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Article  
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Institute”, 1 Liubomyra Huzara Ave., 03058 Kyiv, Ukraine 

* * Correspondence: cabemailbox@gmail.com 

Abstract: Modern computational models tend to become more and more complex, especially in fields 

like computational biology, physical modelling, social simulation and others. With the increasing 

complexity of simulations, modern computational architectures demand efficient parallel execution 

strategies. This paper proposes a novel approach leveraging the reactive streams paradigm as a 

general-purpose synchronization protocol for parallel simulation. We introduce a method to 

construct simulation graphs from predefined transition functions, ensuring modularity and 

reusability. Additionally, we outline strategies for graph optimization and interactive simulation 

through push and pull patterns. The resulting computational graph, implemented using reactive 

streams, offers a scalable framework for parallel computation. Through theoretical analysis and 

practical implementation, we demonstrate the feasibility of this approach, highlighting its 

advantages over traditional parallel simulation methods. Finally, we discuss future challenges, 

including automatic graph construction, fault tolerance, and optimization strategies, as key areas for 

further research. 

Keywords: parallel simulation; reactive streams; logical processors; transition functions; state space; 

synchronization protocol 

 

1. Introduction 

As simulations become increasingly complex, more and more computational resources are 

required to execute them. Computing power continues to grow per Moore’s law, but this growth 

shifts to the horizontal plane—i.e., it happens due to an increase in the number of parallel processors 

and their cores. Thus, there is a need to develop parallel-simulation algorithms capable of utilizing 

the computing resources of multiple CPUs. 

Today several approaches exist for parallelizing simulations. In particular, we can consider the 

Time Warp algorithm,[1] described in detail in.[2] This algorithm has been studied for many years 

and has several implementations in the code.[3–5] However, Time Warp uses its own 

synchronization protocol, which is complex and low-level.[6] The RxHLA software framework 

(based on the reactive adaptation of IEEE 1516 standard)[7] is similar to Time Warp in terms of 

complexity and low-levelness. Another approach, based on the CQRS + ES architecture, is described 
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in. [8] However, the authors of that work concentrate more on the practical aspects of implementation 

without much theoretical background. The HPC simulation platform [9] is also a more practical 

implementation of parallel simulation; it is based on actors and the AKKA library, constituting a more 

conservative approach than reactive streams. 

The key concept of this paper is to use a general-purpose synchronization protocol to parallelize 

simulations: namely, the reactive-streams protocol [10–12], particularly the version that is 

implemented in the AKKA library. [13–16]. Thus, on the one hand, we have a classical mathematical 

model. On the other hand, we have a general-purpose synchronization protocol. The goal of this work 

is to unite them. 

The rest of this manuscript is organized as follows: 

• Section 2 explains the basic modeling concepts and entities that we will use in this paper. 

• Section 3 extends basic modeling to be represented in the form of a transition graph and shows 

how a simulation can be performed on this graph. 

• Section 4 shows how the transition graph can be implemented with reactive streams and how 

simulation can be executed. 

2. Substates 

Before we start developing a parallel-simulation algorithm with reactive streams, we define 

substates concepts and some objects for later use in this paper. Before reading this section, we suggest 

you check Appendix A, which describes notation and Appendix B which give common basic 

definition used in this article. Also, in the Section 5 and  Appendix F you can find real word 

examples which illustrate the described approach. 

2.1. Substates 𝕾𝕶
𝒒 as a Decomposition of the State 𝔙 

Each state 𝔙 can be represented as a set of substates, each of which contains only a part of the 

values of 𝔳𝑖 ∈ 𝔙. There must be a way to determine which of the substates belongs to a certain 𝔙. 

One option to achieve this is to use a unique key to mark all substates belonging to a certain 𝔙. 

Definition: Let us define a substate 𝔖𝔎
𝑞 where 𝔖 ⊆ 𝔙 is part or all of the set of 

values 𝔳𝑖 ∈ 𝔙, 𝔎 is some key unique to the state 𝔙 ∈ 𝕍𝑛, and 𝑞 ∈ ℕ is the index of 

the substate with the same key, 𝔎. 

One or more 𝔳𝑖 ∈ 𝔙 values can be used as key 𝔎. In this case, it makes no sense to include them 

in any of the substates, since they will be presented in the key. 

For some state 𝔙, we have the set of substates {𝔖𝔎
𝑞} with the same key 𝔎. We will denote this 

set by a bold 𝕾𝔎 . With such representation of the state 𝔙, it is necessary to ensure that all 𝔖𝔎
𝑞 

marked by the same 𝔎  are not contradictory. The pair of 𝔖𝔎
𝑞  with the same key 𝔎  can be 

contradictory if one or more values 𝔳𝑖 ∈ 𝔖,𝔙 differ under the same index. 

Definition: Let us define the set of substates 

𝕾𝔎 ≔ {𝔖𝔎
𝑞 , 𝔖

𝔎′

𝑞′ | 𝔎 = 𝔎′ ∧ 𝑞 ≠ 𝑞′′} 

where for all 𝔖𝔎
𝑞 ∈ 𝕾𝔎, the consistency criterion 

∄ 𝔖𝔎
𝑖 , 𝔖

𝔎
𝑗 ∈ 𝕾𝔎 (∃ 𝔳𝑙 ∈  𝔖𝔎

𝑖 ≠ 𝔳𝑙 ∈ 𝔖𝔎
𝑗  ∀ 𝑙) 
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is true. 

In this paper, we will talk about arbitrary sets of substates 𝔖𝔎
𝑞, the only requirement for which 

is to meet the consistency criterion. 

Definition: Let us define an arbitrary set of substates 

𝕾𝐾 ≔ {𝕾𝔎 ∪ 𝕾𝔎′  | 𝔎 ≠ 𝔎′ } 

as the union of the sets 𝕾𝔎 with different 𝔎. 

Notice that these definitions do not require the presence in the set 𝕾𝔎 (and consequently in 𝕾𝐾) 

of a sufficient number of substates 𝔖𝔎
𝑞 to cover all values 𝔳𝑖 ∈ 𝔙. 

Let us also note that, by definition, the set 𝕾𝐾  can contain more than one substate 𝔖𝔎
𝑞 with the 

same key 𝔎. However, on an arbitrary set 𝕾𝐾  that contains duplicate keys 𝔎, we can construct a set 

𝕾𝐾  that does not contain them. For this, we need to combine all substates with the same key into one 

substate: 

𝕾𝐾
𝑑

∀𝕾𝔎⊆𝕾𝐾𝑑(𝔖
𝔎
1∈𝕾

𝐾
𝑢=⋃𝕾𝔎

𝔎

)

⇒                       𝕾𝐾
𝑢 

 

where 𝕾𝐾
𝑑 is a set with duplicate keys and 𝕾𝐾

𝑢 is a set with unique 𝔎. Thus, we can say that an 

arbitrary set of substates 𝕾𝐾  can be considered as a key-value structure or as the surjective function 

𝑓: {𝔎} → {𝔖}  

As follows from the definition, the set 𝕾𝐾  can only be constructed from a set of states 𝖁 ⊆ 𝕍𝑛 

in which a unique key 𝔎 can be associated with each state 𝔙 ∈ 𝖁. Otherwise, this will lead to the 

appearance of substates 𝔖𝔎
𝑞 in conflict. 

The inverse transformation, i.e., the construction of 𝖁 ⊆ 𝕍𝑛 from an arbitrary 𝕾𝐾  

𝕾𝐾  

∀𝕾𝔎⊆𝕾𝐾(𝔙∈𝖁=⋃𝕾𝔎

𝔎

)

⇒                  𝖁 
 

is possible only if 𝕾𝐾  contains enough substates 𝔖𝔎
𝑗 to construct each state 𝔙 ∈ 𝖁 completely. 

The set of substates 𝕾𝐾  can be equivalent to the state space 𝕍𝑛  if this state-space contains 

enough substates to construct each state 𝔙 ∈ 𝕍𝑛. We will denote such a set by 𝕊𝐾 . 

2.2. Representation of the Dependence of Y on X as a Set of Substates: 𝑌 = 𝔖𝑋|𝔊 

The dependence of the variables 𝑌  upon 𝑋  can be represented as a set of states 𝕾𝐾 . This 

representation is an alternative to a set of functions 𝐹(𝑋|𝔊). In this case, it is convenient to choose the 

values 𝔛 ∈ 𝕏𝑛 as the key 𝔎 and the subset of the values 𝔜 ∈ 𝕐𝑛 as the values of 𝔖 (including 𝔖 =

∅). 

Definition: Let us define the substate 𝔖𝔛
𝑞, where the key is 𝔎 = 𝔛, 𝔛 ∈ 𝕏𝑛, the value 

𝔖 ⊆ 𝔜, 𝔜 ∈ 𝕐𝑛, and the index 𝑞 ∈ ℕ is such that 

∀ 𝔖𝔛
𝑞 ,  𝔖

𝔛
𝑞
′
(𝔛 = 𝔛′, 𝑞 ≠ 𝑞′) 
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also, 𝔛 ⊆ 𝔖𝔛
𝑞 and (𝔖𝔛

𝑞 ¥ 𝔛) ⊆ 𝔜. 

Since the values of the parameters 𝔊 ∈ 𝔾𝑛 are constant for any possible values of 𝔛 and 𝔜, they 

are also constant for any possible substates 𝔖𝔛
𝑞  composed of the values of 𝔛 and 𝔜. Thus, the 

definition of 𝔖𝔛
𝑞does not include values 𝔊. Being joined into a set, the substates 𝔖𝔛

𝑞 will have the 

same parameters 𝔊, but may have different values of the key 𝔛. 

Definition: Let us define the dependence 

𝑌 = 𝕾𝑋|𝔊 ≔ {𝔖𝔛
𝑞}|𝔊 

which represents the dependence of the variables 𝑌 upon 𝑋 for given parameters 𝔊 

that are the same for all substates included in the set 𝕾𝑋|𝔊. At the same time, substates 

should not be contradictory: 

∄ 𝔖𝔛
𝑖 , 𝔖

𝔛
𝑗 ∈ 𝕾𝑋|𝔊 (∃ 𝔳𝑙 ∈ 𝔖𝔛

𝑖 ≠ 𝔳𝑙 ∈ 𝔖𝔛
𝑗  ∀ 𝑙)   ,  (𝟏) 

The set 𝕾𝑋|𝔊 with all substates having the same key 𝔛 will be denoted 𝕾𝔛|𝔊.  

