
Article Not peer-reviewed version

Parallel Simulation Using Reactive

Streams: A Graph-Based Approach for

Dynamic Modeling and Optimization

Oleksii Sirotkin * , Arsentii Prymushko , Ivan Puchko , Hryhoriy Kravtsov , Mykola Yaroshynskyi ,

Volodymyr Artemchuk

Posted Date: 21 April 2025

doi: 10.20944/preprints202504.1608.v1

Keywords: parallel simulation; reactive streams; logical processors; transition functions; state space;

synchronization protocol

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4293290
https://sciprofiles.com/profile/4050886
https://sciprofiles.com/profile/4060721
https://sciprofiles.com/profile/4063745
https://sciprofiles.com/profile/4062766
https://sciprofiles.com/profile/2407703

Article

Parallel Simulation Using Reactive Streams: A

Graph-Based Approach for Dynamic Modeling

and Optimization

Oleksii Sirotkin 1,*, Arsentii Prymushko 1, Ivan Puchko 1, Hryhoriy Kravtsov 1,

Mykola Yaroshynskyi 1 and Volodymyr Artemchuk 1,2,3,4

1 Department of Mathematical and Computer Modeling, G.E. Pukhov Institute for Modelling in Energy

Engineering of the NAS of Ukraine, 15 General Naumov Str., 03164 Kyiv, Ukraine

2 Department of Environmental Protection Technologies and Radiation Safety, Center for Information-

Analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine, 34a

Palladin Ave., 03142 Kyiv, Ukraine

3 Department of Information Systems in Economics, Kyiv National Economic University Named after Vadym

Hetman, 54/1 Peremohy Ave., 03057 Kyiv, Ukraine

4 Department of Intellectual Cybernetic Systems, State Non-Profit Enterprise State University “Kyiv Aviation

Institute”, 1 Liubomyra Huzara Ave., 03058 Kyiv, Ukraine

* * Correspondence: cabemailbox@gmail.com

Abstract: Modern computational models tend to become more and more complex, especially in fields

like computational biology, physical modelling, social simulation and others. With the increasing

complexity of simulations, modern computational architectures demand efficient parallel execution

strategies. This paper proposes a novel approach leveraging the reactive streams paradigm as a

general-purpose synchronization protocol for parallel simulation. We introduce a method to

construct simulation graphs from predefined transition functions, ensuring modularity and

reusability. Additionally, we outline strategies for graph optimization and interactive simulation

through push and pull patterns. The resulting computational graph, implemented using reactive

streams, offers a scalable framework for parallel computation. Through theoretical analysis and

practical implementation, we demonstrate the feasibility of this approach, highlighting its

advantages over traditional parallel simulation methods. Finally, we discuss future challenges,

including automatic graph construction, fault tolerance, and optimization strategies, as key areas for

further research.

Keywords: parallel simulation; reactive streams; logical processors; transition functions; state space;

synchronization protocol

1. Introduction

As simulations become increasingly complex, more and more computational resources are

required to execute them. Computing power continues to grow per Moore’s law, but this growth

shifts to the horizontal plane—i.e., it happens due to an increase in the number of parallel processors

and their cores. Thus, there is a need to develop parallel-simulation algorithms capable of utilizing

the computing resources of multiple CPUs.

Today several approaches exist for parallelizing simulations. In particular, we can consider the

Time Warp algorithm,[1] described in detail in.[2] This algorithm has been studied for many years

and has several implementations in the code.[3–5] However, Time Warp uses its own

synchronization protocol, which is complex and low-level.[6] The RxHLA software framework

(based on the reactive adaptation of IEEE 1516 standard)[7] is similar to Time Warp in terms of

complexity and low-levelness. Another approach, based on the CQRS + ES architecture, is described

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1608.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 28

in. [8] However, the authors of that work concentrate more on the practical aspects of implementation

without much theoretical background. The HPC simulation platform [9] is also a more practical

implementation of parallel simulation; it is based on actors and the AKKA library, constituting a more

conservative approach than reactive streams.

The key concept of this paper is to use a general-purpose synchronization protocol to parallelize

simulations: namely, the reactive-streams protocol [10–12], particularly the version that is

implemented in the AKKA library. [13–16]. Thus, on the one hand, we have a classical mathematical

model. On the other hand, we have a general-purpose synchronization protocol. The goal of this work

is to unite them.

The rest of this manuscript is organized as follows:

• Section 2 explains the basic modeling concepts and entities that we will use in this paper.

• Section 3 extends basic modeling to be represented in the form of a transition graph and shows

how a simulation can be performed on this graph.

• Section 4 shows how the transition graph can be implemented with reactive streams and how

simulation can be executed.

2. Substates

Before we start developing a parallel-simulation algorithm with reactive streams, we define

substates concepts and some objects for later use in this paper. Before reading this section, we suggest

you check Appendix A, which describes notation and Appendix B which give common basic

definition used in this article. Also, in the Section 5 and Appendix F you can find real word

examples which illustrate the described approach.

2.1. Substates 𝕾𝕶
𝒒 as a Decomposition of the State 𝔙

Each state 𝔙 can be represented as a set of substates, each of which contains only a part of the

values of 𝔳𝑖 ∈ 𝔙. There must be a way to determine which of the substates belongs to a certain 𝔙.

One option to achieve this is to use a unique key to mark all substates belonging to a certain 𝔙.

Definition: Let us define a substate 𝔖𝔎
𝑞 where 𝔖 ⊆ 𝔙 is part or all of the set of

values 𝔳𝑖 ∈ 𝔙, 𝔎 is some key unique to the state 𝔙 ∈ 𝕍𝑛, and 𝑞 ∈ ℕ is the index of

the substate with the same key, 𝔎.

One or more 𝔳𝑖 ∈ 𝔙 values can be used as key 𝔎. In this case, it makes no sense to include them

in any of the substates, since they will be presented in the key.

