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Abstract

This study presents the application of Mycelial Net, a biologically inspired deep learning
architecture, to the analysis and classification of mineral images in thin section under optical
microscopy. The model, inspired by the adaptive connectivity of fungal mycelium networks, was
trained on a test mineral image database to extract structural features and to classify various minerals.
The performance of Mycelial_Net was evaluated in terms of accuracy, robustness, and adaptability,
and compared against conventional convolutional neural networks. The results demonstrate that
Mycelial Net, properly integrated with Residual Networks (ResNets), offers superior analysis
capabilities, interpretability, and resilience to noise and artifacts in petrographic images. This
approach holds promise for advancing automated mineral identification and geological analysis
through adaptive Al systems.

Keywords: mineral thin sections; Automatic classification; deep learning; biology; Mycelial Net

1. Introduction

Automated analysis and classification of minerals in thin sections is a challenging and essential
task in petrography, mineral exploration, and geoscientific research. Traditional manual methods are
time-consuming, subjective, and require extensive expertise. Recent advances in deep learning,
particularly convolutional neural networks (CNNs) and Residual Networks (ResNets), have shown
potential in image-based mineral classification [1-9]. However, these methods often lack adaptability,
interpretability, and robustness in the presence of image imperfections such as scratches, lighting
variability, and inclusion artifacts. To address these limitations, recently, we have introduced novel
deep learning methodologies enhanced with self-awareness mechanisms, enabling a significantly
greater flexibility in tackling automatic classification problems [10,11]. In this context, self-awareness
refers to the model’s ability to continuously monitor its own performance during training and
inference, and to adapt its internal structure accordingly. Unlike conventional neural networks,
which passively follow fixed architectures and pre-set optimization rules, a self-aware deep neural
network dynamically adjusts not only its weights but also its connectivity patterns, hyperparameters,
and decision strategies in real time. This adaptive capability is inspired by the way biological
systems—such as the human brain or fungal mycelium —evaluate feedback from their environment,
detect changes or anomalies, and modify their internal organization to maintain or improve
functionality.

We have obtained further improvements in deep learning by introducing Mycelial Net [12], a
novel deep learning architecture inspired by the adaptive and decentralized intelligence of fungal
mycelium [13]. In nature, the fungal mycelium operates as a living, interconnected network of hyphae
that explores the environment, senses chemical and physical signals, and dynamically reallocates
resources to optimize survival and growth. This network effectively discriminates between nutrient
sources, toxic compounds, obstacles, and potential symbiotic partners—performing a form of
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ecological classification based on distributed perception, chemical recognition, and adaptive
memory. Its decision-making process is not centralized but emerges from the interaction of many
local nodes, allowing the system to remain highly robust and self-organizing, even under variable
and imperfect conditions. Mycelial Net is designed to replicate these biological principles in the
digital domain by dynamically adjusting its internal connectivity during training, mimicking the
growth, pruning, and plasticity of mycelial networks.

In this work, we apply Mycelial_Net to the classification of mineral images in thin sections,
compare its performance against standard CNN architectures, and demonstrate its advantages in
robustness and structural self-adaptation. Our basic hypothesis is that Mycelial Net model can be
applied to optimize mineral analysis and classification of mineral thin sections while also adapting
to structural irregularities, extracting crystalline boundaries, and recognizing patterns in complex
and imperfect datasets (including low resolution images). To better clarify these concepts, the
following is a side-by-side analogy table that summarizes our work-hypothesis.

Table 1. Biological Mycelium vs. Mycelial Net computational analogy.

Biological Mycelium

Mycelial_Net Architecture

Functional Analogy

Network of hyphae forming an
interconnected, decentralized
structure
Environmental sensing via
chemical, physical, and
electrical signals
Nutrient discrimination
between usable resources and
harmful substances
Resource allocation to growth
zones or symbiotic interfaces

Memory through structural
changes in hyphal pathways

Resilience to local damage due
to redundancy in the network

Collaborative symbiosis with
plants via mycorrhizal interfaces

Graph-like network of nodes
with dynamically reconfigurable
connections
Input feature “sensing” via
convolutional filters and
structural feature extractors
Adaptive weighting between
relevant and irrelevant features