Let us note that we do not impose a completeness restriction upon the set 𝕾𝑋|𝔊—i.e., 𝕾𝑋|𝔊 may 

not contain all of the keys 𝔛 ∈ 𝕏𝑛 or may even be empty: 𝕾𝑋|𝔊 = ∅. 𝕾𝑋|𝔊 may also not contain all 

𝔜 ∈ 𝕐𝑛 and/or it may not contain enough 𝔖𝔛
𝑞 to build one or more complete 𝔜. 

The representation 𝑌 = 𝕾𝑋|𝔊 is equivalent to the representation 𝑌 = 𝐹(𝑋|𝔊) if and only if, for 

each 𝔛 ∈ 𝕏𝑛 at a given 𝔊 ∈ 𝔾𝑛, the representations are equal: 

𝑌 = 𝕾𝑋|𝔊 ⇔ 𝑌 = 

= 𝐹(𝑋|𝔊) ⇒ ∀𝔛 ∈ 𝕏𝑛(𝐹(𝔛|𝔊) = 𝕾𝔛|𝔊) 
 

For each key 𝔛, there exists a set of substates 𝔖𝔛
𝑞 that cover all possible values 𝔜 ∈ 𝕐𝑛. We will 

denote this set by 𝕊𝔛|𝔊. This set may not satisfy the consistency criterion (formula 1) and will have 

cardinality 

|𝕊𝔛|𝔊| =∏ |𝕪𝑖|
𝑛

𝑖=1
  

If we join the sets 𝕊𝔛|𝔊 for all possible keys 𝔛 ∈ 𝕏𝑛, we obtain the set of all possible substates. 

We will denote it by 

𝕊𝕏|𝔊 =⋃ 𝕊𝔛|𝔊
𝔛∈𝕏𝑛

     , (𝟐) 

The cardinality of this set when 𝔖 = 𝔜 will be 

|𝕊𝕏|𝔊| = ∑ |𝕊𝔛|𝔊|

𝔛∈𝕏𝑛

  

Moreover, |𝕊𝕏|𝔊| ≤ |𝕍𝑛| since, from the set 𝔾𝑛  only, one set of values 𝔊 is used (note, the 

cardinalities will be equal in case |𝔾𝑛| = 1). 

In practice, we will more often see sparse 𝕾𝑋|𝔊, where it is impossible to completely construct 

𝔜 for every 𝔛 ∈ 𝕏𝑛 . The use of sparse 𝕾𝑋|𝔊 will reduce the modeling accuracy. In general, this is not 

a problem from an engineering standpoint since increasing or decreasing the cardinality 𝕾𝑋|𝔊 allows 

us to choose an acceptable accuracy level for solving a specific simulation problem. 

2.3. Reflection 𝒀̌(𝑿̅|𝕲) as a Record of Changes in the Values of Variables 
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We can reflect the behavior of a modeled object by measuring its properties and recording the 

corresponding values of the variables 𝑋, 𝑌, and 𝐺. By abstracting from a specific implementation, 

we will call such a record a reflection of the modeled object. 

Definition: Let us define the reflection 𝑌̌(𝑋̅|𝔊) as an arbitrary representation of the 

dependence of the dependent variables 𝑌̌ upon the independent variables 𝑋̅ and the 

values of the parameters 𝔊. Moreover, this dependence is constructed by studying and 

measuring the modeled object’s properties. 

We can graphically represent the building of the reflection 𝑌̌(𝑋̅|𝔊) by adding the points 

𝔙 = 𝔛̅ ∪ 𝔜̌ ∪ 𝔊  

into the state space 𝕍𝑛 at the coordinates 𝑋̅, 𝑌̌, 𝔊, where 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ , 𝔜̌ ∈ 𝕐𝑛̌, and 𝔊 ∈ 𝔾𝑛. The added 

points will form a geometric figure that reflects the behavior of the modeled object. 

A reflection can be represented as a set of functions 

𝑌̌(𝑋̅|𝔊)𝐹 = 𝐹(𝑋̅|𝔊) = 𝑌̌  

or as a set of states 

𝑌̌(𝑋̅|𝔊)𝑆 = 𝕾𝑋̅|𝔊 = 𝑌̌  

In the first case, a set of functions can be constructed by recording the obtained or measured 

values of the variables 𝑋 , 𝑌, and 𝐺 . [17] In the second case, from the values of 𝔜̌ obtained or 

measured with respect to 𝔛̅ and 𝔊, the substate 𝔖𝔛̅
𝑞=1 can be directly built and added to the set of 

substates 𝕾𝑋̅|𝔊. 

In this case, writing down the values of the stopwatch (which reflects the variable 𝑡) and the 

level gauge (which reflects 𝑣𝑤𝑎𝑡𝑒𝑟), we obtain the function 𝑣𝑤𝑎𝑡𝑒𝑟(𝑡), which reflects the dependence 

of 𝑣𝑤𝑎𝑡𝑒𝑟  on 𝑡. In practice, this function will be defined only on a certain interval or several intervals 

of the time 𝑡measuring, during which the measurement was performed.  

2.4. Model 𝒀̂(𝑿̅|𝕲) as an Imitation of Changes in the Variables V 

In one of several ways, we can define the dependences of the variables 𝑌 on 𝑋 and 𝐺 without 

directly measuring the properties of the modeled object [18–20]. We will call the dependence defined 

in this way the model of the modeled object. 

Definition: The model of the modeled object 𝑌̂(𝑋̅|𝔊) is an arbitrary representation or 

implementation of the dependence of the dependent variables 𝑌̂ upon the independent 

variables 𝑋̅ and the values of the parameters 𝔊. Moreover, this dependence is 

constructed without the direct participation of the modeled object. 

We can graphically represent the model 𝑌̂(𝑋̅|𝔊) as a geometrical figure in the state space 𝕍𝑛 

consisting of the points 

𝔙 = 𝔛̅ ∪ 𝔜̂ ∪ 𝔊  

that define the relationship between the variables 𝑌̂ and 𝑋̅ and the parameters 𝔊, where 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ , 

𝔜̂ ∈ 𝕐𝑛̂ and 𝔊 ∈ 𝔾𝑛. 

The model can be implemented as a set of possibly partial functions 

𝑌̂(𝑋̅|𝔊)𝐹 = 𝐹(𝑋̅|𝔊) = 𝑌̂     , (𝟑) 
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or as a set of states 

𝑌̂(𝑋̅|𝔊)𝑆 = 𝕾𝑋̅|𝔊 = 𝑌̂      , (𝟒) 

In the first case, the set of functions can be determined analytically or in another way. In the 

second case, many substates must be pre-built in one way or another. 

We can define the model 𝑌̂(𝑋̅|𝔊)  such that it completely coincides with certain reflection 

𝑌̌(𝑋̅|𝔊); however, it is much more reasonable and useful to construct 𝑌̂(𝑋̅|𝔊) to predict changes in 

the modeled object. 

From a practical point of view, we are interested in how accurately the constructed model 

𝑌̂(𝑋̅|𝔊) corresponds to the modeled object. One way to determine compliance is to compare the 

model and reflection 𝑌̌(𝑋̅|𝔊) (i.e., to calculate the magnitude of their inconsistency in one way or 

another). Let us denote the inconsistency value by 𝜀. 

For example, for the case in which all variables 𝑉 have domain ℝ, we can define ε ∈ ℝ as the 

integral sum of the difference of the values 𝑌̌ and 𝑌̂ for each 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ : 

ε = ∑ ∑(𝑌̌(𝔛̅|𝔊)𝑖 − 𝑌̂(𝔛̅|𝔊)𝑖)

|𝑌|

𝑖=1𝔛̅∈𝕏𝑛̅̅ ̅̅

 

where 𝔊 ∈ 𝔾𝑛. 

2.5. Simulation of the Model 𝒀̂(𝑿̅|𝕲) as a Calculation of a Subset of 𝖄̂ ⊆ 𝕐𝒏̂ from the Subset 𝔛̅ ⊆ 𝕏𝑛̅̅ ̅̅  and 

the Parameters 𝔊 

The simulation task can be reduced to obtaining or calculating the subset of the unknown values 

of the dependent variables 𝑌̂ from the subset of the known values of the independent variables 𝑋̅ 

and the values of the parameters 𝔊 using a certain model 𝑌̂(𝑋̅|𝔊).  

Definition: Let us define the simulation as the operator 

𝖃̅
𝑌̂(𝑋̅|𝔊)
⇒    𝖄̂     , (5) 

where 𝖃̅ ⊆ 𝕏𝑛̅̅ ̅̅  is a possibly ordered set of unique known values of independent 

variables, 𝖄̂ ⊆ 𝕐𝑛̂ is the desired set of possibly not unique values of the dependent 

variables, and 𝑌̂(𝑋̅|𝔊) is a certain model used to obtain the desired 𝔜̂ ∈ 𝕐𝑛̂ for a 

given 𝔛̅ ∈ 𝕏𝑛̂. 

For the case where the model is implemented as a set of functions (formula 3), the simulation 

𝖃̅
𝑌̂(𝑋̅|𝔊)

𝐹

⇒      𝖄̂ 

is simply a calculation of the result 𝔜̂ ∈ 𝖄̂ for each argument 𝔛̅ ∈ 𝖃̅: 

𝖃̅
∀𝔛̅∈𝖃̅(𝔜̂∈𝖄̂= 𝐹(𝑋̅|𝔊)(𝔛̅))

⇒                 𝖄̂ 

where 

𝔜̂ =  𝐹(𝑋̅|𝔊)(𝔛̅) 

which is the operation for calculating 𝔜̂ ∈ 𝕐𝑛̂ for a given 𝔛̅ ∈ 𝕏𝑛̂. For a model implemented as a set 

of substates (formula 4), the simulation is a matter of finding all substates for each key 𝔛̅ ∈ 𝖃̅ and 

then building the values of 𝔜̂ ∈ 𝖄̂ from the found substates 
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𝖃̅
∀𝔛̅∈𝑿̅(𝔜̂∈𝒀̂=⋃𝕾𝑋̅|𝔊(𝔛̅) )

⇒                  𝖄̂       , (𝟔) 

where 

𝕾𝑋̅|𝔊(𝔛̅) = 𝕾𝔛̅|𝔊 

is the operation for selecting a subset 𝕾𝔛̅|𝔊 ⊆ 𝕾𝑋̅|𝔊 of substates 𝔖𝔛|𝔊
𝑗 with the same key 𝔛. 

