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Abstract 

Although 5-20% of global crop production is lost to arthropod damage, current biomonitoring 

programs are extremely limited. This study evaluates the feasibility of using metabarcoding to assess 

overall insect diversity and detect pest species in agricultural settings. It introduces a curated DNA 

barcode reference library for Canadian insects that are agricultural pests and applies it to 

metabarcoding data from the analysis of Malaise trap samples from two experimental farms in 

Southern Ontario. A total of 7,707 arthropod species were collected across the two farms and 

projections indicate that another 4,000 await detection. These taxa included 231 registered pest 

species. The composition of the overall arthropod community composition was more heavily 

influenced by site location than crop type, but pest species composition was influenced by the crop. 

Keywords: pest species; biodiversity; malaise trap; biosurveillance 

 

1. Introduction 

Arthropods are important contributors to agroecosystems as they provide critical services 

including nutrient recycling, pollination, biological control, and food for other organisms. Although 

they only considered four services, Losey and Vaughan (2006) estimated an annual value of US$57 

billion for the services provided by arthropods in the Unites States. Alarmingly, recent reports 

suggest large declines in their biomass, with knock-on effects across ecosystems (Hallmann et al. 

2017; Vogel 2017; Lister & Garcia 2018; Seibold er al. 2019, Sanchez-Bayo and Wyckhuys 2019). The 

four primary drivers of these declines are thought to be: i) habitat loss to agriculture and 

urbanization; ii) chemicals - especially pesticides and fertilizers; iii) pathogens and introduced 

species; and iv) climate change (Sanchez-Bayo and Wyckhuys 2019). If current trends are sustained, 

40% of all insect species may become extinct within the next few decades (Sanchez-Bayo and 

Wyckhuys 2019).  

In addition to declines in abundance, the species composition of arthropod communities is 

shifting with specialists being replaced by pollution-tolerant dietary generalists (Sanchez-Bayo and 

Wyckhuys 2019). Although generalists aid stability in local food webs and, by extension, entire 

ecosystems (Benton et al. 2021), this is offset by the declines in diversity. Many specialists which play 

important functional roles in ecosystems, are extremely vulnerable to land-use modification and 

pollution. Their loss increases interaction strengths within more simplified food webs, which are 

known to be less resilient (Benton et al. 2003). As a result, species are declining in abundance or 

becoming extirpated, particularly in heavily modified areas such as intensively farmed lands, raising 

the risk of pest outbreaks (Dainese et al. 2016).  
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While agroecosystems need arthropods to deliver essential services, farm management practices 

reduce their abundance. The decline of beneficial arthropod species also leads to an increase in pest 

species. Currently, about 5-20% of annual global crop production is lost to arthropods and this is 

likely to increase with climate change (Deutsch et al. 2018). Furthermore, the control of insect pests 

and crop diseases is increasingly threatened by rising pesticide resistance (Bass et al., 2015; Powles & 

Yu, 2010; Lucas et al. 2015).  

Past efforts to monitor farmland biodiversity have been limited. They have typically relied on 

indirect broad-scale multispecies assessments of terrestrial vertebrates (e.g., Agriculture and Agri-

Food Canada’s “Wildlife Capacity on Farmland Indicator”), or observations of farmland birds and 

butterfly populations (e.g., European Union). A recent assessment found no coordinated 

biomonitoring of agricultural lands in North America and Europe (Herzog & Franklin 2016). 

Conventional biomonitoring utilizing morphological identification is labour intensive and 

agricultural lands are vast, so it is no surprise that governments and the agricultural sector have 

hesitated to invest. While some biomonitoring data exists, there is a lack of consistent information 

even for common species, though they often provide important ecosystem services or provoke crop 

damage. Large-scale surveillance programs for agricultural pests are also limited to a few species that 

are responsible for the most economic damage. As a consequence, intensive agriculture usually 

promotes the blanket use of pesticides at high concentrations without assessing the presence of target 

pests. Some modern pesticides seek to reduce non‐target impacts (Vyas 1988), but this specificity also 

means that resistance often evolves quickly in the target pests.  

