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Abstract: The reliable operation of power transmission networks depends on the timely detection and 

localization of faults. Fault classification and localization in electricity transmission networks can be 

challenging because of the complicated and dynamic nature of the system. In recent years, a variety of machine 

learning (ML) and deep learning algorithms (DL) have found applications in the enhancement of fault 

identification and classification within power transmission networks. Yet, the efficacy of these ML architectures 

is profoundly dependent upon the abundance and quality of training data at their removal. This intellectual 

explanation introduces an innovative strategy for the classification and pinpointing of faults within power 

transmission networks. This is achieved through the utilization of variational autoencoders (VAEs) to generate 

synthetic data, which in turn is harnessed in conjunction with ML algorithms. This approach encompasses the 

augmentation of the available dataset by infusing it with synthetically generated instances, contributing to a 

more robust and proficient fault recognition and categorization system. Specifically, we train the VAE on a set 

of real-world power transmission data and generate synthetic fault data that captures the statistical properties 

of real-world data. The machine learning algorithms recommended for this study include Support Vector 

Machine (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN) utilized the 

customized version of forward feature selection FFS were trained using synthetic data generated by a VAE. 

The results indicate exceptional performance, surpassing current state-of-the-art techniques, in the tasks of 

fault classification and localization. Notably, our approach achieves a remarkable 99% accuracy in fault 

classification and an extremely low mean absolute error (MAE) of 0.2 in fault localization. These outcomes 

represent a notable advancement compared to the most effective existing baseline methods. 

Keywords: Electrical power systems; Support vector machines; random Forest; machine learning; 

wavelet transform; transmission lines fault; Electrical power quality; short circuit; Classification of 

faults; localization of faults; decision trees; Ensemble learning; K-nearest neighbors 

 

1. Introduction 

Electrical power transmission networks are susceptible to faults and failures. The power 

transmission networks are now becoming extremely critical infrastructures that deliver electricity 

from power plants to households and businesses, and sudden abnormal conditions on these networks 

can cause power outages, damage costly equipment, and even serious safety hazards. The rapidly 

growing demand for electric power is rising and power transmission networks becoming 

increasingly complex. When an abnormal condition occurs due to different reasons like 

environmental, accidental, incidental, and aging factors are also responsible for the occurrence of 
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faults. Any type of abnormal condition on the transmission line can damage the system in both 

directions. Power transmission network defect analysis is a major study subject in power electronics, 

which is rapidly advancing, developing, and improving fault detection, classification, and 

localization methods, is crucial. This research domain demonstrates scholarly efforts to understand 

and resolve power transmission network faults [1]. In the field of power transmission networks, 

localization has faults that have much importance, and some methods are popular like signal 

processing techniques. Machine learning architectures stand on the proposal that systems be trained 

from statistics and recognize patterns with minimum human interruption [2]. Machine learning 

models can apply mathematical calculations without human intervention for complex very large 

datasets—over and over—faster and faster giving these algorithms to potential to categorize 

imminent in the datasets within the minimum time which could be impossible for humans. So, there 

will be a need for time to implement these novel kinds of machine learning algorithms to high-size 

data due to the development of intellectual electronics policies in smart grids, for providing a path 

for the implementation of accurate and precise ML architectures to classify the abnormal conditions 

[3]. Figure 1 shows the illustrative demonstration of two-terminal transmission networks for 

transmitting power from generating sources to multiple types of loads.  

 

Figure 1. Diagrammatic representation of the transmission line system. 

Different types of techniques used as wavelet-based, genetic algorithm (GA), PMU-based, and 

multi-information-based techniques are used for the categorization of abnormal conditions on power 

transfer lines and are not able to provide satisfactory results. Traditionally, fault diagnosis and 

location in power transmission networks have been performed using rule-based or model-based 

approaches that require a detailed understanding of the network topology and fault characteristics 

[4-5]. However, the advent of artificial intelligence approaches is replacing the trade-off 

methodologies, which are incredibly time-consuming, and their accuracy has limited the complexity 

of the networks and variability of fault conditions. Tracing abnormal conditions by implementing 

machine learning and deep learning architectures on power transfer networks is a research area that 

aims to develop accurate and efficient ML algorithms that can work under faulty conditions more 

accurately than trade-off planning techniques [6-7]. Figure 2 shows the high-level overview to 

diagnose faults on transmission lines.  

