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Abstract

Although 5-20% of global crop production is lost to arthropod damage, current biomonitoring
programs are extremely limited. This study evaluates the feasibility of using metabarcoding to assess
overall insect diversity and detect pest species in agricultural settings. It introduces a curated DNA
barcode reference library for Canadian insects that are agricultural pests and applies it to
metabarcoding data from the analysis of Malaise trap samples from two experimental farms in
Southern Ontario. A total of 7,707 arthropod species were collected across the two farms and
projections indicate that another 4,000 await detection. These taxa included 231 registered pest
species. The composition of the overall arthropod community composition was more heavily
influenced by site location than crop type, but pest species composition was influenced by the crop.

Keywords: pest species; biodiversity; malaise trap; biosurveillance

1. Introduction

Arthropods are important contributors to agroecosystems as they provide critical services
including nutrient recycling, pollination, biological control, and food for other organisms. Although
they only considered four services, Losey and Vaughan (2006) estimated an annual value of US$57
billion for the services provided by arthropods in the Unites States. Alarmingly, recent reports
suggest large declines in their biomass, with knock-on effects across ecosystems (Hallmann et al.
2017; Vogel 2017; Lister & Garcia 2018; Seibold er al. 2019, Sanchez-Bayo and Wyckhuys 2019). The
four primary drivers of these declines are thought to be: i) habitat loss to agriculture and
urbanization; ii) chemicals - especially pesticides and fertilizers; iii) pathogens and introduced
species; and iv) climate change (Sanchez-Bayo and Wyckhuys 2019). If current trends are sustained,
40% of all insect species may become extinct within the next few decades (Sanchez-Bayo and
Wyckhuys 2019).

In addition to declines in abundance, the species composition of arthropod communities is
shifting with specialists being replaced by pollution-tolerant dietary generalists (Sanchez-Bayo and
Wyckhuys 2019). Although generalists aid stability in local food webs and, by extension, entire
ecosystems (Benton et al. 2021), this is offset by the declines in diversity. Many specialists which play
important functional roles in ecosystems, are extremely vulnerable to land-use modification and
pollution. Their loss increases interaction strengths within more simplified food webs, which are
known to be less resilient (Benton et al. 2003). As a result, species are declining in abundance or
becoming extirpated, particularly in heavily modified areas such as intensively farmed lands, raising
the risk of pest outbreaks (Dainese et al. 2016).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1982.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2025 d0i:10.20944/preprints202506.1982.v1

2 of 15

While agroecosystems need arthropods to deliver essential services, farm management practices
reduce their abundance. The decline of beneficial arthropod species also leads to an increase in pest
species. Currently, about 5-20% of annual global crop production is lost to arthropods and this is
likely to increase with climate change (Deutsch et al. 2018). Furthermore, the control of insect pests
and crop diseases is increasingly threatened by rising pesticide resistance (Bass et al., 2015; Powles &
Yu, 2010; Lucas et al. 2015).

Past efforts to monitor farmland biodiversity have been limited. They have typically relied on
indirect broad-scale multispecies assessments of terrestrial vertebrates (e.g., Agriculture and Agri-
Food Canada’s “Wildlife Capacity on Farmland Indicator”), or observations of farmland birds and
butterfly populations (e.g., European Union). A recent assessment found no coordinated
biomonitoring of agricultural lands in North America and Europe (Herzog & Franklin 2016).
Conventional biomonitoring utilizing morphological identification is labour intensive and
agricultural lands are vast, so it is no surprise that governments and the agricultural sector have
hesitated to invest. While some biomonitoring data exists, there is a lack of consistent information
even for common species, though they often provide important ecosystem services or provoke crop
damage. Large-scale surveillance programs for agricultural pests are also limited to a few species that
are responsible for the most economic damage. As a consequence, intensive agriculture usually
promotes the blanket use of pesticides at high concentrations without assessing the presence of target
pests. Some modern pesticides seek to reduce non-target impacts (Vyas 1988), but this specificity also
means that resistance often evolves quickly in the target pests.