Dynamic connectivity adjustment
to strengthen high-utility paths

Plasticity in network topology
and hyper-parameters during
training
Fault tolerance to image
imperfections and noisy inputs

Integration with other models
(e.g., ResNet, CNN, SVM
hybrids)

Distributed processing
without a central
controller
Pattern detection and
feature recognition from
raw data
Selective amplification of
informative signals

Prioritization of
pathways that improve
classification
Long-term retention of
learned decision patterns

Robust performance
under imperfect or
incomplete data
Cooperative knowledge
sharing across
architectures

In this paper we intend to show that this analogy is not merely metaphorical but functionally

relevant in the problem of image analysis/classification (as well as in other relevant domains). In
biological mycelium, decision-making emerges from the continuous interaction of local sensing,
adaptive growth, and structural reconfiguration, enabling the organism to solve complex survival
problems without a centralized brain. Mycelial_Net follows the same principle in the computational
domain: classification accuracy and robustness are achieved not solely through fixed parameter and
hyperparameter optimization, but through continuous adaptation of the network’s topology and its
entire architecture during training. This structural plasticity allows the model to retain previously
acquired knowledge while reshaping itself to meet new challenges, effectively combining memory
and adaptability. By embedding these biologically inspired mechanisms into a deep learning
framework and integrating it with consolidated Residual Networks (ResNets) [8] we show that
Mycelial_Net bridges the gap between conventional CNN-based approaches and truly self-
organizing, self-aware computational systems. Figure 1 summarizes, schematically, the entire
workflow.
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Figure 1. Integrated ResNet/Mycelial_Net workflow.

The subsequent methodological section presents a comprehensive discussion of each step within
the workflow.

2. Methodology

2.1. Basic Principles

The Mycelial Net model employs a mycologically inspired architecture that emulates the
adaptive behavior of fungal mycelial systems [13]. The main elements are, schematically the
following:

“MycelialLayer” — A dynamic layer that optimizes learning by pruning weak connections and
forming new ones during training.

Dynamic Connectivity — A topology-restructuring mechanism, modeled after the exploratory
growth of network, enabling continual adaptation.

Self-Monitoring Mechanism — A performance-driven adaptation process, inspired by biological
self-awareness that adjusts connectivity based on metrics such as accuracy, ensuring responsiveness
to changing conditions and datasets.

Exploration Factor — A module that regulates the exploration—exploitation trade-off in
hyperparameter space, steering the model toward optimal configurations.

The model uses time-dependent weight matrices controlled by binary masks, evolving
connectivity ratios, key hyperparameters and cross-entropy loss for multi-class classification. Higher
loss gradients increase connectivity, mimicking fungal mycelial expansion toward regions of high
information content in the mineral feature space. The following is a more detailed quantitative
formulation of these concepts. This is readapted to the image classification problem from previous
research [12].

2.2. Formalization of Myclelial_Net model

Let X € R™" be the input data matrix, where 72 is the number of mineral thin section samples
and 7 is the number of extracted petrographic features (e.g., mineralogical appearance, grain size
distribution, texture descriptors, colorimetric attributes, or other quantitative image analysis metrics).

Let Y € R™¥ the corresponding labels for classification with k output classes (for instance,
Plagioclase, Quartz, K-feldspar, etc.).

Each input passes through multiple layers of dynamically changing artificial neuronal
connections. Unlike standard artificial neural networks with fixed connections paths and fixed
hyperparameters, Mycelial_Net introduces a time-dependent weight matrix, W:, that dynamically
adapts:

Wi=M,OW; 4 (1)
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where:

Wi is the weight matrix at time ¢,

W1 is the weight matrix at the previous time step ¢-1,

M: €{0,1} nxd is a binary mask matrix controlling active connections at time ¢,
72is the number of features,

d is the number of neurons in the layer.

(@ represents the Hadamard (elementwise) product,

The mask M: is updated dynamically based on a connectivity ratio cx:

Mi=1(Ui<c)  (2)
where U: is a uniform random matrix. The formula (2) means that the mask M: is updated by
comparing each element of a random matrix U: with the connectivity ratio c:. Those elements that are
smaller than ct are “activated” (set to 1), and others are “deactivated” (set to 0). By default, c: is a
scalar (global density control: each element of U: is compared with cr). More advanced ¢t can be a
matrix (local adaptive connectivity). This dynamic update of the mask can be used to model how
elements of a system are connected or disconnected in response to a changing connectivity threshold.

