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Abstract: Machine fault diagnosis systems need to collect and transmit dynamic monitoring signals, 

like vibration and current signals, at high-speed. However, industrial wireless sensor networks 

(IWSNs) and Industrial Internet of Things (IIoT) are generally based on low-speed wireless 

protocols, such as ZigBee and IEEE802.15.4. To address this tension when implementing machine 

fault diagnosis applications in IIoT, this paper proposes a novel IWSN with on-sensor data 

processing. On-sensor wavelet transforms using four popular mother wavelets are explored for 

fault feature extraction, while an on-sensor support vector machine classifier is investigated for fault 

diagnosis. The effectiveness of the presented approach is evaluated by a set of experiments using 

motor bearing vibration data. The experimental results show that compared with raw data 

transmission, the proposed on-sensor fault diagnosis method can reduce the payload transmission 

data by 99.95%, and reduce the node energy consumption by about 10%, while the fault diagnosis 

accuracy of the proposed approach reaches 98%. 

Keywords: industrial wireless sensor networks (IWSNs), fault diagnosis, wavelet transform, 

support vector machine, Industrial Internet of Things (IIoT) 

 

1. Introduction 

In recent decades, many novel machine fault diagnosis approaches have been proposed to 

prevent unexpected catastrophic machine failures and reduce the related economic loss due to these 

faults [1]. Currently, the emerging of Internet of Things (IoT) and its deployment in industrial 

settings, namely Industrial Internet of Things (IIoT), are transforming traditional industries in many 

areas including machine fault diagnosis [2-6]. IIoT and its wireless implementation, industrial 

wireless sensor networks (IWSNs), can sense device information and then transmit this data via a 

base station and the Internet to powerful cloud servers to enable real-time wireless machine condition 

monitoring and fault diagnosis [7,8]. 

Compared with a traditional wired machine condition monitoring and fault diagnosis system, a 

wireless system using IIoT and IWSNs has many inherent advantages, including lower cost, more 

convenient installation, and easy relocation. However, IWSNs and IIoT are generally based on low-

speed wireless protocols, such as ZigBee and IEEE802.15.4. The limited wireless bandwidth of ZigBee 

and IEEE 802.15.4 often impedes the high-speed collection and transmission of dynamic monitoring 

signals, like vibration and current signals, for machine condition monitoring and fault diagnosis. An 

alternative is to use the data processing capability of the IWSN sensor node to carry out on-sensor 

feature extraction and fault diagnosis and then only transfer the final result to the IIoT Cloud 

Platform. We have previously published work which demonstrates the potential on on-sensor data 

analysis to significantly reduce the data communication in IWSN and IIoT [7,9,10]. Recently, several 

other research projects and application deployments in this area of on-senor fault diagnosis have 

been reported. Overall level monitoring, which calculates a small number of statistical parameters, 

such as RMS, crest factor, and kurtosis of vibration signals, is computed on IWSNs sensor node to 
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indicate motor operating condition in [11]. However statistical values generally just give an overall 

indicator of the device condition, without sufficient detail for identifying the types of failures. 

Frequency spectrum analysis based on the Fourier transform is a key technique for machine fault 

diagnosis. We have previously described an IWSN with on-sensor fault feature extraction using FFT 

and on-sensor fault diagnosis using artificial neural networks (ANN) in [9,10]. The results show that 

the proposed method can successfully monitor the machine condition using low wireless bandwidth. 

However, the Fourier transform is more suitable for a stationary signal. 

Many industrial parameters used for fault diagnoses, like vibration and state current, are non-

stationary signals or partly non-stationary signals. The Wavelet Transform (WT) represents a signal 

using a set of basis functions from a single prototype wavelet through translation and dilation, and 

it is more suitable for processing non-stationary and transient signals, such as vibration and current. 

Although WT has been successfully used in many wired fault diagnosis systems, using IWSNs and 

on-sensor wavelet transforms for machine fault diagnosis is still a relatively unexplored area. In 

earlier work, our team also explored the feasibility of using IWSNs and on-sensor DB97 wavelet 

transform for vibration signal fault feature extraction, combined with a minimum distance classifier 

for fault diagnosis [12], and this appears to be the only other work to explore wavelets for on-sensor 

fault diagnosis.  

