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Abstract: This paper presents one of the approaches to solution of the problem of the repulsion origin

in gravity. The approach is based on the property of compactness characteristic for a self-gravitating

object in General Relativity. Here we understand compactness as estimation of the upper boundary

for mass such an object in a static two–dimensional sphere. Repulsion originates when this boundary

is violated. The main hypothesis is formulated in the form of the principle of maximal mass within a

two-dimensional static sphere. It is demonstrated that the principle is true for Schwarzschild black

holes on absorption of the matter in the process of accretion, both in the classical case and with due

regard for quantum-gravitational corrections. The results have been extended to black holes with the

Schwarzschild-de Sitter metric in the early Universe. The applicability of the principle suggested is

analyzed for the early and for the present Universe.

Keywords: maximal mass principle; black holes; repulsion; cosmology

PACS: 11.10.-z; 11.15.Ha; 12.38.Bx

1. Introduction

By its nature, gravity represents the attracting force, as it had been indicated in the Newtonian

formulation and is still accepted in General Relativity (GR) [1]–[4]. But it is well known that cosmology

involves repulsion as well [5]–[7]. A similar pattern is taken for the initial Universe expansion due to

negative sign of the pressure in the energy-momentum tensor of the Einstein equation, opposite to a

sign of the vacuum energy density. It is important to understand the possibility for origination of the

repulsion phenomenon in Gravity. Currently, possible repulsion in gravity is extensively studied from

different points of view (for example,[8]–[10]).

This paper suggests one of the approaches to solving the repulsion origin problem in gravity. The

approach is based on the property of compactness characteristic for the self-gravitating object in GR.

Here ”compactness” is understood as an estimate of the upper boundary for the mass of this object in

a static two-dimensional sphere.

The paper is structured as follows. In the next section the key assumption, called the principle, is

formulated and it is shown that Schwarzschild black holes completely satisfy this principle both in the

classical discussion and with regard to the quantum-gravitational corrections. In Section 3 the results

of Section 2 are generalized to the primordial black holes pbh with the Schwarzschild-de Sitter metric

in the early Universe. Section 4 presents an analysis of the principle applications to the early and the

present Universe. The conclusion presents the relevant problems.

2. Maximal Mass Principle within Two-Dimensional Static Sphere and Schwarzschild Black
Holes

Let us recall the Buchdahl Theorem BT [11] stating that

the mass M of a spherically symmetric self-gravitating material object with the radius R, the interior of which

may be taken within the scope of General Relativity as a perfect fluid, satisfies the condition

M ≤ 4

9

Rc2

G
. (1)
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But we know that for a Schwarzschild black hole, with the same mass and radius, the following relation

[12] is true:

M =
1

2

Rc2

G
. (2)

In this way we have contradiction between values of the dimensionless coefficient C = 4/9 in the right

side of (1) and C = 1/2 in the right side of (2). In [13],[14] this contradiction has been studied to show

that (section 2.2 in [14]):

2.1 BT was proven for an incompressible fluid, with an infinite speed of sound cs = ∞, and this is in

contradiction with causality as the speed of sound cs should always be lower than the speed of light c,

i.e. should satisfy the condition cs ≤ c. Moreover, the BT-bound (1) in the case of an incompressible

fluid violates the Dominant Energy Condition (DEC) in General Relativity [15]:

DEC : ρ ≥ |prad|, ρ ≥ |ptan|, (3)

where ρ is the matter density and prad, ptan are radial and tangential pressures, respectively;

2.2 for strongly anisotropic materials, maximum compactness grows monotonically with the

longitudinal wave speed and in this case an elastic matter can exceed Buchdahl’s boundary and

reach the black hole compactness C = 1/2 continuously. However, in this case some of the energy

conditions DEC [15] in General Relativity are violated or the interior of this fluid contains ad-hoc

thin shells, or again the speed of sound within the medium exceeds the speed of light cs > c. Besides,

as shown in [16], if the matter satisfies (DEC), with nonnegative radial and tangential pressures

prad ≥ 0, ptan ≥ 0, we have C ∼< 0.4815;

2.3 as noted in [14]) for elastic balls, within the scope of the causality condition and given the radial

pressure, the condition (1) is the case but its upper boundary C = 4/9 is unattainable.

Thus, in all the cases mentioned above the value of 1/2 is limiting for C.

