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Abstract: The reliable operation of power transmission networks depends on the timely detection and
localization of faults. Fault classification and localization in electricity transmission networks can be
challenging because of the complicated and dynamic nature of the system. In recent years, a variety of machine
learning (ML) and deep learning algorithms (DL) have found applications in the enhancement of fault
identification and classification within power transmission networks. Yet, the efficacy of these ML architectures
is profoundly dependent upon the abundance and quality of training data at their removal. This intellectual
explanation introduces an innovative strategy for the classification and pinpointing of faults within power
transmission networks. This is achieved through the utilization of variational autoencoders (VAEs) to generate
synthetic data, which in turn is harnessed in conjunction with ML algorithms. This approach encompasses the
augmentation of the available dataset by infusing it with synthetically generated instances, contributing to a
more robust and proficient fault recognition and categorization system. Specifically, we train the VAE on a set
of real-world power transmission data and generate synthetic fault data that captures the statistical properties
of real-world data. The machine learning algorithms recommended for this study include Support Vector
Machine (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN) utilized the
customized version of forward feature selection FFS were trained using synthetic data generated by a VAE.
The results indicate exceptional performance, surpassing current state-of-the-art techniques, in the tasks of
fault classification and localization. Notably, our approach achieves a remarkable 99% accuracy in fault
classification and an extremely low mean absolute error (MAE) of 0.2 in fault localization. These outcomes
represent a notable advancement compared to the most effective existing baseline methods.

Keywords: Electrical power systems; Support vector machines; random Forest; machine learning;
wavelet transform; transmission lines fault; Electrical power quality; short circuit; Classification of
faults; localization of faults; decision trees; Ensemble learning; K-nearest neighbors

1. Introduction

Electrical power transmission networks are susceptible to faults and failures. The power
transmission networks are now becoming extremely critical infrastructures that deliver electricity
from power plants to households and businesses, and sudden abnormal conditions on these networks
can cause power outages, damage costly equipment, and even serious safety hazards. The rapidly
growing demand for electric power is rising and power transmission networks becoming
increasingly complex. When an abnormal condition occurs due to different reasons like
environmental, accidental, incidental, and aging factors are also responsible for the occurrence of
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faults. Any type of abnormal condition on the transmission line can damage the system in both
directions. Power transmission network defect analysis is a major study subject in power electronics,
which is rapidly advancing, developing, and improving fault detection, classification, and
localization methods, is crucial. This research domain demonstrates scholarly efforts to understand
and resolve power transmission network faults [1]. In the field of power transmission networks,
localization has faults that have much importance, and some methods are popular like signal
processing techniques. Machine learning architectures stand on the proposal that systems be trained
from statistics and recognize patterns with minimum human interruption [2]. Machine learning
models can apply mathematical calculations without human intervention for complex very large
datasets—over and over—faster and faster giving these algorithms to potential to categorize
imminent in the datasets within the minimum time which could be impossible for humans. So, there
will be a need for time to implement these novel kinds of machine learning algorithms to high-size
data due to the development of intellectual electronics policies in smart grids, for providing a path
for the implementation of accurate and precise ML architectures to classify the abnormal conditions
[3]. Figure 1 shows the illustrative demonstration of two-terminal transmission networks for
transmitting power from generating sources to multiple types of loads.
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Figure 1. Diagrammatic representation of the transmission line system.

Different types of techniques used as wavelet-based, genetic algorithm (GA), PMU-based, and
multi-information-based techniques are used for the categorization of abnormal conditions on power
transfer lines and are not able to provide satisfactory results. Traditionally, fault diagnosis and
location in power transmission networks have been performed using rule-based or model-based
approaches that require a detailed understanding of the network topology and fault characteristics
[4-5]. However, the advent of artificial intelligence approaches is replacing the trade-off
methodologies, which are incredibly time-consuming, and their accuracy has limited the complexity
of the networks and variability of fault conditions. Tracing abnormal conditions by implementing
machine learning and deep learning architectures on power transfer networks is a research area that
aims to develop accurate and efficient ML algorithms that can work under faulty conditions more
accurately than trade-off planning techniques [6-7]. Figure 2 shows the high-level overview to
diagnose faults on transmission lines.
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Figure 2. An Overview of TL Fault Detection and Localization in power transmission networks.