Compared to other on-sensor fault classification methods, like our previous use of ANN [9,10] 

and minimum distance [12], the support vector machine (SVM) is a promising new approach for 

machine fault diagnosis. Compared with ANN and the minimum distance method, SVM often has 

higher classification accuracy because of its principle of risk minimization [13]. 

This paper significantly extends our group’s previous work on wavelet analysis [12] with a 

broader range of mother wavelets and a more sophisticated classification scheme to give significantly 

better results. This paper explores the feasibility of using IWSNs with on-sensor WT and SVM for 

fault feature extraction and fault diagnosis, compares the effectiveness of on-sensor fault feature 

extraction using various mother wavelets, and also quantifies the node energy cost of the proposed 

on-sensor fault diagnosis approach. In this paper, the induction motor and vibration signals are taken 

as an example of monitored industrial equipment and signals due to their wide use. Machine failures 

due to bearings and the related components are more than 40 percent of all motor failures, so this 

project focuses on motor bearing faults [14,15]. As this paper mainly investigates the feasibility of on-

sensor fault diagnosis, instead of building up a motor fault diagnosis testbed, this research directly 

uses the data from a well-known freely-available fault signal database at Case Western Reserve 

University (CWRU) Bearing Data Center as the training and testing data for on-sensor fault diagnosis 

[16]. 

The remainder of this paper is organized as follows. The theoretical background of WT and SVM 

are introduced in Section II. Section III describes the system architecture and implementation 

methodology. The experimental evaluation of the proposed system is given in Section IV. Finally, 

Section V presents the overall conclusions. 

2. Theoretical Background 

2.1. Wavelet Transform Theory 

Compared with Gabor and short-time Fourier transforms, the wavelet transform is a more 

sophisticated time-frequency analysis technique. It has strong time localization and multi-resolution 

analysis abilities and is suitable for processing non-stationary and transient signals, such as machine 

fault signals. The wavelet transform has two forms, namely, the continuous wavelet transform (CWT) 

and the discrete wavelet transform (DWT). CWT is mainly used to analyze continuous time-domain 

signals by decomposing different segments of the signal with an adjustable window function. The 

CWT is defined as 

𝑋(𝑎,𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗(

𝑡 − 𝑏

𝑎
)𝑑𝑡

+∞

−∞

 (1) 
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where a, b, x(t), and ψ are the scale parameter, translation parameter, time-domain signal, and mother 

wavelet, respectively, and ψ* is the complex conjugate of ψ[12]. 

The DWT is the implementation of WT in discrete form. It is represented by 

𝑌(𝑗,𝑘) =
1

√2𝑗
∑ 𝑥(𝑡)𝜓∗(

𝑡 − 2𝑗 ∙ 𝑘

2𝑗
)

𝑘−1

𝑡=0

 (2) 

where𝑎 = 2𝑗 and𝑏 = 2𝑗𝑘  are the scale parameter and translation parameter [12,17].  The DWT 

decomposes the original time-domain signal, x(t), into two components by passing the signal through 

a series of high and low pass filters. Therefore, the signal can be described as follows 

𝑥(𝑡) = 𝐴𝑗(𝑡) + ∑ 𝐷𝑗(𝑡)

𝑗≤𝐽

 (3) 

where𝐴𝑗is the low frequency band signals (approximations) at level𝑗, while𝐷𝑗 represents the 

high frequency bands (details) [12,18]. In other words, the signal is the decomposed as lowest level 

approximations and jth level details of wavelet coefficients. 

2.2. Support Vector Machine Theory 

An SVM is a statistical machine learning technique that has been widely applied in data 

classification [13,19]. SVM completes the classification process by seeking the optimal hyper-plane 

with the maximal margin between the separate data classes. Taking two two-dimensional data sets 

as an example, the basic principle of the SVM classifier is illustrated in Fig. 1. The dashed line (H) is 

the optimal hyper-plane, which separates the two-class data points with the maximal margin, namely, 

the distance between H and the nearest data point in each class is maximal. These nearest data points 

are called as support vectors, while the two solid lines (H1 and H2) parallel to H are known as 

bounding planes. The distance between H1 and H2 is the classification margin, which is equal to 

2/‖w‖.The optimal hyper-plane parameters for the biggest margin can be transformed into a convex 

quadratic programming problem that can be solved more easily. 