A simulation can be interactive—i.e., it can react with external events and produce the results to 

the outside right during the calculation. In the simplest case, an interactive simulation can be 

represented as a series of simulations 

{𝖃̅𝑖

𝑌̂(𝑋̅|𝔊)𝑖
⇒    𝖄̂𝑖}     , (𝟕)  

of the set of models 

{𝑌̂(𝑋̅|𝔊)𝑖} 

for the corresponding sets of subsets of values of independent variables {𝖃̅𝑖} sequentially received 

during the interaction and the sets of dependent {𝖄̂𝑖} sequentially returned as simulation results. 

3. Graph Modeling 

We show how the model 𝑌̂(𝑋̅|𝔊) can be represented as a transition graph and how a simulation 

can be performed for this representation. We define and prove the rules for constructing a consistent 

transition graph. Before reading this section, we recommend to check Appendix C, which describes 

transition function concepts.  In Section 5 and Appendix G, we present a simple example of the 

construction and simulation of a transition graph. 

3.1. The Transition Graph 𝜞|𝕲 and the Simulation Graph 𝛾|𝔊 

We can join function Θ|𝔓𝑗 ∈ 𝚯|𝔊 and a set of functions Θ|𝔒𝑖,𝑘=1, … , Θ|𝔒𝑖,𝑘=𝑛 ∈ 𝚯|𝔊 represented as 

graphs by combining the result nodes 
Θ|𝔒𝑖,𝑘=1
→     S̀: 𝕊̀𝑖,𝑘=1, … ,

Θ|𝔒𝑖,𝑘=𝑛
→     S̀: 𝕊̀𝑖,𝑘=𝑛 

and the argument nodes 

S: 𝕊𝑘=1,𝑗 , … , 𝑆: 𝕊𝑘=𝑛,𝑗
Θ|𝔒𝑗
→   

with intermediate-variable nodes 

(
Θ|𝔒𝑖,𝑘=1
→     S𝑘=1: 𝕊̀𝑖,𝑘=1, … ,

Θ|𝔒𝑖,𝑘=𝑛
→     S𝑘=𝑛: 𝕊̀𝑖,𝑘=𝑛)

Θ|𝔒𝑗
→   

(see Figure 1).  
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Figure 1. Joining of function 𝛩|𝔓
𝑗 ∈ 𝜣|𝔊. 

We continue in the same way to sequentially join the functions included in the same set 𝚯|𝔊 

(possibly using the same function more than once); we obtain some DAG (see Figure 2). We call such 

DAG a transition graph. Also, optionally we can combine two or more root variables 

𝑆𝑘,𝑖=1, … , 𝑆𝑘,𝑖=𝑛 that do not have incoming edges, thereby reducing the total number of nodes. 

 

Figure 2. Example of the transition DAG built from functions 𝛩|𝔓
𝑗 ∈ 𝜣|𝔊. 

Definition: We define the transition graph 𝛤 |𝔊 as a DAG constructed on the set of 

transition functions 𝜣|𝔊 by sequentially joining arbitrary subsets of functions 

𝛩|𝔒
𝑖 , 𝛩

|𝔒
𝑗,𝑘=1, … , 𝛩|𝔒

𝑗,𝑘=𝑛 ∈ 𝜣|𝔊 

and by combining the result node 

𝑆̀𝑖 : 𝕊̀𝑖
𝛩|𝔒𝑖
←   

and the argument nodes 

𝑆𝑘,𝑗,𝑘=1: 𝕊𝑘,𝑗,𝑘=1

𝛩|𝔒𝑗,𝑘=1
→     ,… 

… , 𝑆𝑘,𝑗,𝑘=𝑛: 𝕊𝑘,𝑗,𝑘=𝑛
𝛩|𝔒𝑗,𝑘=𝑛
→       

such that 

𝕊̀𝑖 ⊆ 𝕊𝑘,𝑗,𝑘=1, … , 𝕊𝑘,𝑗,𝑘=𝑛 

𝕊̀𝑖 ∩ 𝕊𝑘,𝑗,𝑘=1, … , 𝕊𝑘,𝑗,𝑘=𝑛 ≠ ∅ 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1


 9 of 28 

 

into intermediate variable nodes 

𝛩|𝔒𝑖
→  𝑆: 𝕊̀𝑖

𝛩|𝔒𝑗,𝑘=1,…,𝛩
|𝔒

𝑗,𝑘=𝑛
→               

Additionally, the root nodes 

𝑆𝑘,𝑖=1 ∪ …∪ 𝑆𝑘,𝑖=𝑛 

and their domains 

𝕊𝑘,𝑖=1 ∩ …∩ 𝕊𝑘,𝑖=1 

may also be combined. 

We note that this definition imposes no restrictions on the graph structure except for its acyclicity 

(the result of the next joined Θ|𝔒 cannot be connected with the argument of any already joined Θ|𝔒) 

and continuity (all nodes of the graph 𝛤|𝔊 are connected by at least one edge). 

When we join the transition functions Θ|𝔒, we also join the transitions 𝜃|𝔒 from the equivalent 

set 𝜽|𝔒 ⇔ Θ|𝔒, forming a set of more complex DAGs with the same structure as the graph 𝛤 |𝔊, but 

which consist of the substates 𝔖𝔛
𝑞 and transitions 𝜃|𝔒 (see Figure 3). We call such DAGs simulation 

graphs. 

 

Figure 3. Example of the simulation graph that can be obtained from the transition graph in Figure 2. 

Definition: A simulation graph 𝛾|𝔊 is defined as the DAG obtained by constructing a 

transition graph 𝛤 |𝔊; it has the same structure as 𝛤 |𝔊. The graph 𝛾|𝔊 consists of 

constructions of the form 
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𝜃|𝔒𝑖
→  𝔖𝔛

𝑞,𝑖

𝜃|𝔒𝑗,𝑘=1,…,𝜃
|𝔒
𝑗,𝑘=𝑛

→               

which result from joining the transitions 

𝜃|𝔒𝑖 ∈ 𝜽|𝔒𝑖 ⇔ 𝛩|𝔒
𝑖 

and 

𝜃|𝔒𝑗,𝑘=1 ∈ 𝜽|𝔒𝑗,𝑘=1 ⇔ 

⇔ 𝛩|𝔒
𝑗,𝑘=1, … , 𝜃|𝔒𝑗,𝑘=𝑛 ∈ 𝜽|𝔒𝑗,𝑘=𝑛 ⇔ 

⇔ 𝛩|𝔒
𝑗,𝑘=𝑛 

belonging to the set of joined functions 

𝛩|𝔒
𝑖 , 𝛩

|𝔒
𝑗,𝑘=1, … , 𝛩|𝔒

𝑗,𝑘=𝑛 ∈ 𝜣|𝔊 

such that 

𝔖̀𝔛
𝑞,𝑖

𝜃|𝔒𝑖
←  = 𝔖𝔛

𝑞,𝑗,𝑘=1

𝜃|𝔒𝑗,𝑘=1
→     =,… 

… ,= 𝔖𝔛
𝑞,𝑗,𝑘=𝑛

𝜃|𝔒𝑗,𝑘=𝑛
→      

We note that all γ|𝔊 will have a structure exactly matching 𝛤|𝔊. According to the definition of 

γ|𝔊, during the construction of 𝛤|𝔊, incomplete graphs of γ|𝔊 with structures not coinciding with that 

of 𝛤 |𝔊 will be discarded. Thus, the substates 𝔖𝔛
𝑞 included in the discarded graphs γ|𝔊 will also be 

removed from the domains 𝕊 of the variables 𝑆 included in the constructed 𝛤 |𝔊. 

Let us denote some arbitrary set of graphs {γ|𝔊} by 𝛄|𝔊 . According to the definitions of the 

graphs 𝛤 |𝔊  and γ|𝔊, each of the substates 𝔖𝔛
𝑞  from the domains 𝕊 of the variable nodes S will 

belong to one of the simulation graphs γ|𝔊 . All 𝔖𝔛
𝑞  terms that do not belong to any γ|𝔊 will be 

discarded during the construction of 𝛤 |𝔊, along with the incomplete γ|𝔊. 

Thus, we can represent the graph 𝛤|𝔊 as an equivalent set of graphs γ|𝔊. We will denote such a 

set as 𝛄|𝔊 ⇔ 𝛤 |𝔊; this set will include all 𝔖𝔛
𝑞 from all domains 𝕊: 

⋃𝕊(𝛤 |𝔊) = ⋃ 𝔖𝔛(γ|𝔊)

 γ|𝔊∈ 𝛄|𝔊⇔𝛤|𝔊

 

where 𝕊(𝛤 |𝔊) is the set of domains 𝕊 of the variable nodes S from the graph 𝛤|𝔊 and 𝔖𝔛(γ|𝔊) is 

the set of all 𝔖𝔛
𝑞 belonging to γ|𝔊, which is consistent: 

∃ 𝕾𝑋|𝔊 (𝔖𝔛(γ|𝔊) = 𝕾𝑋|𝔊) 

Moreover, all simulation graphs γ|𝔊 will share the same set of parameters 𝔊 split into parts 𝔒. 