DNA metabarcoding provides an alternative to conventional approaches for biodiversity
monitoring. As it can rapidly generate georeferenced occurrence data for many species at low cost,
it has been increasingly adopted to monitor populations of aquatic and terrestrial arthropods (Ji et
al. 2013; Beng et al. 2016; Elbrecht & Steinke 2018, Braukmann et al. 2019, Steinke et al. 2022),
vertebrates (Sato et al. 2017), pollen (Bell et al. 2017), diatoms (Vasselon et al. 2017), and fungi
(Bellemain et al. 2012; Aas et al. 2017; Tedersoo et al. 2018). However, the accuracy and reliability of
these results hinges on the quality and completeness of the DNA barcode reference libraries (Collins
et al 2021, deWaard et al. 2019, Weigand et al. 2019). This is also true for pest monitoring using DNA
barcodes (e.g., Ashfaq & Hebert 2016, Batovska et al. 2021, Lee et al. 2019, Madden et al 2019).
Although major programs are underway to build these comprehensive reference libraries (Hobern
2021), the number of unregistered species is still far larger than those with coverage (1.28M of
estimated 10M). The DNA barcode reference libraries for the terrestrial arthropods of Canada
(Pentinsaari et al in prep), is particularly comprehensive (Hebert et al. 2016, deWaard et al. 2019,
Steinke et al. 2022). However, this is the exception so studies on other regions often focus on specific
taxonomic groups with a limited geographic scope (e.g., Moriniere et al. 2019, Delrieu-Trottin et al.
2019, Lin et al 2020). Smaller, targeted libraires, e.g., for arthropods of biosecurity concern, such as
agricultural pests, are more attainable and contribute to the overarching goal of building a fully
parameterized library of all species (Ashfaq & Hebert, 2016; Piper et al. 2019). But can they deliver
reliable pest identification?

This study examines the feasibility of using metabarcoding to assess insect diversity and detect
pest species in agricultural settings. It introduces a curated reference library for most registered pests
of Canadian agriculture and applies it to metabarcoding datasets obtained from Malaise trap samples
collected at two experimental farms in southern Ontario to determine the composition and dynamics
of the pest species community throughout a full growing season.

2. Material and Methods

2.1. Sample Collection

Two research farms were sampled in 2017: Arkell Research Station in Guelph, Ontario and Elora
Research Station in Elora, Ontario (Figure 1A). At each farm, three fields with different crop were
monitored. In Arkell, a 20.2-hectare (ha) soy field (AS), a 35.6 ha corn field (AC), and a 42.1 ha wheat
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field (AW) were sampled (Figure 1B). In Elora, a 6.1 ha soy field (ES), an 8.1 ha corn field (EC), and a
4.0 ha alfalfa field (EA) were sampled (Figure 1C).
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<BEr '*Q-D M

Figure 1. (A) Map of sampling sites within Canada and within southern Ontario (insert). (B) Map of six crop
fields sampled at the Elora and (C) Arkell research stations. Trap locations are indicated by red dots and trap
number. Diagram insert (D) shows trap placement and orientation at each field; each collecting wedge faces a

cardinal direction.

Five 4-headed Sea Land Air Malaise (SLAM) traps were deployed at each field; one at the
midpoint of each edge and one mid-field. The SLAM traps were positioned so each collecting wedge
faced a cardinal direction (Figure 1D). The exact location of each trap is provided in Table S1. In total,
30 traps were deployed across the six fields from May 3 (pre-planting) until November 1 (post-
harvest). Weekly samples (24 weeks) were collected in 250mL plastic bottles filled with 95% ethanol
for a total of 2,880 samples (24 weeks x 30 traps x 4 bottles).

Because many traps (21/30) interfered with farm activities (tilling, planting, spraying,
harvesting), they had to be removed on several occasions for a 7-day duration. Only weekly samples
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with a complete 7-day sampling duration for all five SLAM traps on a field with no disturbances or
additional issues (including trap damage or evaporation of ethanol) were processed. This resulted in
a total of 1540 samples that were selected for analysis from each location and crop type to maximize
sampling coverage over the season.

