence of
a prequantum line bundle. While mathematically elegant, this construction still presupposes # as an
external parameter rather than deriving it from the topology of the underlying structure.

The theory of geometric phases, initiated by Berry [6] and formalized by Simon [7] and Bohm
et al. [8], revealed the holonomic and topological aspects of quantum evolution. Yet, even in this
framework, 71 appears as a background scale, not as a structural necessity. A similar limitation applies
to path integral formulations [9], where i enters only as the weight factor in the Feynman amplitude.
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Beyond these formalisms, emergent paradigms suggest that fundamental constants and even
spacetime itself may arise from collective or topological phenomena. Sakharov’s induced gravity
paradigm interprets General Relativity as an effective description emerging from vacuum fluctua-
tions [10]. Topological models of particles as solitons or defects were pioneered by Skyrme [11] and
"t Hooft [12], establishing the idea that stability can be of topological origin. More recent approaches
extend these ideas: for example, emergent gravity from stochastic flows in topological quantum field
theory [13], or effective actions for domain wall dynamics [14].

Despite the depth and elegance of these perspectives, no existing framework offers a unified
principle simultaneously explaining: (i) the necessity of quantization, (ii) the dichotomy of bosonic
and fermionic statistics, and (iii) the structural role of 7.

In this work, we propose such a unifying mechanism within the ()-model: a phase-ontological
framework in which these features emerge as consequences of the monodromy of a universal phase
field,

¥ (x) = p(x)e©®).

Unlike the quantum-mechanical wavefunction, which represents states relative to a fixed spacetime,
here ¥ is introduced as a fundamental ontological field: the universal substrate from which spacetime,
particles, and interactions themselves emerge. Its phase ©(x) provides the structural degree of freedom,
while its amplitude p(x) measures the density of distinction. The term “monodromy” here refers to
the way in which the phase ® accumulates when Y is transported around a non-contractible loop in
configuration space—capturing the topological essence of quantization.

Formally, the structural sequence can be expressed as topology — monodromy —
quantization rules — 7 as coherence threshold.

Bosonic and fermionic statistics appear naturally as manifestations of trivial and nontrivial
monodromy, respectively. This observation foreshadows a deeper relation to Spin® structures, which
provide the natural topological framework for half-integer quantization.

In this sense, fi is not merely a numerical parameter but a structural invariant, comparable in
universality to 7t: just as 7t encodes the geometry of circles independent of measurement, 71 encodes the
minimal action required to distinguish coherent from incoherent phase configurations. The coherence
condition

oS > h,

thus plays a role analogous to—but more fundamental than—the Heisenberg uncertainty principle:
whereas the latter constrains simultaneous measurements, the former establishes the very boundary of
physical distinguishability.

Our approach thereby reinterprets Sakharov’s paradigm: the same phase field whose topological
configurations generate particles also induces spacetime and interactions, with the entire structure
governed by a universal coherence principle. This principle, quantified by the inequality above, will
be derived and justified in Section 2.

2. The ()-Model: A Phase-Ontological Framework

The structural origin of quantization can only be understood within a suitable ontological frame-
work. The (3-model is founded on a principle of radical emergence: physical reality is not composed
of fundamental particles or fields in a pre-existing spacetime, but is instead a manifestation of a single,
universal entity — the phase field. This idea continues the line of thought initiated by Sakharov’s
induced gravity [10], Skyrme’s solitonic models [11], and "t Hooft’s topological defects [12], while also
resonating with renormalization group approaches of Wilson [15] and Polchinski [16]. The present
framework seeks to unify these insights into a single coherent postulate.
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2.1. The Primordial Substrate: The Universal Phase Field
Definition 1 (Configuration Space of the Universal Phase Field). The universal phase field is a map

Y. M4 — (C, ‘{I(x) = p(x) ei®(x)’
where p(x) > 0and @(x) € S'. The set of all such configurations defines the configuration space
%o ={¥|p(x) >0, O(x) € S!, x € My}.

The ontological roles of the components are distinct:

e  Phase O(x): encodes relations and structure. Its gradients d,® seed emergent geometry and
dynamics.

e Amplitude p(x): represents the density of distinction, i.e. the capacity of a region to sustain coherent,
distinguishable structure.

