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Abstract 

This study presents the application of Mycelial_Net, a biologically inspired deep learning 
architecture, to the analysis and classification of mineral images in thin section under optical 
microscopy. The model, inspired by the adaptive connectivity of fungal mycelium networks, was 
trained on a test mineral image database to extract structural features and to classify various minerals. 
The performance of Mycelial_Net was evaluated in terms of accuracy, robustness, and adaptability, 
and compared against conventional convolutional neural networks. The results demonstrate that 
Mycelial_Net, properly integrated with Residual Networks (ResNets), offers superior analysis 
capabilities, interpretability, and resilience to noise and artifacts in petrographic images. This 
approach holds promise for advancing automated mineral identification and geological analysis 
through adaptive AI systems. 
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1. Introduction 

Automated analysis and classification of minerals in thin sections is a challenging and essential 
task in petrography, mineral exploration, and geoscientific research. Traditional manual methods are 
time-consuming, subjective, and require extensive expertise. Recent advances in deep learning, 
particularly convolutional neural networks (CNNs) and Residual Networks (ResNets), have shown 
potential in image-based mineral classification [1–9]. However, these methods often lack adaptability, 
interpretability, and robustness in the presence of image imperfections such as scratches, lighting 
variability, and inclusion artifacts. To address these limitations, recently, we have introduced novel 
deep learning methodologies enhanced with self-awareness mechanisms, enabling a significantly 
greater flexibility in tackling automatic classification problems [10,11]. In this context, self-awareness 
refers to the model’s ability to continuously monitor its own performance during training and 
inference, and to adapt its internal structure accordingly. Unlike conventional neural networks, 
which passively follow fixed architectures and pre-set optimization rules, a self-aware deep neural 
network dynamically adjusts not only its weights but also its connectivity patterns, hyperparameters, 
and decision strategies in real time. This adaptive capability is inspired by the way biological 
systems—such as the human brain or fungal mycelium—evaluate feedback from their environment, 
detect changes or anomalies, and modify their internal organization to maintain or improve 
functionality. 

We have obtained further improvements in deep learning by introducing Mycelial_Net [12], a 
novel deep learning architecture inspired by the adaptive and decentralized intelligence of fungal 
mycelium [13]. In nature, the fungal mycelium operates as a living, interconnected network of hyphae 
that explores the environment, senses chemical and physical signals, and dynamically reallocates 
resources to optimize survival and growth. This network effectively discriminates between nutrient 
sources, toxic compounds, obstacles, and potential symbiotic partners—performing a form of 
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ecological classification based on distributed perception, chemical recognition, and adaptive 
memory. Its decision-making process is not centralized but emerges from the interaction of many 
local nodes, allowing the system to remain highly robust and self-organizing, even under variable 
and imperfect conditions. Mycelial_Net is designed to replicate these biological principles in the 
digital domain by dynamically adjusting its internal connectivity during training, mimicking the 
growth, pruning, and plasticity of mycelial networks. 

In this work, we apply Mycelial_Net to the classification of mineral images in thin sections, 
compare its performance against standard CNN architectures, and demonstrate its advantages in 
robustness and structural self-adaptation. Our basic hypothesis is that Mycelial_Net model can be 
applied to optimize mineral analysis and classification of mineral thin sections while also adapting 
to structural irregularities, extracting crystalline boundaries, and recognizing patterns in complex 
and imperfect datasets (including low resolution images). To better clarify these concepts, the 
following is a side-by-side analogy table that summarizes our work-hypothesis. 

Table 1. Biological Mycelium vs. Mycelial_Net computational analogy. 

Biological Mycelium Mycelial_Net Architecture Functional Analogy 
Network of hyphae forming an 
interconnected, decentralized 

structure 

Graph-like network of nodes 
with dynamically reconfigurable 

connections 

Distributed processing 
without a central 

controller 
Environmental sensing via 

chemical, physical, and 
electrical signals 

Input feature “sensing” via 
convolutional filters and 

structural feature extractors 

Pattern detection and 
feature recognition from 

raw data 
Nutrient discrimination 

between usable resources and 
harmful substances 

Adaptive weighting between 
relevant and irrelevant features 

Selective amplification of 
informative signals 

Resource allocation to growth 
zones or symbiotic interfaces 

Dynamic connectivity adjustment 
to strengthen high-utility paths 

Prioritization of 
pathways that improve 

classification 
Memory through structural 
changes in hyphal pathways 

Plasticity in network topology 
and hyper-parameters during 

training 

Long-term retention of 
learned decision patterns 

Resilience to local damage due 
to redundancy in the network 

Fault tolerance to image 
imperfections and noisy inputs 

Robust performance 
under imperfect or 

incomplete data 
Collaborative symbiosis with 

plants via mycorrhizal interfaces 
Integration with other models  

(e.g., ResNet, CNN, SVM 
hybrids) 

