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Abstract: Machine fault diagnosis systems need to collect and transmit dynamic monitoring signals,
like vibration and current signals, at high-speed. However, industrial wireless sensor networks
(IWSNs) and Industrial Internet of Things (IloT) are generally based on low-speed wireless
protocols, such as ZigBee and IEEE802.15.4. To address this tension when implementing machine
fault diagnosis applications in IIoT, this paper proposes a novel INSN with on-sensor data
processing. On-sensor wavelet transforms using four popular mother wavelets are explored for
fault feature extraction, while an on-sensor support vector machine classifier is investigated for fault
diagnosis. The effectiveness of the presented approach is evaluated by a set of experiments using
motor bearing vibration data. The experimental results show that compared with raw data
transmission, the proposed on-sensor fault diagnosis method can reduce the payload transmission
data by 99.95%, and reduce the node energy consumption by about 10%, while the fault diagnosis
accuracy of the proposed approach reaches 98%.

Keywords: industrial wireless sensor networks (IWSNs), fault diagnosis, wavelet transform,
support vector machine, Industrial Internet of Things (IloT)

1. Introduction

In recent decades, many novel machine fault diagnosis approaches have been proposed to
prevent unexpected catastrophic machine failures and reduce the related economic loss due to these
faults [1]. Currently, the emerging of Internet of Things (IoT) and its deployment in industrial
settings, namely Industrial Internet of Things (IloT), are transforming traditional industries in many
areas including machine fault diagnosis [2-6]. IloT and its wireless implementation, industrial
wireless sensor networks (IWSNs), can sense device information and then transmit this data via a
base station and the Internet to powerful cloud servers to enable real-time wireless machine condition
monitoring and fault diagnosis [7,8].

Compared with a traditional wired machine condition monitoring and fault diagnosis system, a
wireless system using IIoT and IWSNs has many inherent advantages, including lower cost, more
convenient installation, and easy relocation. However, INSNs and IIoT are generally based on low-
speed wireless protocols, such as ZigBee and IEEE802.15.4. The limited wireless bandwidth of ZigBee
and IEEE 802.15.4 often impedes the high-speed collection and transmission of dynamic monitoring
signals, like vibration and current signals, for machine condition monitoring and fault diagnosis. An
alternative is to use the data processing capability of the INSN sensor node to carry out on-sensor
feature extraction and fault diagnosis and then only transfer the final result to the IIoT Cloud
Platform. We have previously published work which demonstrates the potential on on-sensor data
analysis to significantly reduce the data communication in IWSN and IloT [7,9,10]. Recently, several
other research projects and application deployments in this area of on-senor fault diagnosis have
been reported. Overall level monitoring, which calculates a small number of statistical parameters,
such as RMS, crest factor, and kurtosis of vibration signals, is computed on IWSNs sensor node to
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indicate motor operating condition in [11]. However statistical values generally just give an overall
indicator of the device condition, without sufficient detail for identifying the types of failures.

Frequency spectrum analysis based on the Fourier transform is a key technique for machine fault
diagnosis. We have previously described an IWSN with on-sensor fault feature extraction using FFT
and on-sensor fault diagnosis using artificial neural networks (ANN) in [9,10]. The results show that
the proposed method can successfully monitor the machine condition using low wireless bandwidth.
However, the Fourier transform is more suitable for a stationary signal.

Many industrial parameters used for fault diagnoses, like vibration and state current, are non-
stationary signals or partly non-stationary signals. The Wavelet Transform (WT) represents a signal
using a set of basis functions from a single prototype wavelet through translation and dilation, and
it is more suitable for processing non-stationary and transient signals, such as vibration and current.
Although WT has been successfully used in many wired fault diagnosis systems, using IWSNs and
on-sensor wavelet transforms for machine fault diagnosis is still a relatively unexplored area. In
earlier work, our team also explored the feasibility of using IWSNs and on-sensor DB97 wavelet
transform for vibration signal fault feature extraction, combined with a minimum distance classifier
for fault diagnosis [12], and this appears to be the only other work to explore wavelets for on-sensor
fault diagnosis.

Compared to other on-sensor fault classification methods, like our previous use of ANN [9,10]
and minimum distance [12], the support vector machine (SVM) is a promising new approach for
machine fault diagnosis. Compared with ANN and the minimum distance method, SVM often has
higher classification accuracy because of its principle of risk minimization [13].

