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Abstract: Modern computational models tend to become more and more complex, especially in fields
like computational biology, physical modelling, social simulation and others. With the increasing
complexity of simulations, modern computational architectures demand efficient parallel execution
strategies. This paper proposes a novel approach leveraging the reactive streams paradigm as a
general-purpose synchronization protocol for parallel simulation. We introduce a method to
construct simulation graphs from predefined transition functions, ensuring modularity and
reusability. Additionally, we outline strategies for graph optimization and interactive simulation
through push and pull patterns. The resulting computational graph, implemented using reactive
streams, offers a scalable framework for parallel computation. Through theoretical analysis and
practical implementation, we demonstrate the feasibility of this approach, highlighting its
advantages over traditional parallel simulation methods. Finally, we discuss future challenges,
including automatic graph construction, fault tolerance, and optimization strategies, as key areas for
further research.

Keywords: parallel simulation; reactive streams; logical processors; transition functions; state space;
synchronization protocol

1. Introduction

As simulations become increasingly complex, more and more computational resources are
required to execute them. Computing power continues to grow per Moore’s law, but this growth
shifts to the horizontal plane—i.e., it happens due to an increase in the number of parallel processors
and their cores. Thus, there is a need to develop parallel-simulation algorithms capable of utilizing
the computing resources of multiple CPUs.

Today several approaches exist for parallelizing simulations. In particular, we can consider the
Time Warp algorithm,[1] described in detail in.[2] This algorithm has been studied for many years
and has several implementations in the code.[3-5] However, Time Warp uses its own
synchronization protocol, which is complex and low-level.[6] The RxHLA software framework
(based on the reactive adaptation of IEEE 1516 standard)[7] is similar to Time Warp in terms of
complexity and low-levelness. Another approach, based on the CQRS + ES architecture, is described
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in. [8] However, the authors of that work concentrate more on the practical aspects of implementation
without much theoretical background. The HPC simulation platform [9] is also a more practical
implementation of parallel simulation; it is based on actors and the AKKA library, constituting a more
conservative approach than reactive streams.

The key concept of this paper is to use a general-purpose synchronization protocol to parallelize
simulations: namely, the reactive-streams protocol [10-12], particularly the version that is
implemented in the AKKA library. [13-16]. Thus, on the one hand, we have a classical mathematical
model. On the other hand, we have a general-purpose synchronization protocol. The goal of this work
is to unite them.

The rest of this manuscript is organized as follows:

e  Section 2 explains the basic modeling concepts and entities that we will use in this paper.

e  Section 3 extends basic modeling to be represented in the form of a transition graph and shows
how a simulation can be performed on this graph.

e  Section 4 shows how the transition graph can be implemented with reactive streams and how
simulation can be executed.

2. Substates

Before we start developing a parallel-simulation algorithm with reactive streams, we define
substates concepts and some objects for later use in this paper. Before reading this section, we suggest
you check Appendix A, which describes notation and Appendix B which give common basic
definition used in this article. Also, in the Section 5 and Appendix F you can find real word
examples which illustrate the described approach.

2.1. Substates @* as a Decomposition of the State B

Each state 8 can be represented as a set of substates, each of which contains only a part of the
values of v; € 8. There must be a way to determine which of the substates belongs to a certain .
One option to achieve this is to use a unique key to mark all substates belonging to a certain .

Definition: Let us define a substate &%, where & S B is part or all of the set of
values v; € B, K| is some key unique to the state B € V", and q € N is the index of
the substate with the same key, K.

One or more v; € B values can be used as key K. In this case, it makes no sense to include them
in any of the substates, since they will be presented in the key.

For some state B, we have the set of substates {GRq} with the same key &. We will denote this
set by a bold &®. With such representation of the state 9, it is necessary to ensure that all &%,
marked by the same K are not contradictory. The pair of &%, with the same key & can be
contradictory if one or more values v; € &,B differ under the same index.

Definition: Let us define the set of substates
% ._ [cf % —a '
&% ={c%, 6" 18=]" nq=q"}
where for all &%, € &%, the consistency criterion

A6G%,6% ec® (3n € 6% #v,€6% V)
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is true.

In this paper, we will talk about arbitrary sets of substates G%, the only requirement for which
is to meet the consistency criterion.

Definition: Let us define an arbitrary set of substates
e ={etuet |f=& |

as the union of the sets &% with different K.

Notice that these definitions do not require the presence in the set &% (and consequently in &)
of a sufficient number of substates &% q to cover all values v; € 8.

Let us also note that, by definition, the set & can contain more than one substate c% q with the
same key &. However, on an arbitrary set &% that contains duplicate keys &, we can construct a set
& that does not contain them. For this, we need to combine all substates with the same key into one
substate:

VGREGKd<GR1€GKu=U eﬁ>

R K
> &K,

S*,
where &% is a set with duplicate keys and &*,, is a set with unique K. Thus, we can say that an
arbitrary set of substates ¥ can be considered as a key-value structure or as the surjective function

{8}~ 1{&}

As follows from the definition, the set &% can only be constructed from a set of states B < V"
in which a unique key £ can be associated with each state B € B. Otherwise, this will lead to the
appearance of substates &%, in conflict.

The inverse transformation, i.e., the construction of 8 € V" from an arbitrary eK

veﬁgeK<mem=U rsf")

K

cX B

is possible only if &% contains enough substates G%; to construct each state B € B completely.
The set of substates ¥ can be equivalent to the state space V" if this state-space contains
enough substates to construct each state B € V. We will denote such a set by S¥.

2.2. Representation of the Dependence of Y on X as a Set of Substates: Y = &X1°

The dependence of the variables Y upon X can be represented as a set of states &X. This
representation is an alternative to a set of functions F(X|®). In this case, it is convenient to choose the
values X € X" as the key & and the subset of the values 9 € Y" as the values of & (including & =
0).

Definition: Let us define the substate &, where the key is & = X, X € X", the value
Sc9, Y EeY" and the index q € N is such that

ve', &Y (x=%",q%q)
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also, X € &%, and (&%, ¥X) < 9.

Since the values of the parameters ® € G" are constant for any possible values of ¥ and 9, they
are also constant for any possible substates &%, composed of the values of X and 9. Thus, the
definition of &*,does not include values ®. Being joined into a set, the substates &*, will have the
same parameters ®, but may have different values of the key X.