Remark 1 (Physical Interpretation of p(x)). Operationally, p(x) may be interpreted as proportional to the
effective energy density of the phase field. Regions with p(x) = 0 correspond to a “void state,” devoid of
distinguishable events, while p(x) > 0 indicates the presence of a substrate capable of supporting physical
reality.

2.2. The Criterion of Distinguishability: The Q)-Postulate

Definition 2 (()-Postulate of Distinguishability). A configuration ¥ € €q is physically real if and only if
its action variation satisfies the coherence threshold

6S > h. (1)

Here S denotes the minimal difference in action between two infinitesimally close configurations
of ¥.

Remark 2 (Action Functional). For ¥ € 6, the effective action is given by
S[¥] = / L[¥,0,¥]d*x, L =20,¥0"Y - V(¥*Y).
My

At this stage, the precise microscopic form of V(¥Y*Y) remains unspecified; its role is to ensure stability of
localized configurations, analogous to solitonic models [11].

Remark 3 (Ontological Status of the Threshold). Unlike in canonical quantization, where  is inserted
axiomatically [1,2], here the inequality
05>n

is not a quantization rule but an ontological filter of reality. It establishes h as a structural invariant, analogous
to 7, marking the boundary between distinguishable and indistinguishable phase configurations.

2.3. Emergent Geometry and Matter

The coherence threshold induces a structural cascade:
Y — 05>h — Physical Reality.
Definition 3 (Emergent Metric). The spacetime metric arises as the statistical correlation of phase gradients:

8w (x) ~ C(9,0(x) 9,0(x)),
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where C is a proportionality factor conjectured to encode Newton's constant G, linking the Q)-model to induced
gravity in the spirit of Sakharov [10].

Remark 4 (On Averaging). The averaging (-) denotes coarse-graining over regions larger than the coherence
length of the phase field. Nontrivial curvature arises when 0,,® forms vortex-like or monopole-like configurations,
consistent with topological defect models [11,12].

2.4. Examples of Emergent Structures

Example 1 (Emergent Temporal Metric). For ©(t,x) = wt, p = pg > 0, one finds
gu = diag(Cw?,0,0,0),
corresponding to a purely temporal metric.
Example 2 (Emergent Lorentzian Metric). For O(t,x) = wt — kx, one obtains
gw = Cdiag(w?, —k%,0,0),
a Lorentzian signature (+, —) in 1+ 1 dimensions.

2.5. Lllustrative Example: Harmonic Oscillator Quantization

Example 3 (Harmonic Oscillator). For the classical harmonic oscillator

P2 1,22

the action over a closed trajectory is
2nE

= d = —
Sy 747 pdq=——
Trivial monodromy enforces

Sy =2mnh, necli,

yielding quantized energies
E, = nhw.

This reproduces the integer-spaced spectrum; the zero-point shift Ey = %hw requires additional refinements.
Unlike canonical quantization, where this rule is postulated, here it arises as a consequence of monodromy of the
phase field.

2.6. Outlook: Spin and Spin® Structures

Nontrivial monodromy corresponds to half-integer quantization, naturally linked to Spin° struc-
tures on emergent manifolds. This provides a geometric mechanism for fermionic statistics and the
Pauli principle, to be developed in Section 3. A canonical example is the rigid quantum rotor, where
half-integer spin states correspond precisely to nontrivial monodromy.

Lemma 1 (Quantization from Monodromy). Let ¥ € 6q be a configuration of the universal phase field. If ¥
is transported adiabatically along a closed, non-contractible loop vy in configuration space, then the requirement
of single-valued physical observables enforces

Sy = 2nnh, ne iz

Sketch of Proof. The holonomy of the phase ©® around -y defines a monodromy element of U(1).
Consistency of the prequantum bundle requires this holonomy to be trivial in the observable sector.
For trivial spin structure, this yields integer quantization (n € Z); for nontrivial spin structure, half-

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2668.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2025 d0i:10.20944/preprints202507.2668.v2

50f13

integer quantization arises (n € %Z). Thus quantization emerges directly from topological constraints
on Y rather than being externally imposed. O

3. The Topological Origin of Quantization Rules

The ()-model asserts that quantization rules are not arbitrary axioms but inevitable consequences
of topology. The central mechanism is monodromy: the change of phase that a wavefunction acquires
when transported along a non-contractible closed loop in configuration space. In intuitive terms,
monodromy encodes how the phase of a quantum state “remembers” the topology of its path [6,7].