For some state 𝔙, we have the set of substates {𝔖𝔎
𝑞} with the same key 𝔎. We will denote this

set by a bold 𝕾𝔎 . With such representation of the state 𝔙, it is necessary to ensure that all 𝔖𝔎
𝑞

marked by the same 𝔎 are not contradictory. The pair of 𝔖𝔎
𝑞 with the same key 𝔎 can be

contradictory if one or more values 𝔳𝑖 ∈ 𝔖,𝔙 differ under the same index.

Definition: Let us define the set of substates

𝕾𝔎 ≔ {𝔖𝔎
𝑞 , 𝔖

𝔎′

𝑞′ | 𝔎 = 𝔎′ ∧ 𝑞 ≠ 𝑞′′}

where for all 𝔖𝔎
𝑞 ∈ 𝕾𝔎, the consistency criterion

∄ 𝔖𝔎
𝑖 , 𝔖

𝔎
𝑗 ∈ 𝕾𝔎 (∃ 𝔳𝑙 ∈ 𝔖𝔎

𝑖 ≠ 𝔳𝑙 ∈ 𝔖𝔎
𝑗 ∀ 𝑙)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 3 of 28

is true.

In this paper, we will talk about arbitrary sets of substates 𝔖𝔎
𝑞, the only requirement for which

is to meet the consistency criterion.

Definition: Let us define an arbitrary set of substates

𝕾𝐾 ≔ {𝕾𝔎 ∪ 𝕾𝔎′ | 𝔎 ≠ 𝔎′ }

as the union of the sets 𝕾𝔎 with different 𝔎.

Notice that these definitions do not require the presence in the set 𝕾𝔎 (and consequently in 𝕾𝐾)

of a sufficient number of substates 𝔖𝔎
𝑞 to cover all values 𝔳𝑖 ∈ 𝔙.

Let us also note that, by definition, the set 𝕾𝐾 can contain more than one substate 𝔖𝔎
𝑞 with the

same key 𝔎. However, on an arbitrary set 𝕾𝐾 that contains duplicate keys 𝔎, we can construct a set

𝕾𝐾 that does not contain them. For this, we need to combine all substates with the same key into one

substate:

𝕾𝐾
𝑑

∀𝕾𝔎⊆𝕾𝐾𝑑(𝔖
𝔎
1∈𝕾

𝐾
𝑢=⋃𝕾𝔎

𝔎

)

⇒ 𝕾𝐾
𝑢

where 𝕾𝐾
𝑑 is a set with duplicate keys and 𝕾𝐾

𝑢 is a set with unique 𝔎. Thus, we can say that an

arbitrary set of substates 𝕾𝐾 can be considered as a key-value structure or as the surjective function

𝑓: {𝔎} → {𝔖}

As follows from the definition, the set 𝕾𝐾 can only be constructed from a set of states 𝖁 ⊆ 𝕍𝑛

in which a unique key 𝔎 can be associated with each state 𝔙 ∈ 𝖁. Otherwise, this will lead to the

appearance of substates 𝔖𝔎
𝑞 in conflict.

The inverse transformation, i.e., the construction of 𝖁 ⊆ 𝕍𝑛 from an arbitrary 𝕾𝐾

𝕾𝐾

∀𝕾𝔎⊆𝕾𝐾(𝔙∈𝖁=⋃𝕾𝔎

𝔎

)

⇒ 𝖁

is possible only if 𝕾𝐾 contains enough substates 𝔖𝔎
𝑗 to construct each state 𝔙 ∈ 𝖁 completely.

The set of substates 𝕾𝐾 can be equivalent to the state space 𝕍𝑛 if this state-space contains

enough substates to construct each state 𝔙 ∈ 𝕍𝑛. We will denote such a set by 𝕊𝐾 .

2.2. Representation of the Dependence of Y on X as a Set of Substates: 𝑌 = 𝔖𝑋|𝔊

The dependence of the variables 𝑌 upon 𝑋 can be represented as a set of states 𝕾𝐾 . This

representation is an alternative to a set of functions 𝐹(𝑋|𝔊). In this case, it is convenient to choose the

values 𝔛 ∈ 𝕏𝑛 as the key 𝔎 and the subset of the values 𝔜 ∈ 𝕐𝑛 as the values of 𝔖 (including 𝔖 =

∅).

Definition: Let us define the substate 𝔖𝔛
𝑞, where the key is 𝔎 = 𝔛, 𝔛 ∈ 𝕏𝑛, the value

𝔖 ⊆ 𝔜, 𝔜 ∈ 𝕐𝑛, and the index 𝑞 ∈ ℕ is such that

∀ 𝔖𝔛
𝑞 , 𝔖

𝔛
𝑞
′
(𝔛 = 𝔛′, 𝑞 ≠ 𝑞′)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 4 of 28

also, 𝔛 ⊆ 𝔖𝔛
𝑞 and (𝔖𝔛

𝑞 ¥ 𝔛) ⊆ 𝔜.

Since the values of the parameters 𝔊 ∈ 𝔾𝑛 are constant for any possible values of 𝔛 and 𝔜, they

are also constant for any possible substates 𝔖𝔛
𝑞 composed of the values of 𝔛 and 𝔜. Thus, the

definition of 𝔖𝔛
𝑞does not include values 𝔊. Being joined into a set, the substates 𝔖𝔛

𝑞 will have the

same parameters 𝔊, but may have different values of the key 𝔛.

Definition: Let us define the dependence

𝑌 = 𝕾𝑋|𝔊 ≔ {𝔖𝔛
𝑞}|𝔊

which represents the dependence of the variables 𝑌 upon 𝑋 for given parameters 𝔊

that are the same for all substates included in the set 𝕾𝑋|𝔊. At the same time, substates

should not be contradictory:

∄ 𝔖𝔛
𝑖 , 𝔖

𝔛
𝑗 ∈ 𝕾𝑋|𝔊 (∃ 𝔳𝑙 ∈ 𝔖𝔛

𝑖 ≠ 𝔳𝑙 ∈ 𝔖𝔛
𝑗 ∀ 𝑙) , (𝟏)

The set 𝕾𝑋|𝔊 with all substates having the same key 𝔛 will be denoted 𝕾𝔛|𝔊.