  

Figure 2. An Overview of TL Fault Detection and Localization in power transmission networks. 

Unfortunately, acquiring labeled data poses significant challenges and time constraints, 

particularly within power systems where abnormal conditions are infrequent and often 

unpredictable. To address this issue, recent studies have investigated the potential of utilizing 

synthetically generated data to enhance the recital of ML architectures. Specifically, generative 

adversarial networks (GANs) and variational encoders (VAEs) have been utilized to create artificial 
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data that closely aligns with the unique data distribution. [8]. VAEs are data creation models that can 

be trained as a low-dimensional representation of the input data and employed to generate new data 

points. In [9], the authors proposed a signal spectrum-based machine learning approach by 

employing diverse ML algorithms to diagnose the hidden patterns of abnormal conditions by 

predictive maintenance. In [10], the authors pay attention to diagnosing the faults in electrical 

machines by employing condition-monitoring techniques for creating datasets. In [11], the authors 

proposed a VAE-generated synthetic data-based fault diagnosis method for power transmission lines 

to augment the limited labeled data and achieve higher accuracy than traditional machine learning 

algorithms. In [12], researchers proposed a novel protection scheme for double-circuit transmission 

lines, aiming to classify shunt faults and accurately localize them through KNN. In [13], the authors 

recommended an approach using Variational Autoencoders (VAE) was put forward for fault 

diagnostics in wind turbines by utilizing synthetic data. Figure 3 shows the classification for all types 

of shunt faults that commonly take place on power transmission networks.  

 

Figure 3. Classification of fault types (series faults and short circuit faults) most commonly occurred 

in three-phase transmission lines . 

Table 1. The details of standardized approaches employed in this paper are given below:. 

Algorithm Type Use case Pros Cons 

Support vector 

machines 

Supervised Classification 

Regression 

Effective handling of 

outliers through 

kernel tricks 

Creates 

problems with 

noisy & large 

datasets 

Decision trees Supervised Classification 

Regression 

Highly interpretable 

and easy to 

implement 

Small changes in 

data creates 

different tree 

structures 

Random 

forests 

Supervised Classification 

Regression 

Implement ensemble 

averaging for 

predictions 

Less 

interpretable 

due to large no. 

of decision tress 
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K-Nearest 

neighbors 

Supervised Classification 

Regression 

Minimum 

assumptions for data 

distribution 

Computationally 

cost and 

sensitive of K 

1.1. Variational autoencoders 

Variational autoencoders (VAEs) are creative models for probabilistic data comprehension. 

These autoencoders can learn the probability distribution of input data and create new data points 

that match the training data. VAEs combine auto-encoders and probabilistic models for unsupervised 

learning tasks like data generation and dimensionality reduction. Image and audio recognition, along 

with natural language processing and data compression, make extensive use of these techniques. 

VAEs operate by acquiring a latent representation of the input data, which is a compressed 

representation capturing the most crucial features. This latent representation facilitates the 

generation of new data points closely resembling the original training data. [14]. The key innovation 

of VAEs is that they use variational inference to learn the latent representation of the data. This 

involves optimizing an objective function that balances the reconstruction error of the autoencoders 

with a regularization term that ensures the latent representation follows a desired probability 

distribution. The regularization term is usually chosen to be a normal distribution, which allows for 

efficient sampling of the latent space and generation of new data points. The VAE intends to optimize 

the following loss function: 

L = reconstruction_loss + KL_divergence_loss 

The reconstruction loss evaluates the variance among the input data, represented as x, and the 

renovate yield, denoted as x'. On the other hand, the KL divergence loss assesses the distinction 

between the distribution across the latent representation, z, and a predetermined prior distribution. 

1.2. Data synthesis 

Data synthesis or data augmentation is a common machine learning method for producing new 

training data from existing datasets. This strategy introduces variations not in the training data to 

improve model resilience. Sampling data class feature spaces improve classifier performance. 

Consequently, this technique aids in achieving better generalization and overall model performance. 