Cooperative knowledge 
sharing across 
architectures 

In this paper we intend to show that this analogy is not merely metaphorical but functionally 
relevant in the problem of image analysis/classification (as well as in other relevant domains). In 
biological mycelium, decision-making emerges from the continuous interaction of local sensing, 
adaptive growth, and structural reconfiguration, enabling the organism to solve complex survival 
problems without a centralized brain. Mycelial_Net follows the same principle in the computational 
domain: classification accuracy and robustness are achieved not solely through fixed parameter and 
hyperparameter optimization, but through continuous adaptation of the network’s topology and its 
entire architecture during training. This structural plasticity allows the model to retain previously 
acquired knowledge while reshaping itself to meet new challenges, effectively combining memory 
and adaptability. By embedding these biologically inspired mechanisms into a deep learning 
framework and integrating it with consolidated Residual Networks (ResNets) [8] we show that 
Mycelial_Net bridges the gap between conventional CNN-based approaches and truly self-
organizing, self-aware computational systems. Figure 1 summarizes, schematically, the entire 
workflow. 
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Figure 1. Integrated ResNet/Mycelial_Net workflow. 

The subsequent methodological section presents a comprehensive discussion of each step within 
the workflow. 

2. Methodology 

2.1. Basic Principles 

The Mycelial_Net model employs a mycologically inspired architecture that emulates the 
adaptive behavior of fungal mycelial systems [13]. The main elements are, schematically the 
following: 

“MycelialLayer” – A dynamic layer that optimizes learning by pruning weak connections and 
forming new ones during training. 

Dynamic Connectivity – A topology-restructuring mechanism, modeled after the exploratory 
growth of network, enabling continual adaptation. 

Self-Monitoring Mechanism – A performance-driven adaptation process, inspired by biological 
self-awareness that adjusts connectivity based on metrics such as accuracy, ensuring responsiveness 
to changing conditions and datasets. 

Exploration Factor – A module that regulates the exploration–exploitation trade-off in 
hyperparameter space, steering the model toward optimal configurations. 

The model uses time-dependent weight matrices controlled by binary masks, evolving 
connectivity ratios, key hyperparameters and cross-entropy loss for multi-class classification. Higher 
loss gradients increase connectivity, mimicking fungal mycelial expansion toward regions of high 
information content in the mineral feature space. The following is a more detailed quantitative 
formulation of these concepts. This is readapted to the image classification problem from previous 
research [12]. 

2.2. Formalization of Myclelial_Net model 

Let 𝐗𝐗 ∈ 𝑹𝑹𝐦𝐦×𝐧𝐧  be the input data matrix, where 𝑚𝑚 is the number of mineral thin section samples 
and n is the number of extracted petrographic features (e.g., mineralogical appearance, grain size 
distribution, texture descriptors, colorimetric attributes, or other quantitative image analysis metrics). 

Let 𝐘𝐘 ∈ 𝑹𝑹𝐦𝐦×𝐤𝐤  the corresponding labels for classification with k output classes (for instance, 
Plagioclase, Quartz, K-feldspar, etc.). 

Each input passes through multiple layers of dynamically changing artificial neuronal 
connections. Unlike standard artificial neural networks with fixed connections paths and fixed 
hyperparameters, Mycelial_Net introduces a time-dependent weight matrix, 𝑊𝑊𝑡𝑡, that dynamically 
adapts: 

𝑾𝑾𝒕𝒕 = 𝑴𝑴𝒕𝒕 ⊙ 𝑾𝑾𝒕𝒕−𝟏𝟏  (1) 

Input Block 

Mineral thin 
sections images 

Resizing and RGB 
normalization

Standardization 
(mean, std scaling)

Augmentation 
(rotation, flip, color 

jitter, noise)

Tensor conversion 
and batching

ResNet Block

Pretrained ResNet CNN 
“backbone”

Optimized feature extraction 

Early hidden layers capture 
low-level visual cues (edges, 

textures, colors)

Deeper hidden layers 
capture high-level structures 
(shapes, mineral patterns).