This paper significantly extends our group’s previous work on wavelet analysis [12] with a
broader range of mother wavelets and a more sophisticated classification scheme to give significantly
better results. This paper explores the feasibility of using IWSNs with on-sensor WT and SVM for
fault feature extraction and fault diagnosis, compares the effectiveness of on-sensor fault feature
extraction using various mother wavelets, and also quantifies the node energy cost of the proposed
on-sensor fault diagnosis approach. In this paper, the induction motor and vibration signals are taken
as an example of monitored industrial equipment and signals due to their wide use. Machine failures
due to bearings and the related components are more than 40 percent of all motor failures, so this
project focuses on motor bearing faults [14,15]. As this paper mainly investigates the feasibility of on-
sensor fault diagnosis, instead of building up a motor fault diagnosis testbed, this research directly
uses the data from a well-known freely-available fault signal database at Case Western Reserve
University (CWRU) Bearing Data Center as the training and testing data for on-sensor fault diagnosis
[16].

The remainder of this paper is organized as follows. The theoretical background of WT and SVM
are introduced in Section II. Section III describes the system architecture and implementation
methodology. The experimental evaluation of the proposed system is given in Section IV. Finally,
Section V presents the overall conclusions.

2. Theoretical Background

2.1. Wawvelet Transform Theory

Compared with Gabor and short-time Fourier transforms, the wavelet transform is a more
sophisticated time-frequency analysis technique. It has strong time localization and multi-resolution
analysis abilities and is suitable for processing non-stationary and transient signals, such as machine
fault signals. The wavelet transform has two forms, namely, the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT). CWT is mainly used to analyze continuous time-domain
signals by decomposing different segments of the signal with an adjustable window function. The
CWT is defined as

1 (*  t—b
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where a, b, x(t), and  are the scale parameter, translation parameter, time-domain signal, and mother
wavelet, respectively, and ¢* is the complex conjugate of y[12].
The DWT is the implementation of WT in discrete form. It is represented by

k-1 .
1 -2k
o = 7= 2 XOV —5) @
t=0

wherea = 2/andb = 2/k are the scale parameter and translation parameter [12,17]. The DWT
decomposes the original time-domain signal, x(¢), into two components by passing the signal through
a series of high and low pass filters. Therefore, the signal can be described as follows

x(©) = 4(0) + ) Dy(®) )
j=]
where4;is the low frequency band signals (approximations) at levelj, whileD; represents the
high frequency bands (details) [12,18]. In other words, the signal is the decomposed as lowest level
approximations and jth level details of wavelet coefficients.

2.2. Support Vector Machine Theory

An SVM is a statistical machine learning technique that has been widely applied in data
classification [13,19]. SVM completes the classification process by seeking the optimal hyper-plane
with the maximal margin between the separate data classes. Taking two two-dimensional data sets
as an example, the basic principle of the SVM classifier is illustrated in Fig. 1. The dashed line (H) is
the optimal hyper-plane, which separates the two-class data points with the maximal margin, namely,
the distance between H and the nearest data point in each class is maximal. These nearest data points
are called as support vectors, while the two solid lines (H: and H:) parallel to H are known as
bounding planes. The distance between H: and H: is the classification margin, which is equal to
2/lwll. The optimal hyper-plane parameters for the biggest margin can be transformed into a convex
quadratic programming problem that can be solved more easily.

For linearly separable data, His found by solving the following equation:

min% lwl||? subject toy;(w'X; +b) =1 4)

For the non-linearly separable data, the data is mapped into a high-dimensional feature space
by some non-linear mapping functions, called kernel functions. After data space transformation, the
optimal hyper-plane can be built to separate the data linearly [19]. In this research, radial basis
functions are used as the kernel functions.

A

H:w-x" +b=0 . @
Optimal hyper—_p\.alje Support vector

Class 2
®
Class 1

O H,w-x" +b=1

Bounding plane Bounding plane

H :w-x +b=-1
: 2

e Margin=—

Support vector &

Figure 1. Optimal separating hyper-plane for data classification

The basic SVM is designed to deal with binary classification problems. However, numerous
multiclass classification tasks in practical applications encouraged researchers to extend SVM for
multiclass problems. Recently, many multiclass classification methods have been proposed, such as
one-against-all, one-against-others, one-against-one, and directed acyclic graph support vector
machines (DAGSVM). Compared with one-against-all and one-against-others, one-against-one and
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DAGSVM methods need a shorter training time [20-22]. Although DAGSVM needs the same training
time as one-against-one, it has a shorter testing time. Therefore, the DAGSVM method is adopted in
this project to identify the various operating status of the motor.