Let us index each node from the set 𝑆(𝛤 |𝔊) with the depth index 

𝑑 = 𝑚𝑎𝑥(𝑙𝑒𝑛({𝐒𝑟𝑜𝑜𝑡  …  𝑆𝑑})), 

where 𝑑 ∈ ℕ, {𝐒𝑟𝑜𝑜𝑡  …  𝑆𝑑} is the set of all possible paths from any root node 𝑆𝑟𝑜𝑜𝑡 ∈ 𝐒𝑟𝑜𝑜𝑡 (i.e., the 

node that has no incoming edges) to the indexed node 𝑆𝑑 and 𝑙𝑒𝑛() is the length of the path (the 

number of edges in the path). Let us also index all transition functions Θ|𝔒 with the same index 𝑑 

same as the index of the result node 
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…
Θ|𝔒𝑑
→  𝑆𝑑 

Thus, each root node of 𝑆𝑟𝑜𝑜𝑡  will have 𝑑 = 0 and each leaf node 𝑆𝑙𝑒𝑎𝑓  (i.e., such that it has no 

outgoing edges) will have 𝑑 = 𝑛, where 𝑛 is the minimum number of edges to the nearest root node 

𝑆𝑑=0. 

3.2. Construction of a Consistent Transition Graph 𝛤 |𝔊 

From a practical viewpoint, we want to be able to construct transitions 𝛤 |𝔊  from a set of 

predefined transition functions 𝚯|𝔊—in other words, to build models from a set of ready-made 

functional blocks, similar to the Simulink software. It is necessary to guarantee the consistency of 𝛤|𝔊 

at the local level, i.e., at the level of individual functions Θ|𝔓, to implement this approach successfully. 

We can represent some simulation graph γ|𝔊 as the set of directional paths (dipaths) covering 

all substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) and transitions 𝜃|𝔒 ∈ 𝜃(γ|𝔊). 

Definition: Let us define a dipath 

𝔭|𝔊 ≔ 𝔖𝔛
𝑞,𝑙=0

𝜃|𝔒𝑙=1
→    …

𝜃|𝔒𝑙=𝑛
→    𝔖𝔛

𝑞, 𝑙=𝑛 

in the simulation graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤|𝔊, where 𝔖𝔛
𝑞,𝑙=0 ∈ 𝕊𝑙=0, 

𝔖𝔛
𝑞,𝑙=𝑛 ∈  𝕊𝑙=𝑛, 𝑙 ∈ ℕ is the index of the node which is in the dipath, 

such that 𝑙 = 0 corresponds to some root node 𝔖𝔛
𝑞,𝑟𝑜𝑜𝑡 and 𝑙 = 𝑛 

corresponds to some leaf node 𝔖𝔛
𝑞,𝑙𝑒𝑎𝑓 in the graph 𝛾|𝔊, 

𝔖𝔛
𝑞,𝑙=0, … , 𝔖𝔛

𝑞,𝑙=𝑛 ∈ 𝔖𝔛(𝛾|𝔊), 𝜃|𝔒𝑙=1, … , 𝜃|𝔒𝑙=𝑛 ∈ 𝜃(𝛾|𝔊), 

𝕊𝑙=0, … , 𝕊𝑙=𝑛 ∈ 𝕊(𝛤|𝔊), with 𝔖𝔛(𝔭|𝔊) ⊆ 𝔖𝔛(𝛾|𝔊). 

We denote some arbitrary set of paths by 𝖕|𝔊, which is not necessarily related to the same graph 

γ|𝔊. 

The set of paths 𝖕|𝔊  can be equivalent to the graph γ|𝔊  if the paths in this set contain all 

substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) and transitions 𝜃|𝔒 ∈ 𝜃(γ|𝔊): 

𝖕|𝔊 ⇔ γ|𝔊 ⇒ ⋃ 𝔖𝔛(𝔭|𝔊)

𝔭|𝔊∋𝖕|𝔊

= 

= 𝔖𝔛 (γ|𝔊𝑗)  ⋀ ⋃ 𝜃(𝔭 (γ|𝔊𝑗))

𝔭|𝔊∋𝖕|𝔊

= 𝜃 (γ|𝔊𝑗) 

In order to guarantee the consistency condition 

∀ γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤 |𝔊 (𝔖𝔛(γ|𝔊) ⊆ 𝕾𝑋|𝔊) 

for the graph 𝛤 |𝔊 (i.e., to guarantee that each of the simulation graphs γ|𝔊 described by 𝛤 |𝔊 will not 

contain any inconsistent substates), the graph 𝛤|𝔊 must meet the following two restrictions: 

• For each graph 𝛾|𝔊
𝑗
∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊, each substate 𝔖𝔛

𝑞,𝑗 ∈ 𝔖𝔛 (𝛾|𝔊
𝑗
) , 𝔖𝔛 (𝔭|𝔊𝑗) (i.e., located on one 

of all possible paths 𝔭|𝔊𝑗) must have a unique key 𝔛 ⊆ 𝔖𝔛
𝑞,𝑗 regarding the 𝔭|𝔊𝑗 . 

• For each graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊, the values 𝔶 ∈ 𝕪 of some variable 𝑦: 𝕪 ∈ 𝑌 should only belong to 

the set of substates 𝔖𝔛
𝑞,𝑗 ∈ 𝔖𝔛 (𝛾|𝔊

𝑗
) such that there exists in 𝛾|𝔊 at least one path 𝔭|𝔊 ∈ 𝖕|𝔊 ⇔

𝛾|𝔊, including all of these substates. 

At the local level (i.e., without studying the entire graph 𝛤|𝔊), the above restrictions can be met 

by applying the following construction principles (Appendix D): 
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I. The set of keys 𝕏𝑛 must be linearly ordered; 

II. Each transition function 

(𝑆: 𝕊𝑘=1,  … , 𝑆: 𝕊𝑘=𝑛)
𝛩|𝔒

→ 𝑆̀: 𝕊̀ 

(where 𝛩|𝔒 ∈ 𝛩(𝛤 |𝔊)) for each transition 

(𝔖𝔛
𝑞,𝑗,𝑘=1, … , 𝔖𝔛

𝑞,𝑗,𝑘=𝑛)
𝜃|𝔒𝑗
→   𝔖̀𝔛

𝑞,𝑗 

(where 𝜃|𝔒𝑗 ∈ 𝜃 (𝔭|𝔊𝑗) , 𝜽
|𝔒 ⇔ 𝛩|𝔒) in some graph 𝛾|𝔊

𝑗
∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊 must generate the resulting 

substate 𝔖̀𝔛
𝑞,𝑗 ∈ 𝕊̀, 𝔖𝔛 (𝛾|𝔊

𝑗
) such that its key 𝔛𝑞,𝑗 ⊆ 𝔖̀𝔛

𝑞,𝑗 will always satisfy the conditions 

𝔛𝑞,𝑗 > 𝑚𝑎𝑥(𝔛𝑞,𝑗,𝑘=1, … , 𝔛𝑞,𝑗,𝑘=𝑛) 

or 

𝔛𝑞,𝑗 < 𝑚𝑖𝑛(𝔛𝑞,𝑗,𝑘=1, … , 𝔛𝑞,𝑗,𝑘=𝑛) 

where 

𝔛𝑞,𝑗,𝑘 ⊆ 𝔖𝔛
𝑞,𝑗,𝑘 ∈ 𝕊𝑘, 𝔖

𝔛 (𝛾|𝔊
𝑗
) 

III. For each variable 𝑦: 𝕪 ∈ 𝑌, its values 𝔶 ∈ 𝕪 must belong to no more than one root node 𝑆: 𝕊𝑙=0: 

∀ 𝑦: 𝕪 ∈ 𝑌 (|{𝑆: 𝕊𝑙=0 ∈ 𝑆(𝛤|𝔊) | ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊𝑙=0)}| ≤ 1) 

where  

𝔶(𝕊) ≔⋃𝔖(𝕊) 

𝔖(𝕊) ≔ {𝔖𝑞 | 𝔖𝑞 ⊂ 𝔖𝔛
𝑞 ∈ 𝕊} 

(i.e., the set of all 𝔶 values in all substates 𝔖𝔛
𝑞 form the domain of the variable 𝕊). 

IV. If, for some node 𝑆: 𝕊𝑖 ∈ 𝑆(𝛤 |𝔊) and some variable 𝑦: 𝕪 ∈ 𝑌 the condition ∃ 𝔶 ∈ 𝕪,  𝔶(𝕊𝑖) is true, 

then, either the node 𝑆𝑖 must be a root, or there must be a transition function 

(… , 𝑆: 𝕊𝑖,𝑘=0, … , 𝑆: 𝕊𝑖,𝑘=𝑛, … )
𝛩|𝔒𝑖
→  𝑆̀𝑖  

with one or more arguments 𝑆: 𝕊𝑖,𝑘 for which the condition ∃ 𝔶 ∈ 𝕪,  𝔶(𝕊𝑖) is true and in the graph 

𝛤 |𝔊 there exists a chain 

𝑆𝑖,𝑘=0

𝛩|𝔒𝑖,𝑘=1
→     ,… ,

𝛩|𝔒𝑖,𝑘=𝑛
→     𝑆𝑖,𝑘=𝑛 

that includes all 𝑆𝑖,𝑘. Moreover, for the last argument 𝑆𝑖,𝑘=𝑛 in the chain, there should not be another 

function 

(… , 𝑆𝑖,𝑘=𝑛, … )
𝛩|𝔒𝑖

′

→  𝑆̀𝑖
′
 

for which the condition ∃ 𝔶 ∈ 𝕪,  𝔶 (𝑆̀𝑖
′
) is true. 

In practice, principle (I) can be easily implemented since linearly ordered sets are common. For 

example, time, speed, etc., can be represented using variables with ℝ. Next, if the domains of all 

independent variables are in linear order, then the set of keys 𝕏𝑛 will also be in linear order. 

Principle (II) says that the key-value constantly increases or decreases as the simulation graph 

γ|𝔊 is calculated. This approach can be applied, for example, to physical models, where independent 

variables are usually rational numbers that increase or decrease over the simulation. 

Principle (III) holds if the graph 𝛤 |𝔊 has a single root node 𝑆: 𝕊𝑙=0 ∈ 𝑆(𝛤 |𝔊) such that in each 

graph γ|𝔊
𝑗
 there will be only one substate 𝔖𝔛

𝑞,𝑗,𝑙=0 ∈ 𝕊𝑙=0, thereby excluding the possibility that the 

values 𝔶 ∈ 𝕪 of the same variable 𝑦: 𝕪 ∈ 𝑌 are in different substates 𝔖𝔛
𝑞,𝑗,𝑙=0. 