Let us note that we do not impose a completeness restriction upon the set 𝕾𝑋|𝔊—i.e., 𝕾𝑋|𝔊 may

not contain all of the keys 𝔛 ∈ 𝕏𝑛 or may even be empty: 𝕾𝑋|𝔊 = ∅. 𝕾𝑋|𝔊 may also not contain all

𝔜 ∈ 𝕐𝑛 and/or it may not contain enough 𝔖𝔛
𝑞 to build one or more complete 𝔜.

The representation 𝑌 = 𝕾𝑋|𝔊 is equivalent to the representation 𝑌 = 𝐹(𝑋|𝔊) if and only if, for

each 𝔛 ∈ 𝕏𝑛 at a given 𝔊 ∈ 𝔾𝑛, the representations are equal:

𝑌 = 𝕾𝑋|𝔊 ⇔ 𝑌 =

= 𝐹(𝑋|𝔊) ⇒ ∀𝔛 ∈ 𝕏𝑛(𝐹(𝔛|𝔊) = 𝕾𝔛|𝔊)

For each key 𝔛, there exists a set of substates 𝔖𝔛
𝑞 that cover all possible values 𝔜 ∈ 𝕐𝑛. We will

denote this set by 𝕊𝔛|𝔊. This set may not satisfy the consistency criterion (formula 1) and will have

cardinality

|𝕊𝔛|𝔊| =∏ |𝕪𝑖|
𝑛

𝑖=1

If we join the sets 𝕊𝔛|𝔊 for all possible keys 𝔛 ∈ 𝕏𝑛, we obtain the set of all possible substates.

We will denote it by

𝕊𝕏|𝔊 =⋃ 𝕊𝔛|𝔊
𝔛∈𝕏𝑛

 , (𝟐)

The cardinality of this set when 𝔖 = 𝔜 will be

|𝕊𝕏|𝔊| = ∑ |𝕊𝔛|𝔊|

𝔛∈𝕏𝑛

Moreover, |𝕊𝕏|𝔊| ≤ |𝕍𝑛| since, from the set 𝔾𝑛 only, one set of values 𝔊 is used (note, the

cardinalities will be equal in case |𝔾𝑛| = 1).

In practice, we will more often see sparse 𝕾𝑋|𝔊, where it is impossible to completely construct

𝔜 for every 𝔛 ∈ 𝕏𝑛 . The use of sparse 𝕾𝑋|𝔊 will reduce the modeling accuracy. In general, this is not

a problem from an engineering standpoint since increasing or decreasing the cardinality 𝕾𝑋|𝔊 allows

us to choose an acceptable accuracy level for solving a specific simulation problem.

2.3. Reflection 𝒀̌(𝑿̅|𝕲) as a Record of Changes in the Values of Variables

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 5 of 28

We can reflect the behavior of a modeled object by measuring its properties and recording the

corresponding values of the variables 𝑋, 𝑌, and 𝐺. By abstracting from a specific implementation,

we will call such a record a reflection of the modeled object.

Definition: Let us define the reflection 𝑌̌(𝑋̅|𝔊) as an arbitrary representation of the

dependence of the dependent variables 𝑌̌ upon the independent variables 𝑋̅ and the

values of the parameters 𝔊. Moreover, this dependence is constructed by studying and

measuring the modeled object’s properties.

We can graphically represent the building of the reflection 𝑌̌(𝑋̅|𝔊) by adding the points

𝔙 = 𝔛̅ ∪ 𝔜̌ ∪ 𝔊

into the state space 𝕍𝑛 at the coordinates 𝑋̅, 𝑌̌, 𝔊, where 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ , 𝔜̌ ∈ 𝕐𝑛̌, and 𝔊 ∈ 𝔾𝑛. The added

points will form a geometric figure that reflects the behavior of the modeled object.

A reflection can be represented as a set of functions

𝑌̌(𝑋̅|𝔊)𝐹 = 𝐹(𝑋̅|𝔊) = 𝑌̌

or as a set of states

𝑌̌(𝑋̅|𝔊)𝑆 = 𝕾𝑋̅|𝔊 = 𝑌̌

In the first case, a set of functions can be constructed by recording the obtained or measured

values of the variables 𝑋 , 𝑌, and 𝐺 . [17] In the second case, from the values of 𝔜̌ obtained or

measured with respect to 𝔛̅ and 𝔊, the substate 𝔖𝔛̅
𝑞=1 can be directly built and added to the set of

substates 𝕾𝑋̅|𝔊.

In this case, writing down the values of the stopwatch (which reflects the variable 𝑡) and the

level gauge (which reflects 𝑣𝑤𝑎𝑡𝑒𝑟), we obtain the function 𝑣𝑤𝑎𝑡𝑒𝑟(𝑡), which reflects the dependence

of 𝑣𝑤𝑎𝑡𝑒𝑟 on 𝑡. In practice, this function will be defined only on a certain interval or several intervals

of the time 𝑡measuring, during which the measurement was performed.

2.4. Model 𝒀̂(𝑿̅|𝕲) as an Imitation of Changes in the Variables V

In one of several ways, we can define the dependences of the variables 𝑌 on 𝑋 and 𝐺 without

directly measuring the properties of the modeled object [18–20]. We will call the dependence defined

in this way the model of the modeled object.

Definition: The model of the modeled object 𝑌̂(𝑋̅|𝔊) is an arbitrary representation or

implementation of the dependence of the dependent variables 𝑌̂ upon the independent

variables 𝑋̅ and the values of the parameters 𝔊. Moreover, this dependence is

constructed without the direct participation of the modeled object.

We can graphically represent the model 𝑌̂(𝑋̅|𝔊) as a geometrical figure in the state space 𝕍𝑛

consisting of the points

𝔙 = 𝔛̅ ∪ 𝔜̂ ∪ 𝔊

that define the relationship between the variables 𝑌̂ and 𝑋̅ and the parameters 𝔊, where 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ ,

𝔜̂ ∈ 𝕐𝑛̂ and 𝔊 ∈ 𝔾𝑛.