Let us formulate an assumption for BT, calling it the

Maximal (or Limiting) Mass Principle within Sphere - PMM:

the mass M of a self-gravitating material object within a two-dimensional static uncharged sphere SR , with

the radius R, satisfies the condition

M ≤ 1

2

Rc2

G
. (4)

When the condition of (4) is violated, specifically when within the sphere SR at some moment we have the

inequality

M′ = M+ m >
1

2

Rc2

G
, (5)

a part of the mass M′ is forced beyond the boundary SR and two different outcomes are possible:

PMM.a

The initial radius R of the sphere SR increases by the magnitude offering satisfaction of the condition (4) for the

mass M′ = M+ m also of the self-gravitating object, contained within a new static sphere S ′
R′ with a new

radius R′, to satisfy the same condition (4)

M′ ≤ 1

2

R′c2

G
. (6)

PMM.b

The process becomes dynamic for a long period of time with the involvement of the parameters for the positively
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determined radial sphere u
.
= dR(t)/dt and of the corresponding acceleration d2R(t)/dt2.

Gravity as an attractive force is the case only when the formula of (4) is valid. If in some instance the

condition of (4) in SR is violated and we have the formula of (5)instead, then

for PMM.a, gravity in SR becomes the repulsive force, extending SR to a new sphere, SR′ ⊃ S ′
R,

for the interior of which the validity of (4) is restored and its attractivity is retained;

for PMM.b, attractivity of gravity is replaced by repulsivity, i.e. gravity becomes a repulsive force.

Remark 2.1.

2.1.1. In PMM we use the word ”principle” rather than ”hypothesis” as usually the latter is associated with a

proof of some statement in the canonical paradigm. In case at hand the paradigm is extended because in some

instants gravity from the attractive force changes to the repulsive force;

2.1.2. Obviously, in this pattern (i.e. within the scope of the PMM validity), it is assumed that an object with

the mass M is self-gravitating only if the formula (4)is the case. But at instants of time, when the condition of

(4) is violated and we have the formula of (5), the object ceases to be self-gravitating.

For a Schwarzschild black hole considered within the canonical theory of gravitation, i.e. in

General Relativity (GR) [1],[12],[4], the validity of (4) at the equality of the left and right sides is

doubtless.

Let us consider the formed Schwarzschild black hole with the metric [1],[12]

ds2 =

(
1 − 2MG

r

)
dt2 −

(
1 − 2MG

r

)−1

dr2 − r2dΩ
2, (7)

where normalization for the speed of light is taken c = 1.

Due to GR and black holes theory [1],[12], the radius R ≡ RBH of a black hole (7) and its mass

M ≡ MBH exactly satisfy (4) for the case of equal left and right sides by substitution

R 7→ RBH ,M 7→ MBH , c = 1. (8)

So, during the formation of a Schwarzschild black hole, due to the validity of GR, there arises an

object, for which the formula of (4)is evidently fulfilled if in it the left and the right side are equal (i.e.

in the limiting case) and hence PMM is valid. Provided a Schwarzschild black hole is further in the

stationary state (without the processes of absorption and emission), this pattern remains unaltered.

But at accretion of the mass m on a black hole, the formula of (4) with substitution in (8 becomes

invalid, (5)is the case and a new Schwarzschild black hole is formed, having the following mass and

radius:

M′
BH = MBH + m =

1

2

(RBH + ∆Rm)

G
,

R′
BH = RBH + ∆Rm = 2G(MBH + m) = 2GM′

BH , (9)

where

∆Rm = 2Gm. (10)

The last two formulae are equivalent to (5),(6), with the substitution (MBH + m) → M′
BH ,R′ → R′

BH

to choose the equality sign in (6), and on the normalization c = 1.

Consequently, the process of accretion satisfies all the requirements of PMM.a in the case of the equality

sign in (4), because in fact the process of the additional mass absorption m may be represented as

forcing of this mass outward of the initial black hole and the formation of a new black hole, with the
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mass and the radius M′
BH ,R′

BH , respectively.

Let us briefly recall the formulae required for the interior solution in the case of a Schwarzschild black

hole with the metric (7). Then within SR, i.e. within the black hole, the matter energy-momentum

tensor takes the form corresponding to the perfect fluid

Tµν = ρuµuν + p(gµν + uµuν), (11)

where ρ and p – corresponding density and pressure; uµ is the four-velocity [1].