In domains where data is scarce, pattern recognition tasks can be particularly challenging due to 

limited variability in the available data, hindering the model's ability to learn effective generalization 

[15]. To address this issue in the classification task one can use data augmentation techniques to create 

additional variations within the existing training data while preserving labels. This can help to 

amplify the variance within the guidance classes and recover the model’s ability to generalize. It 

involves merging and integrating data from various sources often using statistical or computational 

methods to identify patterns, relationships and trends that may not be apparent from individual 

datasets alone. Data synthesis can be particularly useful in research where it can help to overcome 

the limitations of individual studies by combining the results of multiple studies to provide a 

comprehensive understanding of the particular topic.   

1.3. Forward feature selection 

Feature selection (FS) plays a vital role in supervised learning tasks by identifying pertinent 

features that exhibit strong correlations with the target variable, while simultaneously removing 

redundant ones. This crucial process helps reduce computational burdens and improve the accuracy 

of results. By eliminating redundant features, the selection process ensures a more efficient and 

effective analysis. In this research, forward feature selection is employed to pick a subset of inputs 

and eliminate redundant attributes. The process of forward feature selection commences with an 

initial empty set of features and progressively incorporates the most crucial ones. This is guided by 

a predetermined criterion, which could involve factors like the strongest correlation with the target 
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variables or the lowest p-values from statistical tests. This process continues until a stopping 

requirement like max features or model performance is fulfilled. This method iteratively computes 

the favorable features that exhibit the highest scores thereby avoiding overfitting. The evaluation 

function used in this study is stratified cross-validation because mostly synthesized generated 

datasets have imbalanced data and stratified CV can handle the imbalance in the datasets [16].  

3. Proposed Methodology and Contributions 

A lot of data is needed to develop good models for many machine-learning applications. 

Synthetic datasets are too important to generate when real-world data is scarce. Machine learning 

and deep learning algorithms can create synthetic data from existing datasets to guide ML 

architectures. The datasets train the ML model for fault classification and transmission line 

localization. No-missing datasets are ideal. Datasets train machine learning models. Classifying faults 

requires these ML models. After training the ML model, testing is carried out on the ML model to 

check the accuracy models. Figure 4 shows the proposed methodology for the classification and 

regression of abnormal circumstances in transmission-carrying networks. SVMs are useful for fault 

classification and localization, assisted by supervision to find the hyperplane for separating data 

point types [17]. They may considerably improve fault classification and localization processes to find 

the best hyperplane in n dimensions [18-19]. Define a maximum tree depth to minimize overfitting 

in decision tree classifiers that employ information gain and Gini index scoring algorithms. The 

system adjusts depth to balance generalization and training set performance [23]. Gini index, entropy, 

and CART determination analyze points [24-25]. Random Forest divides the dataset into training data 

(the “in bag” data) and validation data (the “out of the bag” data) to detect power system problem 

characteristics [26-28]. This unpredictability diversifies ensemble trees and improves algorithm 

performance [29-30]. KNN improves power transmission system fault management by detecting and 

categorizing defects [31]. Euclidean, Manhattan, and Mahalanobis distances are used to improve the 

K-nearest neighbors (KNN) method [32-33]. Approximate KNN approaches use indexing structures 

like KD-trees and Hash tables to reduce the search space and improve computing performance, 

especially for big, unbalanced datasets [34]. This paper has the following attractive contributions. 

• Introduction of variational autoencoders VAE for the generation of synthetic data for 

transmission lines fault classification and localization that has ability to improve the 

classification accuracy than traditional methods. 

• The technique is cost-effective and practical since it eliminates the requirement for a large 

volume of labeled real-world data. 

• Demonstrate the capacity to detect faults in real time and respond quickly, which can reduce the 

likelihood of power outages and improve grid dependability. 

• Highlight the system's ability to save time and effort by reducing the frequency of human 

monitoring and intervention. 

• Used proposed machine learning architectures with their optimum parameters through tuning 

for achieving the high accuracy as compared to traditional architectures.  

• Demonstrate how machine learning applications trained on this improved synthetically 

generated data can accurately classify power transmission network problems. 
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Figure 4. Flowchart of the proposed methodology for fault classification and localization. 