For linearly separable data, His found by solving the following equation: 

𝑚𝑖𝑛
1

2
‖𝑤‖2 subject to𝑦𝑖(𝑤𝑇𝑋𝑖 + 𝑏) ≥ 1 (4) 

For the non-linearly separable data, the data is mapped into a high-dimensional feature space 

by some non-linear mapping functions, called kernel functions. After data space transformation, the 

optimal hyper-plane can be built to separate the data linearly [19]. In this research, radial basis 

functions are used as the kernel functions. 

 

Figure 1. Optimal separating hyper-plane for data classification 

The basic SVM is designed to deal with binary classification problems. However, numerous 

multiclass classification tasks in practical applications encouraged researchers to extend SVM for 

multiclass problems. Recently, many multiclass classification methods have been proposed, such as 

one-against-all, one-against-others, one-against-one, and directed acyclic graph support vector 

machines (DAGSVM). Compared with one-against-all and one-against-others, one-against-one and 
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DAGSVM methods need a shorter training time [20-22]. Although DAGSVM needs the same training 

time as one-against-one, it has a shorter testing time. Therefore, the DAGSVM method is adopted in 

this project to identify the various operating status of the motor. 

3. System Architecture and Implementation 

The architecture of the proposed machine fault diagnosis system using IIoT and IWSNs with on-

sensor WT and multiclass support vector machine (M-SVM) is illustrated in Fig. 2. The system 

consists of a star topology IWSN with one coordinator and several sensor nodes, a computer working 

as the gateway, a cloud platform, and a management portal. ZigBee and a Jennic JN5139 sensor board 

and controller board are selected as the communication protocol and the hardware platform for the 

end nodes and the coordinator of the IWSN. The signal acquisition, WT fault feature extraction, and 

M-SVM fault diagnosis are completed on the IWSN end nodes, and then the fault diagnosis results 

are collected and transmitted through the coordinator and the gateway to the cloud platform for 

subsequent access by the management portal. The end nodes can switch to sleep mode between signal 

acquisition, fault feature extraction, and fault diagnosis stages to reduce node energy consumption 

and prolong the lifetime of IWSNs and IIoT. The details of the system are described below. 

3.1. Machine Fault Signal 

As introduced in section I, this project uses the vibration data of normal and faulty bearings 

provided by the Bearing Data Center at CWRU as the training and testing data for the proposed on-

sensor fault diagnosis method. The test bed of CWRU is shown in the left part of Fig. 2. It consists of 

a 2 hp reliance electric motor, a torque transducer, and a dynamometer. The motor speed is 1797rpm. 

Rolling ball fault, inner race fault, and outer race fault with different fault diameters were separately 

seeded on the normal bearing using electro-discharge machining, and the vibration signal is collected 

using accelerometers and a 16 channel DAT recorder with 12 kHz sampling frequency. 

 

Figure 2. The overall architecture of the proposed system 

In this paper, five bearing working conditions, namely normal condition bearing (NOR), bearing 

with inner raceway fault of 0.007 inches in diameter (IR007), bearing with inner raceway fault of 0.021 

inches in diameter (IR021), bearing with rolling ball fault of 0.021 inches in diameter (B021), and 

bearing with outer raceway fault of 0.021 inches in diameter (OR021), are selected for further fault 

diagnosis experiment. 

Fig. 3 shows the original vibration signal data of examples of each of the five conditions. 