What do formulas (1) and (2) mean in practice? The connection graph is not fixed but changes
over time: links can appear or disappear depending on the threshold. The parameter c: controls the
density of the network: a higher value implies more active connections; a lower value implies a sparser
network. The random noise (U:) ensures variability in connections being activated/deactivated: this
creates structural diversity and plasticity.

Why is this useful in Mycelia_Net model? This point can be fully understood through the
analogy with natural mycelium: fungal networks in the soil do not have permanent connections;
filaments can break or regrow depending on environmental conditions. The benefit is high resilience:
a model with dynamic connectivity explores multiple configurations instead of getting locked into a
single architecture. The key concept is “Self-organization”: the threshold ct can depend on system
feedback-based entropy values, network performance, loss function, misfit, reward (in case of
reinforcement learning mechanisms). Consequently, the network learns not only the weights (as it
happens in standard neural networks), but also how connected it should be at any moment.

In short, formula (1) and (2) introduce a structural plasticity mechanism. The network does not
just adapt its weights, but also its entire topology, reconfiguring dynamically. It is like giving the
model the ability to contract or expand depending on context, very similar to how a living biological
network behaves.

We remark that the connectivity ratio c: evolves over training:

Ctr1 = €+ VL, 3)
where:
7 is the learning rate,
VL, is the gradient of the loss function L at time ¢.

The total loss function is

Liotar = — 2it1 2}21 yijlog (¥;)) 4)
where:
m is the number of samples (e.g., thin section mineral samples), as state earlier,
k is the number of output classes (e.g., types of minerals), as state earlier,
¥ij is the true label (one-hot encoded, where y;; = 1 for the true class and y;; = 0 otherwise),
yij is the predicted probability for the j-th class for the i-th sample, computed using the Softmax
function.

We remind that the Softmax function is a mathematical function commonly used in machine
learning, particularly in multi-class classification problems. It takes a vector of real numbers as input
and converts it into a probability distribution, where each element is in the range (0, 1) and the sum
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of all elements equals 1. In this case, we compute the Softmax for each sample and class. The final
loss is the sum over all samples and classes.

Coming back to the computation of the gradient of the loss function, in our case, higher gradients
increase Mycelial_Net connectivity, mimicking the fungal mycelial network’s expansion in response
to environmental stimuli.

For a given neuronal layer |, the activation H} at time t is computed as:

H; = o(H{ ' Wi b') (5)
where:
HY! is the activation from the previous neuronal layer,
W! is the dynamically adjusted weight matrix,
b! is the bias vector,
o is an activation function (e.g., Rectified Linear Unit, briefly ReLU, or sigmoid, as well as other
activation functions settable by the user).

The output of the final layer is computed as:

Y = Softmax (H® wP + p®) (6)
where P is the total number of layers.

This equation intuitively means that the final output of the neural network is computed in a
multi-class classification problem. The model’s final layer uses weights and biases to compute raw
scores (logits), and the Softmax function is then applied to transform these raw scores into a
probability distribution, making it suitable for classification tasks. The network minimizes a standard
cross-entropy loss for classification. Additionally, we introduce a regularization term to encourage
network sparsity. The gradient update rule for weights is given by:

aL 1
Wi1= W, — a—2% 7
1= W, — ol 7)

This equation allows optimizing the weights and hyperparameters in the Mycelial_Net model
by moving them in the direction that reduces the total loss function. By iteratively applying this rule,
the model learns to make better predictions. The learning rate a controls how quickly or slowly the
entire architecture is updated in each iteration.

Finally, to balance exploration and exploitation of the parameters and hyper-parameters space,
we introduce an entropy-based connectivity adjustment:

€41 = € + YH(X) ®)
where H(X) is the entropy of the activations:
HX) = -XX,pilog p; ©)

This is the standard formula for the Shannon entropy, which measures the uncertainty in the
system’s state. It is used here to measure the “spread” or uncertainty in the activations, guiding the
network’s adaptability. Higher entropy leads to increased connectivity attempting to reduce
uncertainties, mimicking mycelial expansion in high-information regions.