The mass of a black hole M may be given similarly to the Newtonian gravity (formula (6.2.10) in [1]):

M(R) =
∫ R

0
ρ(r)dV = 4π

∫ R

0
ρ(r)r2dr. (12)

It is important that for the interior of BH the formula (12) is incorrect due to the fact that in GR in the

right-hand side the proper volume element
√

g3d3x should be added as a factor (formula (B.2.17) in

[1]). Then the total proper mass within a Schwarzschild black hole takes the following form ((6.2.11)

from [1]):

M(R)p = π

∫ R

0
ρ(r)r2[1 − 2m(r)

r
]−1/2dr, (13)

where ((6.2.8) from [1])

m(r) = 4π

∫ r

0
ρ(r′)r

′2dr′ (14)

and the difference EB = M(R)p −M(R) is the gravitational binding energy.

As seen, all the above formulae (12)–(14) remain valid when a black hole absorbs the matter with the

mass m and we make the substitutions in these formulae

M(R) 7→ M′(R′),R 7→ R′,M(R)p 7→ M′(R′)p. (15)

So, the process of accretion for a black hole (absorption of the matter by a black hole) results in the

formation of a new Schwarzschild black hole with the mass and the radius M′(R′),R′ from formula

(15). But according to the well-known No hair theorem (pp.875–877 in [17]):

all stationary black hole solutions of the Einstein–Maxwell equations for gravitation and electromagnetism

in general relativity can be completely characterized by only three independent externally-observable classical

parameters: mass M, electric charge Q, and angular momentum J.

An immediate consequence of the No hair theorem is the fact that all Schwarzschild black holes (i.e.

Q = 0, J = 0)having the same mass M are physically equivalent.

Therefore, the black hole with the mass M′(theradiusR′) that originated due to absorption of the

matter with the mass m by a black hole having the mass M(R) is equivalent to (indistinguishable

from) a black hole of the same mass M′(R′) resultant from a stellar collapse [1]. All the formulae for

the black hole formed as a result of the collapse are valid in this case, in particular, the equation of

hydro-static equilibrium Tolman-Oppenheimer-Volkoff equation (formula (6.2.19) in [1]):

dp

dr
= −(p + ρ)

m(r) + 4πr3 p

r[r − 2m(r)]
. (16)

Remark 2.2

In this case we ignore the Hawking evaporation process of black holes [1],[12] as it is clear that the

process leads to a decrease of the black hole mass, whereas a Schwarzschild black hole remains the

Schwarzschild one, and hence (4) is valid.
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Conclusion 2.3 In such a way a Schwarzschild black hole with the initial mass and the initial radius M and

R,respectively, in the process of accretion (matter absorption) completely satisfies PMM.a, with the equality

sign in (4). This is due to the fact that, after the process is finished, this hole remains the Schwarzschild black

hole, yet with the new mass M′ and new radius R′. GR is valid for this hole both before the beginning and after

finishing of this process, the process per se being considered as forcing out of the additional mass into a sphere of

greater radius that is in line with General Relativity.

However, all the calculations in [1],[12] are valid in a semi-classical approximation, i.e. for black holes

with great radius and mass. It is interesting to find how looks the above-mentioned pattern at high

energies with significant quantum gravitational corrections (qgc).

Specifically, for the energies on the order of Plank’s energies (quantum gravity scales) E ≃ Ep, the

Heisenberg Uncertainty Principle (HUP) [18]

(δX) (δP) ≥ h̄

2
, (17)

may be replaced by the Generalized Uncertainty Principle (GUP) [19]

(δX) (δP) ≥ h̄

2

〈
exp

(
α2l2

p

h̄2
P2

)〉
, (18)

which, on retention of the leading term, gives the first-order GUP [20]–[28]:

(δX) (δP) ≥ h̄

2

(
1 +

α2l2
p

h̄2
(δP)2

)
. (19)

Then there is a possibility for existence of Planck’s Schwarzschild black hole, and accordingly of a

Schwarzschild sphere (further referred to as ”minimal”) with the minimal mass M0 and the minimal

radius rmin (formula (20) in [19]) that is a theoretical minimal length rmin:

rmin = lmin = (δX)0 =

√
e

2
αlp, M0 =

α
√

e

2
√

2
mp, (20)

where α - model-dependent parameters on the order of 1, e - base of natural logarithms, and rmin ∝

lp, M0 ∝ mp.

In this case, due to GUP (18), the physics becomes nonlocal and the position of any point is determined

accurate to lmin. It is impossible to ignore this nonlocality at the energies close to the Planck energy

E ≈ Ep, i.e. at the scales l ∝ lp (equivalently we have l ∝ rmin = lmin).

Using the terminology from [29], we will call black holes with the event horizon radii r ∝ lp the

quantum black holes (qbh) rather than micro black holes.