Unfortunately, acquiring labeled data poses significant challenges and time constraints,
particularly within power systems where abnormal conditions are infrequent and often
unpredictable. To address this issue, recent studies have investigated the potential of utilizing
synthetically generated data to enhance the recital of ML architectures. Specifically, generative
adversarial networks (GANs) and variational encoders (VAEs) have been utilized to create artificial
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data that closely aligns with the unique data distribution. [8]. VAEs are data creation models that can
be trained as a low-dimensional representation of the input data and employed to generate new data
points. In [9], the authors proposed a signal spectrum-based machine learning approach by
employing diverse ML algorithms to diagnose the hidden patterns of abnormal conditions by
predictive maintenance. In [10], the authors pay attention to diagnosing the faults in electrical
machines by employing condition-monitoring techniques for creating datasets. In [11], the authors
proposed a VAE-generated synthetic data-based fault diagnosis method for power transmission lines
to augment the limited labeled data and achieve higher accuracy than traditional machine learning
algorithms. In [12], researchers proposed a novel protection scheme for double-circuit transmission
lines, aiming to classify shunt faults and accurately localize them through KNN. In [13], the authors
recommended an approach using Variational Autoencoders (VAE) was put forward for fault
diagnostics in wind turbines by utilizing synthetic data. Figure 3 shows the classification for all types
of shunt faults that commonly take place on power transmission networks.

[ Faults in Overhead Transmission Line ]
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[ Series Faults ] [Short Circuit Faults ]
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[One Open Conductor] [Two Open Conductnr] [ Asymmetrical ] [ Symmetrical ]

Single line-to-ground Line-to-line Double line-to-ground ||All lines connected || All lines connected
(AG, BG, and CG) [|[(AB, BC, and AC)||(ABG, BCG, and ACG)|| together (ABC) ||to ground (ABCG)

Figure 3. Classification of fault types (series faults and short circuit faults) most commonly occurred
in three-phase transmission lines .

Table 1. The details of standardized approaches employed in this paper are given below:.

Algorithm Type Use case Pros Cons
Support vector | Supervised | Classification | Effective handling of Creates
machines outliers through problems with
Regression kernel tricks noisy & large
datasets

Decision trees | Supervised | Classification | Highly interpretable | Small changes in

and easy to data creates
Regression implement different tree
structures
Random Supervised | Classification | Implement ensemble Less
forests averaging for interpretable
Regression predictions due to large no.

of decision tress
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K-Nearest Supervised | Classification Minimum Computationally
neighbors assumptions for data cost and
Regression distribution sensitive of K

1.1. Variational autoencoders

Variational autoencoders (VAEs) are creative models for probabilistic data comprehension.
These autoencoders can learn the probability distribution of input data and create new data points
that match the training data. VAEs combine auto-encoders and probabilistic models for unsupervised
learning tasks like data generation and dimensionality reduction. Image and audio recognition, along
with natural language processing and data compression, make extensive use of these techniques.
VAEs operate by acquiring a latent representation of the input data, which is a compressed
representation capturing the most crucial features. This latent representation facilitates the
generation of new data points closely resembling the original training data. [14]. The key innovation
of VAEs is that they use variational inference to learn the latent representation of the data. This
involves optimizing an objective function that balances the reconstruction error of the autoencoders
with a regularization term that ensures the latent representation follows a desired probability
distribution. The regularization term is usually chosen to be a normal distribution, which allows for
efficient sampling of the latent space and generation of new data points. The VAE intends to optimize
the following loss function:

L = reconstruction_loss + KL_divergence_loss

The reconstruction loss evaluates the variance among the input data, represented as x, and the
renovate yield, denoted as x'. On the other hand, the KL divergence loss assesses the distinction
between the distribution across the latent representation, z, and a predetermined prior distribution.

1.2. Data synthesis

Data synthesis or data augmentation is a common machine learning method for producing new
training data from existing datasets. This strategy introduces variations not in the training data to
improve model resilience. Sampling data class feature spaces improve classifier performance.
Consequently, this technique aids in achieving better generalization and overall model performance.
In domains where data is scarce, pattern recognition tasks can be particularly challenging due to
limited variability in the available data, hindering the model's ability to learn effective generalization
[15]. To address this issue in the classification task one can use data augmentation techniques to create
additional variations within the existing training data while preserving labels. This can help to
amplify the variance within the guidance classes and recover the model’s ability to generalize. It
involves merging and integrating data from various sources often using statistical or computational
methods to identify patterns, relationships and trends that may not be apparent from individual
datasets alone. Data synthesis can be particularly useful in research where it can help to overcome
the limitations of individual studies by combining the results of multiple studies to provide a
comprehensive understanding of the particular topic.