Production of a multi-scale 
feature image representation

Mycelial Block

Self-adaptive architecture 
network evolution based on 
classification performances

Dropout and Regularization 
(overfitting reduction by 

randomly deactivating neurons 
during training)

Fully Connected Classifier
(iterative/self adaptive training, 
aggregated features are passed 

through a final dense layer)

Probability distribution across the 
mineral classes

Output Block

Softmax activation 

Conversion of raw scores 
(logits) into class probabilities

Probabilistic image 
classification

Confidence levels for each 
mineral class

Performance evaluation
(accuracy, precision …)

Confusion matrix, loss 
function trends vs. epochs …
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where: 
Wt is the weight matrix at time t, 
Wt-1 is the weight matrix at the previous time step t-1, 
Mt ∈ {0,1} n×d is a binary mask matrix controlling active connections at time t, 
𝑛𝑛 is the number of features, 
d is the number of neurons in the layer. 
⊙ represents the Hadamard (elementwise) product, 

The mask Mt is updated dynamically based on a connectivity ratio ct: 

Mt = 1(Ut < ct) (2) 
where Ut is a uniform random matrix. The formula (2) means that the mask Mt is updated by 
comparing each element of a random matrix Ut with the connectivity ratio ct. Those elements that are 
smaller than ct are “activated” (set to 1), and others are “deactivated” (set to 0). By default, ct is a 
scalar (global density control: each element of Ut is compared with ct). More advanced ct can be a 
matrix (local adaptive connectivity). This dynamic update of the mask can be used to model how 
elements of a system are connected or disconnected in response to a changing connectivity threshold. 

What do formulas (1) and (2) mean in practice? The connection graph is not fixed but changes 
over time: links can appear or disappear depending on the threshold. The parameter ct controls the 
density of the network: a higher value implies more active connections; a lower value implies a sparser 
network. The random noise (Ut) ensures variability in connections being activated/deactivated: this 
creates structural diversity and plasticity. 

Why is this useful in Mycelia_Net model? This point can be fully understood through the 
analogy with natural mycelium: fungal networks in the soil do not have permanent connections; 
filaments can break or regrow depending on environmental conditions. The benefit is high resilience: 
a model with dynamic connectivity explores multiple configurations instead of getting locked into a 
single architecture. The key concept is “Self-organization”: the threshold ct can depend on system 
feedback-based entropy values, network performance, loss function, misfit, reward (in case of 
reinforcement learning mechanisms). Consequently, the network learns not only the weights (as it 
happens in standard neural networks), but also how connected it should be at any moment. 

In short, formula (1) and (2) introduce a structural plasticity mechanism. The network does not 
just adapt its weights, but also its entire topology, reconfiguring dynamically. It is like giving the 
model the ability to contract or expand depending on context, very similar to how a living biological 
network behaves. 

We remark that the connectivity ratio ct evolves over training: 

𝒄𝒄𝒕𝒕+𝟏𝟏 = 𝒄𝒄𝒕𝒕 + 𝜼𝜼𝜼𝜼𝑳𝑳𝒕𝒕  (3) 

where: 
η is the learning rate, 
𝜵𝜵𝑳𝑳𝒕𝒕 is the gradient of the loss function L at time t. 

The total loss function is 

𝑳𝑳𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =  −  ∑ ∑ 𝒚𝒚𝒊𝒊𝒊𝒊𝐥𝐥𝐥𝐥𝐥𝐥 (𝒚𝒚�𝒊𝒊𝒊𝒊)𝒌𝒌
𝒋𝒋=𝟏𝟏

𝒎𝒎
𝒊𝒊=𝟏𝟏     (4) 

where: 
m is the number of samples (e.g., thin section mineral samples), as state earlier, 
k is the number of output classes (e.g., types of minerals), as state earlier, 
𝒚𝒚𝒊𝒊𝒊𝒊 is the true label (one-hot encoded, where 𝒚𝒚𝒊𝒊𝒊𝒊 = 𝟏𝟏 for the true class and 𝒚𝒚𝒊𝒊𝒊𝒊 = 𝟎𝟎 otherwise), 
𝒚𝒚�𝒊𝒊𝒊𝒊 is the predicted probability for the j-th class for the i-th sample, computed using the Softmax 
function. 