2.2. Reference Library Assembly

The list of Canadian arthropod pests of agricultural crops was compiled from multiple sources
starting with the list of pests regulated by the Canadian Food Inspection Agency (CFIA -
https://inspection.canada.ca/plant-health/invasive-species/eng/1299168913252/1299168989280) and
the Digital library of the Centre for Agriculture and Biosciences International (CABI -
https://www.cabidigitallibrary.org/journal/cabicompendium) as well as other sources (Table S2).
This  approach  generated a  checklist  (http://boldsystems.org/index.php/CheckLists_
Management/view?code=CL-CPPT) with 928 species. BOLD was queried for all BINs associated with
each species name and its synonyms. The search returned 111,993 records representing 1,403 BINs
mapping to 841 of the 928 species in the checklist (BOLD  dataset
https://boldsystems.org/index.php/MAS_Management_DataConsole?codes=DS-CAPP)

The dataset was filtered to exclude COI sequences shorter than 450bp, records lacking latitude
and longitude, records containing stop codons, contaminated sequences, or records flagged as
problematic on BOLD. Only public records were used. The data was subsequently subsampled to
retain five records per distinct BIN/taxon combination, with a preference for the longest sequence
length between 600bp and 800bp and an associated image. The final reference library contained 5,103
records representing 1,185 BINs, mapping to 783 Linnean species and is available at
dx.doi.org/10.5883/DS-PSCA.

2.3. DNA Extraction and PCR

DNA extraction employed a membrane-based protocol (Ivanova et al. 2007) modified for bulk
samples (Steinke et al. 2022). Specimens were removed from ethanol by filtration through a sterile
Microfunnel 0.45 uM Supor Membrane Filter (Pall Laboratory) using a 6-Funnel Manifold (Pall
Laboratory). The wet weight of each sample was then measured in grams to allow standardization
of the ratio of lysis buffer to biomass. After the addition of buffer, each sample was incubated
overnight at 56°C while gently mixed on a shaker. Two 50 ul aliquots (technical replicates) from each
of the 1540 lysates were then transferred into separate wells in 96-well microplates and DNA extracts
were generated using Acroprep 3.0 um glass fiber/0.2 pm Bio-Inert membrane plates (Pall
Laboratory). Each plate contained 88 lysate samples (2 technical replicates of 44 samples), 2 technical
replicates of a positive control (lysate from a bulk sample whose component specimens were
individually Sanger sequenced — public BOLD dataset - dx.doi.org/10.5883/DS-RRNGS) and 6
negative controls. Each lysate was mixed with 100 ul of binding mix, transferred to a column plate,
and centrifuged at 5000 g for 5 min. DNA was then purified with three washes; the first employed
180 ul of protein wash buffer centrifuged at 5000 g for 5 min. Each column was then washed twice
with 600 ul of wash buffer centrifuged at 5000 g for 5 min. Columns were transferred to clean tubes
and spun dry at 5000 g for 5 min to remove residual buffer before their transfer to clean collection
tubes followed by incubation for 30 min at 56°C to dry the membrane. DNA was eluted by adding 60
ul of 10 mM Tris-HCl pH 8.0 followed by centrifugation at 5000 g for 5 min.

PCR reactions employed a standard protocol (Braukmann et al. 2019). Briefly, each reaction
included 5% trehalose (Fluka Analytical), 1x Platinum Taq reaction buffer (Invitrogen), 2.5 mM MgCl.
(Invitrogen), 0.1 pM of each primer (Integrated DNA Technologies), 50 uM of each dANTP (KAPA
Biosystems), 0.3 units of Platinum Taq (Invitrogen), 2 pl of DNA extract, and Hyclone ultra-pure
water (Thermo Scientific) for a final volume of 12.5 pl. Two-stage PCR was used to generate amplicon
libraries for sequencing on an Ion Torrent S5 platform. The first round of PCR used the primer
combination AncientLepF3 (Prosser et al. 2016) and LepR1 (Hebert et al. 2004) to amplify a 463 bp
fragment of COL. Prior to the second PCR, first round products were diluted 2x with ddH20. Fusion
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primers were then used to attach platform-specific unique molecular identifiers (UMIs) along with
the sequencing adaptors required for Ion Torrent S5 libraries. Both rounds of PCR employed the same
thermocycling conditions: initial denaturation at 94 °C for 2 min, followed by 20 cycles of
denaturation at 94°C for 40 sec, annealing at 51°C for 1 min, and extension at 72 °C for 1 min, with a
final extension at 72°C of 5 min.