3.1. Monodromy as a Homomorphism

Formally, monodromy is defined as a group homomorphism
Mon : 11 (P, x9) — U(1), ()

where P is the configuration space and 71(P, xp) its fundamental group. The image lies in the
abelian group U(1), reflecting the freedom of wavefunctions to acquire a phase. For systems in 3 + 1
dimensions, physical consistency reduces this to the discrete subgroup {£1}, yielding the familiar
dichotomy of bosons and fermions. In lower dimensions, notably 2 + 1, the full U(1) image becomes
possible, leading to anyonic statistics [17-19].

Remark 5 (Physical meaning of loops 7). The abstract loop v € m1(P,xg) corresponds physically to
processes such as a 360° rotation of a particle, or the exchange of two identical particles. The topological class of
v determines the allowed statistics.

3.2. Two Fundamental Scenarios of Monodromy
3.2.1. Scenario 1: Trivial Monodromy (Bosons)

For a loop y in P homotopic to the identity, the monodromy is trivial:
$(© +27) = +9(0). 3)
Consistency of the bundle holonomy for observable sections of £ = £ ® S requires

5, = fpdq — 2k,  nez, @)
v

which yields integer quantization of the action. This is the bosonic case.

3.2.2. Scenario 2: Nontrivial Monodromy (Fermions)

For a loop < representing a 277 rotation in a space requiring the spin double cover, one finds

p(O©+271) = —9(©),  P(O+47) = p(0). ©)
The corresponding action along 7,
Sy = f pdq,
v
must satisfy
S
% =2n+1)m, nez, (6)
equivalently
Sy =21(n+1)n. 7)
This condition follows from exp(—iS, /) = —1 and encodes the geometric origin of fermionic spin.
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3.3. Theorem: Quantization from Monodromy

Let ¥ € € be a configuration of the universal phase field. If ¥ is transported adiabatically along
a non-contractible loop v € 111 (P, xg), then the consistency of observable sections of the composite
bundle £ = £ ® S enforces the quantization rule

S, =2mnh, neiL (8)

Sketch of Proof. The holonomy of ¥ along < defines a U(1) monodromy element. For trivial spin
structure, holonomy triviality gives n € Z (bosons). For nontrivial spin structure, the spin bundle
S contributes a factor —1, yielding n € 1Z (fermions). Thus quantization follows directly from the
topological constraints on ¥, without postulates. O

3.4. Connection to Phase-Space Cells

The action quantization condition
Sy = ]{ pdq = 2nnh
v

is equivalent to the existence of a minimal “cell of action” of size ~ . This directly recovers the familiar
discreteness of phase space and the uncertainty principle as topological consequences of monodromy.

3.5. Generalizations: Anyons and Beyond

In two-dimensional systems (2 + 1 spacetime dimensions), the fundamental group 711 (P) can
support representations into the full U(1), not just {£1}. This yields a continuum of possible statistics
(anyons), as first proposed by Wilczek [17,18] and later applied to topological quantum computation
by Kitaev [19]. In contrast, in 3 + 1 dimensions the representation is restricted to {£1}, explaining
why only bosons and fermions occur in ordinary quantum field theory. The (2-model thus naturally
situates both conventional and exotic statistics within a unified monodromy framework.

Fermions
Bosons

27 27T

P(O+27) = +9(0) (O +21) = —(©)

Figure 1. Two topological scenarios for the global phase ® in the (2-model. Left: Trivial monodromy (p — +1)
for S!, leading to integer quantization (bosons). Right: Nontrivial monodromy (y — — for 27t loop, identity for
47) for Spin(2), yielding half-integer quantization (fermions).