3. System Architecture and Implementation

The architecture of the proposed machine fault diagnosis system using IloT and IWSNs with on-
sensor WT and multiclass support vector machine (M-SVM) is illustrated in Fig. 2. The system
consists of a star topology IWSN with one coordinator and several sensor nodes, a computer working
as the gateway, a cloud platform, and a management portal. ZigBee and a Jennic JN5139 sensor board
and controller board are selected as the communication protocol and the hardware platform for the
end nodes and the coordinator of the IWSN. The signal acquisition, WT fault feature extraction, and
M-SVM fault diagnosis are completed on the IWSN end nodes, and then the fault diagnosis results
are collected and transmitted through the coordinator and the gateway to the cloud platform for
subsequent access by the management portal. The end nodes can switch to sleep mode between signal
acquisition, fault feature extraction, and fault diagnosis stages to reduce node energy consumption
and prolong the lifetime of IWSNs and IIoT. The details of the system are described below.

3.1. Machine Fault Signal

As introduced in section I, this project uses the vibration data of normal and faulty bearings
provided by the Bearing Data Center at CWRU as the training and testing data for the proposed on-
sensor fault diagnosis method. The test bed of CWRU is shown in the left part of Fig. 2. It consists of
a 2 hp reliance electric motor, a torque transducer, and a dynamometer. The motor speed is 1797rpm.
Rolling ball fault, inner race fault, and outer race fault with different fault diameters were separately
seeded on the normal bearing using electro-discharge machining, and the vibration signal is collected
using accelerometers and a 16 channel DAT recorder with 12 kHz sampling frequency.

\\ : t
\’ Vibration Feature M-SVM
— Signal " Extraction Classification

Inner Race Fault — #
Quter Race Fault
Ball Fault E EndNode
Step 1
i @ i Fault Diagnosis
Step 2 = m Result
Cocrdinator

Figure 2. The overall architecture of the proposed system

In this paper, five bearing working conditions, namely normal condition bearing (NOR), bearing
with inner raceway fault of 0.007 inches in diameter (IR007), bearing with inner raceway fault of 0.021
inches in diameter (IR021), bearing with rolling ball fault of 0.021 inches in diameter (B021), and
bearing with outer raceway fault of 0.021 inches in diameter (OR021), are selected for further fault
diagnosis experiment.

Fig. 3 shows the original vibration signal data of examples of each of the five conditions.
Compared with the signal in a normal condition, the signal amplitudes change significantly when a
fault occurs in the bearing.
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Figure 3. The original vibration signal of the bearing with different conditions

3.2. Wawvelet Transform Fault Feature Extraction

One wavelet transform method with low-memory requirements presented in [23] is selected for
the resources-constrained IWSN nodes. The 2-level wavelet transform on bearing vibration signals
with four popular used mother wavelets, namely Db97, Db53, Coifletl, and Symlet2 wavelets, are
computed to verify the feasibility of the proposed on-sensor WT fault feature extraction, and to
compare the fault feature extraction effectiveness of the various mother wavelets. The selected four
mother wavelets are shown in Fig. 4. The filter coefficients of Db97, Db53, Coifletl, and Symlet2
wavelets are given in Table 1, Table 2, and Table 3.
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Figure 4. Various mother wavelets
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Table 1. The Filter Coefficients of Db97 Wavelet [23]

d0i:10.20944/preprints201810.0683.v1

analysis analysis synthesis synthesis
J lowpass Lj  highpass Hj lowpass Lj highpass Hj
-4 0.037828 0.037828
-3 -0.023849 0.064539 0.064539 -0.023849
-2 -0.110624 -0.040689 -0.040689 -0.110624
-1 0.377403 -0.418092 -0.418092 0.377403
0 0.852699 0.788486 0.788486 0.852699
1 0.377403 -0.418092 -0.418092 0.377403
2 -0.110624 -0.040689 -0.040689 -0.110624
3 -0.023849 0.064539 0.064539 -0.023849
4 0.037828 0.037828
Table 2. The Filter Coefficients of Db53 Wavelet [24]
analysis analysis synthesis synthesis

J lowpass Lj highpass Hj lowpass Lj highpass Hj

-2 -0.125 -0.125

-1 0.250 -0.500 0.500 -0.250

0 0.750 1.000 1.000 0.750

1 0.250 -0.500 0.500 -0.250

2 -0.125 -0.125

Table 3. The Filter Coefficients of Coiflet]l and Symlet2 Wavelet [25]