1.3. Forward feature selection

Feature selection (FS) plays a vital role in supervised learning tasks by identifying pertinent
features that exhibit strong correlations with the target variable, while simultaneously removing
redundant ones. This crucial process helps reduce computational burdens and improve the accuracy
of results. By eliminating redundant features, the selection process ensures a more efficient and
effective analysis. In this research, forward feature selection is employed to pick a subset of inputs
and eliminate redundant attributes. The process of forward feature selection commences with an
initial empty set of features and progressively incorporates the most crucial ones. This is guided by
a predetermined criterion, which could involve factors like the strongest correlation with the target
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variables or the lowest p-values from statistical tests. This process continues until a stopping
requirement like max features or model performance is fulfilled. This method iteratively computes
the favorable features that exhibit the highest scores thereby avoiding overfitting. The evaluation
function used in this study is stratified cross-validation because mostly synthesized generated
datasets have imbalanced data and stratified CV can handle the imbalance in the datasets [16].

3. Proposed Methodology and Contributions

A lot of data is needed to develop good models for many machine-learning applications.
Synthetic datasets are too important to generate when real-world data is scarce. Machine learning
and deep learning algorithms can create synthetic data from existing datasets to guide ML
architectures. The datasets train the ML model for fault classification and transmission line
localization. No-missing datasets are ideal. Datasets train machine learning models. Classifying faults
requires these ML models. After training the ML model, testing is carried out on the ML model to
check the accuracy models. Figure 4 shows the proposed methodology for the classification and
regression of abnormal circumstances in transmission-carrying networks. SVMs are useful for fault
classification and localization, assisted by supervision to find the hyperplane for separating data
point types [17]. They may considerably improve fault classification and localization processes to find
the best hyperplane in n dimensions [18-19]. Define a maximum tree depth to minimize overfitting
in decision tree classifiers that employ information gain and Gini index scoring algorithms. The
system adjusts depth to balance generalization and training set performance [23]. Gini index, entropy,
and CART determination analyze points [24-25]. Random Forest divides the dataset into training data
(the “in bag” data) and validation data (the “out of the bag” data) to detect power system problem
characteristics [26-28]. This unpredictability diversifies ensemble trees and improves algorithm
performance [29-30]. KNN improves power transmission system fault management by detecting and
categorizing defects [31]. Euclidean, Manhattan, and Mahalanobis distances are used to improve the
K-nearest neighbors (KNN) method [32-33]. Approximate KNN approaches use indexing structures
like KD-trees and Hash tables to reduce the search space and improve computing performance,
especially for big, unbalanced datasets [34]. This paper has the following attractive contributions.

e Introduction of variational autoencoders VAE for the generation of synthetic data for
transmission lines fault classification and localization that has ability to improve the
classification accuracy than traditional methods.

e  The technique is cost-effective and practical since it eliminates the requirement for a large
volume of labeled real-world data.

e  Demonstrate the capacity to detect faults in real time and respond quickly, which can reduce the
likelihood of power outages and improve grid dependability.

e  Highlight the system's ability to save time and effort by reducing the frequency of human
monitoring and intervention.

e  Used proposed machine learning architectures with their optimum parameters through tuning
for achieving the high accuracy as compared to traditional architectures.

e Demonstrate how machine learning applications trained on this improved synthetically
generated data can accurately classify power transmission network problems.


https://doi.org/10.20944/preprints202309.1009.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2023 doi:10.20944/preprints202309.1009.v1

6
3-Phase faulty data
Dataset < for classification and
localization
Synthetic
dataset
Feature selection
\ 4 h 4
Training Set Testing Set
Model Algorithm
Classifiers{ SVC, Regressors{
DTC, RFC, KNN- SVR, DTR, RFR, Model Evaluation
c} KNN-R}
Fault Fault
Classification Localization
Predicted
Results
Accuracy Score [« Model Evaluation [« y

Figure 4. Flowchart of the proposed methodology for fault classification and localization.