The model can be implemented as a set of possibly partial functions

𝑌̂(𝑋̅|𝔊)𝐹 = 𝐹(𝑋̅|𝔊) = 𝑌̂ , (𝟑)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 6 of 28

or as a set of states

𝑌̂(𝑋̅|𝔊)𝑆 = 𝕾𝑋̅|𝔊 = 𝑌̂ , (𝟒)

In the first case, the set of functions can be determined analytically or in another way. In the

second case, many substates must be pre-built in one way or another.

We can define the model 𝑌̂(𝑋̅|𝔊) such that it completely coincides with certain reflection

𝑌̌(𝑋̅|𝔊); however, it is much more reasonable and useful to construct 𝑌̂(𝑋̅|𝔊) to predict changes in

the modeled object.

From a practical point of view, we are interested in how accurately the constructed model

𝑌̂(𝑋̅|𝔊) corresponds to the modeled object. One way to determine compliance is to compare the

model and reflection 𝑌̌(𝑋̅|𝔊) (i.e., to calculate the magnitude of their inconsistency in one way or

another). Let us denote the inconsistency value by 𝜀.

For example, for the case in which all variables 𝑉 have domain ℝ, we can define ε ∈ ℝ as the

integral sum of the difference of the values 𝑌̌ and 𝑌̂ for each 𝔛̅ ∈ 𝕏𝑛̅̅ ̅̅ :

ε = ∑ ∑(𝑌̌(𝔛̅|𝔊)𝑖 − 𝑌̂(𝔛̅|𝔊)𝑖)

|𝑌|

𝑖=1𝔛̅∈𝕏𝑛̅̅ ̅̅

where 𝔊 ∈ 𝔾𝑛.

2.5. Simulation of the Model 𝒀̂(𝑿̅|𝕲) as a Calculation of a Subset of 𝖄̂ ⊆ 𝕐𝒏̂ from the Subset 𝔛̅ ⊆ 𝕏𝑛̅̅ ̅̅ and

the Parameters 𝔊

The simulation task can be reduced to obtaining or calculating the subset of the unknown values

of the dependent variables 𝑌̂ from the subset of the known values of the independent variables 𝑋̅

and the values of the parameters 𝔊 using a certain model 𝑌̂(𝑋̅|𝔊).

Definition: Let us define the simulation as the operator

𝖃̅
𝑌̂(𝑋̅|𝔊)
⇒ 𝖄̂ , (5)

where 𝖃̅ ⊆ 𝕏𝑛̅̅ ̅̅ is a possibly ordered set of unique known values of independent

variables, 𝖄̂ ⊆ 𝕐𝑛̂ is the desired set of possibly not unique values of the dependent

variables, and 𝑌̂(𝑋̅|𝔊) is a certain model used to obtain the desired 𝔜̂ ∈ 𝕐𝑛̂ for a

given 𝔛̅ ∈ 𝕏𝑛̂.

For the case where the model is implemented as a set of functions (formula 3), the simulation

𝖃̅
𝑌̂(𝑋̅|𝔊)

𝐹

⇒ 𝖄̂

is simply a calculation of the result 𝔜̂ ∈ 𝖄̂ for each argument 𝔛̅ ∈ 𝖃̅:

𝖃̅
∀𝔛̅∈𝖃̅(𝔜̂∈𝖄̂= 𝐹(𝑋̅|𝔊)(𝔛̅))

⇒ 𝖄̂

where

𝔜̂ = 𝐹(𝑋̅|𝔊)(𝔛̅)

which is the operation for calculating 𝔜̂ ∈ 𝕐𝑛̂ for a given 𝔛̅ ∈ 𝕏𝑛̂. For a model implemented as a set

of substates (formula 4), the simulation is a matter of finding all substates for each key 𝔛̅ ∈ 𝖃̅ and

then building the values of 𝔜̂ ∈ 𝖄̂ from the found substates

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 7 of 28

𝖃̅
∀𝔛̅∈𝑿̅(𝔜̂∈𝒀̂=⋃𝕾𝑋̅|𝔊(𝔛̅))

⇒ 𝖄̂ , (𝟔)

where

𝕾𝑋̅|𝔊(𝔛̅) = 𝕾𝔛̅|𝔊

is the operation for selecting a subset 𝕾𝔛̅|𝔊 ⊆ 𝕾𝑋̅|𝔊 of substates 𝔖𝔛|𝔊
𝑗 with the same key 𝔛.

A simulation can be interactive—i.e., it can react with external events and produce the results to

the outside right during the calculation. In the simplest case, an interactive simulation can be

represented as a series of simulations

{𝖃̅𝑖

𝑌̂(𝑋̅|𝔊)𝑖
⇒ 𝖄̂𝑖} , (𝟕)

of the set of models

{𝑌̂(𝑋̅|𝔊)𝑖}

for the corresponding sets of subsets of values of independent variables {𝖃̅𝑖} sequentially received

during the interaction and the sets of dependent {𝖄̂𝑖} sequentially returned as simulation results.

3. Graph Modeling

We show how the model 𝑌̂(𝑋̅|𝔊) can be represented as a transition graph and how a simulation

can be performed for this representation. We define and prove the rules for constructing a consistent

transition graph. Before reading this section, we recommend to check Appendix C, which describes

transition function concepts. In Section 5 and Appendix G, we present a simple example of the

construction and simulation of a transition graph.