4. Description of the experimental setup and data generation  

The proposed methodology involves the utilization of experimental platforms encompassing 

both two-terminal and three-terminal transmission networks. The assessment of these transmission 

models entails the application of Aspen One-Liner, a productivity-enhancing tool geared toward 

analyzing and modeling transmission and distribution networks. This software effectively compiles 

replicated data by simulating diverse transmission network defects under varying operational 

conditions, facilitating the export of relay testing fault data. During instances of transmission network 

malfunction, post-fault voltages in all three phases (Va, Vb, and Vc) along with the ground mode are 

meticulously recorded for a single cycle at each terminal. In pursuit of generating real-time datasets, 

fault levels are manipulated by introducing alterations in various transmission network fault 

conditions across multiple locations. This real-time dataset is then employed to enhance the original 

dataset, resulting in the creation of a synthetic dataset. Table 5 presents comprehensive data sample 

information about a range of shunt faults that have occurred on both the two-terminal and three-

terminal transmission lines. Applying variational encoders (VAEs) to the list of defects within Table 

2 yields a total of 2183 synthetic samples, further enriching the dataset. 

Table 2. Fault sample information. 

Fault type Fault label 
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Line to ground AG 

Line to ground BG 

Line to ground CG 

Double-line-to-ground faults ABG 

Double-line-to-ground faults BCG 

Double-line-to-ground faults ACG 

Line-to-line faults AB 

Line-to-line faults BC 

Line-to-line faults AC 

Three-line-to-ground faults ABC-G 

VAEs are talented algorithms that can create synthetic data for double and triple power 

transmission networks for abnormal conditions classification and localization. This novel method 

uses Aspen One-liner data samples to construct a new dataset. VAEs, a sort of generative model, may 

encode input data into a compact latent space and decode it to generate novel data samples that 

closely match the original data distribution this strategy has shown promise in several applications, 

including resolving imbalanced class distributions by using synthetic examples [35]. Generating a 

synthetic dataset from the original dataset is extremely beneficial in critical situations where the 

existing dataset is small and imbalanced, and we want to generate some additional data to get better 

the recital of your ML model. After generating some samples of shunt faults for transmission 

networks variational encoders VAEs are employed to enlarge this synthetically. Real-time fault 

recorders are used for recording real-time faulty samples for transmission networks [36-37].  

 

Figure 5. Proposed Architecture of variational encoder for generation of synthetic data during the 

training phase and generative phase. 

They also duplicate the patterns present in the initial dataset by employing encoder and decoder 

functions. These functions transform the original dataset into a smaller version, effectively creating 

an expanded synthetic version. These datasets include information such as phase voltages, location 

details, and various examples of shunt faults found in transmission networks. This artificially 

generated data is utilized to teach the ML architectures and assess the effectiveness of the designs. 
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For three-terminal networks only two samples are taken faulty samples for each fault type and 

similarly, for two-terminal networks one faulty sample are considered as faulty. All types of shunt 

faults as mentioned in Table 7 are simulated at each value for both transmission networks. Attributes 

of training and testing datasets are shown in Table 3. The fault classification accuracy and localization 

error of the given dataset by employing machine learning algorithms are 99.13% and < 2% 

respectively.  

Table 3. Attributes of training and testing datasets. 

Attributes Training dataset Testing dataset 

Fault types All ten types of shunt faults All ten types of shunt faults 

Fault resistances 0,25,50,75,100,150 Randomly generated 

Fault distances Increments of 4.4 km to 150 km Randomly generated 

Size 1463 720 

4.1. Data splitting 

The dataset includes two essential sets: a) the training set, and b) the evaluation set 

In the domain of ML algorithms, the process of dividing action datasets into training and testing 

sets holds great importance. In our suggested approach, the dataset has been partitioned, allocating 

70% for training purposes and the remaining 30% for testing. After the algorithm has been trained, 

the model's effectiveness will be assessed by examining its performance on the testing data. 

5. Performance Evaluation and Comparative Analysis  

This section aims to provide a concise overview of the synthetic dataset, highlighting its 

connections to various types of shunt incidents occurring on transmission lines, along with their 

respective locations. Furthermore, we will introduce a comprehensive set of evaluation metrics that 

effectively gauge the performance of both the classifier and regressor models. To visually portray the 

data distribution, we will adopt scatter plots, a technique that presents data points on a two-

dimensional graph. This method serves as a robust tool for visualizing relationships and patterns 

embedded within the dataset. The utilization of scatter plots is intended to enhance the clarity and 

intuitive understanding of the dataset's complexities, facilitating a deeper exploration of individual 

interactions and behaviors. Figure 6 provides the scatter information of every value present in the 

synthetic generated dataset through VAE,s for classification and localization of faulty points of (a) 

phase 1, (b) phase 2, and (c) phase 3 respectively.  
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Figure 6. Scatter plots for classification (fault type) and localization (length) for (a & b) phase 1, (c & 

d) phase 2, and (e & f) phase 3 of shunt faults generated from the synthetic dataset respectively. 