2.4. HTS Library Construction

For each plate, labelled products were pooled prior to sequencing. In total, 35 libraries were
assembled. Each included two technical replicates of 44 samples plus six technical replicates of an
extraction negative and two positive controls respectively (i.e., 96 samples). Samples, together with
positive and negative controls, were pooled after UMI tagging to create a library that was analyzed
on a 530 chip (35 chips in total). Amplicon libraries were prepared on an Ion Chef (Thermo Fisher
Scientific) and sequenced on an Ion Torrent S5 platform at the Centre for Biodiversity Genomics
following manufacturer's instructions (Thermo Fisher Scientific).

2.5. Data Analysis

Reads were uploaded to mBRAVE (http://mbrave.net/) for quality filtering and subsequent
queries using several reference libraries in an open reference approach. Reads were queried against
the Canadian Agricultural Pest library (DS-PSCA) and against five additional system libraries:
bacteria (SYS-CRLBACTERIA) to screen for endosymbionts such as Wolbachia, chordates (SYS-
CRLCHORDATA), insects (SYS-CRLINSECTA), non-insect arthropods (SYS-
CRLNONINSECTARTH), non-arthropod invertebrates (SYS-CRLNONARTHINVERT). All non-
arthropod reads were discarded from further analysis. Sequences were only retained if they were
>350 bp and met three quality criteria: Mean QV >20; <25% positions with a QV<20; <5% positions
with QV<10. Reads were trimmed 30 bp from their 5 terminus with a set trim length filter of 450 bp.
Reads were matched to sequences in each reference library with an ID distance threshold of 3% but
were only retained for further analysis if at least five reads matched an OTU in the reference database.
This number is based on earlier benchmarking of the assignment algorithm on mBRAVE where
IonTorrent generated sequences provided the best compromise between removing error and
retaining real matches (Steinke et al. 2022). All reads failing to match any sequence in the five
reference libraries were clustered at an OTU threshold of 1% with a minimum of five reads per
cluster, again a value based on initial benchmarking. All raw data are available in the NCBI Short
Read Archive PRINA892122.

mBRAVE was used to generate BIN (and OTU) tables including all library queries for each
individual plate/run (88 samples, plus six negative and two positive controls, so 96 for each run).
Read counts for any BINs recovered from the negative control on a plate were subtracted from the
counts for the same BIN in the 88 sample wells in the run. When this subtraction reduced the read
count for a BIN to zero, its occurrence was removed. This step reduced the effects of rare tag switching
(Elbrecht and Steinke, 2018) and background contamination.

Datasets downloaded from mBRAVE were converted into OTU tables and presence/absence
matrices for further analysis using an R script (suppl data). To determine the completeness of
sampling, accumulation curves and the Chao-1 estimator for total diversity (Magurran, 2003) were
calculated using the vegan package (Oksanen et al., 2018). Differences in BIN composition between
the two farms and among the four crop types were examined using non-metric multidimensional
scaling (NMDS) with the Bray-Curtis index coefficient as implemented in vegan (Oksanen et al., 2018).
The adonis function of the vegan package was used to conduct a Permutational Multivariate Analysis
of Variance (PERMANOVA) to partition distance matrices among sources of variation (factors such
as site and crop type). All these analyses were done for both the entire dataset and for a subset that
only contained matches to the Canadian Agricultural Pest library (DS-CAPP). All analyses were
performed in R v.4.1.1 (R Core Team, 2020). For each crop type we confirmed whether matching
species have been reported to feed on the respective crop.
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To estimate the percentage of species that occur infrequently in the sampled fields and could be
considered transients, we counted BINs that were not present in all five traps of a field. In addition,
we determined surrounding landscape features by mapping site locations on the 2020 Land Cover of
Canada dataset (Natural Resources Canada 2025) using QGIS (QGIS.org 2025). A 2 km buffer was
created for each farm before QGIS’s zonal histogram tool determined the number of pixels per buffer
of each of eight landcover types (three types of forest, wetland, cropland, barren land, urban, water).
These were converted into percent cover. Forest cover types were amalgamated into a single forest
designation.