4. Rigorous Derivation via Geometric Quantization

The intuitive picture presented in Section 3, where quantization emerges from the monodromy of
the phase field, can be made mathematically rigorous within the framework of geometric quantization.
This formalism, developed by Kostant [3], Souriau [4], Woodhouse [5], Atiyah [20], and Kirillov [21],
provides a canonical procedure for constructing quantum theory from a classical symplectic manifold.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In the (3-model, the universal phase field ¥ naturally induces a symplectic structure on config-
uration space, making geometric quantization the canonical language to formalize the monodromy
principle and the coherence threshold §S > .

Our derivation proceeds in five structured steps: construction of bundles, definition of states,
consistency condition, evaluation of holonomies, and synthesis of quantization rules.

4.1. Step 1: Constructing the Geometric Bundles
Let (P, w) denote the symplectic phase space.

The Prequantum Line Bundle L:

The quantum phase is represented by a section of a Hermitian line bundle £ with unitary
connection V, whose curvature satisfies the Kostant-Souriau condition

i

Existence of such a bundle requires the Dirac integrality condition:

o]

2
ot € H*(P,Z),

which is equivalent to the quantization of symplectic flux through 2-cycles. Physically, this ensures
that action fluxes are compatible with the ()-postulate of coherence; otherwise, configurations are
inconsistent.

The Spin® Bundle S:

In full generality, the relevant topological structure is a Spin® bundle [22], of which the spin
bundle is a special representative. Its holonomy takes values in {+1}, encoding trivial or nontrivial
spin structures.

4.2. Step 2: Defining the Physical State

The full state space is the tensor product
E=LR®S — P, (10)
so that the abstract universal field ¥ € %, of the (3-model is realized concretely as a section of £.

4.3. Step 3: Consistency Condition

Physical observables must be globally unambiguous. This imposes the requirement
Holg () =1, Vy € m(P), (11)
ensuring that observable sections remain consistent after parallel transport around any closed loop 7.

4.4. Step 4: Holonomies of the Component Bundles
Lemma 1 (Prequantum Holonomy).

For v = 9D, the holonomy of L is

Holz () = exp<—;l /D w) _ exp<—i5;>, (12)

where 5, = f,y p dq is the classical action along v, equivalently the symplectic flux of w through D.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Lemma 2 (Spin® Holonomy).
The holonomy of S is a topological sign:
Hols(7) = xs(7) € {+1, -1} (13)
4.5. Step 5: Synthesis and Quantization Rules
Theorem (Quantization Rule from Bundle Consistency).
For any closed loop 7 € 711 (P), consistency of observable sections of £ enforces
Holg(7) = exp( ==~ | -xs(7) = 1. (14)

Sketch of Proof. If xs(v) = +1, then exp(—iS,/h) =1, giving
Sy =2mnh, ncl.
If xs(v) = —1, then exp(—iS, /) = —1, giving
Sy=(2n+1)nh = 27'((71 + %)h, neZ.
Thus the general solution is compactly written as
S, =2nkh, ke iz,
with k € Z (bosons) or k € Z + % (fermions). [

Remark 6 ((O-model Interpretation). The loop action S., is the integrated version of the local threshold 6S > h,
ensuring global consistency across cycles. Hence the rigorous holonomy condition of geometric quantization is
precisely the global manifestation of the QY-model’s coherence postulate.

Remark 7 (Anyons and 2+1D Systems). In 3 + 1 dimensions, xs is restricted to {1}, yielding bosons
and fermions. In contrast, in 2 + 1 dimensions the fundamental group of the configuration space is the braid
group, 1 (P) = By, which admits continuous representations into U(1). This leads to fractional statistics and
anyons [17-19]. Thus the Q)-model framework naturally generalizes to topological phases beyond bosons and
Sfermions.

In summary, geometric quantization formalizes the monodromy principle of the (3-model and
confirms that Planck’s constant 7 emerges as a structural invariant of bundle consistency — a universal
threshold of coherence — rather than an externally imposed parameter.

5. Discussion: The Status of 77 and Emergent Spin

The rigorous derivation in Section 4 establishes that quantization rules arise as unavoidable
consequences of phase-space topology and bundle consistency. This has profound implications for
two cornerstones of quantum mechanics: the meaning of Planck’s constant 7 and the origin of spin.