5.1. Confusion matrixes for predictive modeling of classification algorithms 

In this study, we employ a confusion matrix to assess various types of shunt faults, 

encompassing line-to-ground faults (AG, BG, and CG), line-to-line faults (AB, BC, and AC), double 

line-to-ground faults (ACG, BCG, and ABG), as well as three-phase faults (ABC-G). Four tentative 

scenarios are evaluated to measure the performance of the proposed ML algorithms based on 

accuracy for calculating the ratio of the correctly classified and unclassified abnormal circumstances 

against the total number of values. The accuracy is calculated as:  𝐴𝑐𝑐𝑢𝑟𝑐𝑎𝑦 =
𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

In the context of classification analysis, the acronyms TP (True Positive), TN (True Negative), FP 

(False Positive), and FN (False Negative) hold significant meaning. These descriptions result from a 

confusion matrix that presents a counter-process of the predictive performance of a classification 

model. Figure 7, shows the accuracy matrix for diagnosing of predicting outcomes based on proposed 

architectures for all kinds of shunt faults on power transfer networks.  
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Figure 7. Accuracy Matrix for Prediction of Testing Outcomes. 

5.2. Models Hyperparameters Tuning 

A hyperparameter research was carried out to find the best settings for RFR and the other models 

to be compared with. To find the optimal hyperparameters, researchers can choose one of two routes: 

There are two types of searches: grid searches and random searches. Using a sample of the data, Grid-

Search was used to investigate the important parameters for each model and their optimal values. 

For KNN, we settled on uniform and distance weighting functions, each with different numbers of 

neighbors. In SVM, both polynomial and radial basis function (RBF) kernels were selected. In 

addition, we looked at several different values for the regularization parameter C. The lowest number 

of samples required to divide a node internally in DT was found, and various values were examined 

to regulate unpredictability inside the tree. Alpha and lambda were chosen as the shape parameters 

for NB. Alpha represents the Gamma distribution before alpha, while lambda represents the 

distribution before lambda. To find the appropriate split, the RFR technique used two maximum 

feature methods, sqrt, and log2, to calculate the number of characteristics to evaluate. Table 3 shows 

Grid-Search results for several models. The best parameters for each model are highlighted. Table 4, 

shows the optimal hyperparameter through a hyperparameter search for appropriate values to 

enhance the accuracy of the training model of SVM for the proposed methodology. 

Table 4. Optimum Parameters for Proposed Architectures. 

Hyper-tuning parameters for SVM Hyper-tuning parameters for DT 

Tuning 

parameters 

Values 

Kernel function linear 

Regularization 

parameter (C) 

0.1 

Kernel Coefficient 

(gamma) 

0.1 

Coefficient of 

kernel 

1 

Validation 

accuracy 

1.0 

 

Parameters Values 

Criterion entropy 

Splitter best 

max_depth 90 

min_samples_split 3 

min_samples_leaf 2 

max_features 5 

ccp_alpha 0.01 
 

Hyper-tuning parameters for Random forest Hyper-tuning parameters for KNN 

Parameters Values 

Criterion entropy 

Splitter best 

max_depth 90 

min_samples_split 3 

Parameters Values  

n_neighbors 3 

weights distance 

metric Euclidean  
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min_samples_leaf 2 

max_features 5 
 

To calculate the classification truth of shunt faults, the dataset is separated into training and 

testing subsets, with 70% of the data allocated for training and the remaining 30% for testing. The 

confusion matrix offers valuable insights into classification precision, where the diagonal elements 

signify accurately predicted cases, and the off-diagonal values represent misclassifications. Figure 8 

illustrates the Visual representations of the confusion matrices for (a) SVM, (b) DT, (c) RF, and (d) 

KNN to diagnose shunt faults on power transfer networks.  

 

 

Figure 8. Confusion matrix results for classification of transmission lines faults using proposed 

algorithms (a) SVM, (b) DT, (c) RF, and (d) KNN. 