4. Description of the experimental setup and data generation

The proposed methodology involves the utilization of experimental platforms encompassing
both two-terminal and three-terminal transmission networks. The assessment of these transmission
models entails the application of Aspen One-Liner, a productivity-enhancing tool geared toward
analyzing and modeling transmission and distribution networks. This software effectively compiles
replicated data by simulating diverse transmission network defects under varying operational
conditions, facilitating the export of relay testing fault data. During instances of transmission network
malfunction, post-fault voltages in all three phases (Va, Vb, and Vc) along with the ground mode are
meticulously recorded for a single cycle at each terminal. In pursuit of generating real-time datasets,
fault levels are manipulated by introducing alterations in various transmission network fault
conditions across multiple locations. This real-time dataset is then employed to enhance the original
dataset, resulting in the creation of a synthetic dataset. Table 5 presents comprehensive data sample
information about a range of shunt faults that have occurred on both the two-terminal and three-
terminal transmission lines. Applying variational encoders (VAEs) to the list of defects within Table
2 yields a total of 2183 synthetic samples, further enriching the dataset.

Table 2. Fault sample information.

Fault type Fault label
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Line to ground AG
Line to ground BG
Line to ground CG
Double-line-to-ground faults ABG
Double-line-to-ground faults BCG
Double-line-to-ground faults ACG
Line-to-line faults AB
Line-to-line faults BC
Line-to-line faults AC
Three-line-to-ground faults ABC-G

VAEs are talented algorithms that can create synthetic data for double and triple power
transmission networks for abnormal conditions classification and localization. This novel method
uses Aspen One-liner data samples to construct a new dataset. VAEs, a sort of generative model, may
encode input data into a compact latent space and decode it to generate novel data samples that
closely match the original data distribution this strategy has shown promise in several applications,
including resolving imbalanced class distributions by using synthetic examples [35]. Generating a
synthetic dataset from the original dataset is extremely beneficial in critical situations where the
existing dataset is small and imbalanced, and we want to generate some additional data to get better
the recital of your ML model. After generating some samples of shunt faults for transmission
networks variational encoders VAEs are employed to enlarge this synthetically. Real-time fault
recorders are used for recording real-time faulty samples for transmission networks [36-37].

original |

(o)
Training phase Decoder

minimize[ |x — x|2 + KL(q({i, &) ||N({i, )]

Generative phase Sample from N(i, &) Decoder I

synthetic

Figure 5. Proposed Architecture of variational encoder for generation of synthetic data during the
training phase and generative phase.

They also duplicate the patterns present in the initial dataset by employing encoder and decoder
functions. These functions transform the original dataset into a smaller version, effectively creating
an expanded synthetic version. These datasets include information such as phase voltages, location
details, and various examples of shunt faults found in transmission networks. This artificially
generated data is utilized to teach the ML architectures and assess the effectiveness of the designs.
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For three-terminal networks only two samples are taken faulty samples for each fault type and
similarly, for two-terminal networks one faulty sample are considered as faulty. All types of shunt
faults as mentioned in Table 7 are simulated at each value for both transmission networks. Attributes
of training and testing datasets are shown in Table 3. The fault classification accuracy and localization
error of the given dataset by employing machine learning algorithms are 99.13% and < 2%

respectively.
Table 3. Attributes of training and testing datasets.
Attributes Training dataset Testing dataset
Fault types All ten types of shunt faults All ten types of shunt faults
Fault resistances 0,25,50,75,100,150 Randomly generated
Fault distances Increments of 4.4 km to 150 km Randomly generated
Size 1463 720

4.1. Data splitting

The dataset includes two essential sets: a) the training set, and b) the evaluation set

In the domain of ML algorithms, the process of dividing action datasets into training and testing
sets holds great importance. In our suggested approach, the dataset has been partitioned, allocating
70% for training purposes and the remaining 30% for testing. After the algorithm has been trained,
the model's effectiveness will be assessed by examining its performance on the testing data.