DNA metabarcoding provides an alternative to conventional approaches for biodiversity 

monitoring. As  it can rapidly generate georeferenced occurrence data for many species at low cost, 

it has been increasingly adopted to monitor populations of  aquatic and terrestrial arthropods (Ji et 

al. 2013; Beng et al. 2016; Elbrecht & Steinke 2018, Braukmann et al. 2019, Steinke et al. 2022), 

vertebrates (Sato et al. 2017), pollen (Bell et al. 2017), diatoms (Vasselon et al. 2017), and fungi 

(Bellemain et al. 2012; Aas et al. 2017; Tedersoo et al. 2018). However, the accuracy and reliability of 

these results hinges on the quality and completeness of the DNA barcode reference libraries (Collins 

et al 2021, deWaard et al. 2019, Weigand et al. 2019). This is also true for pest monitoring using DNA 

barcodes (e.g., Ashfaq & Hebert 2016, Batovska et al. 2021, Lee et al. 2019, Madden et al 2019). 

Although major programs are underway to build these comprehensive reference libraries (Hobern 

2021), the number of unregistered species is still far larger than those with coverage (1.28M of 

estimated 10M). The DNA barcode reference libraries for the terrestrial arthropods of Canada 

(Pentinsaari et al in prep), is particularly comprehensive (Hebert et al. 2016, deWaard et al. 2019, 

Steinke et al. 2022). However, this is the exception so studies on other regions often focus on specific 

taxonomic groups with a limited geographic scope (e.g., Moriniere et al. 2019, Delrieu-Trottin et al. 

2019, Lin et al 2020). Smaller, targeted libraires, e.g., for arthropods of biosecurity concern, such as 

agricultural pests, are more attainable and contribute to the overarching goal of building a fully 

parameterized library of all species (Ashfaq & Hebert, 2016; Piper et al. 2019). But can they deliver 

reliable pest identification? 

This study examines the feasibility of using metabarcoding to assess insect diversity and detect 

pest species in agricultural settings. It introduces a curated reference library for most registered pests 

of Canadian agriculture and applies it to metabarcoding datasets obtained from Malaise trap samples 

collected at two experimental farms in southern Ontario to determine the composition and dynamics 

of the pest species community throughout a full growing season.  

2. Material and Methods 

2.1. Sample Collection 

Two research farms were sampled in 2017: Arkell Research Station in Guelph, Ontario and Elora 

Research Station in Elora, Ontario (Figure 1A). At each farm, three fields with different crop were 

monitored. In Arkell, a 20.2-hectare (ha) soy field (AS), a 35.6 ha corn field (AC), and a 42.1 ha wheat 
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field (AW) were sampled (Figure 1B). In Elora, a 6.1 ha soy field (ES), an 8.1 ha corn field (EC), and a 

4.0 ha alfalfa field (EA) were sampled (Figure 1C).  

 

Figure 1. (A) Map of sampling sites within Canada and within southern Ontario (insert). (B) Map of six crop 

fields sampled at the Elora and (C) Arkell research stations. Trap locations are indicated by red dots and trap 

number. Diagram insert (D) shows trap placement and orientation at each field; each collecting wedge faces a 

cardinal direction. 

Five 4-headed Sea Land Air Malaise (SLAM) traps were deployed at each field; one at the 

midpoint of each edge and one mid-field. The SLAM traps were positioned so each collecting wedge 

faced a cardinal direction (Figure 1D). The exact location of each trap is provided in Table S1. In total, 

30 traps were deployed across the six fields from May 3 (pre-planting) until November 1 (post-

harvest). Weekly samples (24 weeks) were collected in 250mL plastic bottles filled with 95% ethanol 

for a total of 2,880 samples (24 weeks x 30 traps x 4 bottles).  

Because many traps (21/30) interfered with farm activities (tilling, planting, spraying, 

harvesting), they had to be removed on several occasions for a 7-day duration. Only weekly samples 
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with a complete 7-day sampling duration for all five SLAM traps on a field with no disturbances or 

additional issues (including trap damage or evaporation of ethanol) were processed. This resulted in 

a total of 1540 samples that were selected for analysis from each location and crop type to maximize 

sampling coverage over the season.   