Another approach to implementing (III) is for each root node S: 𝕊𝑙=0 to include 𝔶 ∈ 𝕪 values 

only from its own unique set of variables 𝒚1, … , 𝒚𝑛 ⊂ 𝑌, such that 

∀ 𝒚𝑖 , 𝒚𝑗(𝑖 ≠ 𝑗,   𝒚𝑖  ⋂ 𝒚𝑗 = ∅) 
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This approach, for example, is convenient in the graphs 𝛤 |𝔊 used for interactive simulation, 

where each next node 𝑆𝑙=0 reflects the next input of data from outside the simulation.  

In practice, a simple way to implement principle (IV) is to check whether adding the next 

function Θ|𝔒 to form 𝑆̀ does not include variables that are already in the results of the functions that 

have joint arguments 𝑆  with Θ|𝔒 . For example, if there are nodes 𝑆𝑘=1  and 𝑆𝑘=2  for which 

𝑦(𝑆𝑘=1) = [𝑎, 𝑏] and 𝑦(𝑆𝑘=2) = [𝑥, 𝑦], where 

𝑦(𝑆: 𝕊) ≔ {𝑦: 𝕪 ∈ 𝑌 | ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊)} 

and these nodes are the arguments of some function 

(𝑆𝑘=1, 𝑆𝑘=2)
Θ|𝔒𝑗=1
→    𝑆̀𝑗=1 

for which the result is 𝑦(𝑆̀𝑗=1) = [𝑎, 𝑥], then we can add only a function 

(𝑆𝑘=1, 𝑆𝑘=2)
Θ|𝔒𝑗=1
→    𝑆̀𝑗=1 

for which 𝑦(𝑆̀𝑗=2) = [𝑏, 𝑦] and either 𝑦(𝑆̀𝑗=2) = [𝑦] or 𝑦(𝑆̀𝑗=2) = [𝑏], but not 𝑦(𝑆̀𝑗=2) = [𝑎, 𝑏, 𝑦]. 

3.3. Computability of the Simulation Graph 𝜸|𝕲 and the Initial Set of Substates 𝔖′ 

In practice, we will need to find some specific simulation graph γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤 |𝔊  from some 

known set of consistent substates 𝕾𝑋|𝔊 ⊆ 𝔖𝔛(γ|𝔊) associated with the nodes 𝑆 of the graph 𝛤 |𝔊. We 

will call 𝕾𝑋|𝔊 the initial set of substates. 

Definition: Let us define the initial set of substates 

𝕾′ ≔ {𝑆 = 𝔖𝔛
𝑞} 

associated with the specific nodes 𝑆 of the graph 𝛤 |𝔊 such that 

∃! 𝛾|𝔊 (𝕾′ ⊆ 𝔖𝔛(𝛾|𝔊))       , (𝟖) 

where 𝑆: 𝕊 ∈ 𝑆(𝛤 |𝔊), 𝔖𝔛
𝑞 ∈ 𝕊,𝔖𝔛(𝛾|𝔊), 𝛾 |𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊. 

The search for a specific graph γ|𝔊  with some set 𝕾′  can be imperatively represented as a 

calculation of all functions Θ|𝔒 ∈ Θ(𝛤 |𝔊), using 𝕾′ as the initial arguments for these functions. 

Note that the definition requires that 𝕾′  be a subset of the one and only one set 𝔖𝔛(γ|𝔊) . 

However, in the general case, some 𝕾𝑋|𝔊 can be a subset of more than one 𝔖𝔛(γ|𝔊). In this case, in 

the imperative representation of the search, a single graph γ|𝔊 cannot be calculated from such 𝕾𝑋|𝔊, 

since for some or all functions Θ|𝔒 ∈ Θ(𝛤 |𝔊), not all arguments be defined. 

Representing the search for a specific γ|𝔊 in the form of a calculation of the functions Θ|𝔒 ∈

Θ(𝛤 |𝔊), we notice that all Θ|𝔒 will be calculated only if the values of all root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊) 

are known or can be obtained in some way. Thus, 𝕾′ is a subset of the unique set 𝔖𝔛(γ|𝔊) (formula 

8) if and only if, for each initial node 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊), there exists a path 

𝑆𝑟𝑜𝑜𝑡
Θ|𝔒1
→  …

Θ|𝔒𝑛
→  𝑆𝑑𝑒𝑓 

where 𝑆𝑑𝑒𝑓 ∈ 𝑆(𝛤|𝔊), 𝑆(𝕾′) is a node whose value is defined in 𝕾′. And all function Θ|𝔒𝑖  on this 

reversible (Appendix E). 

Another important property of this approach is the glitching freedom described in [21,22]. Since 

only one graph γ|𝔊 is to be found, there never exist inconsistent substates 𝔖𝔛
𝑞. 
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3.4. Representation of the Dependence of Y on X in the Form of a Simulation Graph 𝒀 = ⟨𝜞|𝕲, 𝕾′⟩
𝑿

 and a 

Graph Model 𝑌̂(𝑋̅|𝔊)𝛤 

The dependence of the dependent variables 𝑌  upon the independent variables 𝑋  can be 

represented as a tuple of the transition graph 𝛤 |𝔊, and the set of initial substates 𝕾′ with given values 

of the parameters 𝔊. 

Definition: Let us define a pair 

𝑌 = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋
≔ 

≔⋃ 𝔖𝔛 (𝛾(𝛤 |𝔊|𝕾′)) (𝑋)
𝔛∈𝕏𝑛

 

representing the dependence of the variables 𝑌 on the variables 𝑋, as parametrized by 

the values of 𝔊, where 

𝛾|𝔊 = 𝛾(𝛤 |𝔊|𝕾′) 

is a simulation graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊 found for a given 𝛤|𝔊, 𝕾′ and 𝔊, and 

𝔜 =⋃ 𝕾𝑋|𝔊

𝔛∈𝑋
(𝔛) 

is the merging operation of the substates 𝔖𝔛
𝑞 ∈ 𝕾𝑋|𝔊 with the same key 𝔛 ∈ 𝕏𝑛 into 

the set of values 𝔜 ∈ 𝕐𝑛. 

The representation 𝑌 = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋

 can be used to implement the model 𝑌̂(𝑋̅|𝔊); we call this 

implementation a graph model and denote it as 

𝑌̂(𝑋̅|𝔊)Γ = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋̅
= 𝑌̂           , (𝟗) 

This implementation is similar to a representation in the form of a set of substates (formula 4), 

except that the set 𝕾𝑋̅|𝔊 must first be found as 

𝕾𝑋̅|𝔊 = 𝔖𝔛 (γ(𝛤 |𝔊|𝕾′)) 

3.5. Simulation of the Graph Model 𝒀̂(𝑿̅|𝕲)𝜞 as a Calculation of a Subset of the Values 𝖄̂ ⊆ 𝕐𝒏̂ on the 

Subset 𝖃̅ ⊆ 𝕏𝒏̅̅̅̅  and the Parameters G 

For the graph model 𝑌̂(𝑋̅|𝔊)Γ, we can define the simulation as the operator 

𝖃̅
𝑌̂(𝑋̅|𝔊)

Γ

⇒      𝖄̂        , (𝟏𝟎) 

where 𝖃̅ ⊆ 𝕏𝑛̅̅ ̅̅  is the subset of known values of the set of independent variables 𝑋̅ ⊂ 𝑉 and 𝖄̂ ⊆ 𝕐𝑛̂ 

is the subset of unknown values of dependent variables 𝑌̂ ⊂ 𝑉. 

The simulation can be implemented as a search for the simulation graph γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤|𝔊 for a 

given initial set 𝕾′ and a set 𝔊. Then, from the set 𝕾𝑋̅|𝔊, 𝔜̂ ∈ 𝖄̂ is constructed for each 𝔛̅ ∈ 𝖃̅ as: 

𝖃̅
∀𝔛̅∈𝖃̅(𝔜̂∈𝖄̂=⋃𝔖𝔛(γ(𝛤|𝔊|𝕾′))(𝔛̅) )

⇒                         𝖄̂ 

In the simulation problem, we can significantly optimize the search for the graph γ|𝔊. Since the 

set 𝖃̅ is usually much smaller than 𝕏𝑛̅̅ ̅̅ , we can search or calculate only a part of the substates from 

𝔖𝔛(γ|𝔊), which contain all the required keys 𝔛̅ ∈ 𝖃̅: 
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𝕾𝖃̅ = {𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) | 𝔛(𝔖𝔛

𝑞) ∈  𝖃̅}         , (𝟏𝟏) 

We can also optimize 𝕾′ by including substates that are as close as possible (from the point of 

view of the distance in graph 𝛤 |𝔊) to substates from the desired 𝕾𝖃̅ or even equivalent to these 

substates. This will reduce the number of calculations not related to the search for 𝕾𝖃̅ (see Figure 4). 

 

Figure 4. Reduction of the number of calculations by including substates that are as close as possible to those 

from the desired 𝕾𝖃̅. 

For the graphical model 𝑌̂(𝑋̅|𝔊)Γ , an interactive simulation can also be performed. In the 

simplest case, this requires many models {𝑌̂(𝑋̅|𝔊)Γ𝑖} ; however, a more interesting and optimal 

approach is to undertake interactive manipulation of the values of the nodes S ∈ 𝑆(𝛤 |𝔊)  when 

imperative representations (sequential calculation of the functions Θ|𝔓) of the operation γ(𝛤 |𝔊|𝕾′) 

are used. This approach was explored briefly in. [23] 

Two patterns are possible here: 

• Push pattern:  
This pattern can help synchronize the simulation with some external processes (for example, to 
synchronize with real-time). The essence of the pattern is that some function 𝛩|𝔒 cannot be calculated 
until all its arguments 𝑆 are defined; thus, we can locally pause the simulation, leaving some of the 
root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤|𝔊) uninitialized. We can then continue it by defining these nodes. 

• Pool pattern: 
This pattern can be used to implement an asynchronous simulation reaction to some external events—
for example, to respond to user input. As in the previous case, some 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊)  remain 
uninitialized. However, the simulation does not stop there. Their values are constructed as needed to 
calculate the next 𝛩|𝔒. Using this approach, it is figuratively possible to imagine that undefined 𝑆𝑟𝑜𝑜𝑡  
is computed by some set of unknown transition functions, possibly also combined into a transition 
graph. In other words, there is some “shadow” or “unknown” part of the graph 𝛤 |𝔊 and, as a result 
of its calculation, the 𝑆𝑟𝑜𝑜𝑡  is initialized (see Figure 5). 