5. Performance Evaluation and Comparative Analysis

This section aims to provide a concise overview of the synthetic dataset, highlighting its
connections to various types of shunt incidents occurring on transmission lines, along with their
respective locations. Furthermore, we will introduce a comprehensive set of evaluation metrics that
effectively gauge the performance of both the classifier and regressor models. To visually portray the
data distribution, we will adopt scatter plots, a technique that presents data points on a two-
dimensional graph. This method serves as a robust tool for visualizing relationships and patterns
embedded within the dataset. The utilization of scatter plots is intended to enhance the clarity and
intuitive understanding of the dataset's complexities, facilitating a deeper exploration of individual
interactions and behaviors. Figure 6 provides the scatter information of every value present in the
synthetic generated dataset through VAE,s for classification and localization of faulty points of (a)
phase 1, (b) phase 2, and (c) phase 3 respectively.
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Figure 6. Scatter plots for classification (fault type) and localization (length) for (a & b) phase 1, (c &
d) phase 2, and (e & f) phase 3 of shunt faults generated from the synthetic dataset respectively.

5.1. Confusion matrixes for predictive modeling of classification algorithms

In this study, we employ a confusion matrix to assess various types of shunt faults,
encompassing line-to-ground faults (AG, BG, and CG), line-to-line faults (AB, BC, and AC), double
line-to-ground faults (ACG, BCG, and ABG), as well as three-phase faults (ABC-G). Four tentative
scenarios are evaluated to measure the performance of the proposed ML algorithms based on
accuracy for calculating the ratio of the correctly classified and unclassified abnormal circumstances
against the total number of values. The accuracy is calculated as:

| ~ TP + TN
CUrCaY = TP Y TN + FP + FN

In the context of classification analysis, the acronyms TP (True Positive), TN (True Negative), FP
(False Positive), and FN (False Negative) hold significant meaning. These descriptions result from a
confusion matrix that presents a counter-process of the predictive performance of a classification
model. Figure 7, shows the accuracy matrix for diagnosing of predicting outcomes based on proposed
architectures for all kinds of shunt faults on power transfer networks.

doi:10.20944/preprints202309.1009.v1
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Figure 7. Accuracy Matrix for Prediction of Testing Outcomes.

5.2. Models Hyperparameters Tuning

A hyperparameter research was carried out to find the best settings for RFR and the other models
to be compared with. To find the optimal hyperparameters, researchers can choose one of two routes:
There are two types of searches: grid searches and random searches. Using a sample of the data, Grid-
Search was used to investigate the important parameters for each model and their optimal values.
For KNN, we settled on uniform and distance weighting functions, each with different numbers of
neighbors. In SVM, both polynomial and radial basis function (RBF) kernels were selected. In
addition, we looked at several different values for the regularization parameter C. The lowest number
of samples required to divide a node internally in DT was found, and various values were examined
to regulate unpredictability inside the tree. Alpha and lambda were chosen as the shape parameters
for NB. Alpha represents the Gamma distribution before alpha, while lambda represents the
distribution before lambda. To find the appropriate split, the RFR technique used two maximum
feature methods, sqrt, and log2, to calculate the number of characteristics to evaluate. Table 3 shows
Grid-Search results for several models. The best parameters for each model are highlighted. Table 4,
shows the optimal hyperparameter through a hyperparameter search for appropriate values to
enhance the accuracy of the training model of SVM for the proposed methodology.

Table 4. Optimum Parameters for Proposed Architectures.

Hyper-tuning parameters for SVM Hyper-tuning parameters for DT

Tuning Values Parameters Values
parameters Criterion entropy
Kernel function linear Splitter best
Regularization 0.1 max_depth 90
parameter (C) min_samples_split 3
Kernel Coefficient 0.1 min_samples_leaf 2
(gamma) max_features 5
Coefficient of 1 ccp_alpha 0.01
kernel
Validation 1.0
accuracy
Hyper-tuning parameters for Random forest Hyper-tuning parameters for KNN
Parameters Values Parameters Values
Criterion entropy n_neighbors 3
Splitter best weights distance
max_depth 90 metric Euclidean

min_samples_split 3
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min_samples_leaf 2

max_features 5

To calculate the classification truth of shunt faults, the dataset is separated into training and
testing subsets, with 70% of the data allocated for training and the remaining 30% for testing. The
confusion matrix offers valuable insights into classification precision, where the diagonal elements
signify accurately predicted cases, and the off-diagonal values represent misclassifications. Figure 8
illustrates the Visual representations of the confusion matrices for (a) SVM, (b) DT, (c) RF, and (d)
KNN to diagnose shunt faults on power transfer networks.