2.2. Reference Library Assembly 

The list of Canadian arthropod  pests of agricultural crops was compiled from multiple sources 

starting with the list of pests regulated by the Canadian Food Inspection Agency (CFIA - 

https://inspection.canada.ca/plant-health/invasive-species/eng/1299168913252/1299168989280) and 

the Digital library of the Centre for Agriculture and Biosciences International (CABI - 

https://www.cabidigitallibrary.org/journal/cabicompendium) as well as other sources (Table S2).  

This approach generated a checklist (http://boldsystems.org/index.php/CheckLists_ 

Management/view?code=CL-CPPT) with 928 species. BOLD was queried for all BINs associated with 

each species name and its synonyms. The search returned 111,993 records representing 1,403 BINs 

mapping to 841 of the 928 species in the checklist (BOLD dataset 

https://boldsystems.org/index.php/MAS_Management_DataConsole?codes=DS-CAPP)  

The dataset was filtered to exclude COI sequences shorter than 450bp, records lacking latitude 

and longitude, records containing stop codons, contaminated sequences, or records flagged as 

problematic on BOLD. Only public records were used. The data was subsequently subsampled to 

retain five records per distinct BIN/taxon combination, with a preference for the longest sequence 

length between 600bp and 800bp and an associated image. The final reference library contained 5,103 

records representing 1,185 BINs, mapping to 783 Linnean species and is available at 

dx.doi.org/10.5883/DS-PSCA. 

2.3. DNA Extraction and PCR 

DNA extraction employed a membrane-based protocol (Ivanova et al. 2007) modified for bulk 

samples (Steinke et al. 2022). Specimens were removed from ethanol by filtration through a sterile 

Microfunnel 0.45 µM Supor Membrane Filter (Pall Laboratory) using a 6-Funnel Manifold (Pall 

Laboratory). The wet weight of each sample was then measured in grams to allow standardization 

of the ratio of lysis buffer to biomass. After the addition of buffer, each sample was incubated 

overnight at 56°C while gently mixed on a shaker. Two 50 μl aliquots (technical replicates) from each 

of the 1540 lysates were then transferred into separate wells in 96-well microplates and DNA extracts 

were generated using Acroprep 3.0 µm glass fiber/0.2 µm Bio-Inert membrane plates (Pall 

Laboratory). Each plate contained 88 lysate samples (2 technical replicates of 44 samples), 2 technical 

replicates of a positive control (lysate from a bulk sample whose component specimens were 

individually Sanger sequenced – public BOLD dataset - dx.doi.org/10.5883/DS-RRNGS) and 6 

negative controls. Each lysate was mixed with 100 μl of binding mix, transferred to a column plate, 

and centrifuged at 5000 g for 5 min. DNA was then purified with three washes; the first employed 

180 μl of protein wash buffer centrifuged at 5000 g for 5 min. Each column was then washed twice 

with 600 μl of wash buffer centrifuged at 5000 g for 5 min. Columns were transferred to clean tubes 

and spun dry at 5000 g for 5 min to remove residual buffer before their transfer to clean collection 

tubes followed by incubation for 30 min at 56°C to dry the membrane. DNA was eluted by adding 60 

μl of 10 mM Tris-HCl pH 8.0 followed by centrifugation at 5000 g for 5 min.  

PCR reactions employed a standard protocol (Braukmann et al. 2019). Briefly, each reaction 

included 5% trehalose (Fluka Analytical), 1× Platinum Taq reaction buffer (Invitrogen), 2.5 mM MgCl2 

(Invitrogen), 0.1 μM of each primer (Integrated DNA Technologies), 50 μM of each dNTP (KAPA 

Biosystems), 0.3 units of Platinum Taq (Invitrogen), 2 μl of DNA extract, and Hyclone ultra-pure 

water (Thermo Scientific) for a final volume of 12.5 μl. Two-stage PCR was used to generate amplicon 

libraries for sequencing on an Ion Torrent S5 platform. The first round of PCR used the primer 

combination AncientLepF3 (Prosser et al. 2016) and LepR1 (Hebert et al. 2004) to amplify a 463 bp 

fragment of COI. Prior to the second PCR, first round products were diluted 2x with ddH2O. Fusion 
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primers were then used to attach platform-specific unique molecular identifiers (UMIs) along with 

the sequencing adaptors required for Ion Torrent S5 libraries. Both rounds of PCR employed the same 

thermocycling conditions:  initial denaturation at 94 °C for 2 min, followed by 20 cycles of 

denaturation at 94°C for 40 sec, annealing at 51°C for 1 min, and extension at 72 °C for 1 min, with a 

final extension at 72°C of 5 min.  