3.1. The Transition Graph 𝜞|𝕲 and the Simulation Graph 𝛾|𝔊

We can join function Θ|𝔓𝑗 ∈ 𝚯|𝔊 and a set of functions Θ|𝔒𝑖,𝑘=1, … , Θ|𝔒𝑖,𝑘=𝑛 ∈ 𝚯|𝔊 represented as

graphs by combining the result nodes
Θ|𝔒𝑖,𝑘=1
→ S̀: 𝕊̀𝑖,𝑘=1, … ,

Θ|𝔒𝑖,𝑘=𝑛
→ S̀: 𝕊̀𝑖,𝑘=𝑛

and the argument nodes

S: 𝕊𝑘=1,𝑗 , … , 𝑆: 𝕊𝑘=𝑛,𝑗
Θ|𝔒𝑗
→

with intermediate-variable nodes

(
Θ|𝔒𝑖,𝑘=1
→ S𝑘=1: 𝕊̀𝑖,𝑘=1, … ,

Θ|𝔒𝑖,𝑘=𝑛
→ S𝑘=𝑛: 𝕊̀𝑖,𝑘=𝑛)

Θ|𝔒𝑗
→

(see Figure 1).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 8 of 28

Figure 1. Joining of function 𝛩|𝔓
𝑗 ∈ 𝜣|𝔊.

We continue in the same way to sequentially join the functions included in the same set 𝚯|𝔊

(possibly using the same function more than once); we obtain some DAG (see Figure 2). We call such

DAG a transition graph. Also, optionally we can combine two or more root variables

𝑆𝑘,𝑖=1, … , 𝑆𝑘,𝑖=𝑛 that do not have incoming edges, thereby reducing the total number of nodes.

Figure 2. Example of the transition DAG built from functions 𝛩|𝔓
𝑗 ∈ 𝜣|𝔊.

Definition: We define the transition graph 𝛤 |𝔊 as a DAG constructed on the set of

transition functions 𝜣|𝔊 by sequentially joining arbitrary subsets of functions

𝛩|𝔒
𝑖 , 𝛩

|𝔒
𝑗,𝑘=1, … , 𝛩|𝔒

𝑗,𝑘=𝑛 ∈ 𝜣|𝔊

and by combining the result node

𝑆̀𝑖 : 𝕊̀𝑖
𝛩|𝔒𝑖
←

and the argument nodes

𝑆𝑘,𝑗,𝑘=1: 𝕊𝑘,𝑗,𝑘=1

𝛩|𝔒𝑗,𝑘=1
→ ,…

… , 𝑆𝑘,𝑗,𝑘=𝑛: 𝕊𝑘,𝑗,𝑘=𝑛
𝛩|𝔒𝑗,𝑘=𝑛
→

such that

𝕊̀𝑖 ⊆ 𝕊𝑘,𝑗,𝑘=1, … , 𝕊𝑘,𝑗,𝑘=𝑛

𝕊̀𝑖 ∩ 𝕊𝑘,𝑗,𝑘=1, … , 𝕊𝑘,𝑗,𝑘=𝑛 ≠ ∅

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 9 of 28

into intermediate variable nodes

𝛩|𝔒𝑖
→ 𝑆: 𝕊̀𝑖

𝛩|𝔒𝑗,𝑘=1,…,𝛩
|𝔒

𝑗,𝑘=𝑛
→

Additionally, the root nodes

𝑆𝑘,𝑖=1 ∪ …∪ 𝑆𝑘,𝑖=𝑛

and their domains

𝕊𝑘,𝑖=1 ∩ …∩ 𝕊𝑘,𝑖=1

may also be combined.

We note that this definition imposes no restrictions on the graph structure except for its acyclicity

(the result of the next joined Θ|𝔒 cannot be connected with the argument of any already joined Θ|𝔒)

and continuity (all nodes of the graph 𝛤|𝔊 are connected by at least one edge).

When we join the transition functions Θ|𝔒, we also join the transitions 𝜃|𝔒 from the equivalent

set 𝜽|𝔒 ⇔ Θ|𝔒, forming a set of more complex DAGs with the same structure as the graph 𝛤 |𝔊, but

which consist of the substates 𝔖𝔛
𝑞 and transitions 𝜃|𝔒 (see Figure 3). We call such DAGs simulation

graphs.

Figure 3. Example of the simulation graph that can be obtained from the transition graph in Figure 2.

Definition: A simulation graph 𝛾|𝔊 is defined as the DAG obtained by constructing a

transition graph 𝛤 |𝔊; it has the same structure as 𝛤 |𝔊. The graph 𝛾|𝔊 consists of

constructions of the form

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 10 of 28

𝜃|𝔒𝑖
→ 𝔖𝔛

𝑞,𝑖

𝜃|𝔒𝑗,𝑘=1,…,𝜃
|𝔒
𝑗,𝑘=𝑛

→

which result from joining the transitions

𝜃|𝔒𝑖 ∈ 𝜽|𝔒𝑖 ⇔ 𝛩|𝔒
𝑖

and

𝜃|𝔒𝑗,𝑘=1 ∈ 𝜽|𝔒𝑗,𝑘=1 ⇔

⇔ 𝛩|𝔒
𝑗,𝑘=1, … , 𝜃|𝔒𝑗,𝑘=𝑛 ∈ 𝜽|𝔒𝑗,𝑘=𝑛 ⇔

⇔ 𝛩|𝔒
𝑗,𝑘=𝑛

belonging to the set of joined functions

𝛩|𝔒
𝑖 , 𝛩

|𝔒
𝑗,𝑘=1, … , 𝛩|𝔒

𝑗,𝑘=𝑛 ∈ 𝜣|𝔊

such that

𝔖̀𝔛
𝑞,𝑖

𝜃|𝔒𝑖
← = 𝔖𝔛

𝑞,𝑗,𝑘=1

𝜃|𝔒𝑗,𝑘=1
→ =,…

… ,= 𝔖𝔛
𝑞,𝑗,𝑘=𝑛

𝜃|𝔒𝑗,𝑘=𝑛
→

We note that all γ|𝔊 will have a structure exactly matching 𝛤|𝔊. According to the definition of

γ|𝔊, during the construction of 𝛤|𝔊, incomplete graphs of γ|𝔊 with structures not coinciding with that

of 𝛤 |𝔊 will be discarded. Thus, the substates 𝔖𝔛
𝑞 included in the discarded graphs γ|𝔊 will also be

removed from the domains 𝕊 of the variables 𝑆 included in the constructed 𝛤 |𝔊.