Definition: Let us define the dependence
Y = &%1° = (6% }|6

which represents the dependence of the variables Y upon X for given parameters ®
that are the same for all substates included in the set SXI8, At the same time, substates
should not be contradictory:

a Gxi,exj € 6X|® (3 Dy € 6:{1' +* ] € 6:{} \v l) , (1)

The set &*I® with all substates having the same key ¥ will be denoted &*I®.

Let us note that we do not impose a completeness restriction upon the set &*1°—i.e., &*® may
not contain all of the keys X € X" or may even be empty: &*!® = ¢. &*I® may also not contain all
2 € Y" and/or it may not contain enough &*, to build one or more complete 9.

The representation Y = &*I® is equivalent to the representation Y = F(X|®) if and only if, for
each X € X" ata given ® € G", the representations are equal:

y=6"®oy=
= F(X|®) = VX € X*(F(X|6) = &*I°)

For each key X, there exists a set of substates &%, that cover all possible values 9 € Y". We will
denote this set by S$*'®. This set may not satisfy the consistency criterion (formula 1) and will have

cardinality
n
sl =] 1wl
=1

If we join the sets S*I® for all possible keys X € X", we obtain the set of all possible substates.
We will denote it by

SXI6 — U §HE 2
Xexn ( )

The cardinality of this set when & =9 will be

s = ) 15"

Xexmn

Moreover, |§X|®| < |V"| since, from the set G™ only, one set of values ® is used (note, the
cardinalities will be equal in case |G"| = 1).

In practice, we will more often see sparse &*!®, where it is impossible to completely construct
9 for every X € X". The use of sparse &*!® will reduce the modeling accuracy. In general, this is not
a problem from an engineering standpoint since increasing or decreasing the cardinality &*!® allows
us to choose an acceptable accuracy level for solving a specific simulation problem.

2.3. Reflection Y(X|®) as a Record of Changes in the Values of Variables
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We can reflect the behavior of a modeled object by measuring its properties and recording the
corresponding values of the variables X, Y, and G. By abstracting from a specific implementation,
we will call such a record a reflection of the modeled object.

Definition: Let us define the reflection Y (X|®) as an arbitrary representation of the
dependence of the dependent variables Y upon the independent variables X and the
values of the parameters ®. Moreover, this dependence is constructed by studying and
measuring the modeled object’s properties.

We can graphically represent the building of the reflection ¥(X|®) by adding the points
BL=XUYPUG
into the state space V" at the coordinates X,Y,®, where X € X", 9 € Y*, and ® € G". The added

points will form a geometric figure that reflects the behavior of the modeled object.
A reflection can be represented as a set of functions

YX|®) = F(X|6) =Y
or as a set of states
Y(X|®)S =cXI® =y

In the first case, a set of functions can be constructed by recording the obtained or measured
values of the variables X, Y, and G. [17] In the second case, from the values of §) obtained or
measured with respect to X and ©, the substate quzl can be directly built and added to the set of
substates &X1°.

In this case, writing down the values of the stopwatch (which reflects the variable t) and the
level gauge (which reflects vy,4¢,), We obtain the function v,,q¢e(t), which reflects the dependence
of Vyater ON t. In practice, this function will be defined only on a certain interval or several intervals
of the time tpeasuring, during which the measurement was performed.

2.4. Model Y(X|®) as an Imitation of Changes in the Variables V

In one of several ways, we can define the dependences of the variables Y on X and G without
directly measuring the properties of the modeled object [18-20]. We will call the dependence defined
in this way the model of the modeled object.

Definition: The model of the modeled object Y(X|®) is an arbitrary representation or
implementation of the dependence of the dependent variables Y upon the independent
variables X and the values of the parameters &. Moreover, this dependence is
constructed without the direct participation of the modeled object.

We can graphically represent the model ¥(X|®) as a geometrical figure in the state space V"
consisting of the points

BL=XUYPUG
that define the relationship between the variables ¥ and X and the parameters &, where X € X",
PEeEY" and ® € G
The model can be implemented as a set of possibly partial functions

YXI®)F =FX|®) =7 , 3)
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or as a set of states
7(X|6)S =0 =7 4

In the first case, the set of functions can be determined analytically or in another way. In the
second case, many substates must be pre-built in one way or another.

We can define the model Y(X|®) such that it completely coincides with certain reflection
Y(X|®); however, it is much more reasonable and useful to construct ¥(X|®) to predict changes in
the modeled object.

From a practical point of view, we are interested in how accurately the constructed model
Y(X|®) corresponds to the modeled object. One way to determine compliance is to compare the
model and reflection ¥(X|®) (i.e. to calculate the magnitude of their inconsistency in one way or
another). Let us denote the inconsistency value by e.

For example, for the case in which all variables V have domain R, we can define € € R as the

integral sum of the difference of the values ¥ and ¥ for each X € X™:
Y|

e = Z_Z(m‘qcs)i - 7(¥6),)

Xexn i=1

where ® € G".

2.5. Simulation of the Model Y(X|®) as a Calculation of a Subset of 9 < Y" from the Subset X € X" and
the Parameters ®

The simulation task can be reduced to obtaining or calculating the subset of the unknown values
of the dependent variables ¥ from the subset of the known values of the independent variables X
and the values of the parameters ® using a certain model Y (X|®).

Definition: Let us define the simulation as the operator

XI6) <
X—9 ,0)

=

where X € X is a possibly ordered set of unique known values of independent
variables, 9 S Y" is the desired set of possibly not unique values of the dependent
variables, and Y (X|®) is a certain model used to obtain the desired 9 € Y* fora
given X € X™.

For the case where the model is implemented as a set of functions (formula 3), the simulation
=\ F
_7X6)
x _ g)
is simply a calculation of the result 9 € 9 for each argument X € X:
_ vXeX(DeD=F(X|6)®D) _
X

where

9= FXI®)®

which is the operation for calculating 9 € Y* for a given X € X". For a model implemented as a set
of substates (formula 4), the simulation is a matter of finding all substates for each key X € X and
then building the values of 9 € 9 from the found substates
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_ vEeX(9er=| JeF°®)
S 9 ,(6)

where
GXKY) (E) — eilfﬁ

is the operation for selecting a subset &¥® € &¥I® of substates &*I®; with the same key X.

A simulation can be interactive —i.e., it can react with external events and produce the results to
the outside right during the calculation. In the simplest case, an interactive simulation can be
represented as a series of simulations

{xi m@i} ,(7)

of the set of models

{rX16),}
for the corresponding sets of subsets of values of independent variables {X;} sequentially received
during the interaction and the sets of dependent {%);} sequentially returned as simulation results.