5.1. The Status of I as a Structural Invariant

Within the (3-model, Planck’s constant is reinterpreted not as an externally imposed parameter,
but as a structural invariant of the phase-ontological framework.

The analogy with 7 is instructive: in Euclidean geometry 7t is not chosen but necessarily emerges
as the ratio of circumference to diameter. Likewise, in geometric quantization  inevitably appears as
the scale that ties the symplectic form w to its integral cohomology class [5,20]. Quantization of action
is therefore as unavoidable in a nontrivial phase space as the appearance of 7 in circular geometry.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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This framework does not derive the numerical value of 7 from pure mathematics. Instead, it
explains why a universal quantum of action must exist at all. The experimentally measured value then
calibrates hidden parameters (such as the vacuum amplitude pg), and this calibration hints at possible
links to measurable cosmological quantities (vacuum energy density, coherence lengths, or even the
cosmological constant). Thus, 71 is revealed as the universal scale of phase coherence, not merely a unit
conversion factor.

5.2. Spin as a Topological Phenomenon

Spin emerges in the (3-model not as an intrinsic label, but as the physical manifestation of
nontrivial monodromy @ — — of the universal phase field. This reproduces the topological origin of
half-integer quantization through Spin® structures [22,23].!

This insight provides a direct geometric explanation of the Pauli Exclusion Principle. The exchange
of two identical fermions is topologically equivalent to a 27t rotation, enforcing a global sign flip:

¥ (particle 1, particle 2) = — ¥ (particle 2, particle 1).

Thus the Pauli principle—responsible for atomic structure, stability of matter, and chemistry itself—
emerges as a corollary of phase monodromy, rather than an independent axiom. This interpretation
resonates with neutron interferometry experiments [24], where 47-periodicity of spinor states is
observed directly.

6. Consistency with Physical Phenomena

A physical theory must not only be mathematically self-consistent, but also compatible with
experimental evidence. This section demonstrates that the central postulate of the ()-model—the
coherence threshold

6S>n, (15)

which defines the minimal action required for physical distinguishability and stability—is consistently
realized across a wide spectrum of quantum phenomena.

6.1. Qualitative Support from Foundational Experiments

Several cornerstone experiments in quantum physics, traditionally interpreted within the standard
framework, acquire a direct and natural explanation within the (2-model.

Aharonov-Bohm Effect:

An electron’s wave function acquires a measurable phase when encircling a magnetic flux, even
though it passes only through field-free regions [25-28]. The observable is the accumulated phase
© = § A,dx!, a global quantity sensitive only to the topology of the path. This directly illustrates the
()-model’s phase ontology and confirms that physical effects depend on the action integral rather than
on local forces.

Neutron Interferometry:

Experiments by Rauch, Colella, and collaborators [24,29] demonstrated that neutron wave func-
tions require a 477 rotation to return to their initial state. This is direct evidence of nontrivial monodromy
¢ — —1, which in the ()-model arises naturally from the topology of the universal phase field. It
confirms the topological origin of spin and the necessity of the half-integer quantization rule.

dc-SQUID Flux Quantization:

Superconducting quantum interference devices exploit a macroscopic phase coherence. The
quantization of magnetic flux in units of h/2e [30-32] directly reflects the condition §S > 7 applied to

1 The general setting is a Spin® bundle, of which the spin bundle S in Section 4 is a representative case.
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a superconducting loop. This is a macroscopic realization of the QQ-postulate, where single-valuedness
of the order parameter parallels global holonomy consistency.

Quantum Hall Effect:

The quantization of Hall conductance in integer multiples of ¢? /1 [33-35] is a canonical example
of a topological invariant realized in experiment. Since h = 2717, this corresponds to integer filling
of phase-space cells of area 7. Thus, the QHE provides a direct macroscopic manifestation of the
0-model’s coherence threshold.

Quantum Decoherence:

Studies of decoherence show that quantum superpositions lose coherence rapidly when 6S < i
due to environmental coupling [36,37]. This aligns precisely with the (3-model’s postulate that
insufficient action cannot sustain physically distinguishable states.