Actually, [19] presents calculated values of the mass M and the radius R for Schwarzschild BH with

regard to the quantum-gravitational corrections within the scope of GUP (18).

With the use of the normalization G = l2
p adopted in [19], temperature of a Schwarzschild black hole

having the mass M (the radius R) [12] in a semi-classical approximation takes the form

TH =
1

8πGM . (21)

Within the scope of GUP (18),the temperature TH with regard to (qgc) is of the form ((23) in [19]))

TH,q =
1

8πMG
exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

, (22)
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where W

(
− 1

e

(
M0
M
)2
)

– value at the corresponding point of the Lambert W-function W(u) satisfying

the equation (formulae (1.5) in [30] and (9) in [19])

W (u) eW(u) = u. (23)

W (u) is the multifunction for complex variable u = x + yi. However, for real u = x,−1/e ≤ u <

0,W (u) is the single-valued continuous function having two branches denoted by W0(u) and W−1(u) ,

and for real u = x, u ≥ 0 there is only one branch W0(u) [30].

It is clear that, for a great black hole having large mass M and great event horizon area A,

the deformation parameter 1
e

(
M0
M
)2

is vanishingly small and close to zero. Then a value of

W

(
− 1

e

(
M0
M
)2
)

Is also close to W(0). As seen, W(0) = 0 is an obvious solution for the equation (23).

We have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

≈ 1. (24)

So, a black hole with great mass M ≫ mp necessitates no consideration of qgc.

But in the case of small black holes we have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

> 1. (25)

In formulae above it is assumed that M > M0, i.e. the black hole under study is not minimal (20).

We can rewrite the formula of (22) as follows:

TH,q =
1

8πMqG
,Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

;

Rq = 2MqG = R exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

, (26)

where Mq and Rq are respectively the initial black-hole mass and event horizon radius considering

qgc caused by GUP (18).

Taking in account these qgc, a mass and a radius of the initial Schwarzschild black hole, absorbing the

matter with the mass m, will change in the following way:

Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

7→ M′
q = M′ exp

(
1

2
W

(
−1

e

(
M0

M′

)2
))

,

Rq = R exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

7→ R′
q = R′ exp

(
1

2
W

(
−1

e

(
M0

M′

)2
))

, (27)

where M′ = M+ m,R′ = R+ 2Gm/c2.

Let us make sure that, within the constant factor c2/G, the right-hand side has the equality

M
R =

Mq

Rq
=

M′

R′ =
M′

q

R′
q
=

1

2
. (28)

As directly follows from (28), Conclusion 2.3 is valid at high (Planck’s) energies within the scope of

GUP on the substitution in PMM

M 7→ Mq,R 7→ Rq,M′ 7→ M′
q,R′ 7→ R′

q. (29)
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Remark 2.4

It follows from the formulae that, due to (25), substitution of (29) is most actual at high energies, when M,M′

and R,R′ Are close to M0, rmin = lmin, respectively. Otherwise, when M ≫ M0,R ≫ rmin, substitution in

formula (29) is insignificant as it is clear that, because of (24), all exponents in the right side of (29) are close to

1, and we have M ≈ Mq,M′ ≈ M′
q, m ≈ mq, ....

3. PMM and Primordial Black Holes with the Schwarzschild-de Sitter Metric in the Early
Universe

At the same time, Schwarzschild black holes with the metric (7) in real physics (cosmology,

astrophysics) are idealized objects. As noted in (p.324,[12]): ”Spherically symmetric accretion onto a

Schwarzschild black hole is probably only of academic interest as a testing for theoretical ideas. It is of

little relevance for interpretations of the observations data. More realistic is the situation where a black

hole moves with respect to the interstellar gas...”

Nevertheless, black holes just of this type may arise and may be realistic in the early Universe. In this

case they are primordial black holes (pbh). Most common mechanism for the formation of pbh is the

high-density gravitation matter collapse generated by cosmological perturbations arising, e.g., in the

process of inflation (not necessarily) in the early Universe [31]. But the idea about the formation of pbh

has been suggested much earlier than the first inflation models, specifically in [32] and independently

in [33] or [34].