Compared with the signal in a normal condition, the signal amplitudes change significantly when a 

fault occurs in the bearing. 
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Figure 3. The original vibration signal of the bearing with different conditions 

3.2. Wavelet Transform Fault Feature Extraction 

One wavelet transform method with low-memory requirements presented in [23] is selected for 

the resources-constrained IWSN nodes. The 2-level wavelet transform on bearing vibration signals 

with four popular used mother wavelets, namely Db97, Db53, Coiflet1, and Symlet2 wavelets, are 

computed to verify the feasibility of the proposed on-sensor WT fault feature extraction, and to 

compare the fault feature extraction effectiveness of the various mother wavelets. The selected four 

mother wavelets are shown in Fig. 4. The filter coefficients of Db97, Db53, Coiflet1, and Symlet2 

wavelets are given in Table 1, Table 2, and Table 3.  

 

Figure 4. Various mother wavelets 
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Table 1. The Filter Coefficients of Db97 Wavelet [23] 

  
J 

analysis 

lowpass Lj 

analysis 

highpass Hj 

synthesis 

lowpass Lj 

synthesis 

highpass Hj 

  -4 0.037828   0.037828 

  -3 -0.023849 0.064539 0.064539 -0.023849 

  -2 -0.110624 -0.040689 -0.040689 -0.110624 

  
-1 0.377403 -0.418092 -0.418092 0.377403 

  
0 0.852699 0.788486 0.788486 0.852699 

  
1 0.377403 -0.418092 -0.418092 0.377403 

  
2 -0.110624 -0.040689 -0.040689 -0.110624 

  
3 -0.023849 0.064539 0.064539 -0.023849 

  
4 0.037828   0.037828 

 

Table 2. The Filter Coefficients of Db53 Wavelet [24] 

J 
analysis 

lowpass Lj 

analysis 

highpass Hj 

synthesis 

lowpass Lj 

synthesis 

highpass Hj 

-2 -0.125   -0.125 

-1 0.250 -0.500 0.500 -0.250 

0 0.750 1.000 1.000 0.750 

1 0.250 -0.500 0.500 -0.250 

2 -0.125   -0.125 

 

Table 3. The Filter Coefficients of Coiflet1 and Symlet2 Wavelet [25] 

 Wavelet 

coefficients 

Wavelet 

 Symlet2 Coiflet1 

 h0 -0.1294095226 -0.0156557281 

 h1 0.2241438680 -0.0727326195 

 h2 0.8365163037 0.3848648469 

 h3 0.4829629131 0.4829629131 

 h4  0.3378976625 

 h5  -0.0727326195 

 g0 -0.4829629131 0.0727326195 

 g1 0.8365163037 0.3378976625 

 g2 -0.2241438680 -0.8525720202 

 g3 -0.1294095226 0.3848648469 

 g4  0.0727326195 

 g5  -0.0156557281 

After the wavelet transform, the signal energies of the wavelet coefficients of each DWT level 

are calculated as the fault features to reduce fault feature set size because wavelet coefficients are still 

too large to be directly transmitted by the IWSNs as the fault features. The signal energy feature used 

in this paper is defined as follows: 

2 2

0
1

( ) ( )
n

j j j

k

E S t dt y k
+

=

= =  (5) 

Where Sj(t) is the wavelet signal in decomposition level j, yj(k)is the kth wavelet coefficients in 

DWT level j, and n is the sample number of each DWT level. The obtained signal energy of the 
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wavelet coefficients is then used as the input of the M-SVM fault classifier which will be described in 

the next section. 

3.3. M-SVM Fault Diagnosis 

Due to its short training and testing time, DAGSVM is chosen as the multiclass fault classifier in 

this paper. The principle of a DAG for classifying five machine working conditions is shown in Fig.5. 

We can see that there are 5*(5-1)/2=10 internal nodes and 5 leaf nodes in Fig.5. Each internal node is 

a binary SVM classifier that has been trained by a distinct pair of machine working conditions, while 

each leaf node indicates one working condition. To evaluate a test data set, we start at the root node. 

The binary output of the root node, namely Normal VS OR021, is calculated first, the node is then 

exited via the left edge if the result does not indicate OR021; or the right edge if the binary output 

does not indicate Normal. The binary output of the next node (for example, Normal VS B021 in level 

2 is then evaluated. By repeating this calculation and evaluation process at every level, we can travel 

down the DAG and finally reach a leaf node that indicates the predicted machine working condition. 