3. Graph Modeling

We show how the model ¥(X|®) can be represented as a transition graph and how a simulation
can be performed for this representation. We define and prove the rules for constructing a consistent
transition graph. Before reading this section, we recommend to check Appendix C, which describes
transition function concepts. In Section 5 and Appendix G, we present a simple example of the
construction and simulation of a transition graph.

3.1. The Transition Graph I'® and the Simulation Graph y'®

We can join function 0/*; € ©!® and a set of functions 0!°;;_,, ...,0!%;,_, € ©I° represented as

graphs by combining the result nodes
0 k=1  » 0P k=n ~ »
: ik=1r ) —>S: ik=n
and the argument nodes
S:Ske1jy e St Sk, —
with intermediate-variable nodes

010 =y N 010 k=n N olo;
(—’ Sk=1:Si k=1 =r» = Sk=n Si.k=n) —
(see Figure 1).
o %) o
O k=1 00 10103
o o o
el ik=1 ol k=2 ol Lk=3
Sik=1 2 Sik=2 :Sik=3
D iSik=1 ¢ iSik=2 ! :Sik=3
D iSk=1 ¢ iSjk=2 ¢ ISjk=3
1D
0
el
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Figure 1. Joining of function 0/%; € 8!°.

We continue in the same way to sequentially join the functions included in the same set ©'®
(possibly using the same function more than once); we obtain some DAG (see Figure 2). We call such
DAG a transition graph. Also, optionally we can combine two or more root variables
Ski=1s »+» Sk i=n that do not have incoming edges, thereby reducing the total number of nodes.

f-\S f-\S f-\S f-\S
LIS, 1 1S, 1 1Sz 1 1
S R D R S R S
o0, oo,
I I
s’ s’

oI, olo, olo,
f-\S f_\S f_\S
11 11 11
s’ s s’

Figure 2. Example of the transition DAG built from functions 0'¥; € @1°.

Definition: We define the transition graph T''® as a DAG constructed on the set of
transition functions 0'® by sequentially joining arbitrary subsets of functions

o O O ®
0,01, ...,0'%,_, € 6!

and by combining the result node

and the argument nodes

019 k=1
Sk,jhe=1° Sk, j k=1~

9|Dj,k=n
s Sk jde=n’ Sk,jk=n —

such that

§i c Sk,j,k=1’ ey Sk,j,k=n
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into intermediate variable nodes

ol®;, _ ol®

k=140 j k=n
RN S

i
Additionally, the root nodes

Siz1 U U Sk icn
and their domains

Skic1 N N Spizg

may also be combined.

We note that this definition imposes no restrictions on the graph structure except for its acyclicity
(the result of the next joined ©° cannot be connected with the argument of any already joined 0!°)
and continuity (all nodes of the graph I''® are connected by at least one edge).

When we join the transition functions ©!°, we also join the transitions 6!° from the equivalent
set 0!° & 0!°, forming a set of more complex DAGs with the same structure as the graph I'l®, but
which consist of the substates ¥, and transitions 6!° (see Figure 3). We call such DAGs simulation

e (o=t (et

graphs.

O
(L e®, eI°,
q,7 q,8 q9

Figure 3. Example of the simulation graph that can be obtained from the transition graph in Figure 2.

Definition: A simulation graph y'® is defined as the DAG obtained by constructing a
transition graph T''®; it has the same structure as T''®. The graph y'® consists of
constructions of the form
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ol% . 010 k=100 g=n
— &,

which result from joining the transitions
61°; € 61°; & 0!°;
and
01°,-1€0°,, &
© 00,00, €0, , o
© 010y
belonging to the set of joined functions
0°,0° -4, ...,0°; ,_, € O1°
such that

9lo. 9|D.k_1
~X L =% Jr=1
i =G g jk=1— =

) wes

0.
=¥ 6% e=n
v =D k= T

We note that all y!® will have a structure exactly matching I'®. According to the definition of
¥!®, during the construction of I'l®, incomplete graphs of y!® with structures not coinciding with that
of I''® will be discarded. Thus, the substates &%, included in the discarded graphs y!® will also be
removed from the domains § of the variables S included in the constructed I''®.

Let us denote some arbitrary set of graphs {y'®} by y!®. According to the definitions of the
graphs I''® and y!®, each of the substates ¥, from the domains S of the variable nodes S will
belong to one of the simulation graphs y!®. All &%, terms that do not belong to any y!'® will be
discarded during the construction of I''®, along with the incomplete y!®.

Thus, we can represent the graph I'® as an equivalent set of graphs y!®. We will denote such a
setas yI® & I'l%; this set will include all &%, from all domains S:

Ustey= | &0
Y15 yBeorl®
where S(I'l®) is the set of domains S of the variable nodes S from the graph I''® and &*(y!®) is
the set of all &%, belonging to y!®, which is consistent:
3 &¥15 (&% (yI®) = &¥19)
Moreover, all simulation graphs y!® will share the same set of parameters & split into parts O.
Let us index each node from the set S(I'!®) with the depth index
d = max(len({Srp0t - Sa})),

where d €N, {S;pot - Sq} is the set of all possible paths from any root node S,yot € Syo0r (i-€., the
node that has no incoming edges) to the indexed node S; and len() is the length of the path (the
number of edges in the path). Let us also index all transition functions ©'° with the same index d
same as the index of the result node
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@lDd
> Sd
Thus, each root node of S, willhave d = 0 and each leaf node S;.,¢ (i.e., such that it has no
outgoing edges) will have d = n, where n is the minimum number of edges to the nearest root node

Sd=0'

3.2. Construction of a Consistent Transition Graph TI''®

From a practical viewpoint, we want to be able to construct transitions I''® from a set of
predefined transition functions 0!® —in other words, to build models from a set of ready-made
functional blocks, similar to the Simulink software. It is necessary to guarantee the consistency of I'®
at the local level, i.e., at the level of individual functions 0¥, to implement this approach successfully.

We can represent some simulation graph y!® as the set of directional paths (dipaths) covering
all substates &%, € &*(y!®) and transitions 8/° € 6(y!®).

Definition: Let us define a dipath

0°, 6%,

6. =X X
pl =6 ql=0 w6 q,l=n

in the simulation graph y!® € y!® & 1% where &*,,_, € S,
635(”:” € S;—n, | € N is the index of the node which is in the dipath,
such that [ = 0 corresponds to some root node 6*q,root and [ =n
corresponds to some leaf node qu,leaf in the graph y!®,

S*pi=0 - X g 1on € (Y1), 0101y, ..., 00, € 0(y!®),

Si=o » Si=n € S(I'1®), with &*(p!®) € S*(y1°).