2.3. Empowering Myclelial_Net Model with Residual Network

ResNet (Residual Network) is a deep convolutional neural network architecture that introduced
the concept of residual connections (also known as skip connections) [7,8]. These connections enable
the network to bypass one or more layers by directly passing information forward. The main
advantage of this mechanism is that it allows ResNet to train very deep models (with 50, 100, or even
more layers) without being hindered by the vanishing gradient problem, which typically makes
optimization of deep architectures unstable and inefficient. We have widely discussed in a previous
dedicated paper [9] the benefits of ResNet in the context of mineral image classification. When
employed as a backbone, ResNet serves as a highly effective feature extractor, capable of learning
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hierarchical representations of increasing complexity. Schematically, the advantages offered by

ResNet in the process of automatic feature extraction can be summarized as follows:

- Early convolutional layers capture low-level visual features such as edges, textures, and simple
color transitions.

- Intermediate layers progressively detect more complex structures, such as mineral grain
boundaries, morphological patterns, and characteristic textures.

- Deeper layers encode high-level, abstract representations, including shapes, compositional
structures, and object-level features that are essential for distinguishing among different
minerals.

- The residual design stabilizes the optimization process and increases efficiency, ensuring that
very deep models remain trainable and resistant to degradation.

In the proposed Mycelial_Net framework, the ResNet backbone provides these rich, multi-level
representations of mineral images. The mycelial blocks then refine and reorganize these features
through their adaptive connectivity, enhancing the discriminative power of the overall system. This
synergy allows the network to achieve robust and accurate classification, even when dealing with
challenging datasets characterized by noise, variability, or low resolution.

3. Image Analysis, Edge Detection and Segmentation

To verify the effectiveness of Mycelial_Net model for thin section images analysis, we used a
public dataset of approximately 200 thin sections of rocks and minerals (see “Data Availability
Statement” below). These images were compiled to build a labeled sub-dataset (ranging from 40% to
80% of the total data set) for training Mycelial Net, later applied to classify test samples. The thin
sections are provided as low-resolution RGB JPEG images (96 dpi, 275 x 183 pixels). The goal was to
classify them into four categories: augite, biotite, olivine, and plagioclase. Despite the seemingly
simple task, the classification proved challenging due to the morphological similarities among
minerals and the effects of corrosion and alteration.

Before performing any automatic classification test with the Mycelial_Net model, we conducted
a preliminary analysis on a subset of selected mineral thin-section images to extract key structural
features through ResNet model. This step is designed to illustrate how our approach identifies and
quantifies petrographic structures, even in low-quality images. The original thin-section images were
deliberately kept at low resolution to demonstrate that the segmentation and edge detection
algorithms are robust and effective under suboptimal imaging conditions. Figure 2 shows some
example of thin section images used in this test.

Figure 2. Few illustrative examples of thin section images. From left to right: augite, biotite, olivine,

plagioclase.

Each image is first converted to grayscale to simplify intensity-based analysis. Edge detection is
then performed using the Sobel filter, a classical gradient-based operator that highlights regions of
rapid intensity change. This process effectively identifies the boundaries of mineral grains and
microstructures, allowing the algorithm to capture essential structural information. Following edge
detection, connected component labeling is applied to segment contiguous regions based on the
detected edges. This labeling provides a clear delineation of individual mineral domains and
quantifies the number of distinct structures within the image.

High-resolution images (500-600 dpi) are successively generated for visual inspection, showing
the original image alongside the detected edges and segmented regions. This approach not only
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provides qualitative validation of the feature extraction process but also allows precise visual
comparison across samples. For quantitative analysis, statistical metrics such as the mean and
standard deviation of edge intensity, as well as the total number of segmented regions, are computed
for each image (here not shown).

Integrating this feature extraction workflow with Myecelial_Net's adaptive training pipeline
creates a comprehensive methodology for mineral image analysis. The model leverages the extracted
structural features to enhance classification performance while simultaneously allowing detailed
exploration of petrographic characteristics. By quantifying edges and segmented regions, we can
investigate correlations between structural complexity and mineralogical properties, opening
avenues for deeper insights in petrography and mineral analysis.