 

Figure 5. Representing the input/output as a set of unknown transition functions. 
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4. Logical Processors 

We show how the graph model 𝑌̂(𝑋̅|𝔊)Γ  can be implemented using the reactive-streams 

paradigm in the form of a computational graph. We also show how the simulation can be evaluated 

on this graph and offer ways to optimize it. Additionally, in Appendix H, we implement a simple 

computational graph and perform a simulation with it. 

4.1. Reactive Streams and Graph Model 𝑌̂(𝑋̅|𝔊)𝛤 

The concept of reactive streams was formulated in 2014 in manifest [10–12] and extended by 

AKKA library developers with tools for composing reactive streams into computational graphs, 

[13,24] which are already widely used in practice. [9,25–27] The graph nodes are logical processors, 

and the edges are the channels representing the stream of messages that transmit data; each of the 

processors transforms the messages in some way. Generally, reactive streams are an implementation 

of the well-known dataflow-programming paradigm.[25] 

This chapter will follow the approach described in (i.e., we will compose a computational system 

from small blocks that process data streams) [22,28,29]. However, we will use reactive streams to do 

all the hard work for us to distribute computation and load balancing. 

We will denote messages (values) by 𝑀 , logical processors (reactors) by 𝐿𝑃 , channels 

connecting the processors by 𝐷, and the numeral graph by 𝐶. 

We can transform an arbitrary graphical model 𝑌̂(𝑋̅|𝔊)Γ  (formula 9) into a computational 

graph 𝐶: 

• To represent each substate 𝔖𝔛
𝑞 ∈ 𝔖𝔛(𝛤 |𝔊) with the message 𝑀 = [𝔖𝔛

𝑞]. 

• To replace all 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊) for which 𝑆′𝑘=1, … , 𝑆′𝑘=𝑛 ∈ 𝑆(𝕾′) with equivalent processors 𝐿𝑃𝑒𝑣𝑎𝑙 : 

𝑆′
𝑘=1 ⇒ 𝐷𝑘=1,  … , 𝑆′

𝑘=𝑛 ⇒ 

⇒ 𝐷𝑘=𝑛
𝛩|𝔓 ⇒ 𝐿𝑃𝑒𝑣𝑎𝑙 
→         𝑆̀ ⇒ 𝐷 

and all 𝛩|𝔓  (for which 𝑆̀ ∈ 𝑆(𝕾′)) with processors 𝐿𝑃𝑒𝑣𝑎𝑙  equivalent to the inverse functions 

𝛩−1|𝔓: 

𝑆′̀ ⇒ 𝐷
 𝛩|𝔓 ⇒ 𝛩−1|𝔓⇒ 𝐿𝑃𝑒𝑣𝑎𝑙

→               𝑆𝑘=1 ⇒ 

⇒ 𝐷𝑘=1,  … , 𝑆𝑘=𝑛 ⇒ 𝐷𝑘=𝑛 

• To successively replace all functions 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊)  and all arguments 𝑆𝑘=1, … , 𝑆𝑘=𝑛  that are 

already replaced by the channels 𝐷𝑘=1, … , 𝐷𝑘=𝑛, which are equivalent to 𝐿𝑃𝑒𝑣𝑎𝑙 : 

𝐷𝑘=1,  … ,𝐷𝑘=𝑛
𝛩|𝔓 ⇒ 𝐿𝑃𝑒𝑣𝑎𝑙 
→         𝑆̀ ⇒ 𝐷 

• And to successively replace all 𝛩|𝔓, the result 𝑆̀ of which has already been replaced by channel 𝐷, 

by 𝐿𝑃𝑒𝑣𝑎𝑙  that equivalent to the inverse functions 𝛩−1|𝔓: 

𝐷
 𝛩|𝔓 ⇒ 𝛩−1|𝔓⇒ 𝐿𝑃𝑒𝑣𝑎𝑙

→               𝑆𝑘=1 ⇒ 

⇒ 𝐷𝑘=1,  … , 𝑆𝑘=𝑛 ⇒ 𝐷𝑘=𝑛 

As a result, we obtain a graph 𝐶 containing the equivalent 𝐿𝑃𝑒𝑣𝑎𝑙  for each Θ|𝔓 ∈ Θ(𝛤 |𝔊) but 

possibly differing structures compared to 𝛤|𝔊, since its construction was carried out starting from 

S′ ∈ S(𝕾′) rather than from the root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊) (see Figure 6). 
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Figure 6. Example of constructing of the computational graph 𝐶 from the model 𝑌̂(𝑋̅|𝔊)𝛤. 

Next, each root channel 𝐷𝑟𝑜𝑜𝑡 ∈ 𝐷(𝐶) must be connected with a logical processor 𝐿𝑃𝑖𝑛𝑖𝑡 , whose 

task is to send the corresponding 𝑀′ = [𝔖′𝔛𝑞]  (where 𝔖′𝔛𝑞 ∈ 𝔖𝔛(𝕾′)) , which starts the 

computational process (see Figure 7). 

Moreover, all or part of the channels 𝐷 ∈ 𝐷(𝐶) must be connected with one or more 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , 

which will collect part or all of the calculated substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) belonging to the graph γ|𝔊 ∈

𝛄|𝔊 ⇔ 𝛤|𝔊, given by the set of initial states 𝕾′ (see Figure 7). 

 

Figure 7. Addition of 𝐿𝑃𝑖𝑛𝑖𝑡 and 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 into the computational graph 𝐶. 

4.2. Graph 𝑪 Optimization 

Simply replacing Θ|𝔓  functions with processors 𝐿𝑃𝑒𝑣𝑎𝑙  yields an extremely suboptimal and 

potentially infinite processing graph 𝐶 , which is not good from the viewpoint of minimizing 

computing resources. To solve this problem, we can optimize graph 𝐶. For example, consider two 

optimization methods: 
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• Folding of cyclic sequences in the graph 𝛤 |𝔊: 

Consider a chain with an arbitrary length of the same functions 𝜃|𝔓, as in Figure 8.a. This can be 

transformed into a chain of logical processors 𝐿𝑃𝑒𝑣𝑎𝑙  of equal length, as in Figure 8.b. We can fold 

this chain into a single 𝐿𝑃𝑒𝑣𝑎𝑙 by adding a message-return loop as in Figure 8.c. Thus, more than 

one message 𝑀 will go through one 𝐿𝑃𝑒𝑣𝑎𝑙 , so that if 𝜃|𝔓 has more than one argument, it can lead 

to collisions. To resolve collisions and also to implement breakage of the loop, we need to determine the 

loop-iteration number of messages 𝑀. The simple way to do this is to add an iteration counter for each 

loop in 𝐶. Another approach is to use history-sensitive values.[21] As a more complex example, we 

consider the graph 𝛤 |𝔊 in Figure 9.a, which can be converted and collapsed into a compact graph 𝐶 

as in Figure 9.b. 

• Folding of graph 𝐶: 

Inside each 𝐿𝑃𝑒𝑣𝑎𝑙 , we can implement more than one function 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊), thus reducing the 

number of nodes in the graph 𝐶. This folding can be performed over a wide range, up to the realization 

of all 𝛤 |𝔊 in one 𝐿𝑃𝑒𝑣𝑎𝑙 . For example, graph 𝐶 from Figure 9.b can be folded into single 𝐿𝑃𝑒𝑣𝑎𝑙  

and will look like Figure 9.c. 

 

Figure 8. Example of the folding of the simple computational graph 𝐶. 
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Figure 9. Example of the folding of a more complex computational graph 𝐶. 

In general, the optimization problem for graph 𝐶 is rather complex and goes beyond the scope 

of this article. 

4.3. Simulation of the Graph Model 𝒀̂(𝑿̅|𝕲)𝛤Using the Computational Graph 𝐶 

In the simplest case, we can simulate the model 𝑌̂(𝑋̅|𝔊)Γ  (formula 10) using the graph 𝐶 

constructed on it in two stages: 

• Calculate the set of substates 

𝕾𝑋̅|𝔊 = 𝔖𝔛 (𝛾(𝛤 |𝔊|𝕾′)) 

For this, we initialize the calculation by sending 𝑀′  messages using the processors 𝐿𝑃𝑖𝑛𝑖𝑡 . Using the 

processors 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , we collect all the calculated messages, 𝑀 = [𝔖𝔛
𝑞]. 

• Find all substates for each key 𝔛̅ ∈ 𝖃̅ and then collect the values 𝔜̂ ∈ 𝖄̂ from the found substates (formula 

6). 

In most cases, this approach will be computationally expensive, since in practice, usually 

|𝔛(γ|𝔊)| > |𝖃̅|. 
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Generally, simulation optimization is the minimization of the number of calculated substates 

𝔖𝔛
𝑞  such that 𝔛(𝔖𝔛

𝑞) ∉  𝖃̅ . Several approaches are possible here—for example, constructing a 

minimalistic 𝛤 |𝔊 with a certain well-known collection 𝖃̅. Alternatively, lazy algorithms that cut off 

the calculations Θ|𝔓 whose result is not required to cover 𝖃̅ could be used. However, this topic is 

beyond the scope of the present article. 

5. Practice 

In this chapter we show our approach in practice.  First, we describe modeled object, then 

define it mathematical model and the analytical solution.  In the next step, explain the procedure of 

construction of graph and parallelization scheme and present the results. This chapter contains 

shortened description, please check Appendix F, G and H for the full one.  