For a problem with N classes, N-1 decision nodes, one in each level, will be evaluated to complete 

the classification procedure. In this research, N is set as 5. The purple dotted line in Fig. 5 is one 

possible path taken through the DAG, representing the evaluation path. 

 

Figure 5. The DAG for selecting the correct machine working condition out of five classes 

4. Experimental Validation 

In this section, a set of experiments were carried out to evaluate the proposed approach. Firstly, 

the vibration data from the Bearing Data Center at CWRU is stored in the Jennic JN5139, which is a 

typical commercial IWSN node with 192 kB ROM, 96 kB RAM, and ZigBee radio, and is suitable for 

on-sensor data processing. Secondly, the 2-level wavelet transforms with four popular used mother 

wavelets are carried out on JN5139, to verify the feasibility of the proposed on-sensor WT fault feature 

extraction, and to analyze the fault feature performance of different mother wavelets. Thirdly, the 

accuracy of the presented on-sensor M-SVM is evaluated. Finally, the data transmission and energy 

consumption of the proposed approach are analyzed. The detailed steps and results of this 

experiment are given below. 
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4.2 WT Fault Feature Extraction 

In this experiment, the feasibility of on-sensor fault feature extraction using WT is explored. The 

2-level wavelet transforms with four different mother wavelets, namely Db97, Db53, Coiflet1 and 

Symlet2 wavelet, are conducted on IWSNs node to decompose vibration signals in the five conditions, 

namely NOR, IR007, IR021, B021, and OR021. 

The vibration data used in this step are collected from the sensor nodes installed at the fan end 

of the motor housing. 1024 samples constitute a data set of one bearing condition, so the total number 

of samples is 5120. The original vibration signals and corresponding wavelet coefficients after 2-level 

DWT are shown as Fig. 6, where Detail 1 is the detail coefficients at 1st level, Detail 2 is the detail 

coefficients at 2nd level, and Approx 2 is the approximation coefficients at 2nd level. Although 

vibration signals amplitude rose significantly for a faulty bearing, it is still difficult to decide bearing 

working condition just by vibration signal amplitude. In addition, compared to the normal condition, 

the wavelet coefficients of the faulty bearings have different characteristics.  

 

 

 

Figure 6. The 2-level DWT decomposition of the vibration signals under five bearing working 

conditions using four different mother wavelets 

E1, E2, and E3, the energy of the corresponding wavelet coefficients of the testing data sets, are 

then calculated on the sensor node. Although the sum of energy of all the wavelet coefficients at all 

details and approximate parts is equal to the energy of the original vibration signal, the energy 

distribution at various frequency bands will change according to the bearing working condition. The 

normalized wavelet energy signals are shown in Fig. 7. It is easier to distinguish the different bearing 

working status by using the energy signals than using vibration amplitude. 
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Figure 7.The normalized energy of wavelet coefficients for vibration signals under five bearing 

working conditions using four different mother wavelets 

4.2. M-SVM Fault Diagnosis 

In this section, the feasibility of on-sensor multiclass fault diagnosis using DAGSVM is 

investigated. The vibration data from the bearing under the above mentioned five working 

conditions are used.  

First, a total of 450 training data sets, 90 for each condition, are used to train the 10 SVM binary 

classifiers off-line. After training, the obtained M-SVM classifier parameters with different mother 

wavelets are given in Table 4. It can be seen that Coiflet1 (Coif1) wavelet needs the least training time, 

while Symlet2 (Sym2) has the smallest support vector number and potentially shortest calculation 

time in the on-line fault diagnosis procedure. 

Table 4. M-SVM Classifier Parameters Using Different Wavelet 

Group 
Training time 

(s) 

Total 

number 

 of SV 

SV Coverage  

Db97 3.78 454 25.22% 

Db53 3.54 539 29.95% 

Coif1 3.00 447 24.83% 

Sym2 3.69 403 22.39% 

The training accuracies of M-SVM classifiers with different mother wavelets are given in Table 

5. It can be seen that the total training accuracy of M-SVM classifiers with Coiflet1 and Symlet2 

wavelet reach 98%, while the accuracy of Db97 and Db53 are 93% and 95%, respectively. 