2.4. HTS Library Construction 

For each plate, labelled products were pooled prior to sequencing. In total, 35 libraries were 

assembled. Each included two technical replicates of 44 samples plus six technical replicates of an 

extraction negative and two positive controls respectively (i.e., 96 samples). Samples, together with 

positive and negative controls, were pooled after UMI tagging to create a library that was analyzed 

on a 530 chip (35 chips in total). Amplicon libraries were prepared on an Ion Chef (Thermo Fisher 

Scientific) and sequenced on an Ion Torrent S5 platform at the Centre for Biodiversity Genomics 

following manufacturer's instructions (Thermo Fisher Scientific). 

2.5. Data Analysis 

Reads were uploaded to mBRAVE (http://mbrave.net/) for quality filtering and subsequent 

queries using several reference libraries in an open reference approach. Reads were queried against 

the Canadian Agricultural Pest library (DS-PSCA) and against five additional system libraries: 

bacteria (SYS-CRLBACTERIA) to screen for endosymbionts such as Wolbachia, chordates (SYS-

CRLCHORDATA), insects (SYS-CRLINSECTA), non-insect arthropods (SYS-

CRLNONINSECTARTH), non-arthropod invertebrates (SYS-CRLNONARTHINVERT). All non-

arthropod reads were discarded from further analysis. Sequences were only retained if they were 

>350 bp and met three quality criteria: Mean QV >20; <25% positions with a QV<20; <5% positions 

with QV<10. Reads were trimmed 30 bp from their 5’ terminus with a set trim length filter of 450 bp. 

Reads were matched to sequences in each reference library with an ID distance threshold of 3% but 

were only retained for further analysis if at least five reads matched an OTU in the reference database. 

This number is based on earlier benchmarking of the assignment algorithm on mBRAVE where 

IonTorrent generated sequences provided the best compromise between removing error and 

retaining real matches (Steinke et al. 2022). All reads failing to match any sequence in the five 

reference libraries were clustered at an OTU threshold of 1% with a minimum of five reads per 

cluster, again a value based on initial benchmarking. All raw data are available in the NCBI Short 

Read Archive PRJNA892122. 

mBRAVE was used to generate BIN (and OTU) tables including all library queries for each 

individual plate/run (88 samples, plus six negative and two positive controls, so 96 for each run). 

Read counts for any BINs recovered from the negative control on a plate were subtracted from the 

counts for the same BIN in the 88 sample wells in the run. When this subtraction reduced the read 

count for a BIN to zero, its occurrence was removed. This step reduced the effects of rare tag switching 

(Elbrecht and Steinke, 2018) and background contamination. 

Datasets downloaded from mBRAVE were converted into OTU tables and presence/absence 

matrices for further analysis using an R script (suppl data). To determine the completeness of 

sampling, accumulation curves and the Chao-1 estimator for total diversity (Magurran, 2003) were 

calculated using the vegan package (Oksanen et al., 2018). Differences in BIN composition between 

the two farms and among the four crop types were examined using non-metric multidimensional 

scaling (NMDS) with the Bray-Curtis index coefficient as implemented in vegan (Oksanen et al., 2018). 

The adonis function of the vegan package was used to conduct a Permutational Multivariate Analysis 

of Variance (PERMANOVA) to partition distance matrices among sources of variation (factors such 

as site and crop type). All these analyses were done for both the entire dataset and for a subset that 

only contained matches to the Canadian Agricultural Pest library (DS-CAPP). All analyses were 

performed in R v.4.1.1 (R Core Team, 2020). For each crop type we confirmed whether matching 

species have been reported to feed on the respective crop. 
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To estimate the percentage of species that occur infrequently in the sampled fields and could be 

considered transients, we counted BINs that were not present in all five traps of a field. In addition, 

we determined surrounding landscape features by mapping site locations on the 2020 Land Cover of 

Canada dataset (Natural Resources Canada 2025) using QGIS (QGIS.org 2025). A 2 km buffer was 

created for each farm before QGIS’s zonal histogram tool determined the number of pixels per buffer 

of each of eight landcover types (three types of forest, wetland, cropland, barren land, urban, water). 