We denote some arbitrary set of paths by p!®, which is not necessarily related to the same graph
6

vie.

The set of paths p/® can be equivalent to the graph y!® if the paths in this set contain all
substates &%, € &*(y/®) and transitions 6'° € 8(y!®):

p® o 10 o U ¥ (p'®) =
plG5pI6
=& (Yl(ﬁf) A U 0 <p (yl(ﬁf)) =0 (Vl(ﬁj)
2O5pIG
In order to guarantee the consistency condition
VYIS € Y1 o 19 (GX(yI%) € &XI%)

for the graph I'® (i.e., to guarantee that each of the simulation graphs y!/® described by I''® will not
contain any inconsistent substates), the graph I''® must meet the following two restrictions:

®  For each graph y“ﬁj € y!® © I'% each substate S*,; € S* (}/|(5j),63E (p'cﬁj) (i.e., located on one
of all possible paths p!® ;) must have a unique key X € &% ; regarding the p!® ;.

e  For each graph Y € y1® o IS the values y €y of some variable y:y € Y should only belong to
the set of substates G*, ; € &* (y"y’j) such that there exists in y!® at least one path p'® € pI® &

y!®, including all of these substates.

At the local level (i.e., without studying the entire graph I''®), the above restrictions can be met
by applying the following construction principles (Appendix D):
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I. The set of keys X" must be linearly ordered;

Il.  Each transition function

e®
(S:Sk=1, -, S:Skp) —S:S
(where 6!° € 0(I'!®)) for each transition
01%; |
(6% k=1 =G qjk=n) — S,
(where 61°; € 6 (p'GJ.) ,0'° = 0°) in some graph y!®, € ¥ & I''® must generate the resulting
substate &%, ; € §, &% (y'c’3 j) such thatits key X,; € &%, ; will always satisfy the conditions
}Jq,j > max(}.'mi‘k:l, ...,%mi‘k:n)
or
xq‘j < min(xq‘j,,\{:l, ...,}Jq‘jl,\,:n)
where

_ X % (|6
Xk € S qjk €Sk, © (Y j)
1. For each variable y:y €Y, its values 1 € y must belong to no more than one root node S:S;_y:

Vy:y €Y (|{S:S120 €S(r'®) |3y € y,n(Si=0)}| < 1)
where
9 = Je®
S(S) ={&, 16, c &%, €S}
(i.e., the set of all y values in all substates &, form the domain of the variable §).
Iv. I, for some node S:S; € S(I"'G) and some variable y:y €Y the condition 3y €y, y(S;) is true,

then, either the node S; must be a root, or there must be a transition function

0o, .

(w2 Sik=0s wr St Sikmny ) — S;
with one or more arguments S:S;, for which the condition 3y €y, y(S;) is true and in the graph
r''® there exists a chain

fa) s}
el ik=1 ol ik=n
5i,k=0 Py Si,k:n

that includes all S; .. Moreover, for the last argument S; ., in the chain, there should not be another

function

oo,
(..., Si,k:n» e ) _)Sl
for which the condition 3y €y, vy (Sl) is true.

In practice, principle (I) can be easily implemented since linearly ordered sets are common. For
example, time, speed, etc., can be represented using variables with R. Next, if the domains of all
independent variables are in linear order, then the set of keys X" will also be in linear order.

Principle (II) says that the key-value constantly increases or decreases as the simulation graph

I® is calculated. This approach can be applied, for example, to physical models, where independent

Y
variables are usually rational numbers that increase or decrease over the simulation.

Principle (III) holds if the graph I'l® has a single root node S:S;-y € S(I'!®) such that in each
graph y'“jj there will be only one substate &%, ;- € S;, thereby excluding the possibility that the
values y € y of the same variable y:y € Y are in different substates qu‘ ji=o0-

Another approach to implementing (III) is for each root node S:S;-, to include y € y values
only from its own unique set of variables ys, ..., y, € Y, such that

vy,yi(i#j yiNy;=0)
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This approach, for example, is convenient in the graphs I''® used for interactive simulation,
where each next node S;_, reflects the next input of data from outside the simulation.

In practice, a simple way to implement principle (IV) is to check whether adding the next
function ©'° toform S doesnotinclude variables that are already in the results of the functions that
have joint arguments S with @!°. For example, if there are nodes S,—; and S, for which
Y(Sk=1) = [a,b] and y(Sk=,) = [x,y], where

y(S:S)={yy€eY[Ip€eyn(S)}
and these nodes are the arguments of some function
1

(Sk=1) Sie= 2) i Siz1

for which the result is y(§j=1) = [a, x], then we can add only a function

ol |
(Sk=1,Sk=2) — Sj=1
for which y( 2) [b,y] and either y( 2) =[y] or y(SjZZ) = [b], but not y( 2) [a, b, y].

3.3. Computability of the Simulation Graph y'® and the Initial Set of Substates &'

In practice, we will need to find some specific simulation graph y!® € y'® & I'® from some
known set of consistent substates &*® ¢ &*(y!®) associated with the nodes S of the graph I''®. We
will call &*I® the initial set of substates.

Definition: Let us define the initial set of substates
& ={s =%,
associated with the specific nodes S of the graph T''® such that
31yl (e’ c 6%(]/@)) ,(8)

where S:S € S(I'®), &%, €5,&*(y!°), y®ey® o r®.

The search for a specific graph y/® with some set & can be imperatively represented as a
calculation of all functions 0/° € O(I'!®), using &' as the initial arguments for these functions.

Note that the definition requires that &' be a subset of the one and only one set &*(y!®).
However, in the general case, some &*!® can be a subset of more than one &*(y!®). In this case, in
the imperative representation of the search, a single graph y!® cannot be calculated from such &*1%,
since for some or all functions 0!° € (I''®), not all arguments be defined.

Representing the search for a specific y'® in the form of a calculation of the functions 6!° €
0(r''®), we notice that all ©/° will be calculated only if the values of all root nodes S, € S(I'!®)
are known or can be obtained in some way. Thus, &' is a subset of the unique set &*(y/®) (formula

8) if and only if, for each initial node S,,,; € S (F |G’) there exists a path
ol®, e,
—) —) S def

Sroot
where S;.; € S(I'®),S(&") is a node whose Value is defined in &'. And all function ©'°; on this
reversible (Appendix E).