We remind that the Softmax function is a mathematical function commonly used in machine 
learning, particularly in multi-class classification problems. It takes a vector of real numbers as input 
and converts it into a probability distribution, where each element is in the range (0, 1) and the sum 
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of all elements equals 1. In this case, we compute the Softmax for each sample and class. The final 
loss is the sum over all samples and classes. 

Coming back to the computation of the gradient of the loss function, in our case, higher gradients 
increase Mycelial_Net connectivity, mimicking the fungal mycelial network’s expansion in response 
to environmental stimuli. 

For a given neuronal layer l, the activation 𝑯𝑯𝒕𝒕
𝒍𝒍  at time t is computed as: 

𝑯𝑯𝒕𝒕
𝒍𝒍 =  𝝈𝝈�𝑯𝑯𝒕𝒕

𝒍𝒍−𝟏𝟏 𝑾𝑾𝒕𝒕
𝒍𝒍  𝒃𝒃𝒍𝒍�  (5) 

where: 
𝑯𝑯𝒕𝒕

𝒍𝒍−𝟏𝟏 is the activation from the previous neuronal layer, 
𝑾𝑾𝒕𝒕

𝒍𝒍  is the dynamically adjusted weight matrix, 
𝒃𝒃𝒍𝒍 is the bias vector, 
𝝈𝝈 is an activation function (e.g., Rectified Linear Unit, briefly ReLU, or sigmoid, as well as other 
activation functions settable by the user). 

The output of the final layer is computed as: 

𝐘𝐘� = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 �𝑯𝑯𝒕𝒕
(𝑷𝑷) 𝑾𝑾𝒕𝒕

(𝑷𝑷) + 𝒃𝒃(𝑷𝑷)�  (6) 

where P is the total number of layers. 
This equation intuitively means that the final output of the neural network is computed in a 

multi-class classification problem. The model’s final layer uses weights and biases to compute raw 
scores (logits), and the Softmax function is then applied to transform these raw scores into a 
probability distribution, making it suitable for classification tasks. The network minimizes a standard 
cross-entropy loss for classification. Additionally, we introduce a regularization term to encourage 
network sparsity. The gradient update rule for weights is given by: 

𝑾𝑾𝒕𝒕+𝟏𝟏 =  𝑾𝑾𝒕𝒕 −  𝜶𝜶 𝛛𝛛𝑳𝑳𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝛛𝛛𝑾𝑾𝒕𝒕

  (7) 

This equation allows optimizing the weights and hyperparameters in the Mycelial_Net model 
by moving them in the direction that reduces the total loss function. By iteratively applying this rule, 
the model learns to make better predictions. The learning rate 𝛼𝛼 controls how quickly or slowly the 
entire architecture is updated in each iteration. 

Finally, to balance exploration and exploitation of the parameters and hyper-parameters space, 
we introduce an entropy-based connectivity adjustment: 

𝒄𝒄𝒕𝒕+𝟏𝟏 = 𝒄𝒄𝒕𝒕 + 𝜸𝜸𝜸𝜸(𝑿𝑿) (8) 
where H(X) is the entropy of the activations: 

𝑯𝑯(𝑿𝑿) = − ∑ 𝐩𝐩𝒊𝒊𝒍𝒍𝒍𝒍𝒍𝒍 𝐩𝐩𝒊𝒊
𝑵𝑵
𝒊𝒊=𝟏𝟏   (9) 

This is the standard formula for the Shannon entropy, which measures the uncertainty in the 
system’s state. It is used here to measure the “spread” or uncertainty in the activations, guiding the 
network’s adaptability. Higher entropy leads to increased connectivity attempting to reduce 
uncertainties, mimicking mycelial expansion in high-information regions. 