Let us denote some arbitrary set of graphs {γ|𝔊} by 𝛄|𝔊 . According to the definitions of the

graphs 𝛤 |𝔊 and γ|𝔊, each of the substates 𝔖𝔛
𝑞 from the domains 𝕊 of the variable nodes S will

belong to one of the simulation graphs γ|𝔊 . All 𝔖𝔛
𝑞 terms that do not belong to any γ|𝔊 will be

discarded during the construction of 𝛤 |𝔊, along with the incomplete γ|𝔊.

Thus, we can represent the graph 𝛤|𝔊 as an equivalent set of graphs γ|𝔊. We will denote such a

set as 𝛄|𝔊 ⇔ 𝛤 |𝔊; this set will include all 𝔖𝔛
𝑞 from all domains 𝕊:

⋃𝕊(𝛤 |𝔊) = ⋃ 𝔖𝔛(γ|𝔊)

 γ|𝔊∈ 𝛄|𝔊⇔𝛤|𝔊

where 𝕊(𝛤 |𝔊) is the set of domains 𝕊 of the variable nodes S from the graph 𝛤|𝔊 and 𝔖𝔛(γ|𝔊) is

the set of all 𝔖𝔛
𝑞 belonging to γ|𝔊, which is consistent:

∃ 𝕾𝑋|𝔊 (𝔖𝔛(γ|𝔊) = 𝕾𝑋|𝔊)

Moreover, all simulation graphs γ|𝔊 will share the same set of parameters 𝔊 split into parts 𝔒.

Let us index each node from the set 𝑆(𝛤 |𝔊) with the depth index

𝑑 = 𝑚𝑎𝑥(𝑙𝑒𝑛({𝐒𝑟𝑜𝑜𝑡 … 𝑆𝑑})),

where 𝑑 ∈ ℕ, {𝐒𝑟𝑜𝑜𝑡 … 𝑆𝑑} is the set of all possible paths from any root node 𝑆𝑟𝑜𝑜𝑡 ∈ 𝐒𝑟𝑜𝑜𝑡 (i.e., the

node that has no incoming edges) to the indexed node 𝑆𝑑 and 𝑙𝑒𝑛() is the length of the path (the

number of edges in the path). Let us also index all transition functions Θ|𝔒 with the same index 𝑑

same as the index of the result node

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 11 of 28

…
Θ|𝔒𝑑
→ 𝑆𝑑

Thus, each root node of 𝑆𝑟𝑜𝑜𝑡 will have 𝑑 = 0 and each leaf node 𝑆𝑙𝑒𝑎𝑓 (i.e., such that it has no

outgoing edges) will have 𝑑 = 𝑛, where 𝑛 is the minimum number of edges to the nearest root node

𝑆𝑑=0.

3.2. Construction of a Consistent Transition Graph 𝛤 |𝔊

From a practical viewpoint, we want to be able to construct transitions 𝛤 |𝔊 from a set of

predefined transition functions 𝚯|𝔊—in other words, to build models from a set of ready-made

functional blocks, similar to the Simulink software. It is necessary to guarantee the consistency of 𝛤|𝔊

at the local level, i.e., at the level of individual functions Θ|𝔓, to implement this approach successfully.

We can represent some simulation graph γ|𝔊 as the set of directional paths (dipaths) covering

all substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) and transitions 𝜃|𝔒 ∈ 𝜃(γ|𝔊).

Definition: Let us define a dipath

𝔭|𝔊 ≔ 𝔖𝔛
𝑞,𝑙=0

𝜃|𝔒𝑙=1
→ …

𝜃|𝔒𝑙=𝑛
→ 𝔖𝔛

𝑞, 𝑙=𝑛

in the simulation graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤|𝔊, where 𝔖𝔛
𝑞,𝑙=0 ∈ 𝕊𝑙=0,

𝔖𝔛
𝑞,𝑙=𝑛 ∈ 𝕊𝑙=𝑛, 𝑙 ∈ ℕ is the index of the node which is in the dipath,

such that 𝑙 = 0 corresponds to some root node 𝔖𝔛
𝑞,𝑟𝑜𝑜𝑡 and 𝑙 = 𝑛

corresponds to some leaf node 𝔖𝔛
𝑞,𝑙𝑒𝑎𝑓 in the graph 𝛾|𝔊,

𝔖𝔛
𝑞,𝑙=0, … , 𝔖𝔛

𝑞,𝑙=𝑛 ∈ 𝔖𝔛(𝛾|𝔊), 𝜃|𝔒𝑙=1, … , 𝜃|𝔒𝑙=𝑛 ∈ 𝜃(𝛾|𝔊),

𝕊𝑙=0, … , 𝕊𝑙=𝑛 ∈ 𝕊(𝛤|𝔊), with 𝔖𝔛(𝔭|𝔊) ⊆ 𝔖𝔛(𝛾|𝔊).

We denote some arbitrary set of paths by 𝖕|𝔊, which is not necessarily related to the same graph

γ|𝔊.

The set of paths 𝖕|𝔊 can be equivalent to the graph γ|𝔊 if the paths in this set contain all

substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) and transitions 𝜃|𝔒 ∈ 𝜃(γ|𝔊):

𝖕|𝔊 ⇔ γ|𝔊 ⇒ ⋃ 𝔖𝔛(𝔭|𝔊)

𝔭|𝔊∋𝖕|𝔊

=

= 𝔖𝔛 (γ|𝔊𝑗) ⋀ ⋃ 𝜃(𝔭 (γ|𝔊𝑗))

𝔭|𝔊∋𝖕|𝔊

= 𝜃 (γ|𝔊𝑗)

In order to guarantee the consistency condition

∀ γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤 |𝔊 (𝔖𝔛(γ|𝔊) ⊆ 𝕾𝑋|𝔊)

for the graph 𝛤 |𝔊 (i.e., to guarantee that each of the simulation graphs γ|𝔊 described by 𝛤 |𝔊 will not

contain any inconsistent substates), the graph 𝛤|𝔊 must meet the following two restrictions:

• For each graph 𝛾|𝔊
𝑗
∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊, each substate 𝔖𝔛

𝑞,𝑗 ∈ 𝔖𝔛 (𝛾|𝔊
𝑗
) , 𝔖𝔛 (𝔭|𝔊𝑗) (i.e., located on one

of all possible paths 𝔭|𝔊𝑗) must have a unique key 𝔛 ⊆ 𝔖𝔛
𝑞,𝑗 regarding the 𝔭|𝔊𝑗 .