Another important property of this approach is the glitching freedom described in [21,22]. Since

only one graph y!® is to be found, there never exist inconsistent substates &*,.
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3.4. Representation of the Dependence of Y on X in the Form of a Simulation Graph Y = (I''®, G’)X and a
Graph Model Y (X|6)"

The dependence of the dependent variables Y upon the independent variables X can be
represented as a tuple of the transition graph I''®, and the set of initial substates &' with given values
of the parameters .

Definition: Let us define a pair

Y = <F|®’ 6’>X =

= Uxexn &* (y([‘|@|6’)) x)

representing the dependence of the variables Y on the variables X, as parametrized by
the values of ®, where

Yo =y(r'°|e’)

is a simulation graph y'® € y'® & I'® found for a given I'®, & and ®, and

is the merging operation of the substates &*, € @*I® with the same key X € X" into
the set of values ) € Y".

The representation Y = (F 16 6')X can be used to implement the model Y(X|®); we call this
implementation a graph model and denote it as
PEIG) = (r'%,e) =7 (9
This implementation is similar to a representation in the form of a set of substates (formula 4),
except that the set &¥I® must first be found as

s¥1° = &* (y(rl°|e"))

3.5. Simulation of the Graph Model Y(X|®)" as a Calculation of a Subset of the Values 9 < Y® on the
Subset X € X" and the Parameters G

For the graph model Y(X|®)", we can define the simulation as the operator
1)
X9 ,(10)
where X € X" is the subset of known values of the set of independent variables X ¢ V and 9 < Y?
is the subset of unknown values of dependent variables ¥ c V.
The simulation can be implemented as a search for the simulation graph y!® € y!® & r'® for a
given initial set &' and a set ®. Then, from the set &*I%, 9 € 9 is constructed for each ¥ € ¥ as:
_ vEex(9ed= | (v(r®1e))®) _
X Y

In the simulation problem, we can significantly optimize the search for the graph y!®. Since the
set X is usually much smaller than X7, we can search or calculate only a part of the substates from
&*(y!®), which contain all the required keys X € X:
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et ={c*, ec*(y°) | x(c%,) e X} ,(11)
We can also optimize &' by including substates that are as close as possible (from the point of
view of the distance in graph I''®) to substates from the desired &* or even equivalent to these
substates. This will reduce the number of calculations not related to the search for &* (see Figure 4).

Figure 4. Reduction of the number of calculations by including substates that are as close as possible to those
from the desired &%,

For the graphical model Y(X|®)", an interactive simulation can also be performed. In the
simplest case, this requires many models {¥(X|®)";}; however, a more interesting and optimal
approach is to undertake interactive manipulation of the values of the nodes S € S(I''®) when
imperative representations (sequential calculation of the functions ©'%) of the operation y(I''®|&’)
are used. This approach was explored briefly in. [23]

Two patterns are possible here:

e Push pattern:
This pattern can help synchronize the simulation with some external processes (for example, to
synchronize with real-time). The essence of the pattern is that some function ©'° cannot be calculated
until all its arguments S are defined; thus, we can locally pause the simulation, leaving some of the
root nodes Syoor € S (F |(’5) uninitialized. We can then continue it by defining these nodes.

e Pool pattern:
This pattern can be used to implement an asynchronous simulation reaction to some external events —
for example, to respond to user input. As in the previous case, some Syoo; € S(I'®) remain
uninitialized. However, the simulation does not stop there. Their values are constructed as needed to
calculate the next ©'°. Using this approach, it is figuratively possible to imagine that undefined Syqo;
is computed by some set of unknown transition functions, possibly also combined into a transition
graph. In other words, there is some “shadow” or “unknown” part of the graph T''® and, as a result
of its calculation, the Syoo¢ s initialized (see Figure 5).

Sstep,l | Sstep,z Sstep,3 |
S TN o TRCLPIN G TP
o000 1 : 1 1 : 1 : 1 : [ X X

| S— A\ T4 - -
Sthne,l Stime,?. Sn"m.e,?,

7 [ M~

I 1 | 1 1 |

Real world

Figure 5. Representing the input/output as a set of unknown transition functions.
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4. Logical Processors

We show how the graph model Y(X|®)" can be implemented using the reactive-streams
paradigm in the form of a computational graph. We also show how the simulation can be evaluated
on this graph and offer ways to optimize it. Additionally, in Appendix H, we implement a simple
computational graph and perform a simulation with it.

4.1. Reactive Streams and Graph Model Y (X|®)"

The concept of reactive streams was formulated in 2014 in manifest [10-12] and extended by
AKKA library developers with tools for composing reactive streams into computational graphs,
[13,24] which are already widely used in practice. [9,25-27] The graph nodes are logical processors,
and the edges are the channels representing the stream of messages that transmit data; each of the
processors transforms the messages in some way. Generally, reactive streams are an implementation
of the well-known dataflow-programming paradigm.[25]

This chapter will follow the approach described in (i.e., we will compose a computational system
from small blocks that process data streams) [22,28,29]. However, we will use reactive streams to do
all the hard work for us to distribute computation and load balancing.

We will denote messages (values) by M, logical processors (reactors) by LP, channels
connecting the processors by D, and the numeral graph by C.

We can transform an arbitrary graphical model Y(X|®)" (formula 9) into a computational
graph C:

e To represent each substate ¥, € &*(I''®) with the message M = [&¥].

o Toreplaceall 6% € O(I'®) for which S’y .,S k=n € S(&") with equivalent processors LP%:

S k=1 =4 Dk=1) ,S k=n =

0% = ppeval
= Dyey——S=>D

and all O™ (for which S € S(8")) with processors LP®’% equivalent to the inverse functions
@—1|$.

\, —1|§B=> Lpeval
§=>p2 22 " g o
= Dieyy o) Sicn = D
o To successively replace all functions 6'® € O(I'®) and all arguments Si—q, ..., Sx=p that are

already replaced by the channels Dy, ..., Dy—y, which are equivalent to LP’%:

6% = Lpeval
Dy_yy o,Dpey——S =D

e And to successively replace all O, the result S of which has already been replaced by channel D,

by LP that equivalent to the inverse functions 01"

_1I®

ol® = =1 peval

D

Sk=1 =
= Dk=1’ "-'Sk=n = Dk:n

As a result, we obtain a graph C containing the equivalent LP°*% for each 0* € 9(I'!®) but
possibly differing structures compared to I'!®, since its construction was carried out starting from
S’ € S(&) rather than from the root nodes S,,,: € S(I''®) (see Figure 6).
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Figure 6. Example of constructing of the computational graph € from the model ¥(X|G)".