Confusion matrix of the SVM for fault classification Confusion matrix of the DT for fault classification
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Figure 8. Confusion matrix results for classification of transmission lines faults using proposed
algorithms (a) SVM, (b) DT, (c) RF, and (d) KNN.

The confusion matrix is employed to visualize the numeric test results, including true positives,
true negatives, false positives, and false negatives, highlighting the effectiveness of the machine
learning classifier [39]. In this matrix, the diagonal values represent accurately classified instances,
while the non-diagonal values correspond to unclassified instances in the fault classification task for
power transmission lines. Table 5 presents the fault classification results for the proposed machine
learning algorithms, namely SVM, DT, RF, and KNN, as utilized in this study. It also demonstrates
that the classification results for shunt defects that occurred on power transmission lines using the
machine learning algorithms proposed in this article are extremely high accuracy up to (99.50%).
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Table 5. Testing results of fault classification for different machine learning algorithms.

Machine Fault types No. of Accurately  Misclassified  Accuracy
learning test data classified samples %
model samples samples
LG(a-gb-g,c-g) 200 199 1 99.95
SVM LL(a-b,b-c,c-a) 227 227 0 100
LL-G(ab-g,bc-g,ac-g) 2 99.11
227 225
LLL(abc) 64 64 0 100
LG (a-g,b-g,c-g) 201 201 0 100
DT LL (a-b,b-c,c-a) 222 217 5 97.74
LL-G (ab-g,bc-g,ac- 218 207 11 95.95
8
LLL (abc) 64 64 0 100
LG (a-g,b-g,c-g) 201 201 0 100
RF LL (a-b,b-c,c-a) 226 224 2 99.11
LL-G (ab-g,bc-g,ac- 225 221 4 98.22
8
LLL (abc) 64 64 0 100
LG (a-g,b-g,c-g) 242 222 20 91.73
KNN LL (a-b,b-c,c-a) 195 186 9 95.38
LL-G (ab-g,bc-g,ac- 216 190 26 87.96
8
LLL (abc) 64 64 0 100

5.2. Parameters for Evaluating the Performance of Classification Models

There are various methods to evaluate the efficiency of classification architectures, which rely
on the attributes of the test dataset. These methods include well-known measures such as accuracy,
precision, recall, and F1 score, derived from the confusion matrix analysis [40]. These evaluation
metrics are computed based on the elements of the confusion matrix plot, tailored to the specific
domain of the problem, and offer a thorough understanding of the analysis. The outcomes of these
assessment metrics are demonstrated in Table 6, presenting the results of the classification models in
terms of their performance measures.

Table 6. Performance evaluation parameters for classification models.

Classifier Accuracy Precision Recall F1 score
SVM 0.99 0.99 0.99 0.98
DT 0.97 0.97 0.97 0.96
RF 0.99 0.99 0.99 0.99

KNN 0.92 0.94 0.95 0.94
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5.3. Receiver Operating Characteristic (ROC) Analysis for proposed architectures

ROC curves assessed classification models and shows the model's classification efficiency when
thresholds change through ability to distinguish classes by balancing sensitivity and specificity. Four
classifiers—SVM, Decision Tree, Random Forest, and KNN—were examined. We predicted class
membership probability for the test dataset after training each classifier. These predicted probabilities
generated ROC curves. FPR and TPR are on x and y. Random guessing ROC curve is a dashed black
diagonal line. Classifiers hope curves over this diagonal outperform random chance. Starting with
the SVM classifier (solid lines), we get fault-type-specific ROC curves with AUC values. AUC
improves class separation. Dashed Decision Tree classifier ROC curves capture complex decision
boundaries. The Random Forest classifier (dotted lines) uses many decision trees to smooth fault-
type curves. ROC curves for the neighborhood-based k-nearest neighbor (KNN) classifier (dot lines).
Dataset and neighbor count affect KNN performance. ROC curves reveal each classifier's strengths
and weaknesses. This helps us find fault-tolerant and multi-class models. We prioritize ROC curves
and AUC values for classification model evaluation. These metrics help select a problem domain's
best classifier by assessing a model's class discrimination. Figure 9; shows the roc curve for SVM, DT,
RF, and KNN to show the accuracies of classification results on the power transmission lines.