6.2. lllustrative Consistency Check: The CMS Dimuon Anomaly (As Future Directions)

As a qualitative consistency test, we note that a recent dimuon excess reported by the CMS
Collaboration [38] can be interpreted in the ()-model as a candidate for a higher-order (1 > 1) coherent
phase configuration.

The relevant estimate is based on the action

6S ~ AE x At,

where AE ~ 5.6 GeV is the energy scale of the excess, and At is its characteristic coherence timescale. Al-
though the precise mapping of At requires detailed detector-level analysis, the scale of the phenomenon
ensures that §S > T, placing it firmly within the coherent regime predicted by the model.

We emphasize that this interpretation is speculative and does not replace dedicated BSM analyses,
but it illustrates how collider anomalies can be consistently embedded into the coherence-threshold
framework.

Summary

From mesoscopic interference (Aharonov-Bohm, SQUIDs) to fundamental spinor behavior (neu-
tron interferometry) and topological macroscopic invariants (Quantum Hall effect), the (3-model’s
criterion §S > i is borne out across experimental domains. Decoherence phenomena mark the com-
plementary limit 6S < 7, while even recent collider anomalies appear consistent with the coherence
threshold.

Ultimately, across scales from interferometry to condensed matter and high-energy physics,
the ()-model frames Planck’s constant not as an arbitrary parameter but as the universal threshold of
coherence—a principle unifying quantum phenomena from the microscopic to the cosmic.

7. Limitations and Future Directions
Near-Term Limitations
Constants
The model explains the necessity of i but does not predict its numerical value. / remains an

empirical input, though its linkage to vacuum amplitude and coherence length suggests possible
pathways toward quantitative predictions.

Gravity

Although geometry and curvature arise from phase gradients, a full derivation of Einstein’s
equations is not yet achieved. Bridging from quantum topology to macroscopic dynamics will require
renormalization group or nonperturbative methods.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Manifold Assumptions

We assume a smooth My, but spacetime itself may emerge from pre-geometric combinatorial
structures.

Programmatic Outlook
Mass Spectrum of Particles

Elementary particles appear as stable, topological excitations of the universal phase field. A
central challenge is to derive their mass ratios (e.g., m, /m.) from topological stability conditions.

Emergent Gravity

Following Jacobson [39], Padmanabhan [40], and more recent work [13,41,42], the ()-model
motivates a program where spacetime curvature and gravity emerge from phase coherence.

Dark Energy and Topological Defects

Vacuum tension and dark energy may reflect coherent background structures. Links to domain
walls and decoherence studies [36,37,43] open a perspective on cosmology.

Exotic Statistics and Fractonic Phases

The framework generalizes naturally to anyons [18,19] and fractons [44], showing the universality
of the O)-principle across condensed matter and high-energy physics.

From Q-1 to O-II

This work (Q)-I) clarifies the structural role of # and spin. The next stage (Q2-1I) will extend toward
emergent gravity, vacuum structure, and cosmology.

In summary, the ()-model provides a unified framework where 7 is elevated to the status of
a structural constant, spin emerges from topology, and physical reality itself is filtered through the
coherence criterion 6S > #. This perspective clarifies long-standing quantum principles and charts
ambitious new research directions: the derivation of particle masses, the emergence of spacetime
geometry, the dynamics of dark energy, and the exploration of exotic statistics.

Ultimately, the ()-model suggests that Planck’s constant is not an arbitrary parameter but the universal
threshold of coherence, testable from quantum interferometry to cosmology.

8. Conclusion

The ()-model reframes quantization as a structural consequence of phase topology rather than an
imposed axiom. Planck’s constant 7 emerges as a universal threshold of coherence, while spin and
the Pauli principle follow naturally from nontrivial monodromy of the universal phase field. This
perspective unifies diverse quantum phenomena—from interferometry to condensed matter—under a
single coherence criterion. In doing so, the (3-model positions 7 not as an arbitrary parameter but as a
structural invariant of physical reality, providing both conceptual clarity and concrete pathways for
future theoretical and experimental exploration.
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