These were converted into percent cover. Forest cover types were amalgamated into a single forest 

designation. 

3. Results 

Sequence analysis of the 1540 samples produced 317,849,360 reads across 35 S5 runs (mean reads 

per run = 9.08 million, see Table S3). After filtering, 125,384,173 reads were assigned to a BIN (Barcode 

Index Number; Ratnasingham & Hebert 2013). Only 0.3% of reads did not find a BIN match on the 

Barcode of Life Datasystems (BOLD, Ratnasingham & Hebert 2007). These unmatched reads were de 

novo clustered using mBRAVE with a 99% similarity threshold. This analysis recognized an average 

of six additional OTUs per sample, but >98% were chimeras, sequences with multiple indels, or 

NUMTs so they were excluded from further analysis.  

A total of 7,707 BINs was detected at the two farms (Figure 2A) with 5,911 BINs at Arkell and 

5,227 BINs at Elora. The Chao 1 estimate for the total number of BINs at both sites was 11,631 (Figure 

2A), with 9,428 and 8,039 BINs estimated for Arkell and Elora, respectively. Both sites showed many 

transient species (Arkell 88%, Elora 85%). Table 1 shows the percentage of each landcover type in the 

2 km buffer zones around each farm. While both farms are embedded in large cropland/urban areas, 

a third of Arkell’s surroundings is forest versus 7% at Elora. 

Table 1. Percentage landcover type according to the 2020 Land Cover of Canada dataset. 

 Arkell Elora 

Cropland 35.95% 85.45% 

Urban 27.28% 7.51% 

Forest 31.04% 6.69% 

Barren lands 2.50% 0.12% 

Shrubland 1.26% 0.10% 

Grassland 0.05% 0% 

Wetland 1.04% 0.10% 

Water 0.89% 0.03% 
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Figure 2. Accumulation curves per site for A) the 1672 Malaise trap samples collected at two experimental farms 

in Southern Ontario and B) a subset including only matches to a Canadian Agricultural Pest library. 

Mapping reads against the Canadian Agricultural Pest library (DS-PSCA) revealed matches to 

231 BINs when both farms were considered (Figure 2B) with 225 BINs at Arkell and 165 at Elora. The 

Chao 1 estimate for the total number of pest BINs at both sites was 261 (Figure 2B), with 288 and 188 

BINs for Arkell and Elora, respectively. The two sites shared 3,341 BINs overall and 165 of the pest 

BINs. On average, 0.39 million sequences were recovered per trap per week with an average of 78 

BINs (range 4 to 354 BINs, Table S3) per sample. Considering crop types, both soy and alfalfa fields 

had about 50% higher average richness for the total community (144 and 146, respectively) and the 
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pest assemblage (46 and 47, respectively) than corn and wheat (116 and 107 for all arthropods, 32 and 

29 for pests). Average richness of pest species ranged from 32 to 47 per sample (mean=38.5). 

The BIN richness for samples collected from the four cardinal directions averaged 132 (range = 

27-346). Richness was very similar for all directions, ranging from 128 to 135 BINs. BIN overlap 

among the four bottles on a trap averaged 23%, meaning that 77% of the BINs recovered from each 

bottle were unique to it.  

A NMDS Ordination plot revealed that BIN assemblages for the two farms formed distinct 

cohesive groupings (Figure 3A), while no divergence was apparent among crop types (Figure 3C). 

NMDS plots for the observed pest assemblages showed the opposite – the two farms were not 

separable (Figure 3B), but there was separation for certain crop types (Figure 3D). A PERMANOVA 

analysis suggested that overall community structure varied between farms (R2 = 0.14, P = 0.0001) and 

crop type (R2 = 0.17, P = 0.0001). Pest communities varied weakly between sites (R2 = 0.09, P = 0.0001) 

but more strongly between crop types (R2 = 0.30, P = 0.0001) (Table 2). 