• For each graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊, the values 𝔶 ∈ 𝕪 of some variable 𝑦: 𝕪 ∈ 𝑌 should only belong to

the set of substates 𝔖𝔛
𝑞,𝑗 ∈ 𝔖𝔛 (𝛾|𝔊

𝑗
) such that there exists in 𝛾|𝔊 at least one path 𝔭|𝔊 ∈ 𝖕|𝔊 ⇔

𝛾|𝔊, including all of these substates.

At the local level (i.e., without studying the entire graph 𝛤|𝔊), the above restrictions can be met

by applying the following construction principles (Appendix D):

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 12 of 28

I. The set of keys 𝕏𝑛 must be linearly ordered;

II. Each transition function

(𝑆: 𝕊𝑘=1, … , 𝑆: 𝕊𝑘=𝑛)
𝛩|𝔒

→ 𝑆̀: 𝕊̀

(where 𝛩|𝔒 ∈ 𝛩(𝛤 |𝔊)) for each transition

(𝔖𝔛
𝑞,𝑗,𝑘=1, … , 𝔖𝔛

𝑞,𝑗,𝑘=𝑛)
𝜃|𝔒𝑗
→ 𝔖̀𝔛

𝑞,𝑗

(where 𝜃|𝔒𝑗 ∈ 𝜃 (𝔭|𝔊𝑗) , 𝜽
|𝔒 ⇔ 𝛩|𝔒) in some graph 𝛾|𝔊

𝑗
∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊 must generate the resulting

substate 𝔖̀𝔛
𝑞,𝑗 ∈ 𝕊̀, 𝔖𝔛 (𝛾|𝔊

𝑗
) such that its key 𝔛𝑞,𝑗 ⊆ 𝔖̀𝔛

𝑞,𝑗 will always satisfy the conditions

𝔛𝑞,𝑗 > 𝑚𝑎𝑥(𝔛𝑞,𝑗,𝑘=1, … , 𝔛𝑞,𝑗,𝑘=𝑛)

or

𝔛𝑞,𝑗 < 𝑚𝑖𝑛(𝔛𝑞,𝑗,𝑘=1, … , 𝔛𝑞,𝑗,𝑘=𝑛)

where

𝔛𝑞,𝑗,𝑘 ⊆ 𝔖𝔛
𝑞,𝑗,𝑘 ∈ 𝕊𝑘, 𝔖

𝔛 (𝛾|𝔊
𝑗
)

III. For each variable 𝑦: 𝕪 ∈ 𝑌, its values 𝔶 ∈ 𝕪 must belong to no more than one root node 𝑆: 𝕊𝑙=0:

∀ 𝑦: 𝕪 ∈ 𝑌 (|{𝑆: 𝕊𝑙=0 ∈ 𝑆(𝛤|𝔊) | ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊𝑙=0)}| ≤ 1)

where

𝔶(𝕊) ≔⋃𝔖(𝕊)

𝔖(𝕊) ≔ {𝔖𝑞 | 𝔖𝑞 ⊂ 𝔖𝔛
𝑞 ∈ 𝕊}

(i.e., the set of all 𝔶 values in all substates 𝔖𝔛
𝑞 form the domain of the variable 𝕊).

IV. If, for some node 𝑆: 𝕊𝑖 ∈ 𝑆(𝛤 |𝔊) and some variable 𝑦: 𝕪 ∈ 𝑌 the condition ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊𝑖) is true,

then, either the node 𝑆𝑖 must be a root, or there must be a transition function

(… , 𝑆: 𝕊𝑖,𝑘=0, … , 𝑆: 𝕊𝑖,𝑘=𝑛, …)
𝛩|𝔒𝑖
→ 𝑆̀𝑖

with one or more arguments 𝑆: 𝕊𝑖,𝑘 for which the condition ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊𝑖) is true and in the graph

𝛤 |𝔊 there exists a chain

𝑆𝑖,𝑘=0

𝛩|𝔒𝑖,𝑘=1
→ ,… ,

𝛩|𝔒𝑖,𝑘=𝑛
→ 𝑆𝑖,𝑘=𝑛

that includes all 𝑆𝑖,𝑘. Moreover, for the last argument 𝑆𝑖,𝑘=𝑛 in the chain, there should not be another

function

(… , 𝑆𝑖,𝑘=𝑛, …)
𝛩|𝔒𝑖

′

→ 𝑆̀𝑖
′

for which the condition ∃ 𝔶 ∈ 𝕪, 𝔶 (𝑆̀𝑖
′
) is true.

In practice, principle (I) can be easily implemented since linearly ordered sets are common. For

example, time, speed, etc., can be represented using variables with ℝ. Next, if the domains of all

independent variables are in linear order, then the set of keys 𝕏𝑛 will also be in linear order.

Principle (II) says that the key-value constantly increases or decreases as the simulation graph

γ|𝔊 is calculated. This approach can be applied, for example, to physical models, where independent

variables are usually rational numbers that increase or decrease over the simulation.

Principle (III) holds if the graph 𝛤 |𝔊 has a single root node 𝑆: 𝕊𝑙=0 ∈ 𝑆(𝛤 |𝔊) such that in each

graph γ|𝔊
𝑗
 there will be only one substate 𝔖𝔛

𝑞,𝑗,𝑙=0 ∈ 𝕊𝑙=0, thereby excluding the possibility that the

values 𝔶 ∈ 𝕪 of the same variable 𝑦: 𝕪 ∈ 𝑌 are in different substates 𝔖𝔛
𝑞,𝑗,𝑙=0.