Wavelet Wavelet
coefficients Symlet2 Coifletl
ho -0.1294095226 -0.0156557281
hl 0.2241438680 -0.0727326195
h2 0.8365163037 0.3848648469
h3 0.4829629131 0.4829629131
h4 0.3378976625
h5 -0.0727326195
g0 -0.4829629131 0.0727326195
gl 0.8365163037 0.3378976625
g2 -0.2241438680 -0.8525720202
g3 -0.1294095226 0.3848648469
g4 0.0727326195
g5 -0.0156557281

After the wavelet transform, the signal energies of the wavelet coefficients of each DWT level
are calculated as the fault features to reduce fault feature set size because wavelet coefficients are still
too large to be directly transmitted by the IWSNs as the fault features. The signal energy feature used
in this paper is defined as follows:

Ej= j:w|sj(t)|2dt = ;hﬁ (k)|2

()

Where Sj(t) is the wavelet signal in decomposition level j, yj(k)is the kth wavelet coefficients in
DWT level j, and n is the sample number of each DWT level. The obtained signal energy of the
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wavelet coefficients is then used as the input of the M-SVM fault classifier which will be described in
the next section.

3.3. M-SVM Fault Diagnosis

Due to its short training and testing time, DAGSVM is chosen as the multiclass fault classifier in
this paper. The principle of a DAG for classifying five machine working conditions is shown in Fig.5.
We can see that there are 5%(5-1)/2=10 internal nodes and 5 leaf nodes in Fig.5. Each internal node is
a binary SVM classifier that has been trained by a distinct pair of machine working conditions, while
each leaf node indicates one working condition. To evaluate a test data set, we start at the root node.
The binary output of the root node, namely Normal VS OR021, is calculated first, the node is then
exited via the left edge if the result does not indicate OR021; or the right edge if the binary output
does not indicate Normal. The binary output of the next node (for example, Normal VS B021 in level
2 is then evaluated. By repeating this calculation and evaluation process at every level, we can travel
down the DAG and finally reach a leaf node that indicates the predicted machine working condition.
For a problem with N classes, N-1 decision nodes, one in each level, will be evaluated to complete
the classification procedure. In this research, N is set as 5. The purple dotted line in Fig. 5 is one
possible path taken through the DAG, representing the evaluation path.

Level 1

Level 2

Level 3

IROZ1 WS
OR0E1

Level 4

Normal VS
IR 007

Marmal Inner Race Inner Race Ball Outer Race

Condition Fault 007 Fault 021 Fault Fault 021
(NOR) (IR007) (IR021) (B021) (OR021)

Figure 5. The DAG for selecting the correct machine working condition out of five classes

4. Experimental Validation

In this section, a set of experiments were carried out to evaluate the proposed approach. Firstly,
the vibration data from the Bearing Data Center at CWRU is stored in the Jennic J]N5139, which is a
typical commercial IWSN node with 192 kB ROM, 96 kB RAM, and ZigBee radio, and is suitable for
on-sensor data processing. Secondly, the 2-level wavelet transforms with four popular used mother
wavelets are carried out on JN5139, to verify the feasibility of the proposed on-sensor WT fault feature
extraction, and to analyze the fault feature performance of different mother wavelets. Thirdly, the
accuracy of the presented on-sensor M-SVM is evaluated. Finally, the data transmission and energy
consumption of the proposed approach are analyzed. The detailed steps and results of this
experiment are given below.
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4.2 WT Fault Feature Extraction

In this experiment, the feasibility of on-sensor fault feature extraction using WT is explored. The
2-level wavelet transforms with four different mother wavelets, namely Db97, Db53, Coiflet]l and
Symlet2 wavelet, are conducted on IWSNs node to decompose vibration signals in the five conditions,
namely NOR, IR007, IR021, B021, and OR021.

The vibration data used in this step are collected from the sensor nodes installed at the fan end
of the motor housing. 1024 samples constitute a data set of one bearing condition, so the total number
of samples is 5120. The original vibration signals and corresponding wavelet coefficients after 2-level
DWT are shown as Fig. 6, where Detail 1 is the detail coefficients at 1st level, Detail 2 is the detail
coefficients at 2nd level, and Approx 2 is the approximation coefficients at 2nd level. Although
vibration signals amplitude rose significantly for a faulty bearing, it is still difficult to decide bearing
working condition just by vibration signal amplitude. In addition, compared to the normal condition,
the wavelet coefficients of the faulty bearings have different characteristics.
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Figure 6. The 2-level DWT decomposition of the vibration signals under five bearing working
conditions using four different mother wavelets