 

Figure 3. Non-metric multidimensional scaling (NMDS) plots for all samples (A, C) and the Canadian 

Agricultural Pest subset (B, D) using the Bray-Curtis index coefficient. Colour coding is based on sites (A, B) or 

crop type (C, D). 

Table 2. PERMANOVA results for both the full dataset and a Canadian Pest subset. 

 df Sum of Squares R2 F Pr(>F)  

Full dataset       

Site 1 0.58 0.14 5.14 1.00E-04 *** 

Crop type 3 0.70 0.17 2.08 1.00E-04 *** 

Residual 25 2.80 0.69    
Total 29 4.07 1    
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Pest       
Site 1 0.26 0.09 3.77 3.00E-04 *** 

Crop type 3 0.85 0.30 4.15 1.00E-04 *** 

Residual 25 1.71 0.61    
Total 29 2.83 1    

Taxonomic composition at an ordinal level was similar among the samples, with over half of the 

BINs being flies (Diptera), followed by Hymenoptera, Lepidoptera, Coleoptera, and Hemiptera 

(Figure 4). Composition shifted within the pest assemblages (Figure 4) as most pest BINs were 

Lepidoptera, followed by Coleoptera, Hemiptera, and Diptera. Only one third of the detected pest 

species feed on the crops in which they were found (Wheat – 29.7%, Corn – 36.1%, Soy – 28.4%, Alfalfa 

- 38.2%). About 22% of all detections are pests of trees, so most (96%) were identified as transient 

species. 

 

Figure 4. Taxonomic composition of the full dataset and the Canadian Agricultural Pest subset. 

4. Discussion 

This study used metabarcoding to examine the species composition of 1,540 samples (4 samples 

per trap and week = 385 trap weeks) derived from 30 SLAM traps deployed at two experimental 

farms in Southern Ontario. The results not only confirm the feasibility of a DNA-based biomonitoring 

to measure the species composition of arthropod communities but also demonstrate its capacity to 

monitor and identify pest species using a curated reference library for all known Canadian plant 

pests. With a cost of about $150 CDN per trap sample (four collecting bottles due to SLAM design, 

using 2 replicate samples of each) and a processing time of a week (extraction to sequencing) for sets 

of 88-132 samples at a time, this approach is fast, cost-effective, and scalable. These advantages are 
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critical for the large-scale rapid detection of registered pest species (Ball & Armstrong 2008) necessary 

to effectively monitor agroecosystems.  

We observed a rather large difference between the number of arthropod species detected 

(N=7,707) and the Chao estimator of the likely true richness (N=11,631). The low overlap among 

bottles from individual traps reinforces this conclusion. However, the trade-off is 4x the effort and 

cost for DNA extraction and sequencing as well as smaller bottle size requiring shorter sampling 

intervals. Overall, our sampling was insufficient to collect all BINs at each farm. Earlier work suggests 

that decreasing the distances between individual traps can increase diversity coverage (e.g. Steinke 

et al 2021) but this would require deploying many more traps which would not be feasible in active 

farming operations as traps represent an obstacle in daily operations. 

Flying insects are highly mobile and our estimate of transient species suggested that most species 

collected from the farm fields were likely just passing through. This is supported by the fact that 37% 

of the species were only collected once. By comparison, 12-15% of species were collected by all traps 

at a farm, suggesting these represent core members of the local community. Transient species likely 

originated from neighbouring forests, shrubland, and wetlands. Although both sites are mainly 

surrounded by cropland and urban development, the surrounding  2 km buffer zone also included 

forests. Arkell had considerably more forest cover than Elora (31% vs 7%) which likely explains its 

higher BIN richness. Hallmann et al. (2017) hypothesized that such areas, which serve as insect 

sources, are negatively affected and drained by the neighbouring agricultural fields which serve as 

ecological traps which expose insects to pesticides. 