Second, the obtained parameters of the M-SVM classifiers are then embedded in the program on 

the sensor nodes. Then 140 data sets, 28 for each condition, were used for testing and verification on-

line. 
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Table 5. The Training Accuracy of M-SVM Classifiers with Different Mother Wavelets 

Fault Type IR007 IR021 B021 OR021 NOR Total 

Number of 

Training Samples 
90 90 90 90 90 450 

Training 

Accuracy 

（%） 

Db97 95.56 84.45 96.67 90.00 100 93.33 

Db53 98.89 91.11 97.78 93.33 100 96.22 

Coif1 97.78 98.89 100 97.78 100 98.89 

Sym2 95.56 100 94.45 100 100 98.00 

 

The testing accuracy of M-SVM classifiers with different mother wavelets is given in Table 6. 

The training accuracy of M-SVM classifiers with all of the four mother wavelets exceeds 90%. The M-

SVM classifier using Symlet2 wavelet gives the highest accuracy, which reaches 99.29%, while 

Coiflet1 wavelet has an accuracy of 98.57%. 

Table 6. The Testing Accuracy of M-SVM Classifiers Using Different Wavelet 

Wavelet Db97 Db53 Coif1 Sym2 

Number of Test Samples 28*5 28*5 28*5 28*5 

Testing Accuracy（%） 96.43 92.96 98.57 99.29 

 

Third, 560 data sets from another set of vibration data are used to test the performance of the 

obtained M-SVM classifier models again. The results are given in Table 7. It can be seen that the 

classification accuracy of Coiflet1 and Symlet2 wavelet reaches 98.31%, and are better than the results 

of Db97 and Db53 wavelet. 

Table 7. The Testing Accuracy of M-SVM Classifier by Another Data Set 

Fault type Data number 
Wavelet 

Db97 Db53 Coif1 Sym2 

IR007 112 96.61 92.37 97.45 95.76 

IR021 112 89.83 80.50 98.30 100 

B021 112 97.45 94.91 100 95.76 

OR021 112 91.52 90.67 95.76 100 

Normal 112 100 100 100 100 

Average accuracy 95.08 91.69 98.31 98.31 

Fourthly, we randomly divide the 560 sets of data into 8 groups. Each group includes 70 data 

sets, 14 for each condition. These data are used to verify the overall classification effect of the obtained 

M-SVM classifier with different mother wavelets again. The results are shown in Fig.8. Compared 

with Db97 and Db53 wavelet, Coiflet1 and Symlet2 wavelet have higher overall classification 

accuracy (98.31%) and less fluctuation. 

Finally, the effectiveness of the proposed M-SVM method is compared with the effectiveness of 

fault classifiers based on ANN and minimum distance methods. In this experiment, Coiflet1 wavelet 

is used for fault feature extraction due to its better performance mentioned above, and the neural 

network has three inputs, five hidden layer neurons, and five output layer neurons. The experimental 

result is shown in Fig. 9, which indicates that the fault diagnosis accuracy of M-SVM method is far 

superior to the results of the neural network and minimum distance methods. The accuracy of the 

presented on-sensor approach has 15% and 30% higher accuracy than ANN and minimum distance 

methods. 
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Figure 8. Comparison of fault diagnosis classification accuracy using different wavelet 

 

Figure 9. Comparison of the classification accuracy of the proposed approach with neural network 

and minimum distance methods 

4.3. Payload Transmission Data and Node Energy Consumption 

In this section, the transmission data and node energy consumption for data transmitted after 

on-sensor WT fault feature extraction and SVM fault diagnosis and for raw data transmission are 

tested and compared by a series of experiments. 

1) Payload transmission data: For raw data transmission mode, the IWSN end node should send 

8192 bytes to the coordinator for 1024 samples. For on-sensor WT fault feature extraction and SVM 

fault diagnosis mode, the end node only needs to transmit the fault diagnosis result, so the payload 

transmission data decrease from 8192 to 4 bytes, i.e., a 99.95% reduction.  