This combination of grayscale conversion, Sobel edge detection, and connected component
segmentation, ensures that the methodology is robust, interpretable, and effective even when starting
from low-quality images. Illustrative examples of the extracted features and segmented regions are
presented in Figures 3, highlighting the workflow’s ability to reliably capture essential mineral
structures prior to classification.

Figure 3. Original, low resolution thin section image of a biotite sample (left), edge detection (center), segmented

regions (right).

4. Test: Adaptive Training and Classification with Mycelial_Net

In this part of test, mineral images were organized in a directory structure compatible with Keras
ImageDataGenerator (Python library). As anticipated earlier, the dataset was split into training (from
40% to 80%) and validation subsets to monitor generalization performance.

4.1. The Model:

The Mycelial_Net architecture, in this case, consists of an initial convolutional layer (32 filters,
3x3 kernel, ReLU activation), followed by a max-pooling layer, a flattening operation, a fully
connected dense layer with an adaptive number of neurons, and a Softmax output layer
corresponding to the number of classes. The model was compiled with the Adam optimizer,
categorical cross-entropy loss, and accuracy as the performance metric.

4.2. Adaptive Hyperparameter Strategy:

A custom Keras callback was implemented to adjust hyperparameters dynamically during
training. Key hyperparameters—including the number of dense neurons, convolutional filters,
dropout rate, and learning rate—were adapted based on validation accuracy trends. Specifically, if
validation accuracy remained below 0.8, the network increased neurons and filters slightly, and
incrementally adjusted the dropout rate. In this simple test, the learning rate decayed exponentially
to stabilize convergence.

4.3. Training Procedure:

The network was trained for 20 epochs, with the adaptive hyperparameter callback actively
modifying the model at the end of each epoch. Training and validation metrics were recorded, along
with the evolution of network hyperparameters, to allow in-depth analysis of the learning dynamics.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.4. Evaluation:

Post-training evaluation was performed on the validation set. Predicted labels were compared
to ground truth classes, and a detailed classification report—including precision, recall, and F1-
score—was generated. This provided a quantitative assessment of model performance across all
mineral classes.

4.5. Results and Visualization:

Comprehensive visualizations were produced, including accuracy and loss over epochs,
evolution of dense layer neurons, adaptive learning rate adjustments, convolutional filter
modifications, dropout rate evolution. High-resolution plots were saved for detailed inspection of
the network’s adaptive behavior.

Figures 4 and 5 illustrate the adaptive evolution of model parameters across epochs, highlighting
how Mycelial_Net reallocates computational capacity for challenging classes. These enhancements
demonstrate that the biologically inspired adaptive mechanisms embedded in Mycelial Net provide
substantial gains in accuracy, robustness, and generalization over traditional CNN architectures,
confirming its effectiveness for complex mineral image classification tasks.

Adaptive Learning Rate Conv Filters Evolution
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Figure 4. From top right to bottom left panels: adaptive learning rate vs. epochs; convolutional filter evolution;

normalized training and validation accuracy; normalized training and validation loss vs. epochs.

Neuron Evolution Dropout Rate Evolution

Neuro
8 3 8
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e o
& 8

Figure 5. Left: neuron number vs. epochs; right dropout evolution with epochs.

Figure 6 shows four representative test cases of mineral classification obtained with the
Mycelial_Net model. Each panel reports the true prevalent mineral class, the predicted mineral class,
and the corresponding classification probability. In all six examples, the classification is excellent,
with probabilities very close to 100%. This demonstrates the remarkable ability of the Mycelial Net
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model, combined with ResNet, to extract and recognize robust discriminative features from the input

data. The high accuracy is explained by several factors:

- Biologically inspired architecture — The Mycelial_Net model integrates multiple hidden layers
connected through mycelium-like blocks, which combine linear and non-linear transformations
in a way that enhances information flow and feature abstraction.

- Resilience to noise and degradation — As explained earlier, our Mycelial Net model is
empowered by deep feature extraction from the ResNet backbone with adaptive hidden layers.
The model captures subtle textural and structural patterns of minerals that remain invariant
under poor image quality.

- Progressive self-adaptation — During training, the network dynamically grows by adding new
hidden layers and neurons when the learning stagnates. This process allows the model to
adaptively refine its internal representations and reach optimal classification performance.