The confusion matrix is employed to visualize the numeric test results, including true positives, 

true negatives, false positives, and false negatives, highlighting the effectiveness of the machine 

learning classifier [39]. In this matrix, the diagonal values represent accurately classified instances, 

while the non-diagonal values correspond to unclassified instances in the fault classification task for 

power transmission lines. Table 5 presents the fault classification results for the proposed machine 

learning algorithms, namely SVM, DT, RF, and KNN, as utilized in this study. It also demonstrates 

that the classification results for shunt defects that occurred on power transmission lines using the 

machine learning algorithms proposed in this article are extremely high accuracy up to (99.50%).  
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Table 5. Testing results of fault classification for different machine learning algorithms. 

Machine 

learning 

model 

Fault types No. of 

test data 

samples 

Accurately 

classified 

samples 

Misclassified 

samples 

Accuracy 

% 

 LG(a-g,b-g,c-g) 

 

200 199 1 99.95 

SVM LL(a-b,b-c,c-a) 227 227 0 100 

 LL-G(ab-g,bc-g,ac-g)  

227 

 

225 

2 99.11 

 LLL(abc) 64 64 0 100 

 LG (a-g,b-g,c-g) 

 

201 201 0 100 

DT LL (a-b,b-c,c-a) 222 217 5 97.74 

 LL-G (ab-g,bc-g,ac-

g) 

218 207 11 95.95 

 LLL (abc) 64 64 0 100 

 LG (a-g,b-g,c-g) 

 

201 201 0 100 

RF LL (a-b,b-c,c-a) 226 224 2 99.11 

 LL-G (ab-g,bc-g,ac-

g) 

225 221 4 98.22 

 LLL (abc) 64 64 0 100 

 LG (a-g,b-g,c-g) 

 

242 222 20 91.73 

KNN LL (a-b,b-c,c-a) 195 186 9 95.38 

 LL-G (ab-g,bc-g,ac-

g) 

216 190 26 87.96 

 LLL (abc) 64 64 0 100 

5.2. Parameters for Evaluating the Performance of Classification Models 

There are various methods to evaluate the efficiency of classification architectures, which rely 

on the attributes of the test dataset. These methods include well-known measures such as accuracy, 

precision, recall, and F1 score, derived from the confusion matrix analysis [40]. These evaluation 

metrics are computed based on the elements of the confusion matrix plot, tailored to the specific 

domain of the problem, and offer a thorough understanding of the analysis. The outcomes of these 

assessment metrics are demonstrated in Table 6, presenting the results of the classification models in 

terms of their performance measures. 

Table 6. Performance evaluation parameters for classification models. 

Classifier Accuracy Precision Recall F1 score 

SVM 0.99 0.99 0.99 0.98 

DT 0.97 0.97 0.97 0.96 

RF 0.99 0.99 0.99 0.99 

KNN 0.92 0.94 0.95 0.94 
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5.3. Receiver Operating Characteristic (ROC) Analysis for proposed architectures  

ROC curves assessed classification models and shows the model's classification efficiency when 

thresholds change through ability to distinguish classes by balancing sensitivity and specificity. Four 

classifiers—SVM, Decision Tree, Random Forest, and KNN—were examined. We predicted class 

membership probability for the test dataset after training each classifier. These predicted probabilities 

generated ROC curves. FPR and TPR are on x and y. Random guessing ROC curve is a dashed black 

diagonal line. Classifiers hope curves over this diagonal outperform random chance. Starting with 

the SVM classifier (solid lines), we get fault-type-specific ROC curves with AUC values. AUC 

improves class separation. Dashed Decision Tree classifier ROC curves capture complex decision 

boundaries. The Random Forest classifier (dotted lines) uses many decision trees to smooth fault-

type curves. ROC curves for the neighborhood-based k-nearest neighbor (KNN) classifier (dot lines). 

Dataset and neighbor count affect KNN performance. ROC curves reveal each classifier's strengths 

and weaknesses. This helps us find fault-tolerant and multi-class models. We prioritize ROC curves 

and AUC values for classification model evaluation. These metrics help select a problem domain's 

best classifier by assessing a model's class discrimination. Figure 9; shows the roc curve for SVM, DT, 

RF, and KNN to show the accuracies of classification results on the power transmission lines.  