During studies of the early Universe the Schwarzschild metric (7) for pbh is replaced by the

Schwarzschild-de Sitter (SdS) metric [35] that is associated with Schwarzschild black holes with

small mass M in the early Universe, in particular in pre-inflation epoch

ds2 = − f (r̃)dt2 +
dr̃2

f (r̃)
+ r̃2dΩ

2 (30)

where f (r̃) = 1 − 2GM/r̃ − Λr̃2/3 = 1 − 2GM/r̃ − r̃2/L2, L =
√

3/Λ = H−1
0 , M - black hole mass, Λ

– cosmological constant, and L = H−1
0 is the Hubble radius.

In general, such a black hole may have two different horizons corresponding to two different zeros

f (r̃): event horizon of a black hole and cosmological horizon. This is just so in the case under study

when a value of M is small [36],[37]. In the general case of L ≫ GM, for the event horizon radius of a

black hole having the metric (30), rH takes the following form (formula (9) in [38]):

rH ≃ 2GM

[
1 +

( rM

L

)2
]

, where rM = 2MG. (31)

Then, due to the assumption concerning the initial smallness of Λ, we have L ≫ rM. In this case, to

a high accuracy, the condition rH = rM is fulfilled, i.e. for the considered (SdS) BH we can use the

formulae, given in the previous section for a Schwarzschild BH, to a great accuracy.

Thus, in this case for pbh, with the Schwarzschild-de Sitter (SdS) metric (30) and with small radii,

Conclusion 2.3 is valid and in PMM.a, due to Remark 2.4,qgc must be taken into consideration.

Provided these pbh were formed in the early Universe at very high energies close to the Planck’s,

without loss of generality, such black holes may be considered as qbh.

Remark 3.1.

Note that, because Λ is very small, the condition L ≫ GM and hence the formula of (31) are obviously

valid not only for black hole with the mass M ∝ mp but also for a much greater range of masses, i.e.

for black holes with the mass M ≫ mp, taking into account the condition L ≫ GM. In fact we obtain

ordinary Schwarzschild black holes considered in the first part of Section 2, which do not require
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consideration of qgc due to formula (24).

But the problem arises, how high is the probability that pbh with Schwarzschild-de Sitter SdS metric

(30) arise in the pre-inflation epoch. This problem has been studied in [35] without due regard for qgc.

Let us demonstrate that consideration of qgc in this case makes the probability of arising pbh higher.

To this end in cosmology, in particular inflationary, the metric (30) is conveniently described in terms

of the conformal time η [35]:

ds2 = a2(η)

{
− dη2 +

(
1 +

µ3η3

r3

)4/3
[(

1 − µ3η3/r3

1 + µ3η3/r3

)2

dr2 + r2dΩ
2

]}
, (32)

where µ = (GMH0/2)1/3, H0 – de Sitter-Hubble parameter and scale factor, a – conformal time

function η:

a(η) = −1/(H0η), η < 0. (33)

Here r satisfies the condition r0 < r < ∞ and a value of r0 = −µη in the reference frame of (32)

conforms to singularity of the back hole.

Due to (31), µ may be given as

µ = (rM H0/4)1/3, (34)

where r̃ = rM is the radius of a black hole with the SdS Schwarzschild-de Sitter metric (30).

In the conventional consideration it is assumed, similar to [35], that in (34) we have µ = const. Then, if

in formula (34) rM : rM 7→ r̃M is ”shifted”, H0 : H0 7→ H̃0 is adequately ”shifted” too, and we have

µ = (rM H0/4)1/3 = (r̃M H̃0/4)1/3, H̃0 =
rM

r̃M
H0 = const. (35)

Specifically,in the case µ = const, in (35) substitution of rM 7→ rMq for rM = R, rMq = Rq, formula

(27),results in substitution of H0 → H0,q to meet the condition

µ = (rM H0/4)1/3 = (rMq H0,q/4)1/3. (36)

From the last formula it follows that

H0,q = H0 exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

. (37)

Similar to [35], it is assumed that in pre-inflation period non-relativistic particles with the mass m < Mp

are dominant (Section 3 in [35]). For convenience, let us denote the Schwarzschild radius rM by RS.