Next, each root channel D,,,; € D(C) must be connected with a logical processor LP™, whose
task is to send the corresponding M’ =[&%,] (where &%, € &*(&')), which starts the
computational process (see Figure 7).

Moreover, all or part of the channels D € D(C) must be connected with one or more Lpeottect,
which will collect part or all of the calculated substates &%, € G*(y!®) belonging to the graph y!® €
v!® © I'l®, given by the set of initial states &' (see Figure 7).

| pinit
] 1
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,f 7 | | peval \‘ ’f L peval \ \‘
£ \ / I HEEA
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I i 1
l' AN N T AN 1 ‘I
O NN STy
I v \?1-2 | Wb ] v v |
: LPEUMZ:L \ \\ II Lpeval : Lpemlz i
\ 1 1
1 \ 1 1
! D3y | : 1D3, | D3z |
v v Vv ¥ v v

chuliect

Figure 7. Addition of LP™® and LP¢°!¢¢t into the computational graph C.

4.2. Graph € Optimization

Simply replacing ©* functions with processors LP®’* yields an extremely suboptimal and
potentially infinite processing graph C, which is not good from the viewpoint of minimizing

computing resources. To solve this problem, we can optimize graph C. For example, consider two
optimization methods:
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e Folding of cyclic sequences in the graph T'l®:
Consider a chain with an arbitrary length of the same functions 0%, as in Figure 8.a. This can be
transformed into a chain of logical processors LP®V® of equal length, as in Figure 8.b. We can fold
this chain into a single LP®"®' by adding a message-return loop as in Figure 8.c. Thus, more than
one message M will go through one LP¢"™, so that if 8'% has more than one argument, it can lead
to collisions. To resolve collisions and also to implement breakage of the loop, we need to determine the
loop-iteration number of messages M. The simple way to do this is to add an iteration counter for each
loop in C. Another approach is to use history-sensitive values.[21] As a more complex example, we
consider the graph T''® in Figure 9.a, which can be converted and collapsed into a compact graph C
as in Figure 9.b.

e Folding of graph C:
Inside each LP"™, we can implement more than one function O € @(I'®), thus reducing the
number of nodes in the graph C. This folding can be performed over a wide range, up to the realization
of all T'® in one LP®"®. For example, graph C from Figure 9.b can be folded into single LP’
and will look like Figure 9.c.

a)
g S 3
=1 |© = |O f=1 [©
|— 31 | © 31 1 O eee
| G- | G | Q-

b)

Droot,l D2 D3

- - - LPeval p—— LPeval p——— LPeval

9)
Droot_>
=== eval | e
Pt LP \|
1 !
\\ /I

Figure 8. Example of the folding of the simple computational graph C.
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Figure 9. Example of the folding of a more complex computational graph C.

In general, the optimization problem for graph C is rather complex and goes beyond the scope
of this article.

4.3. Simulation of the Graph Model Y(X|®)" Using the Computational Graph C

In the simplest case, we can simulate the model ¥(X|®)" (formula 10) using the graph C
constructed on it in two stages:
o Calculate the set of substates
SXI6 — X (y(ﬂ@le'))
For this, we initialize the calculation by sending M’ messages using the processors LP™?t. Using the
processors LPpeotiect e collect all the calculated messages, M = [qu].
e Find all substates for each key X € X and then collect the values 9 € 9 from the found substates (formula
6).
In most cases, this approach will be computationally expensive, since in practice, usually
()] > (%]
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Generally, simulation optimization is the minimization of the number of calculated substates
&%, such that X¥(&%,) ¢ X. Several approaches are possible here—for example, constructing a
minimalistic I''® with a certain well-known collection X. Alternatively, lazy algorithms that cut off
the calculations ©® whose result is not required to cover X could be used. However, this topic is
beyond the scope of the present article.

5. Practice

In this chapter we show our approach in practice. First, we describe modeled object, then
define it mathematical model and the analytical solution. In the next step, explain the procedure of
construction of graph and parallelization scheme and present the results. This chapter contains
shortened description, please check Appendix F, G and H for the full one.

5.1. Description of the Modeled Object and the Construction of Model ¥ (X|®):

As an example, consider the classic model of saline mixing. Here, the simulated object is a system
of two connected tanks of volumes v; = 4L and v, = 8L. Over time t, a saline solution circulates
from the first tank to the second with a speed g3 = 5L/m and in the opposite direction with a speed
of g, = 2L/m. In addition, the saline solution is poured into the first tank at a speed of q; = 3L/m
and drains from the second tank at the same speed q, = 3L/m, i.e., the volume of the saline solution
in the tanks does not change. Initially, the first and second tanks are entirely filled with solutions with
initial salt concentrations of w; = 0g/L and w, = 20g/L, respectively. A saline solution with a
concentration of w; = 10g/L is supplied to the first tank constantly. Thus, the set of variables
reflecting the properties of interest will look like:

(O]

q1
qz
qs

[,

The modeling task is to predict the change in the salt concentrations w; = 0g/L and w, =

20g/L over time t.
As part of the modeling problem to be solved, we represent the simulated object in the form of
the model Y(X|®)" (formula 3), breaking the variables V as

X =[t],
5 [W1
?= mz],
— Ul = 4 -
Uz = 8
q: =3
G=|q=2
qgs =5
qs =3
w3 = 10
and specifying their dependence as a set of functions:
Y = F(X|6)
(V105-15)¢ (15+V105)t
13e” 16 105 13e” 16 /105 (Vi05-15)¢ (15+V105)¢
B, () = 71 - 51 —5¢ 16 —5e 16  +10
- (15-+VI05)E (VI05-15)¢ ,(12)
5e7 16 105 5e 16 V105 (Vi05-15)¢ (15+V105)¢
O, () = - +5e 16 + 5e 16 +10

21 21
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Which are obtained by solving of the Cauchy problem
d@1_3*10+2*@2—5*@1

dt 4
©,(0) =0
d(T)z_S*(’l\)l_z*(l)Z_3*(’l\)2
dt 8
®,(0) = 20

We can also represent the simulated object in the form of model Y(X|®%)S (formula 4). In this
case, the values of the variable t will be used as keys and those of the variables w; and w, can be
separated by different substates, such that we obtain two types of substates &%,_; = [(1)1][”‘1=1 and
G = [a)z][t]qzz. In the code, we can represent the values X, 9 and the substate G*, as OOP
classes (source code B.1.L27).