E1, E2, and E3, the energy of the corresponding wavelet coefficients of the testing data sets, are
then calculated on the sensor node. Although the sum of energy of all the wavelet coefficients at all
details and approximate parts is equal to the energy of the original vibration signal, the energy
distribution at various frequency bands will change according to the bearing working condition. The
normalized wavelet energy signals are shown in Fig. 7. It is easier to distinguish the different bearing
working status by using the energy signals than using vibration amplitude.
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Figure 7.The normalized energy of wavelet coefficients for vibration signals under five bearing
working conditions using four different mother wavelets

4.2. M-SVM Fault Diagnosis

In this section, the feasibility of on-sensor multiclass fault diagnosis using DAGSVM is
investigated. The vibration data from the bearing under the above mentioned five working
conditions are used.

First, a total of 450 training data sets, 90 for each condition, are used to train the 10 SVM binary
classifiers off-line. After training, the obtained M-SVM classifier parameters with different mother
wavelets are given in Table 4. It can be seen that Coiflet] (Coifl) wavelet needs the least training time,
while Symlet2 (Sym2) has the smallest support vector number and potentially shortest calculation
time in the on-line fault diagnosis procedure.

Table 4. M-SVM Classifier Parameters Using Different Wavelet

Training time Total
Group (s) number SV Coverage
of SV
Db97 3.78 454 25.22%
Db53 3.54 539 29.95%
Coifl 3.00 447 24.83%
Sym?2 3.69 403 22.39%

The training accuracies of M-SVM classifiers with different mother wavelets are given in Table
5. It can be seen that the total training accuracy of M-SVM classifiers with Coifletl and Symlet2
wavelet reach 98%, while the accuracy of Db97 and Db53 are 93% and 95%, respectively.

Second, the obtained parameters of the M-SVM classifiers are then embedded in the program on
the sensor nodes. Then 140 data sets, 28 for each condition, were used for testing and verification on-
line.
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Table 5. The Training Accuracy of M-SVM Classifiers with Different Mother Wavelets

Fault Type IR007  IR021 B021 OR021 NOR  Total
Number of
Training Samples
Db97 95.56  84.45 96.67 90.00 100  93.33

90 90 90 90 90 450

Training 108 9889 91.11 97.78 9333 100  96.22

Accuracy .
Co) Coifl 9778  98.89 100 97.78 100  98.89
Sym2 9556 100 94.45 100 100 98.00

The testing accuracy of M-SVM classifiers with different mother wavelets is given in Table 6.
The training accuracy of M-SVM classifiers with all of the four mother wavelets exceeds 90%. The M-
SVM classifier using Symlet2 wavelet gives the highest accuracy, which reaches 99.29%, while
Coifletl wavelet has an accuracy of 98.57%.

Table 6. The Testing Accuracy of M-SVM Classifiers Using Different Wavelet

Wavelet Db97 Db53 Coifl Sym?2
Number of Test Samples ~ 28*5  28*5 285 285
Testing Accuracy (%) 9643 9296 9857 99.29

Third, 560 data sets from another set of vibration data are used to test the performance of the
obtained M-SVM classifier models again. The results are given in Table 7. It can be seen that the
classification accuracy of Coifletl and Symlet2 wavelet reaches 98.31%, and are better than the results
of Db97 and Db53 wavelet.

Table 7. The Testing Accuracy of M-SVM Classifier by Another Data Set

Faulttype = Data number Wavelet'
Db97 Db53 Coifl Sym?2
IR007 112 96.61 9237 9745 95.76
IR021 112 89.83 80.50 98.30 100
B021 112 9745 9491 100 95.76
ORO021 112 9152 90.67 95.76 100
Normal 112 100 100 100 100
Average accuracy 95.08 91.69 9831 98.31

Fourthly, we randomly divide the 560 sets of data into 8 groups. Each group includes 70 data
sets, 14 for each condition. These data are used to verify the overall classification effect of the obtained
M-SVM classifier with different mother wavelets again. The results are shown in Fig.8. Compared
with Db97 and Db53 wavelet, Coifletl and Symlet2 wavelet have higher overall classification
accuracy (98.31%) and less fluctuation.