When denoting, in analogy with [35], by N(R, t) the number of particles in a comoving ball with the

physical radius R = R(t) and the volume VR at time t, in the case under study this number (formula

(3.9) in [35]) will have qgc N(R, t) 7→ N(R, t)q

(〈N(R, t)〉 =
m2

p H2R3

2m
) 7→ (〈N(R, t)q〉 =

m2
p H2

q R3

2m
). (38)

Here the first part of the last formula agrees with formula (3.9) in [35], whereas H, Hq in this case are

in agreement with H0, H0,q. And from (37) it follows that

〈N(R, t)q〉 = 〈N(R, t)〉 exp

(
−W

(
−1

e

(
M0

M

)2
))

. (39)

According to (26), it is necessary to replace the Schwarzschild radius RS by

RS,q = RS exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

.
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Then from the general formula N(RS, t) = 〈N(RS, t)〉+ δN(RS, t), used because of the replacement of

RS 7→ RS,q, we obtain an analog of (3.12) from [35]

δN > δNcr,q
.
=

m2
pRS,q

2m
− 〈N(RS, t)q〉 =

m2
pRS,q

2m
[1 − (HRS)

2] =

=
m2

pRS

2m
[1 − (HRS)

2] exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

= δNcr exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

. (40)

In the last formula in square brackets we should have (HqRS,q)
2 instead of (HRS)

2 but, as we consider

the case µ = const, these quantities are coincident.

It should be noted that here the following condition is used:

HRS < 1, (41)

i.e. Schwarzschild radius RS less than Hubble radius, RS < RH = 1/H.

As we have exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

< 1, then

δNcr,q < δNcr. (42)

Considering that for the formation of a Schwarzschild black hole with the radius RS it is required that,

due to statistical fluctuations, the number of particles N(RS, t) with the mass m within the black hole

volume VRS
= 4/3πR3

S be in agreement with the condition [35]

N(RS, t) > RS M2
p/(2m), (43)

which, according to qgs in the formula of (26), may be replaced by

N(RS,q, t) > RS,q M2
p/(2m) = exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

RS M2
p/(2m). (44)

As follows from these expressions, with regard to qgc for the formation of pbh in the pre-inflation

period, the number of the corresponding particles may be lower than for a black hole without such

regard, leading to a higher probability of the formation.

Such a conclusion may be made by comparison of this probability in a semi-classical consideration

(formula (3.13) in [35])

P
(
δN(RS, t) > δNcr(RS, t)

)
=
∫

∞

δNcr

d(δN)P(δN) (45)

and with due regard for qgc

P
(
δN(RS,q, t) > δNcr(RS,q, t)

)
=
∫

∞

δNcr,q

d(δN)P(δN). (46)

Considering that in the last two integrals the integrands take positive values and are the same, whereas

the integration domain in the second integral is wider due to (42), we have

∫
∞

δNcr,q

d(δN)P(δN) =

=
∫ δNcr

δNcr,q

d(δN)P(δN) +
∫

∞

δNcr

d(δN)P(δN) >
∫

∞

δNcr

d(δN)P(δN). (47)
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As follows from the last three formulae, in the case under study the probability that the

above-mentioned pbh will be formed is higher with due regard for qgc.

It is interesting to find which changes should be expected in the pattern studied if the parameter

µ ceases to be constant and is shifted with regard to qgc of the black hole mass M 7→ Mq (26):

(µ = (GMH0/2)1/3) 7→ (µq = (GMq H0/2)1/3).

Note that in this case the general formula form Section 3 in [35] are also valid but for this pattern in

formula (40) there is substitution of HRS 7→ HRS,q:

δN > δNcr,q
.
=

m2
pRS,q

2m
− 〈N(RS, t)q〉 =

m2
pRS,q

2m
[1 − (HRS,q)

2] =

=

m2
pRS exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

2m
[1 − H2R2

S exp

(
W

(
−1

e

(
M0

M

)2
))

]. (48)

To understand variations in the probability of pbh arising as compared to the case when qgc are

neglected in the consideration, we compare the last expression with the corresponding quantity

δNcr =
m2

pRS

2m [1 − (HRS)
2].

Dividing the last expression and the right side (48) by the same positive number
m2

pRS

2m and subtracting

the second number from the first, we can obtain

δNcr − δNcr,q ∼ [1 − H2R2
S + H2R2

S exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

−

− exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

] (49)

with a positive proportionality factor.

To have a positive quantity in the right side (49), fulfillment of the following inequality is required:

1 − exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

> R2
S H2[1 − exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

]. (50)

As from formula (23) it follows that W (u) < 0 for u < 0, we have 1 − exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

>

0, 1 − exp

(
3
2 W

(
− 1

e

(
M0
M

)2
))

> 0, from where it follows that (50) is equivalent to the inequality

(HRS)
2
<

1 − exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

1 − exp

(
3
2 W

(
− 1

e

(
M0
M

)2
)) =

=
1

1 + exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

+ exp

(
W

(
− 1

e

(
M0
M

)2
)) (51)

or

HRS <
1√

1 + exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

+ exp

(
W

(
− 1

e

(
M0
M

)2
)) . (52)

We need that in the case under study µ 6= const the probability of pbh arising with regard to qgc be
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higher than the same probability but without due regard for qgc. It is sufficient to replace the condition

HRS < 1 in formula (41) by the condition in formula (52).