2.3. Empowering Myclelial_Net Model with Residual Network 

ResNet (Residual Network) is a deep convolutional neural network architecture that introduced 
the concept of residual connections (also known as skip connections) [7,8]. These connections enable 
the network to bypass one or more layers by directly passing information forward. The main 
advantage of this mechanism is that it allows ResNet to train very deep models (with 50, 100, or even 
more layers) without being hindered by the vanishing gradient problem, which typically makes 
optimization of deep architectures unstable and inefficient. We have widely discussed in a previous 
dedicated paper [9] the benefits of ResNet in the context of mineral image classification. When 
employed as a backbone, ResNet serves as a highly effective feature extractor, capable of learning 
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hierarchical representations of increasing complexity. Schematically, the advantages offered by 
ResNet in the process of automatic feature extraction can be summarized as follows: 
- Early convolutional layers capture low-level visual features such as edges, textures, and simple 

color transitions. 
- Intermediate layers progressively detect more complex structures, such as mineral grain 

boundaries, morphological patterns, and characteristic textures. 
- Deeper layers encode high-level, abstract representations, including shapes, compositional 

structures, and object-level features that are essential for distinguishing among different 
minerals. 

- The residual design stabilizes the optimization process and increases efficiency, ensuring that 
very deep models remain trainable and resistant to degradation. 

In the proposed Mycelial_Net framework, the ResNet backbone provides these rich, multi-level 
representations of mineral images. The mycelial blocks then refine and reorganize these features 
through their adaptive connectivity, enhancing the discriminative power of the overall system. This 
synergy allows the network to achieve robust and accurate classification, even when dealing with 
challenging datasets characterized by noise, variability, or low resolution. 

3. Image Analysis, Edge Detection and Segmentation 

To verify the effectiveness of Mycelial_Net model for thin section images analysis, we used a 
public dataset of approximately 200 thin sections of rocks and minerals (see “Data Availability 
Statement” below). These images were compiled to build a labeled sub-dataset (ranging from 40% to 
80% of the total data set) for training Mycelial_Net, later applied to classify test samples. The thin 
sections are provided as low-resolution RGB JPEG images (96 dpi, 275 × 183 pixels). The goal was to 
classify them into four categories: augite, biotite, olivine, and plagioclase. Despite the seemingly 
simple task, the classification proved challenging due to the morphological similarities among 
minerals and the effects of corrosion and alteration. 

Before performing any automatic classification test with the Mycelial_Net model, we conducted 
a preliminary analysis on a subset of selected mineral thin-section images to extract key structural 
features through ResNet model. This step is designed to illustrate how our approach identifies and 
quantifies petrographic structures, even in low-quality images. The original thin-section images were 
deliberately kept at low resolution to demonstrate that the segmentation and edge detection 
algorithms are robust and effective under suboptimal imaging conditions. Figure 2 shows some 
example of thin section images used in this test. 

    

Figure 2. Few illustrative examples of thin section images. From left to right: augite, biotite, olivine, 
plagioclase. 

Each image is first converted to grayscale to simplify intensity-based analysis. Edge detection is 
then performed using the Sobel filter, a classical gradient-based operator that highlights regions of 
rapid intensity change. This process effectively identifies the boundaries of mineral grains and 
microstructures, allowing the algorithm to capture essential structural information. Following edge 
detection, connected component labeling is applied to segment contiguous regions based on the 
detected edges. This labeling provides a clear delineation of individual mineral domains and 
quantifies the number of distinct structures within the image. 

High-resolution images (500–600 dpi) are successively generated for visual inspection, showing 
the original image alongside the detected edges and segmented regions. This approach not only 
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provides qualitative validation of the feature extraction process but also allows precise visual 
comparison across samples. For quantitative analysis, statistical metrics such as the mean and 
standard deviation of edge intensity, as well as the total number of segmented regions, are computed 
for each image (here not shown). 

Integrating this feature extraction workflow with Mycelial_Net’s adaptive training pipeline 
creates a comprehensive methodology for mineral image analysis. The model leverages the extracted 
structural features to enhance classification performance while simultaneously allowing detailed 
exploration of petrographic characteristics. By quantifying edges and segmented regions, we can 
investigate correlations between structural complexity and mineralogical properties, opening 
avenues for deeper insights in petrography and mineral analysis. 

This combination of grayscale conversion, Sobel edge detection, and connected component 
segmentation, ensures that the methodology is robust, interpretable, and effective even when starting 
from low-quality images. Illustrative examples of the extracted features and segmented regions are 
presented in Figures 3, highlighting the workflow’s ability to reliably capture essential mineral 
structures prior to classification. 