 The current approach to crop protection is Integrated Pest Management (IPM) which seeks to 

minimize crop damage by the most economical means and the least impact on non-target organisms 

(Bottrell & Bottrell 1979, Deguine et al 2021). Successful IPM begins with the reliable identification of 

pest species, and DNA barcoding has been slowly incorporated into some routine workflows of 

regulatory agencies (Floyd et al. 2010, Jones et al. 2013). However, to facilitate this, there is a need for 

comprehensive reference libraries on key pest species. Our reference library for registered arthropod 

pests in Canada covers federal and provincial regulatory requirements and includes 816 species or 

1,193 BINs. The higher BIN than species count likely reflects the observation that nearly a third of 

agricultural pest species appear to be species complexes (Ashfaq & Hebert 2016). By mapping BINs 

to a species name, we increased the power of this already well parameterized library (88% of all 

registered species) sourced from earlier large-scale efforts to register all Canadian species (Hebert et 

al. 2016, de Waard et al 2019).  

About 25% (231) of the registered pest species were detected at both sites. A Chao estimator puts 

this number closer to 261, about 3% of the overall BIN count. The presence of so many BINs poses a 

challenge to alternative approaches of pest identification such as morphological inspection or even 

machine learning supported by computer vision (Park et al 2023, Schneider et al 2023, Li et al 2019). 

Morphological assignments are limited by the lack of taxonomists and by the lack of diagnostic 

morphological characters (Sweeney et al 2011). The challenge for machine learning systems is the 

need for training data (hundreds if not thousands of images) for each potential pest species 

(Schneider et al 2023), which poses a challenge because the list of Canadian Agricultural pests 

contains >900 nominal species.  

It is known that both the rotation and abundance of crops have local impacts on pest infestations, 

leading to the idea that the manipulation of crop structure could alleviate insect damage, promote 

biological control, and allow reduced pesticide use (Tscharntke et al 2005, Larsen & Noack 2017, Haan 

et al 2020). However, it has also been shown that pests vary in their response to crop abundance 

(Rosenheim et al 2022). The high diversity of pests observed in this study makes crop consolidation 

for this assemblage a major challenge for impactful management strategies although only one third 

of the detected pest species actually attack the crop growing where they were collected. In fact, many 

of the pest species do not feed on any of the crops; 22% are forest pests. For example, the Emerald 

Ash Borer (Agrilus planipennis) is responsible for approximately $1.2 billion annual damage (Aukema 

et al 2011). The species was frequently collected at Arkell, but just once at Elora, reflecting its lower 
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forest cover. Again, this and many other observed pest species can be considered transient species 

originating from nearby forests, shrubland, and wetlands.   

While the overall community composition differed significantly between the sites which are 

about 30 km apart (Figure 3A), we found little compositional differences between pest species (Figure 

3B). The opposite was true for associations with crop types. Pest assemblies differed between crop 

types (Figure 3D), while overall arthropod communities largely overlap across crop types except for 

communities from wheat fields (Figure 3C). In general, arthropod diversity was about 50% higher in 

soy and alfalfa fields than in wheat and corn as they represent structurally more complex habitats. 

As habitat complexity is considered a key driver of biodiversity (MacArthur 1965, Badgley et al. 2017, 

Loke & Chisholm 2022) both soy and alfalfa provide a more suitable environment for many 

arthropods with the unintended side-effect that pest species thrive under these conditions. Especially 

for alfalfa we found that 38% of the observed pest species feed on the crop. Given that soybean and 

alfalfa production in Canada have increased in recent years (Statistics Canada. Tables 32-10-0359-01, 

32-10-0043-01) this could be reason for concern.  

5. Conclusions  

This study confirms that DNA metabarcoding enables cost-effective biomonitoring which can 

measure species diversity at multiple levels of arthropod community organization. A very large 

proportion of detected species likely represents insects from nearby forests. This ongoing transfer of 

species might add additional harmful species to the farming operation, but these movements also 

expose forest species to pesticides We continuously monitored and identified pest species and 

secured results within a week using a curated reference library for all known and registered Canadian 

plant pests. Our results also showed a diverse community of pest species present in farm fields over 

the course of a growing season, with preferences for specific crop types. These findings pose some 

challenges because management practices that must consider an array of species rather than just a 

few key pests.  
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