Note that, due to smallness of RS, exp

(
1
2 W

(
− 1

e

(
M0
M

)2
))

, exp

(
W

(
− 1

e

(
M0
M

)2
))

are also small

and in the right side (52) the quantity is close to 1, i.e. the shorter the Schwarzschild radius of pbh,the

greater consideration of qgc increases the probability of pbh arising.

4. PMM,Early and Present Universe

Now let us realize that for the metric (7) (or (30)) and for the small radius RM of the sphere SRM
the condition (4) in PMM is from the start violated, i.e. initially for the time t = 0, instead of (4), we

had (5), or

M′ = M+ m > M =
RMc2

2G
. (53)

The following aspects should be particularly emphasized.

1. Provided M,RM represent the mass and the radius of a black hole, respectively, and m –

mass of the matter absorbed by this black hole on accretion, it is connived that m < M, whereas in the

vast majority of cases – m ≪ M.

Besides, as on accretion of the matter for a black hole this black hole remains unchanged, the condition

(4) in the case of equality is unaltered for a new black hole and we have M′ = RM′c2/(2G). This

means that in (6) the equality is always the case

R′ = RM′ = RM + 2Gm/c2. (54)

2. However, this is not true in the general case when there is no consideration for a black hole and the

accretion process on this black hole, in particular when formula (5) (or equivalently (53)) is valid from

the very beginning. It is clear that in this case, according to point 2.1.2. of the Remark 2.1., the system

is not self-gravitating and we initially consider the pattern of the matter forcing-out beyond the sphere

SRM , i.e. the case with PMM.b.

If (4) is violated, specifically if

M′
>

RMc2

2G
, (55)

then the mean density ρM′ of the sphere interior SR with the mass M′ should satisfy the condition

ρM′ >
3c2

8πR2
MG

,

or ρM′ = κ
3c2

8πR2
MG

, κ > 1. (56)

Obviously, it is impossible to take such scenario of the early Universe for explanation of its initial expansion.

Assuming this scenario for the very beginning of the Universe origination, in this case we denote

RM
.
= R(0) as Rorigin (or equivalently Rsource).

Within the scope of a perfect fluid model, in cosmology [7] an equation for such liquid takes the form

p[ρ(t)] = ω[ρ(t)]ρ(t). (57)
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It is assumed that a value of ρ(0) = ρM′ is associated with the vacuum. As from the start we use the

pattern of PMM.b,repulsion is the case and hence the initial pressure is negative. Then, without loss of

generality, it is believed that

p[ρ(0)] = ω[ρ(0)]ρ(0), ω[ρ(0)]
.
= ω0 = −1. (58)

Provided in the early Universe in the process of the initial expansion we have the scenario of PMM.b,

for the dynamic quantity R(t) at small times t ≥ 0 in the point t = 0 the following condition must be

fulfilled: R(0) = Rorigin, ρM′ = ρ(0)
.
= ρvac.

In this case the expression (56) may be written as

ρ(0) = κ
3c2

8πR(0)2G
= κ

3c2

8πR2
originG

, κ > 1, (59)

where κ–dimensionless parameter.

With the normalization c = h̄ = 1, G = l2
p = m−2

p used in [5]–[7], (59) we can rewrite the expression,

where the left side is given in the well-known form (formulae (3.34) in [5] and (12.1) in [6])

8π

3

ρ(0)

m2
p

=
κ

R2
origin

. (60)

We can see that

κ

R2
origin

6= H2
vac = H2

dS = H0. (61)

Indeed, since in the early Universe the typical size of a two-dimensional sphere is Planckian or close

to the Planck’s [39]–[44],i.e. Rorigin ∝ lp, from formula κc2/R2
origin = H2

vac = H2
dS, that at c = 1 is

equivalent to the condition κ/R2
origin = H2

vac = H2
dS, for the quantity Rorigin ∝ lp the proportionality

factor is κ

H0 ∝
c

Rorigin
=

3 · 105km · s−1

lp
≈ c

Rorigin
=

3 · 105km · s−1

10−33cm
≈ 1043s−1. (62)

Still, it is known that Hvac = HdS = H0 is a very small quantity and, according to modern estimates,

we have

H0 ≈ (1, 5 − 2, 5) · 10−18s−1,

tH0
≈ 5 · 1017s. (63)

Assuming that Rorigin takes a real value in the early Universe, in particular Rorigin ∝ lp, in (60) the

values of ρ(0) = ρvac and H0 (formula (62)) are enormous, deviating drastically from the experimental

data. The same problem is observed with tremendous discrepancy between the vacuum energy density

(cosmological constant) Λ, ρvac
.
= ρΛ,m calculated by the canonical quantum field theory [45],[46] and

its experimental value [47].