3. Results

Sequence analysis of the 1540 samples produced 317,849,360 reads across 35 S5 runs (mean reads
per run =9.08 million, see Table S3). After filtering, 125,384,173 reads were assigned to a BIN (Barcode
Index Number; Ratnasingham & Hebert 2013). Only 0.3% of reads did not find a BIN match on the
Barcode of Life Datasystems (BOLD, Ratnasingham & Hebert 2007). These unmatched reads were de
novo clustered using mBRAVE with a 99% similarity threshold. This analysis recognized an average
of six additional OTUs per sample, but >98% were chimeras, sequences with multiple indels, or
NUMTs so they were excluded from further analysis.

A total of 7,707 BINs was detected at the two farms (Figure 2A) with 5,911 BINs at Arkell and
5,227 BINs at Elora. The Chao 1 estimate for the total number of BINs at both sites was 11,631 (Figure
2A), with 9,428 and 8,039 BINs estimated for Arkell and Elora, respectively. Both sites showed many
transient species (Arkell 88%, Elora 85%). Table 1 shows the percentage of each landcover type in the
2 km buffer zones around each farm. While both farms are embedded in large cropland/urban areas,
a third of Arkell’s surroundings is forest versus 7% at Elora.

Table 1. Percentage landcover type according to the 2020 Land Cover of Canada dataset.

Arkell Elora
Cropland 35.95% 85.45%
Urban 27.28% 7.51%
Forest 31.04% 6.69%
Barren lands 2.50% 0.12%
Shrubland 1.26% 0.10%
Grassland 0.05% 0%
Wetland 1.04% 0.10%
Water 0.89% 0.03%
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Figure 2. Accumulation curves per site for A) the 1672 Malaise trap samples collected at two experimental farms

in Southern Ontario and B) a subset including only matches to a Canadian Agricultural Pest library.

Mapping reads against the Canadian Agricultural Pest library (DS-PSCA) revealed matches to
231 BINs when both farms were considered (Figure 2B) with 225 BINs at Arkell and 165 at Elora. The
Chao 1 estimate for the total number of pest BINs at both sites was 261 (Figure 2B), with 288 and 188
BINs for Arkell and Elora, respectively. The two sites shared 3,341 BINs overall and 165 of the pest
BINs. On average, 0.39 million sequences were recovered per trap per week with an average of 78
BINs (range 4 to 354 BINs, Table S3) per sample. Considering crop types, both soy and alfalfa fields
had about 50% higher average richness for the total community (144 and 146, respectively) and the
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pest assemblage (46 and 47, respectively) than corn and wheat (116 and 107 for all arthropods, 32 and
29 for pests). Average richness of pest species ranged from 32 to 47 per sample (mean=38.5).

The BIN richness for samples collected from the four cardinal directions averaged 132 (range =
27-346). Richness was very similar for all directions, ranging from 128 to 135 BINs. BIN overlap
among the four bottles on a trap averaged 23%, meaning that 77% of the BINs recovered from each
bottle were unique to it.

A NMDS Ordination plot revealed that BIN assemblages for the two farms formed distinct
cohesive groupings (Figure 3A), while no divergence was apparent among crop types (Figure 3C).
NMDS plots for the observed pest assemblages showed the opposite — the two farms were not
separable (Figure 3B), but there was separation for certain crop types (Figure 3D). A PERMANOVA
analysis suggested that overall community structure varied between farms (R?=0.14, P=0.0001) and
crop type (R2=0.17, P=0.0001). Pest communities varied weakly between sites (R?=0.09, P =0.0001)
but more strongly between crop types (R?=0.30, P=0.0001) (Table 2).