 

 

Figure 9. Receiver operating characteristic (ROC) curve (a) SVM, (b) DT, (c) RF, and (d) KNN for all 

shunt faults on transmission lines. 

5.4. Fault localization results  

Once the fault type has been identified through the proposed classifier architecture, the precise 

prediction of shunt fault locations within transmission networks is achieved using regression models. 
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The primary objective of these regression models is to establish a functional mapping between the 

input features (independent variables) and the target variable (a continuous value). Furthermore, 

regression serves as a means to uncover the intricate relationship between continuous input variables 

and their corresponding output variables. In the capacity of a regressor, a selection of diverse machine 

learning algorithms comes into play to pinpoint power line faults. The process involves conducting 

regression computations for unforeseen data instances, accounting for both the proximity and 

distance of the ends under observation. The regression outcomes are delineated in Figures 10, 11, 12, 

and 13, illustrating a comparative analysis between the actual fault locations and those predicted by 

the proposed machine learning algorithms (SVM, DT, RF, and KNN). 

 

Figure 10. Actual and predicted fault locations using support vector machine (SVM). 

 

Figure 11. Actual and predicted fault locations using decision trees (DT). 
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Figure 12. Actual and predicted fault locations using random forest (RF). 

 

Figure 13. Actual and predicted fault locations using K-nearest neighbors (KNN). 

The regression results for the proposed machine-learning algorithms are shown in Table 6. The 

actual values are shown by a blue line as mentioned in the regression graph and the regression line 

is shown by the red dotted line. So, the regression line is linear and the accuracy of the regression 

system predicted good results. The regression fit line for fault localization on the power transmission 

networks is shown in Table 6. The term absolute error is used to evaluate the regression results on 

the power lines. The absolute error gives the results of the actual length on which the fault occurred 

and predicted results, which are predicted by machine learning models. In absolute error y-predicted 

is the value predicted by the machine learning model and y-true is the true fault distance. The 

absolute error is given as  𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑡𝑟𝑢𝑒 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒| 

Table 7 presents the outcomes of the regression model for both real and predicted fault 

localization values. It also illustrates the extent of error experienced in power transfer lines due to the 

implementation of the suggested approach. 

Table 7. Table for true and predicted values of fault localization and amount of error. 

Machine learning 

model 

True fault distance Predicted fault 

distance 

% of Error 
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 116.9 115.6 1.3 

SVM 104.4 103.7 0.63 

 52.4 49.5 2.80 

 115.1 113.8 1.36 

 21.6 21.2 0.4 

DT 114.2 112.8 1.4 

 74.4 72.3 2.1 

 50.0 49.2 0.8 

 61.2 59.7 1.5 

RF 48.1 47.6 0.58 

 103.3 102.4 0.92 

 146.4 144.3 2.09 

 115.6 114.8 0.8 

KNN 104.4 103.9 0.48 

 112.8 110.2 2.6 

 21.2 20.2 0.99 

6. Conclusions 

This study demonstrates the different machine learning algorithms for the recognition of all 

types of shunt faults on transmission lines and their location tracing based on synthetic data instead 

of using traditional trade-off planning. Transmission networks are the most critical part of the power 

transfer system and are used to transfer power from one end to far ends. Different protecting relaying 

systems are installed on the grid/substation for the sensitive operations of transients which mostly 

occur on the power system. When abnormal conditions occur, then it will be necessary to remove the 

faults within no time and restore the power to end-users. The collection of real data for making 

datasets is the major problem in implementing and training models. This study is based on the 

analysis of data obtained from simulations of transmission networks using aspen one-liner, which is 

further expanded by employing variational encoders to enlarge it synthetically. Machine learning 

algorithms are the best solution for complex networks. These algorithms are easy to implement, and 

the best performance results can be obtained, restoring the power supply for a safe and reliable 

country's energy system. The proposed methodology is simple to implement for the existing 

protection system. Machine learning models are trained by datasets and feature selection methods. 

In the classification process, the model is trained to classify the shunt faults, which mostly occur in 

the power system. Support vector machines, decision trees, random forests, and KNN models are 

used for classification and regression. All the classifiers provide admirable results for the 

classification and localization of faults on transmission networks. This research work also highlights 

the importance of data quantity, and increasing the amount of data synthetically for training 

improves the accuracy of architectures they also emphasize the need for accurate fault data labeling 

and feature selection to achieve optimal results.  
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