5.1. Description of the Modeled Object and the Construction of Model 𝒀̂(𝑿̅|𝔊): 

As an example, consider the classic model of saline mixing. Here, the simulated object is a system 

of two connected tanks of volumes 𝑣1 = 4𝐿 and 𝑣2 = 8𝐿. Over time 𝑡, a saline solution circulates 

from the first tank to the second with a speed 𝑞3 = 5𝐿/𝑚 and in the opposite direction with a speed 

of 𝑞2 = 2𝐿/𝑚. In addition, the saline solution is poured into the first tank at a speed of 𝑞1 = 3𝐿/𝑚 

and drains from the second tank at the same speed 𝑞4 = 3𝐿/𝑚, i.e., the volume of the saline solution 

in the tanks does not change. Initially, the first and second tanks are entirely filled with solutions with 

initial salt concentrations of 𝜔1 = 0𝑔/𝐿  and 𝜔2 = 20𝑔/𝐿 , respectively. A saline solution with a 

concentration of 𝜔3 = 10𝑔/𝐿  is supplied to the first tank constantly. Thus, the set of variables 

reflecting the properties of interest will look like: 

𝑉 =

[
 
 
 
 
 
 
 
 
𝑡
ω1
ω2
ω3
𝑣1
𝑣2
𝑞1
𝑞2
𝑞3
𝑞4 ]
 
 
 
 
 
 
 
 

. 

The modeling task is to predict the change in the salt concentrations 𝜔1 = 0𝑔/𝐿  and 𝜔2 =

20𝑔/𝐿 over time 𝑡. 

As part of the modeling problem to be solved, we represent the simulated object in the form of 

the model 𝑌̂(𝑋̅|𝔊)𝐹 (formula 3), breaking the variables 𝑉 as 

𝑋̅ = [𝑡],  

𝑌̂ = [
ω1

ω2
], 

𝔊 =

[
 
 
 
 
 
 
𝑣1 = 4
𝑣2 = 8
𝑞1 = 3
𝑞2 = 2
𝑞3 = 5
𝑞4 = 3
ω3 = 10]

 
 
 
 
 
 

  

and specifying their dependence as a set of functions: 

𝑌̂ = 𝐹(𝑋̅|𝔊)

=

[
 
 
 
 
 
ω̂1(𝑡̅) =

13𝑒
(√105−15)𝑡̅

16 √105

21
−
13𝑒−

(15+√105)𝑡̅

16 √105

21
− 5𝑒

(√105−15)𝑡̅

16 − 5𝑒−
(15+√105)𝑡̅

16 + 10

ω̂2(𝑡̅) =
5𝑒−

(15+√105)𝑡̅

16 √105

21
−
5𝑒

(√105−15)𝑡̅

16 √105

21
+ 5𝑒

(√105−15)𝑡̅

16 + 5𝑒−
(15+√105)𝑡̅

16 + 10 ]
 
 
 
 
 

    , (𝟏𝟐) 
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Which are obtained by solving of the Cauchy problem 

{
 
 

 
 
𝑑𝜔̂1

𝑑𝑡̅
=
3 ∗ 10 + 2 ∗ 𝜔̂2 − 5 ∗ 𝜔̂1

4
𝜔̂1(0) = 0                     

𝑑ω̂2

𝑑𝑡̅
=
5 ∗ ω̂1 − 2 ∗ ω̂2 − 3 ∗ ω̂2

8
ω̂2(0) = 20                  

. 

We can also represent the simulated object in the form of model 𝑌̂(𝑋̅|𝔊)𝑆 (formula 4). In this 

case, the values of the variable 𝑡 will be used as keys and those of the variables 𝜔1 and 𝜔2 can be 

separated by different substates, such that we obtain two types of substates 𝔖𝔛
𝑞=1 = [𝜔1]

[𝑡]

𝑞=1
 and 

𝔖𝔛
𝑞=2 = [𝜔2]

[𝑡]
𝑞=2

. In the code, we can represent the values 𝔛̅, 𝔜̂ and the substate 𝔖𝔛
𝑞  as OOP 

classes (source code B.1.L27). 

One simple, but impractical, way to construct a set of substates 𝕾𝑋̅|𝔊  is to generate 

𝔖𝔛
𝑞=1, 𝔖

𝔛
𝑞=2 ∈ 𝕾𝑋̅|𝔊 using a set of functions (formula 12) with some step of key ∆𝑡 (source code 

B.2.L60). 

Using the model 𝑌̂(𝑋̅|𝔊), we can perform the simulation (formula 5) for some segment 𝖃̅ =

[𝑡𝑏𝑒𝑔𝑖𝑛 , 𝑡𝑒𝑛𝑑] and obtain the corresponding set of values 𝖄̂ (source code B.1.L71 is an implementation 

of 𝑌̂ = 𝐹(𝑋̅|𝔊) and the source code B.2.L70 is an implementation of 𝕾𝑋̅|𝔊 = 𝑌̂). Looking at the output 

plots, we can see that they are similar (see Figure 10). 

We can compare the results of executing of models 𝑌̂(𝑋̅|𝔊)𝐹 and 𝑌̂(𝑋̅|𝔊)𝑆 just by accumulating 

different overall output values: 

ε = ∑ ∑(𝑌̂(𝑋̅|𝔊)𝐹𝑖 − 𝑌̂(𝑋̅|𝔊)𝑆𝑖)

|𝑌|

𝑖=1𝔛̅∈𝕏𝑛̅̅ ̅̅

. 

Evaluating this algorithm (source B.3.L24), we obtain ε = 1.1546319456101628e−14. 

 

Figure 10. Results of a simulation of the 𝑌̂(𝑋̅|𝔊)𝐹 (first plot) and 𝑌̂(𝑋̅|𝔊)𝑆 (second plot) models. Where X axis 

is time and Y axis is salt concentration, green line ω1 is salt concentration in tank 1 and red line ω2 is salt 

concentration in tank 2. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1


 22 of 28 

 

5.2. Building and Simulating a Graphical Model 𝒀̂(𝑿̅|𝕲)𝛤: 

The graph 𝛤 |𝔊 for this example will represent an infinite chain of pairs of nodes S connected 

by edges Θ|𝔒. For convenience, in addition to the index of depth 𝑑, we to index the nodes S with 

indices of width 𝑤 ∈ 𝑁, such that the nodes 𝑆𝑑 , with the same index 𝑑, will have different values of 

𝑤. Moreover, we set w = k = q, where k is the index of the argument (edges) Θ|𝔒𝑑 and q is the index 

of the substate assigned to 𝑆𝑑,𝑤. Each pair 𝑆𝑑,𝑤=1 and 𝑆𝑑,𝑤=2 corresponds to a certain moment of 

discrete-time 𝑡̅. For simplicity, we will use a fixed time-step ∆𝑡 = 𝑑 ∗ 𝛾, where 𝑑 is the depth index 

and 𝛾 is the time-step coefficient. Also, we restrict model time to a small interval [𝑡𝑏𝑒𝑔𝑖𝑛 ,  𝑡𝑒𝑛𝑑] ⊃ 𝑡̅. 

In this case, the graph 𝛤 |𝔊 will contain 

n =
 𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔𝑖𝑛

∆𝑡
+ 1 

pairs of nodes 𝑆𝑑,𝑤. 

The simplest way to implement the transition functions Θ|𝔒𝑑,𝑤=1  and Θ|𝔒
𝑑,𝑤=2 is to use the 

functions 𝜔̂1(𝑡̅) and 𝜔̂2(𝑡̅) from the set 𝐹(𝑋̅|𝔊) (formula 13). In this case, 

Θ|𝔒𝑑,𝑤=1([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) = 

= [𝜔̂1(𝑡̅ + ∆𝑡)][𝑡̅+∆𝑡]
𝑞=1

; 

Θ|𝔒𝑑,𝑤=2([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) = 

= [𝜔̂2(𝑡̅ + ∆𝑡)][𝑡̅+∆𝑡]
𝑞=2

.     

A slightly more complicated implementation is to rewrite the system of differential equations 

(formula 14) to be solved by the Euler method 

{
 

 ω̂1,𝑖 = ω̂1,𝑖−1 + ∆𝑡 ∗
𝑞1 ∗ ω3 + 𝑞2 ∗ 𝜔̂2,𝑖−1 − 𝑞3 ∗ 𝜔̂1,𝑖−1

𝑣1
      

ω̂2,𝑖 = ω̂2,𝑖−1 + ∆𝑡 ∗
𝑞3 ∗ ω̂1,𝑖−1 − 𝑞2 ∗ ω̂2,𝑖−1 − 𝑞4 ∗ ω̂ 2,𝑖−1

𝑣2

 

as iterated by ∆𝑡: 

𝜔̂1,0 = 0;  ω̂2,0 = 20; 𝑖 = 1,2,3, … 

In this case 

Θ|𝔒𝑑,𝑤=1([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) = [𝜔̂1 + ∆𝑡 ∗
𝔒. 𝑞1 ∗ 𝔒.𝜔3 +𝔒. 𝑞2 ∗ 𝜔̂2 −𝔒. 𝑞3 ∗ 𝜔̂1

𝔒. 𝑣1
]

[𝑡̅+∆𝑡]

𝑞=1

; 

Θ|𝔒
𝑑,𝑤=2([𝜔̂1]

[𝑡̅]
𝑘=1

, [𝜔̂2]
[𝑡̅]

𝑘=2
) = [𝜔̂2 + ∆𝑡 ∗

𝔒. 𝑞3 ∗ 𝜔̂1 −𝔒. 𝑞2 ∗ 𝜔̂2 −𝔒. 𝑞4 ∗ 𝜔̂ 2

𝔒. 𝑣2
]

[𝑡̅+∆𝑡]

𝑞=2

.    

We implement the nodes S and the sets of edges Θ|𝔓 as OOP classes (source code C.1.L89). S 

nodes are essentially variables that are not initially defined. The transition graph 𝛤 |𝔊  and the 

simulation graph γ|𝔊 can be represented as classes containing collections of nodes S of sets of edges 

Θ|𝔓 (source code C.1.L149). Moreover, the graph γ|𝔊 is the same as graph 𝛤|𝔊, but with all variables 

S defined. 

Due to the simplicity of the transition graph 𝛤 |𝔊, we can implement the function build_Γ(𝑛, ∆𝑡), 

which automatically constructs 𝛤 |𝔊 based on the given number of steps and the time-step (source 

code C.1.L190). 

The search for the simulation graph γ(𝛤 |𝔊|𝕾′) is a calculation of the values of all nodes S from 

the initial set of substates 

𝕾′ = {S𝑑=0,𝑤=1 = 𝔖𝔛
𝑗=1,  S𝑑=0,𝑤=1 = 𝔖𝔛

𝑗=2}.  