Finally, the effectiveness of the proposed M-SVM method is compared with the effectiveness of
fault classifiers based on ANN and minimum distance methods. In this experiment, Coiflet]l wavelet
is used for fault feature extraction due to its better performance mentioned above, and the neural
network has three inputs, five hidden layer neurons, and five output layer neurons. The experimental
result is shown in Fig. 9, which indicates that the fault diagnosis accuracy of M-SVM method is far
superior to the results of the neural network and minimum distance methods. The accuracy of the
presented on-sensor approach has 15% and 30% higher accuracy than ANN and minimum distance
methods.
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Figure 8. Comparison of fault diagnosis classification accuracy using different wavelet
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Figure 9. Comparison of the classification accuracy of the proposed approach with neural network
and minimum distance methods

4.3. Payload Transmission Data and Node Energy Consumption

In this section, the transmission data and node energy consumption for data transmitted after
on-sensor WT fault feature extraction and SVM fault diagnosis and for raw data transmission are
tested and compared by a series of experiments.

1) Payload transmission data: For raw data transmission mode, the IWSN end node should send
8192 bytes to the coordinator for 1024 samples. For on-sensor WT fault feature extraction and SVM
fault diagnosis mode, the end node only needs to transmit the fault diagnosis result, so the payload
transmission data decrease from 8192 to 4 bytes, i.e., a 99.95% reduction.

2) Node Energy Consumption: When a 16-MHz system clock is used, the typical current
consumption of JN5139 CPU processing status is 7.57 mA. The calculating time for on-sensor WT
fault feature extraction using Symlet2 mother wavelet and on-sensor DAGSVM multiclass fault
diagnosis is around 2.12 s, so the energy consumption for the proposed on-sensor fault diagnosis
approach is given as

Eon-sensordiag = 2-353V X 7.57mA x 2.12s = 37.8 mJ (6)

Typical current consumption of JN5139 for wireless data transmitting is 38mA. The time for
transmitting 8192 bytes raw data is about 0.47 s, the node voltage in this experiment is about 2.353 V,
so the energy consumption for raw data transmission is

Erawaatatrans = 2-353V X 38mA X 0.47s = 42.0 mJ )
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Compared with raw data direct transmission, the on-sensor fault diagnosis method using
Symlet2 WT and DAGSVM reduces energy by 10%, 4.2 m].

The details of payload data transmission and node energy consumption for raw data
transmission and on-sensor fault diagnosis are given in Table 8. It can be seen that the energy
consumption of on-sensor fault diagnosis depends on the calculation time and complexity of the
selected algorithm. The energy consumption for on-sensor fault diagnosis with Db53 WT and SVM
is similar to the energy utilization for raw data transmission, while the energy consumption of on-
sensor fault diagnosis with Ciofl WT or Db97 WT and SVM is higher than the energy utilization of
raw data transmission

Table 8. Comparison of Transmission Data and Energy Consumption of Raw Data Transmission and
On-sensor Fault Diagnosis

E
Data processing and Transmission data Time for on-sensor WT&SVM nerey
. - consumption
transmission mode (bytes) or Raw data Transmission (s) (m])
On-sensor
Db97 WT & SVM 4 310 552
On-sensor
Db53 WT & SVM 4 247 440
On-sensor
CiofIWT & SVM 4 2.86 509
On-sensor
4 2.12 37.8
Sym2 WT & SVM
Raw data transmission 8192 0.47 42.0

5. Conclusions

In this paper, we proposed a novel machine fault diagnosis method, which uses IloT and IWSNs
with on-sensor fault feature extraction by wavelet transform and on-sensor fault diagnosis by M-
SVM to reduce the payload transmission data in IWSN. Four popular mother wavelets, namely Db97,
Db53, Coifletl, and Symlet2 wavelet, and DAGSVM are selected and implemented on the IWSN
sensor node.

The feasibility and effectiveness of the presented approach have been demonstrated by a set of
experiments using the bearing vibration data obtained from the Bearing Data Center at CWRU.
Testing results show the following.

1) Compared with raw data transmission, the proposed on-sensor fault diagnosis method can
reduce the payload transmission data by 99.95%, and reduce the node energy consumption by about
10%;

2) The fault diagnosis accuracy of the proposed method with all the four mother wavelets
exceeds 91%, while the accuracy by Coifletl and Symlet2 wavelet reaches 98%;

3) The accuracy of the presented on-sensor approach with Coifletl wavelet is 15% and 30%
higher than the accuracy of ANN and minimum distance methods.

The energy consumption results show that small energy savings can be made, of the order of
10% by using on-sensor computation. However, the relatively small savings suggest that there is
still scope for improved performance by reducing the energy cost of on-sensor processing, using more
energy efficient computation architectures such as FPGAs. Su, for example, has shown power
savings of 90% for on-sensor computation by using low power FPGAs [25].
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