Now we consider the present Universe with the characteristic radius of the (Metagalactic) luminous

horizon:

R∗∗ = ctH0
≈ 4.4 · 1028cm = 4.4 · 1026m = 4.4 · 1023km. (64)

As the corresponding sphere SR∗∗ with the radius R∗∗ at the present time period is not static, expanding

continuously, we can use PMM from Section 2 only in the case of repulsion, i.e. we have formula (5) in

the pattern PMM.b. Let us verify an extent of violation of the condition (4) in the present Universe for
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the radius R∗∗.

As known, the mean density ρUniv of the total energy in the present Universe is approaching the critical

density ρc =
3H2

8πG

ρUniv ≈ 9.9 · 10−27kg · m−3. (65)

Then the total mass MR∗∗ ,total contained within SR∗∗ is equal to

MR∗∗ ,total = ρUniv
4π

3
R3

∗∗ ≈ 9.9 · 10−27 kg

m3
· 3.56 · 1080m3 ≈ 3.52 · 1054kg. (66)

On the other hand, the Schwarzschild mass MR∗∗ ,Sch contained in the sphere SR∗∗ with the radius

R∗∗, i.e. the mass satisfying (4) (for R = R∗∗ in the case of the equality), equals

MR∗∗ ,Sch =
R∗∗c2

2G
≈ 4.4 · 1023km · 9 · 1010km2/s2

2 · 6, 67 · 10−20km3 · s−2 · kg−1
≈ 2.969 · 1053kg, (67)

where the Newton constant G = 6, 67430 · 10−11m3s−2kg−1 = 6, 67430 · 10−20km3s−2kg−1. In this way

from (66),(67) it follows that

MR∗∗ ,total ≫ MR∗∗ ,Sch. (68)

In this case the condition (4) is greatly violated. In fact we obtain the pattern of PMM.b with the

difference that initially the sphere was not static SR∗∗ .

But, if the rate of variations of the radius dR∗∗(t)/dt is sufficiently low, variations of the sphere SR∗∗
are rather slow–to a high accuracy the sphere may be considered static for a long period of time.

Nevertheless, the ordinary (baryonic) matter makes 0.049 of the whole contents of the Universe and

for the corresponding mass MR∗∗ ,baryonic we get

MR∗∗ ,baryonic ≈ 3.52 · 0.049 · 1054kg ≈ 1.7 · 1053kg. (69)

Comparison of this number with MR∗∗ ,Sch demonstrates that there is no violation of (4) in the case of

ordinary (baryonic) matter.

But, when the dark matter forming 0.268 of the Universe contents is added to baryonic matter, the

corresponding mass MR∗∗ ,matter is equal to

MR∗∗ ,matter ≈ 3.52 · 0.317 · 1054kg ≈ 1.116 · 1054kg. (70)

Since MR∗∗ ,matter > MR∗∗ ,Sch, in this case repulsion also arises and we have the pattern PMM.b.

Let us return to formula (56) for RM = R∗∗,M′ = MR∗∗ ,total . As directly follows from (68), we can

write (56) as

ρMR∗∗ ,total
= κ

3c2

8πR2∗∗G
, κ ≫ 1. (71)

It should be noted that in the general case ρ ∝ a−3(1+ω) the second line of formula (56) immediately

gives

κ1/2R(t) ∝ a
3
2 (1+ω)(t), κ > 1, ω > −1. (72)

The parameter κ is a dynamic quantity, i.e. κ = κ(t). From (71) it follows that at the present epoch it is

rather high κ ≫ 1.

5. Final Comments and Conclusion

PMM and its violation offer the possibility to introduce repulsive forces into gravity. If PMM is

valid, we should consider three important problems:
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5.1. Correct integrity of PMM with General Relativity;

5.2. Obvious relation of PMM to cosmological models, specifically to inflation models;

5.3. PMM and the Dark Universe Problem (Dark Matter+Dark Energy).
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work.
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