SVM Receiver Operating Characteristic Decision Tree Receiver Operating Characteristic
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Figure 9. Receiver operating characteristic (ROC) curve (a) SVM, (b) DT, (c) RF, and (d) KNN for all
shunt faults on transmission lines.

5.4. Fault localization results

Once the fault type has been identified through the proposed classifier architecture, the precise
prediction of shunt fault locations within transmission networks is achieved using regression models.
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The primary objective of these regression models is to establish a functional mapping between the
input features (independent variables) and the target variable (a continuous value). Furthermore,
regression serves as a means to uncover the intricate relationship between continuous input variables
and their corresponding output variables. In the capacity of a regressor, a selection of diverse machine
learning algorithms comes into play to pinpoint power line faults. The process involves conducting
regression computations for unforeseen data instances, accounting for both the proximity and
distance of the ends under observation. The regression outcomes are delineated in Figures 10, 11, 12,
and 13, illustrating a comparative analysis between the actual fault locations and those predicted by
the proposed machine learning algorithms (SVM, DT, RF, and KNN).

SVM Regression plot
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Figure 10. Actual and predicted fault locations using support vector machine (SVM).
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Figure 11. Actual and predicted fault locations using decision trees (DT).
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RF Regression plot
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Figure 12. Actual and predicted fault locations using random forest (RF).
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Figure 13. Actual and predicted fault locations using K-nearest neighbors (KNN).

The regression results for the proposed machine-learning algorithms are shown in Table 6. The
actual values are shown by a blue line as mentioned in the regression graph and the regression line
is shown by the red dotted line. So, the regression line is linear and the accuracy of the regression
system predicted good results. The regression fit line for fault localization on the power transmission
networks is shown in Table 6. The term absolute error is used to evaluate the regression results on
the power lines. The absolute error gives the results of the actual length on which the fault occurred
and predicted results, which are predicted by machine learning models. In absolute error y-predicted
is the value predicted by the machine learning model and y-true is the true fault distance. The
absolute error is given as

Absolute error = |true fault distance — predicted fault distance)|

Table 7 presents the outcomes of the regression model for both real and predicted fault
localization values. It also illustrates the extent of error experienced in power transfer lines due to the
implementation of the suggested approach.

Table 7. Table for true and predicted values of fault localization and amount of error.

Machine learning  True fault distance Predicted fault % of Error
model distance
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116.9 115.6 1.3

SVM 104.4 103.7 0.63
52.4 49.5 2.80

115.1 113.8 1.36

21.6 21.2 0.4

DT 114.2 112.8 1.4
74.4 72.3 21

50.0 49.2 0.8

61.2 59.7 1.5

RF 48.1 47.6 0.58
103.3 102.4 0.92

146.4 144.3 2.09

115.6 114.8 0.8

KNN 104.4 103.9 0.48
112.8 110.2 2.6

21.2 20.2 0.99

6. Conclusions

This study demonstrates the different machine learning algorithms for the recognition of all
types of shunt faults on transmission lines and their location tracing based on synthetic data instead
of using traditional trade-off planning. Transmission networks are the most critical part of the power
transfer system and are used to transfer power from one end to far ends. Different protecting relaying
systems are installed on the grid/substation for the sensitive operations of transients which mostly
occur on the power system. When abnormal conditions occur, then it will be necessary to remove the
faults within no time and restore the power to end-users. The collection of real data for making
datasets is the major problem in implementing and training models. This study is based on the
analysis of data obtained from simulations of transmission networks using aspen one-liner, which is
further expanded by employing variational encoders to enlarge it synthetically. Machine learning
algorithms are the best solution for complex networks. These algorithms are easy to implement, and
the best performance results can be obtained, restoring the power supply for a safe and reliable
country's energy system. The proposed methodology is simple to implement for the existing
protection system. Machine learning models are trained by datasets and feature selection methods.
In the classification process, the model is trained to classify the shunt faults, which mostly occur in
the power system. Support vector machines, decision trees, random forests, and KNN models are
used for classification and regression. All the classifiers provide admirable results for the
classification and localization of faults on transmission networks. This research work also highlights
the importance of data quantity, and increasing the amount of data synthetically for training
improves the accuracy of architectures they also emphasize the need for accurate fault data labeling
and feature selection to achieve optimal results.
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