We implement the search as method Γ.γ(𝕾′), using the indices 𝑑 and 𝑤 as the key in the set 

𝕾′  (source code C.1.L156). The method first initializes the nodes S𝑑=0,𝑤=1  and S𝑑=0,𝑤=2  with the 

initial substates 𝔖′𝔛𝑗=1 and 𝔖′𝔛𝑗=2 and then calculates the values of the rest nodes S𝑑,𝑤 by calling 

each method Θ|𝔒𝑑,𝑤.eval() until all S𝑑,𝑤 are defined. The method Θ|𝔒𝑑,𝑤.eval() checks whether the 

arguments 

S𝑑−1,𝑤=1, S𝑑−1,𝑤=2
Θ|𝔒𝑑,𝑤
→    …    

are defined and, if so, evaluates the result 

…
Θ|𝔒𝑑,𝑤
→    S𝑑,𝑤 .    
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The set of substates 𝔖𝔛(γ|𝔊) can be obtained from the simulation graph γ(𝛤 |𝔊|𝕾′) by simply 

extracting the values from the nodes S and combining them into the set 𝕾𝑋̅|𝔊. We implement this in 

the form of the method γ|𝔊.𝔖() (source code C.1.L179); next, 𝕾𝑋̅|𝔊 can be used to obtain the values 

of 𝔜̂ ∈ 𝖄̂ from the values of 𝔛̅ ∈ 𝖃̅. 

5.3. Constructing and Calculating Graph 𝑪 Using the Graphical Model 𝑌̂(𝑋̅|𝔊)𝛤 

As an example, we construct graph 𝐶 using the model 𝑌̂(𝑋̅|𝔊)Γ for mixing salt solutions. To 

implement it, we use the AKKA Streams library. There was a similar approach to implement the 

SwiftVis tool. 

We can build an unoptimized version of graph 𝐶 by simply replacing the functions Θ|𝔓𝑑,𝑤=1 

and Θ|𝔓
𝑑,𝑤=2  with logical processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=1  and 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=2  and adding 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , 

𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=1, and 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=2. 

We represent the substates in the form of the messages 𝑀𝑑,𝑤 = [𝔖𝔛
𝑞,𝑑,𝑤]  produced by the 

corresponding 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤 , where 𝑞 =  𝑤 . In particular, the substates from the set 𝕾′  can be 

represented as 𝑀𝑑=0,𝑤=1 = [S𝑑=0,𝑤=1 = 𝔖′𝔛𝑞=1] and 𝑀𝑑=0,𝑤=2 = [S𝑑=0,𝑤=2 = 𝔖′𝔛𝑞=2]. 

This will work as follows (see source code D.1): the initial messages 𝑀𝑑=0,𝑤=1 and 𝑀𝑑=0,𝑤=2 are 

sent by logical processors 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=1  and 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=2  to the processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑑=1,𝑤=1 , 

𝐿𝑃𝑒𝑣𝑎𝑙𝑑=1,𝑤=2. Then, the messages will distribute throughout the graph, where a copy of each substate 

is fed into the processor 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , which builds the resulting set of substates 𝕾𝑋̅|𝔊. 

Since the standard blocks Zip, Flow.map, Broadcast, and Merge from the AKKA Streams library 

were used to construct graph 𝐶, the implementation of each 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤 will be a nested graph. 

Since the obtained graph 𝐶 consists of recurring pairs 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=1 and 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=2, it can be 

optimized by implementing two cycles using 2 logical processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑤=1 and 𝐿𝑃𝑒𝑣𝑎𝑙𝑤=2. 

Since it is necessary in this case to determine which incoming messages refer to particular 

iterations of the cycle, we add the iteration (depth) counter 𝑑 to them, 𝑀𝑑,𝑤 = [𝑑,  𝔖𝔛
𝑞], and modify 

the grouping function Zip so that it selects pairs of incoming 𝑀𝑑,𝑤 with the same value 𝑑 (source 

code D.2). When we execute this code, we obtain the simulation result (see Figure 11), which was the 

same as our findings from the implementation of the 𝑌̂(𝑋̅|𝔊)𝑆 model (see Figure 10). 

 

 

Figure 11. Simulation of the 𝑌̂(𝑋̅|𝔊)Γmodel using graph 𝐶. Where X axis is time and Y axis is salt concentration, 

green line ω1 is salt concentration in tank 1 and red line ω2 is salt concentration in tank 2, gray line ω3 is saline 

solution concentration supplied to tank 1 constantly. 

6. Discussion 
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One of the primary contributions of this research is the synthesis of classical mathematical 

modeling techniques with the practical, high-performance synchronization mechanisms provided by 

reactive streams. Similar to earlier approaches such as the Time Warp algorithm[1,2] and actor-based 

frameworks used in HPC simulation platforms[9], our method decomposes the complete object state 

into substates with unique keys. This modular representation not only supports reuse and flexibility 

but also enables the direct mapping of transition functions to logical processors. The resulting 

computational graph is reminiscent of systems such as RxHLA[7] and CQRS + ES architectures[8], 

which emphasize decoupling and distributed processing. 

Representing the model as a transition graph 𝛤 |𝔊  and initial set of sates 𝕾′  offers several 

benefits: 

• Modularity and Reusability: By encapsulating transition rules as independent functional blocks, 

the approach supports reuse and flexibility. This modular structure is similar in spirit to block-

diagram environments like Simulink [30–32] and has parallels in dataflow programming models 

discussed by Kuraj and Solar-Lezama [21]. 

• Scalability: Our implementation leverages the inherent parallelism of modern multi-core and 

distributed architectures. This approach aligns with the findings of actor-based models [9,25,26] 

and contemporary research on reactive programming in distributed systems [10,24]. 

• Interactive Simulation: The push and pool patterns introduced in our model are analogous to 

techniques used in recent studies on interactive and fault-tolerant reactive systems [23,33]. This 

design allows the simulation to respond in real time to external events or user inputs. 

In summary, the proposed method of using reactive streams as a synchronization protocol for 

parallel simulation provides a compelling framework that unites rigorous mathematical modeling 

with practical, scalable implementation techniques. While challenges remain—particularly in 

optimization, continuous simulation, and fault tolerance, the initial results and conceptual clarity 

offer a solid foundation for further research and development. The integration of our approach with 

similar studies in the field [1–10,13,21–28,33,34] highlights its potential and provides clear directions 

for future work. 

7. Future Work 

Many unanswered questions remain, some of which we present for future research: 

• Effective optimization of computational graph 𝐶 and simulation on it: 

Chapters 4.2 and 4.3 dealt with this topic. However, due to its complexity and vastness, it did not fit 

into this article. In general, this is a very important issue from a practical point of view. Solving it will 

significantly reduce the number of resources required to perform simulations. Another interesting 

question is the automation of the optimization of graph 𝐶. Say that, initially, we have non-optimal 

𝐶, for example, obtained by the method described in Chapter 4.1. We want to automatically make C 

compact and computationally easy, without loss of accuracy and consistency. 

To resolve the optimization task the ML technique can be used. For example, reinforcement rearming 

agents can be trained to explore various graph configurations (i.e., different ways to fold or collapse 

the computational graph) and learn which configurations yield the best performance in terms of 

latency, throughput, or resource consumption [36–40].  Also, techniques like neural architecture 

search (NAS) can be adapted to optimize the layout and parameters of the computational graph. This 

includes automatically deciding how to fold cyclic sequences, balance load among logical processors, 

and minimizing redundant computations [39–41].  

• Accurate simulation of continuous-valued models: 

Many properties of modeled objects can be represented in continuous quantities, for example, values 

from the set ℝ. However, the simulation (the calculation of which is based on message forwarding) 

is inherently discrete. An open question remains as to how accurately continuous quantities can be 

calculated. The question is how to increase the accuracy of calculating such quantities without 

increasing the requirements for computer resources. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1


 25 of 28 

 

• Fault-tolerance of reactive streams: 

We did not touch on fault tolerance of simulation in this work, but in most real/practical applications, 

fault tolerance is very important. This question was partially explored in [23] but we also suggest this 

for future work. 

• Manual and automatic graph construction 𝐶: 

From a practical viewpoint, it is interesting to be able to use some IDE to manually construct a 

computational graph 𝐶, and to do this such that the corresponding graph 𝛤|𝔊 will be consistent and 

optimal. For example, this might be done similarly to the Simulink package, [30,42] SwiftVis tool, 

[25,43] or XFRP language [24,44]. It is also interesting to find ways to automate the construction of 𝐶. 

For example, the model can initially be defined as a certain set of rules by which graph 𝐶 can be 

automatically and even dynamically constructed. Specialized programming languages are also an 

interesting area to explore. For example, the EdgeC [33,35] language can be considered a tool to 

describe computational graphs. 

Also, ML technique can be applied wildly here. For example, graph learning techniques from graph 

neural networks (GNNs) can be applied to learn the structure of the optimal computational graph 

from historical data. The learned model can then suggest or automatically construct a more efficient 

graph based on current simulation requirements. Adaptive scheduling ML algorithms can 

dynamically adjust the scheduling of tasks across logical processors, optimizing the execution order 

and balancing the load [45,46]. This is particularly useful in interactive or real-time simulations where 

conditions may change frequently. 

• Testing with complex models and comparing with other parallelizing approaches: 

This work provides a small, simple example of parallel simulation to show how the described 

approach can be implemented in practice. However, the questions of checking this approach with 

large and complex models and comparing its effectiveness with other parallelizing approaches 

remain open. 

Conclusions 

The proposed method effectively integrates the reactive streams paradigm with classical 

mathematical modeling techniques to create a scalable framework for parallel simulation. By using a 

graph-based representation of object states and transition functions, this approach enhances 

modularity and reusability while supporting efficient computation through logical processors. The 

implementation using AKKA reactive streams demonstrates its scalability and practical feasibility for 

distributed systems. Despite its promise, the work highlights challenges such as graph optimization, 

continuous model simulation, fault tolerance, and automation of graph construction, which offer 

significant areas for future research and development. The study lays a strong foundation for 

advancing parallel simulation techniques, emphasizing both theoretical robustness and practical 

scalability. 
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