1.5 B
A Arkell
1 Elora
7 1.0
0.5
0 .
0.0
1 -0.5-
[aN] T T T T T T
»v 45 4 0.5 0 0.5 1 2 1 0 1
a
= ‘ 0.5
C : = D
1 )
0.0
-0.54 Corn
07 Alfalfa
1.0 Soy
Wheat
N 1.5
T T T T T T T T T T
4.0 0.5 0 0.5 1.0 1.5 2 4 0 1
MDS1

Figure 3. Non-metric multidimensional scaling (NMDS) plots for all samples (A, C) and the Canadian
Agricultural Pest subset (B, D) using the Bray-Curtis index coefficient. Colour coding is based on sites (A, B) or

crop type (C, D).

Table 2. PERMANOVA results for both the full dataset and a Canadian Pest subset.

df  Sum of Squares R2 F Pr(>F)
Full dataset
Site 1 0.58 0.14 5.14 1.00E-04  ***
Crop type 3 0.70 0.17 2.08 1.00E-04  ***
Residual 25 2.80 0.69
Total 29 4.07 1
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Pest
Site 1 0.26 0.09 3.77 3.00E-04  ***
Crop type 3 0.85 0.30 4.15 1.00E-04  ***
Residual 25 1.71 0.61
Total 29 2.83 1

Taxonomic composition at an ordinal level was similar among the samples, with over half of the
BINs being flies (Diptera), followed by Hymenoptera, Lepidoptera, Coleoptera, and Hemiptera
(Figure 4). Composition shifted within the pest assemblages (Figure 4) as most pest BINs were
Lepidoptera, followed by Coleoptera, Hemiptera, and Diptera. Only one third of the detected pest
species feed on the crops in which they were found (Wheat —29.7%, Corn —36.1%, Soy —28.4%, Alfalfa
- 38.2%). About 22% of all detections are pests of trees, so most (96%) were identified as transient
species.

Relative proportion

Full dataset Pest subset

Figure 4. Taxonomic composition of the full dataset and the Canadian Agricultural Pest subset.

4. Discussion

This study used metabarcoding to examine the species composition of 1,540 samples (4 samples
per trap and week = 385 trap weeks) derived from 30 SLAM traps deployed at two experimental
farms in Southern Ontario. The results not only confirm the feasibility of a DNA-based biomonitoring
to measure the species composition of arthropod communities but also demonstrate its capacity to
monitor and identify pest species using a curated reference library for all known Canadian plant
pests. With a cost of about $150 CDN per trap sample (four collecting bottles due to SLAM design,
using 2 replicate samples of each) and a processing time of a week (extraction to sequencing) for sets
of 88-132 samples at a time, this approach is fast, cost-effective, and scalable. These advantages are
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critical for the large-scale rapid detection of registered pest species (Ball & Armstrong 2008) necessary
to effectively monitor agroecosystems.

We observed a rather large difference between the number of arthropod species detected
(N=7,707) and the Chao estimator of the likely true richness (N=11,631). The low overlap among
bottles from individual traps reinforces this conclusion. However, the trade-off is 4x the effort and
cost for DNA extraction and sequencing as well as smaller bottle size requiring shorter sampling
intervals. Overall, our sampling was insufficient to collect all BINs at each farm. Earlier work suggests
that decreasing the distances between individual traps can increase diversity coverage (e.g. Steinke
et al 2021) but this would require deploying many more traps which would not be feasible in active
farming operations as traps represent an obstacle in daily operations.

Flying insects are highly mobile and our estimate of transient species suggested that most species
collected from the farm fields were likely just passing through. This is supported by the fact that 37%
of the species were only collected once. By comparison, 12-15% of species were collected by all traps
at a farm, suggesting these represent core members of the local community. Transient species likely
originated from neighbouring forests, shrubland, and wetlands. Although both sites are mainly
surrounded by cropland and urban development, the surrounding 2 km buffer zone also included
forests. Arkell had considerably more forest cover than Elora (31% vs 7%) which likely explains its
higher BIN richness. Hallmann et al. (2017) hypothesized that such areas, which serve as insect
sources, are negatively affected and drained by the neighbouring agricultural fields which serve as
ecological traps which expose insects to pesticides.