One simple, but impractical, way to construct a set of substates &¥® is to generate
&* =1, %4, € 8¥I® using a set of functions (formula 12) with some step of key At (source code
B.2.L60).

Using the model Y(X|®), we can perform the simulation (formula 5) for some segment X =
[tbegin, tend] and obtain the corresponding set of values 9 (source code B.1.L71 is an implementation
of ¥ = F(X|®) and the source code B.2.L70 is an implementation of &*I® = ¥). Looking at the output
plots, we can see that they are similar (see Figure 10).

We can compare the results of executing of models ¥(X|6)" and Y(X|®)° just by accumulating

different overall output values:
Y|

e= ) D (PO, - FXI6))

Xexn i=1
Evaluating this algorithm (source B.3.L24), we obtain € = 1.1546319456101628°"**.

T(X1®)"

20

T —
) /
5

w 7(X16)°

15 \
5 /

0 2 4 6 8 10t

X axis is time and Y axis is salt concentration, green line w, is salt concentration in tank 1 and red line w, is
salt concentration in tank 2.

Figure 10. Results of a simulation of the Y (X|®)F (first plot) and ¥ (X|®)S (second plot) models. Where X axis
is time and Y axis is salt concentration, green line w; is salt concentration in tank 1 and red line w, is salt

concentration in tank 2.
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5.2. Building and Simulating a Graphical Model ¥(X|®)":

The graph I'!® for this example will represent an infinite chain of pairs of nodes S connected
by edges 0!°. For convenience, in addition to the index of depth d, we to index the nodes S with
indices of width w € N, such that the nodes S;, with the same index d, will have different values of
w. Moreover, we set w = k = q, where k is the index of the argument (edges) ©!°, and q s the index
of the substate assigned to S;,,. Each pair S;,-1 and Sg,-, corresponds to a certain moment of
discrete-time t. For simplicity, we will use a fixed time-step At = d *y, where d is the depth index
and y is the time-step coefficient. Also, we restrict model time to a small interval [tbegm, tena] 2 .
In this case, the graph I''® will contain

tena — tbegin

— _end ~ “begin 4
n At

pairs of nodes S .
The simplest way to implement the transition functions ©'°,,,_; and 0!°,,_, is to use the
functions @, (f) and @,(f) from the set F(X|®) (formula 13). In this case,
elod,w=1([&)\1][ﬂk=1; [az]mkzz) =
= [@,(F + 20)]1H41_;
elod,w=2([al]mkzl»_[az][ﬂkzz) =
= [@,(F + A0 ] _
A slightly more complicated implementation is to rewrite the system of differential equations
(formula 14) to be solved by the Euler method
Gp ¥ W3+ o ¥ W1 — Q3 * W14
21

~ ~ q3 * W11 — (¥ W31 — (4 * W31
0.)21‘ = (1)2 i—1 + At *
, , v,

2"

Wy = Oy-1 + AL *

as iterated by At:
@10 =0; By =20;i =123, ...

In this case

~ ~ _[E+At]
R R R 0.9 *0. w3 +0.q, * Wy —0.q3 * 0,
0 gumr (181117, [0219, ;) = [ @, + e » o |
A =1
~ ~ ~ [t+At]
~ ~ ~ 0.z 0; —0.4, W0y —0.q4 %W,
0 =2 (1011, [0, ) = @, + e « o |
. =2

We implement the nodes S and the sets of edges 0/¥ as OOP classes (source code C.1.L89). S
nodes are essentially variables that are not initially defined. The transition graph I''® and the
simulation graph y!® can be represented as classes containing collections of nodes S of sets of edges
0® (source code C.1.L149). Moreover, the graph y!® is the same as graph I'®, but with all variables
S defined.

Due to the simplicity of the transition graph I''®, we can implement the function build_I'(n, At),
which automatically constructs I''® based on the given number of steps and the time-step (source
code C.1.L190).

The search for the simulation graph y(I''®|&’) is a calculation of the values of all nodes S from
the initial set of substates

&' = {Sd=0,w=1 = 6%}_:1’ S¢1=0,w=1 = ij:z}-

We implement the search as method T'.y(&'), using the indices d and w as the key in the set
&' (source code C.1.L156). The method first initializes the nodes Sy_gy-1; and Sy_g-, with the
initial substates 6’51-:1 and 6’351-:2 and then calculates the values of the rest nodes S;,, by calling
each method 0°, ,.eval() until all Sy,, are defined. The method ©!°,,.eval() checks whether the

arguments
®|de
Sd—l,w:l' Sd—l,w=2
are defined and, if so, evaluates the result

GIDd,w
> Sd,W'
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The set of substates ©*(y!/®) can be obtained from the simulation graph y(I''®|&") by simply
extracting the values from the nodes S and combining them into the set &*1®. We implement this in
the form of the method y!®.&() (source code C.1.1179); next, &*1® can be used to obtain the values
of 9 €9 from the values of X € X.

5.3. Constructing and Calculating Graph C Using the Graphical Model Y (X|®)"

As an example, we construct graph C using the model ¥ (X|®)" for mixing salt solutions. To
implement it, we use the AKKA Streams library. There was a similar approach to implement the
SwiftVis tool.

We can build an unoptimized version of graph C by simply replacing the functions 0/*,,_,
and O™, ,_, with logical processors LP®’%;, _, and LP®%,,_, and adding LPcUect
LP™® o y=1, and LP™E,__,.

We represent the substates in the form of the messages Mg, = [6%,,,] produced by the
corresponding LP®**,,, where q = w. In particular, the substates from the set & can be
represented as My—ow=1 = [Sa=ow=1 = & F¢=1] and My—gw=2 = [Sa=ow=2 = &%4=2]-

This will work as follows (see source code D.1): the initial messages My—o,,=1 and Mg_q -, are
sent by logical processors LP™!;_, _, and LP™¢,_,,_, to the processors LP®%,_ .,
LP®"® ,_; 2. Then, the messages will distribute throughout the graph, where a copy of each substate
is fed into the processor LPpeoliect vwhich builds the resulting set of substates SX16,

Since the standard blocks Zip, Flow.map, Broadcast, and Merge from the AKKA Streams library
were used to construct graph C, the implementation of each LP®"% ;  will be a nested graph.