True prevalent mineral: Augite True prevalent mineral: Biotite
Predicted prevalent mineral: Augite Predicted prevalent mineral: Biotite
Prediction probability: 98% Prediction probability: 97%

True prevalent mineral: Olivine True prevalent mineral: Plagioclase
Predicted prevalent mineral: Olivine Predicted prevalent mineral: Plagioclase
Prediction probability: 98% Prediction probability: 100%

Figure 6. Representative examples of image classification results.

In summary, figures 4-6 highlights how the Mycelial Net model achieves near-perfect
classification accuracy even under challenging conditions, confirming its robustness and
generalization capability for mineral recognition tasks.

5. Discussion

In the tests presented in the previous section, Mycelial Net, combined with ResNet,
demonstrates not only high classification accuracy but also self-adaptive behavior reminiscent of
biological fungal mycelium. Its modular and plastic structure enables it to adapt to variations in input
data and structural anomalies. Unlike rigid CNNs, Mycelial Net reconfigures its pathways to
improve feature propagation and reduce redundancy.

The adaptive Mycelial Net demonstrated a progressive increase in validation accuracy,
accompanied by controlled loss quick decay. Dense layer neurons and convolutional filters increased
adaptively, while the learning rate decayed smoothly, reflecting the dynamic adjustment strategy.
These mechanisms allowed the network to maintain robust learning while minimizing overfitting.
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The Myecelial_Net framework effectively integrates adaptive hyperparameter tuning with RseNet
and “conventional” CNN-based classification. This adaptive approach enhances model performance
on mineral image datasets, providing a flexible and resilient architecture suitable for complex,
heterogeneous visual data (Table 2). In fact, the model dynamically adjusts its hyperparameters
during training to enhance validation performance. It outperforms the standard CNN baseline,
particularly in classes where the baseline struggled. Validation accuracy improved from ~75-78%
(baseline CNN) to over 95-100% with Mycelial Net. Fl-scores indicate more balanced class
performance, with significant gains in previously underperforming classes (we briefly recall the
following definitions: Accuracy defines the proportion of correctly classified samples over the total
number of samples. Precision represents the proportion of correctly predicted positive samples over
all samples predicted as positive. Recall is also called Sensitivity or True Positive Rate and is like
Precision but slightly different. It corresponds to the proportion of correctly predicted positive
samples over all actual positive samples. Finally, F1-score is the harmonic mean of Precision and
Recall, providing a balance between the two).

Furthermore, adaptive hyperparameter evolution (number of hidden layers and neurons, conv
filters, dropout, learning rate) shows strategic resource allocation, reducing overfitting and
improving generalization. Loss curves demonstrate faster convergence and stability.

Table 2. Quantitative Comparison.

Model Validation accuracy Average F1-Score
Baseline CNN <0.78 <0.76
Mycelial_Net >0.95 >0.95

Thanks to its structural flexibility and biological inspiration, the Mycelial_Net framework can
be effectively extended to a wide range of geoscientific applications. Beyond thin-section image
classification, it can address diverse problems typically tackled with deep neural networks, including
mineral resource exploration, well log analysis, lithofacies classification, and other complex tasks in
subsurface characterization and geoscientific data interpretation [14-22]. These domains constitute
further areas of ongoing application of the Mycelial_Net model and will be examined in detail in
separate publications.

6. Conclusions

In this work, we applied Mycelial Net, a deep neural network inspired by the structural and
adaptive properties of fungal mycelium, to the classification and structural analysis of mineral images
in thin sections. Compared to baseline CNN models, Mycelial Net demonstrates significant
advancements in the following crucial points. First, validation accuracy improved from ~78% in
baseline CNNs to over 95%, confirming superior feature extraction and generalization. Second,
underrepresented mineral classes exhibit higher Fl-scores, indicating more uniform predictive
reliability. Third, Mycelial Net demonstrated high dynamic adaptation: key hyperparameters such
as number of neurons, convolutional filters, dropout rates, and learning rates evolved during
training, reducing overfitting and improving convergence. Furthermore, this model shown faster
convergence: loss curves show Mycelial Net quickly reaches stable minima. High performance
across multiple mineral datasets highlights generalizability and applicability to other imaging
domains.
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