The current approach to crop protection is Integrated Pest Management (IPM) which seeks to
minimize crop damage by the most economical means and the least impact on non-target organisms
(Bottrell & Bottrell 1979, Deguine et al 2021). Successful IPM begins with the reliable identification of
pest species, and DNA barcoding has been slowly incorporated into some routine workflows of
regulatory agencies (Floyd et al. 2010, Jones et al. 2013). However, to facilitate this, there is a need for
comprehensive reference libraries on key pest species. Our reference library for registered arthropod
pests in Canada covers federal and provincial regulatory requirements and includes 816 species or
1,193 BINs. The higher BIN than species count likely reflects the observation that nearly a third of
agricultural pest species appear to be species complexes (Ashfaq & Hebert 2016). By mapping BINs
to a species name, we increased the power of this already well parameterized library (88% of all
registered species) sourced from earlier large-scale efforts to register all Canadian species (Hebert et
al. 2016, de Waard et al 2019).

About 25% (231) of the registered pest species were detected at both sites. A Chao estimator puts
this number closer to 261, about 3% of the overall BIN count. The presence of so many BINs poses a
challenge to alternative approaches of pest identification such as morphological inspection or even
machine learning supported by computer vision (Park et al 2023, Schneider et al 2023, Li et al 2019).
Morphological assignments are limited by the lack of taxonomists and by the lack of diagnostic
morphological characters (Sweeney et al 2011). The challenge for machine learning systems is the
need for training data (hundreds if not thousands of images) for each potential pest species
(Schneider et al 2023), which poses a challenge because the list of Canadian Agricultural pests
contains >900 nominal species.

It is known that both the rotation and abundance of crops have local impacts on pest infestations,
leading to the idea that the manipulation of crop structure could alleviate insect damage, promote
biological control, and allow reduced pesticide use (Tscharntke et al 2005, Larsen & Noack 2017, Haan
et al 2020). However, it has also been shown that pests vary in their response to crop abundance
(Rosenheim et al 2022). The high diversity of pests observed in this study makes crop consolidation
for this assemblage a major challenge for impactful management strategies although only one third
of the detected pest species actually attack the crop growing where they were collected. In fact, many
of the pest species do not feed on any of the crops; 22% are forest pests. For example, the Emerald
Ash Borer (Agrilus planipennis) is responsible for approximately $1.2 billion annual damage (Aukema
et al 2011). The species was frequently collected at Arkell, but just once at Elora, reflecting its lower
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forest cover. Again, this and many other observed pest species can be considered transient species
originating from nearby forests, shrubland, and wetlands.

While the overall community composition differed significantly between the sites which are
about 30 km apart (Figure 3A), we found little compositional differences between pest species (Figure
3B). The opposite was true for associations with crop types. Pest assemblies differed between crop
types (Figure 3D), while overall arthropod communities largely overlap across crop types except for
communities from wheat fields (Figure 3C). In general, arthropod diversity was about 50% higher in
soy and alfalfa fields than in wheat and corn as they represent structurally more complex habitats.
As habitat complexity is considered a key driver of biodiversity (MacArthur 1965, Badgley et al. 2017,
Loke & Chisholm 2022) both soy and alfalfa provide a more suitable environment for many
arthropods with the unintended side-effect that pest species thrive under these conditions. Especially
for alfalfa we found that 38% of the observed pest species feed on the crop. Given that soybean and
alfalfa production in Canada have increased in recent years (Statistics Canada. Tables 32-10-0359-01,
32-10-0043-01) this could be reason for concern.

5. Conclusions

This study confirms that DNA metabarcoding enables cost-effective biomonitoring which can
measure species diversity at multiple levels of arthropod community organization. A very large
proportion of detected species likely represents insects from nearby forests. This ongoing transfer of
species might add additional harmful species to the farming operation, but these movements also
expose forest species to pesticides We continuously monitored and identified pest species and
secured results within a week using a curated reference library for all known and registered Canadian
plant pests. Our results also showed a diverse community of pest species present in farm fields over
the course of a growing season, with preferences for specific crop types. These findings pose some
challenges because management practices that must consider an array of species rather than just a
few key pests.

Supplementary Materials: The following supporting information can be downloaded at the website
of this paper posted on Preprints.org.
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