 
Figure 3. Original, low resolution thin section image of a biotite sample (left), edge detection (center), segmented 
regions (right). 

4. Test: Adaptive Training and Classification with Mycelial_Net 

In this part of test, mineral images were organized in a directory structure compatible with Keras 
ImageDataGenerator (Python library). As anticipated earlier, the dataset was split into training (from 
40% to 80%) and validation subsets to monitor generalization performance. 

4.1. The Model: 

The Mycelial_Net architecture, in this case, consists of an initial convolutional layer (32 filters, 
3×3 kernel, ReLU activation), followed by a max-pooling layer, a flattening operation, a fully 
connected dense layer with an adaptive number of neurons, and a Softmax output layer 
corresponding to the number of classes. The model was compiled with the Adam optimizer, 
categorical cross-entropy loss, and accuracy as the performance metric. 

4.2. Adaptive Hyperparameter Strategy: 

A custom Keras callback was implemented to adjust hyperparameters dynamically during 
training. Key hyperparameters—including the number of dense neurons, convolutional filters, 
dropout rate, and learning rate—were adapted based on validation accuracy trends. Specifically, if 
validation accuracy remained below 0.8, the network increased neurons and filters slightly, and 
incrementally adjusted the dropout rate. In this simple test, the learning rate decayed exponentially 
to stabilize convergence. 

4.3. Training Procedure: 

The network was trained for 20 epochs, with the adaptive hyperparameter callback actively 
modifying the model at the end of each epoch. Training and validation metrics were recorded, along 
with the evolution of network hyperparameters, to allow in-depth analysis of the learning dynamics. 
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4.4. Evaluation: 

Post-training evaluation was performed on the validation set. Predicted labels were compared 
to ground truth classes, and a detailed classification report—including precision, recall, and F1-
score—was generated. This provided a quantitative assessment of model performance across all 
mineral classes. 

4.5. Results and Visualization: 

Comprehensive visualizations were produced, including accuracy and loss over epochs, 
evolution of dense layer neurons, adaptive learning rate adjustments, convolutional filter 
modifications, dropout rate evolution. High-resolution plots were saved for detailed inspection of 
the network’s adaptive behavior. 

Figures 4 and 5 illustrate the adaptive evolution of model parameters across epochs, highlighting 
how Mycelial_Net reallocates computational capacity for challenging classes. These enhancements 
demonstrate that the biologically inspired adaptive mechanisms embedded in Mycelial_Net provide 
substantial gains in accuracy, robustness, and generalization over traditional CNN architectures, 
confirming its effectiveness for complex mineral image classification tasks. 

 

Figure 4. From top right to bottom left panels: adaptive learning rate vs. epochs; convolutional filter evolution; 
normalized training and validation accuracy; normalized training and validation loss vs. epochs. 

  

Figure 5. Left: neuron number vs. epochs; right dropout evolution with epochs. 

Figure 6 shows four representative test cases of mineral classification obtained with the 
Mycelial_Net model. Each panel reports the true prevalent mineral class, the predicted mineral class, 
and the corresponding classification probability. In all six examples, the classification is excellent, 
with probabilities very close to 100%. This demonstrates the remarkable ability of the Mycelial_Net 
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model, combined with ResNet, to extract and recognize robust discriminative features from the input 
data. The high accuracy is explained by several factors: 
- Biologically inspired architecture – The Mycelial_Net model integrates multiple hidden layers 

connected through mycelium-like blocks, which combine linear and non-linear transformations 
in a way that enhances information flow and feature abstraction. 

- Resilience to noise and degradation – As explained earlier, our Mycelial_Net model is 
empowered by deep feature extraction from the ResNet backbone with adaptive hidden layers. 
The model captures subtle textural and structural patterns of minerals that remain invariant 
under poor image quality. 

- Progressive self-adaptation – During training, the network dynamically grows by adding new 
hidden layers and neurons when the learning stagnates. This process allows the model to 
adaptively refine its internal representations and reach optimal classification performance. 

 

Figure 6. Representative examples of image classification results. 

In summary, figures 4-6 highlights how the Mycelial_Net model achieves near-perfect 
classification accuracy even under challenging conditions, confirming its robustness and 
generalization capability for mineral recognition tasks. 