Since the obtained graph C consists of recurring pairs LP¢**,,_, and LP®"*,,_,, it can be
PeualW=1 and LPeualW=2

Since it is necessary in this case to determine which incoming messages refer to particular
iterations of the cycle, we add the iteration (depth) counter d to them, M,,, = [d, &* q], and modify

optimized by implementing two cycles using 2 logical processors L

the grouping function Zip so that it selects pairs of incoming M,,, with the same value d (source
code D.2). When we execute this code, we obtain the simulation result (see Figure 11), which was the
same as our findings from the implementation of the ¥(X|®)® model (see Figure 10).

33 4.4 5.5 6.6 1.7 8.8

=
[

0 1.1

w w2 w3

L L . . wy . . . wy | . .
X axis is time and Y axis is salt concentration, green line  is salt concentration in tank 1 and red line ~ is salt concentration in

tank 2, gray line o is saline solution concentration supplied to tank 1 constantly.

Figure 11. Simulation of the ¥(X|®) model using graph C. Where X axis is time and Y axis is salt concentration,
green line w, issalt concentration in tank 1 and red line w, is salt concentration in tank 2, gray line w3 is saline

solution concentration supplied to tank 1 constantly.

6. Discussion
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One of the primary contributions of this research is the synthesis of classical mathematical
modeling techniques with the practical, high-performance synchronization mechanisms provided by
reactive streams. Similar to earlier approaches such as the Time Warp algorithm[1,2] and actor-based
frameworks used in HPC simulation platforms[9], our method decomposes the complete object state
into substates with unique keys. This modular representation not only supports reuse and flexibility
but also enables the direct mapping of transition functions to logical processors. The resulting
computational graph is reminiscent of systems such as RxHLA[7] and CQRS + ES architectures|[8],
which emphasize decoupling and distributed processing.

Representing the model as a transition graph I'l® and initial set of sates &' offers several
benefits:

e Modularity and Reusability: By encapsulating transition rules as independent functional blocks,
the approach supports reuse and flexibility. This modular structure is similar in spirit to block-
diagram environments like Simulink [30-32] and has parallels in dataflow programming models
discussed by Kuraj and Solar-Lezama [21].

e Scalability: Our implementation leverages the inherent parallelism of modern multi-core and
distributed architectures. This approach aligns with the findings of actor-based models [9,25,26]
and contemporary research on reactive programming in distributed systems [10,24].

¢ Interactive Simulation: The push and pool patterns introduced in our model are analogous to
techniques used in recent studies on interactive and fault-tolerant reactive systems [23,33]. This
design allows the simulation to respond in real time to external events or user inputs.

In summary, the proposed method of using reactive streams as a synchronization protocol for
parallel simulation provides a compelling framework that unites rigorous mathematical modeling
with practical, scalable implementation techniques. While challenges remain—particularly in
optimization, continuous simulation, and fault tolerance, the initial results and conceptual clarity
offer a solid foundation for further research and development. The integration of our approach with
similar studies in the field [1-10,13,21-28,33,34] highlights its potential and provides clear directions
for future work.

7. Future Work

Many unanswered questions remain, some of which we present for future research:

o Effective optimization of computational graph € and simulation on it:
Chapters 4.2 and 4.3 dealt with this topic. However, due to its complexity and vastness, it did not fit
into this article. In general, this is a very important issue from a practical point of view. Solving it will
significantly reduce the number of resources required to perform simulations. Another interesting
question is the automation of the optimization of graph C. Say that, initially, we have non-optimal
C, for example, obtained by the method described in Chapter 4.1. We want to automatically make C
compact and computationally easy, without loss of accuracy and consistency.
To resolve the optimization task the ML technique can be used. For example, reinforcement rearming
agents can be trained to explore various graph configurations (i.e., different ways to fold or collapse
the computational graph) and learn which configurations yield the best performance in terms of
latency, throughput, or resource consumption [36-40]. Also, techniques like neural architecture
search (NAS) can be adapted to optimize the layout and parameters of the computational graph. This
includes automatically deciding how to fold cyclic sequences, balance load among logical processors,
and minimizing redundant computations [39-41].

e Accurate simulation of continuous-valued models:
Many properties of modeled objects can be represented in continuous quantities, for example, values
from the set R. However, the simulation (the calculation of which is based on message forwarding)
is inherently discrete. An open question remains as to how accurately continuous quantities can be
calculated. The question is how to increase the accuracy of calculating such quantities without
increasing the requirements for computer resources.
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e Fault-tolerance of reactive streams:
We did not touch on fault tolerance of simulation in this work, but in most real/practical applications,
fault tolerance is very important. This question was partially explored in [23] but we also suggest this
for future work.

¢ Manual and automatic graph construction C:
From a practical viewpoint, it is interesting to be able to use some IDE to manually construct a
computational graph €, and to do this such that the corresponding graph I''® will be consistent and
optimal. For example, this might be done similarly to the Simulink package, [30,42] SwiftVis tool,
[25,43] or XFRP language [24,44]. It is also interesting to find ways to automate the construction of C.
For example, the model can initially be defined as a certain set of rules by which graph C can be
automatically and even dynamically constructed. Specialized programming languages are also an
interesting area to explore. For example, the EdgeC [33,35] language can be considered a tool to
describe computational graphs.
Also, ML technique can be applied wildly here. For example, graph learning techniques from graph
neural networks (GNNSs) can be applied to learn the structure of the optimal computational graph
from historical data. The learned model can then suggest or automatically construct a more efficient
graph based on current simulation requirements. Adaptive scheduling ML algorithms can
dynamically adjust the scheduling of tasks across logical processors, optimizing the execution order
and balancing the load [45,46]. This is particularly useful in interactive or real-time simulations where
conditions may change frequently.

o Testing with complex models and comparing with other parallelizing approaches:
This work provides a small, simple example of parallel simulation to show how the described
approach can be implemented in practice. However, the questions of checking this approach with
large and complex models and comparing its effectiveness with other parallelizing approaches
remain open.

Conclusions

The proposed method effectively integrates the reactive streams paradigm with classical
mathematical modeling techniques to create a scalable framework for parallel simulation. By using a
graph-based representation of object states and transition functions, this approach enhances
modularity and reusability while supporting efficient computation through logical processors. The
implementation using AKKA reactive streams demonstrates its scalability and practical feasibility for
distributed systems. Despite its promise, the work highlights challenges such as graph optimization,
continuous model simulation, fault tolerance, and automation of graph construction, which offer
significant areas for future research and development. The study lays a strong foundation for
advancing parallel simulation techniques, emphasizing both theoretical robustness and practical
scalability.
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