2) Node Energy Consumption: When a 16-MHz system clock is used, the typical current 

consumption of JN5139 CPU processing status is 7.57 mA. The calculating time for on-sensor WT 

fault feature extraction using Symlet2 mother wavelet and on-sensor DAGSVM multiclass fault 

diagnosis is around 2.12 s, so the energy consumption for the proposed on-sensor fault diagnosis 

approach is given as 

 

𝐸𝑜𝑛−𝑠𝑒𝑛𝑠𝑜𝑟𝑑𝑖𝑎𝑔 = 2.353𝑉 × 7.57𝑚𝐴 × 2.12𝑠 = 37.8 𝑚𝐽       (6) 

Typical current consumption of JN5139 for wireless data transmitting is 38mA. The time for 

transmitting 8192 bytes raw data is about 0.47 s, the node voltage in this experiment is about 2.353 V, 

so the energy consumption for raw data transmission is 

𝐸𝑟𝑎𝑤𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠 = 2.353𝑉 × 38𝑚𝐴 × 0.47𝑠 = 42.0 𝑚𝐽       (7) 
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Compared with raw data direct transmission, the on-sensor fault diagnosis method using 

Symlet2 WT and DAGSVM reduces energy by 10%, 4.2 mJ.  

The details of payload data transmission and node energy consumption for raw data 

transmission and on-sensor fault diagnosis are given in Table 8. It can be seen that the energy 

consumption of on-sensor fault diagnosis depends on the calculation time and complexity of the 

selected algorithm. The energy consumption for on-sensor fault diagnosis with Db53 WT and SVM 

is similar to the energy utilization for raw data transmission, while the energy consumption of on-

sensor fault diagnosis with Ciof1 WT or Db97 WT and SVM is higher than the energy utilization of 

raw data transmission 

Table 8. Comparison of Transmission Data and Energy Consumption of Raw Data Transmission and 

On-sensor Fault Diagnosis 

Data processing and 

transmission mode  

Transmission data 

(bytes) 

Time for on-sensor WT&SVM 

or Raw data Transmission (s) 

Energy 

consumption 

 (mJ) 

On-sensor 

Db97 WT & SVM 
4 3.10 55.2 

On-sensor 

Db53 WT & SVM 
4 2.47 44.0 

On-sensor 

Ciof1WT & SVM 
4 2.86 50.9 

On-sensor 

Sym2 WT & SVM 
4 2.12 37.8 

Raw data transmission 8192 0.47 42.0 

5. Conclusions 

In this paper, we proposed a novel machine fault diagnosis method, which uses IIoT and IWSNs 

with on-sensor fault feature extraction by wavelet transform and on-sensor fault diagnosis by M-

SVM to reduce the payload transmission data in IWSN. Four popular mother wavelets, namely Db97, 

Db53, Coiflet1, and Symlet2 wavelet, and DAGSVM are selected and implemented on the IWSN 

sensor node. 

The feasibility and effectiveness of the presented approach have been demonstrated by a set of 

experiments using the bearing vibration data obtained from the Bearing Data Center at CWRU. 

Testing results show the following. 

1) Compared with raw data transmission, the proposed on-sensor fault diagnosis method can 

reduce the payload transmission data by 99.95%, and reduce the node energy consumption by about 

10%; 

2) The fault diagnosis accuracy of the proposed method with all the four mother wavelets 

exceeds 91%, while the accuracy by Coiflet1 and Symlet2 wavelet reaches 98%;  

3) The accuracy of the presented on-sensor approach with Coiflet1 wavelet is 15% and 30% 

higher than the accuracy of ANN and minimum distance methods. 

The energy consumption results show that small energy savings can be made, of the order of 

10% by using on-sensor computation.  However, the relatively small savings suggest that there is 

still scope for improved performance by reducing the energy cost of on-sensor processing, using more 

energy efficient computation architectures such as FPGAs.  Su, for example, has shown power 

savings of 90% for on-sensor computation by using low power FPGAs [25]. 
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