5. Discussion 

In the tests presented in the previous section, Mycelial_Net, combined with ResNet, 
demonstrates not only high classification accuracy but also self-adaptive behavior reminiscent of 
biological fungal mycelium. Its modular and plastic structure enables it to adapt to variations in input 
data and structural anomalies. Unlike rigid CNNs, Mycelial_Net reconfigures its pathways to 
improve feature propagation and reduce redundancy. 

The adaptive Mycelial_Net demonstrated a progressive increase in validation accuracy, 
accompanied by controlled loss quick decay. Dense layer neurons and convolutional filters increased 
adaptively, while the learning rate decayed smoothly, reflecting the dynamic adjustment strategy. 
These mechanisms allowed the network to maintain robust learning while minimizing overfitting. 

True prevalent mineral: Augite
Predicted prevalent mineral: Augite
Prediction probability: 98%

True prevalent mineral: Biotite
Predicted prevalent mineral: Biotite
Prediction probability: 97%

True prevalent mineral: Olivine
Predicted prevalent mineral: Olivine
Prediction probability: 98%

True prevalent mineral: Plagioclase
Predicted prevalent mineral: Plagioclase
Prediction probability: 100%
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The Mycelial_Net framework effectively integrates adaptive hyperparameter tuning with RseNet 
and “conventional” CNN-based classification. This adaptive approach enhances model performance 
on mineral image datasets, providing a flexible and resilient architecture suitable for complex, 
heterogeneous visual data (Table 2). In fact, the model dynamically adjusts its hyperparameters 
during training to enhance validation performance. It outperforms the standard CNN baseline, 
particularly in classes where the baseline struggled. Validation accuracy improved from ~75-78% 
(baseline CNN) to over 95-100% with Mycelial_Net. F1-scores indicate more balanced class 
performance, with significant gains in previously underperforming classes (we briefly recall the 
following definitions: Accuracy defines the proportion of correctly classified samples over the total 
number of samples. Precision represents the proportion of correctly predicted positive samples over 
all samples predicted as positive. Recall is also called Sensitivity or True Positive Rate and is like 
Precision but slightly different. It corresponds to the proportion of correctly predicted positive 
samples over all actual positive samples. Finally, F1-score is the harmonic mean of Precision and 
Recall, providing a balance between the two). 

Furthermore, adaptive hyperparameter evolution (number of hidden layers and neurons, conv 
filters, dropout, learning rate) shows strategic resource allocation, reducing overfitting and 
improving generalization. Loss curves demonstrate faster convergence and stability. 

Table 2. Quantitative Comparison. 

Model Validation accuracy Average F1-Score 
Baseline CNN ≤ 0.78 ≤ 0.76 
Mycelial_Net ≥ 0.95 ≥ 0.95 

Thanks to its structural flexibility and biological inspiration, the Mycelial_Net framework can 
be effectively extended to a wide range of geoscientific applications. Beyond thin-section image 
classification, it can address diverse problems typically tackled with deep neural networks, including 
mineral resource exploration, well log analysis, lithofacies classification, and other complex tasks in 
subsurface characterization and geoscientific data interpretation [14–22]. These domains constitute 
further areas of ongoing application of the Mycelial_Net model and will be examined in detail in 
separate publications. 

6. Conclusions 

In this work, we applied Mycelial_Net, a deep neural network inspired by the structural and 
adaptive properties of fungal mycelium, to the classification and structural analysis of mineral images 
in thin sections. Compared to baseline CNN models, Mycelial_Net demonstrates significant 
advancements in the following crucial points. First, validation accuracy improved from ~78% in 
baseline CNNs to over 95%, confirming superior feature extraction and generalization. Second, 
underrepresented mineral classes exhibit higher F1-scores, indicating more uniform predictive 
reliability. Third, Mycelial_Net demonstrated high dynamic adaptation: key hyperparameters such 
as number of neurons, convolutional filters, dropout rates, and learning rates evolved during 
training, reducing overfitting and improving convergence. Furthermore, this model shown faster 
convergence: loss curves show Mycelial_Net quickly reaches stable minima. High performance 
across multiple mineral datasets highlights generalizability and applicability to other imaging 
domains. 
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