Another approach to implementing (III) is for each root node S: 𝕊𝑙=0 to include 𝔶 ∈ 𝕪 values

only from its own unique set of variables 𝒚1, … , 𝒚𝑛 ⊂ 𝑌, such that

∀ 𝒚𝑖 , 𝒚𝑗(𝑖 ≠ 𝑗, 𝒚𝑖 ⋂ 𝒚𝑗 = ∅)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 13 of 28

This approach, for example, is convenient in the graphs 𝛤 |𝔊 used for interactive simulation,

where each next node 𝑆𝑙=0 reflects the next input of data from outside the simulation.

In practice, a simple way to implement principle (IV) is to check whether adding the next

function Θ|𝔒 to form 𝑆̀ does not include variables that are already in the results of the functions that

have joint arguments 𝑆 with Θ|𝔒 . For example, if there are nodes 𝑆𝑘=1 and 𝑆𝑘=2 for which

𝑦(𝑆𝑘=1) = [𝑎, 𝑏] and 𝑦(𝑆𝑘=2) = [𝑥, 𝑦], where

𝑦(𝑆: 𝕊) ≔ {𝑦: 𝕪 ∈ 𝑌 | ∃ 𝔶 ∈ 𝕪, 𝔶(𝕊)}

and these nodes are the arguments of some function

(𝑆𝑘=1, 𝑆𝑘=2)
Θ|𝔒𝑗=1
→ 𝑆̀𝑗=1

for which the result is 𝑦(𝑆̀𝑗=1) = [𝑎, 𝑥], then we can add only a function

(𝑆𝑘=1, 𝑆𝑘=2)
Θ|𝔒𝑗=1
→ 𝑆̀𝑗=1

for which 𝑦(𝑆̀𝑗=2) = [𝑏, 𝑦] and either 𝑦(𝑆̀𝑗=2) = [𝑦] or 𝑦(𝑆̀𝑗=2) = [𝑏], but not 𝑦(𝑆̀𝑗=2) = [𝑎, 𝑏, 𝑦].

3.3. Computability of the Simulation Graph 𝜸|𝕲 and the Initial Set of Substates 𝔖′

In practice, we will need to find some specific simulation graph γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤 |𝔊 from some

known set of consistent substates 𝕾𝑋|𝔊 ⊆ 𝔖𝔛(γ|𝔊) associated with the nodes 𝑆 of the graph 𝛤 |𝔊. We

will call 𝕾𝑋|𝔊 the initial set of substates.

Definition: Let us define the initial set of substates

𝕾′ ≔ {𝑆 = 𝔖𝔛
𝑞}

associated with the specific nodes 𝑆 of the graph 𝛤 |𝔊 such that

∃! 𝛾|𝔊 (𝕾′ ⊆ 𝔖𝔛(𝛾|𝔊)) , (𝟖)

where 𝑆: 𝕊 ∈ 𝑆(𝛤 |𝔊), 𝔖𝔛
𝑞 ∈ 𝕊,𝔖𝔛(𝛾|𝔊), 𝛾 |𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊.

The search for a specific graph γ|𝔊 with some set 𝕾′ can be imperatively represented as a

calculation of all functions Θ|𝔒 ∈ Θ(𝛤 |𝔊), using 𝕾′ as the initial arguments for these functions.

Note that the definition requires that 𝕾′ be a subset of the one and only one set 𝔖𝔛(γ|𝔊) .

However, in the general case, some 𝕾𝑋|𝔊 can be a subset of more than one 𝔖𝔛(γ|𝔊). In this case, in

the imperative representation of the search, a single graph γ|𝔊 cannot be calculated from such 𝕾𝑋|𝔊,

since for some or all functions Θ|𝔒 ∈ Θ(𝛤 |𝔊), not all arguments be defined.

Representing the search for a specific γ|𝔊 in the form of a calculation of the functions Θ|𝔒 ∈

Θ(𝛤 |𝔊), we notice that all Θ|𝔒 will be calculated only if the values of all root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊)

are known or can be obtained in some way. Thus, 𝕾′ is a subset of the unique set 𝔖𝔛(γ|𝔊) (formula

8) if and only if, for each initial node 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊), there exists a path

𝑆𝑟𝑜𝑜𝑡
Θ|𝔒1
→ …

Θ|𝔒𝑛
→ 𝑆𝑑𝑒𝑓

where 𝑆𝑑𝑒𝑓 ∈ 𝑆(𝛤|𝔊), 𝑆(𝕾′) is a node whose value is defined in 𝕾′. And all function Θ|𝔒𝑖 on this

reversible (Appendix E).

Another important property of this approach is the glitching freedom described in [21,22]. Since

only one graph γ|𝔊 is to be found, there never exist inconsistent substates 𝔖𝔛
𝑞.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 14 of 28

3.4. Representation of the Dependence of Y on X in the Form of a Simulation Graph 𝒀 = ⟨𝜞|𝕲, 𝕾′⟩
𝑿

 and a

Graph Model 𝑌̂(𝑋̅|𝔊)𝛤

The dependence of the dependent variables 𝑌 upon the independent variables 𝑋 can be

represented as a tuple of the transition graph 𝛤 |𝔊, and the set of initial substates 𝕾′ with given values

of the parameters 𝔊.

Definition: Let us define a pair

𝑌 = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋
≔

≔⋃ 𝔖𝔛 (𝛾(𝛤 |𝔊|𝕾′)) (𝑋)
𝔛∈𝕏𝑛

representing the dependence of the variables 𝑌 on the variables 𝑋, as parametrized by

the values of 𝔊, where

𝛾|𝔊 = 𝛾(𝛤 |𝔊|𝕾′)

is a simulation graph 𝛾|𝔊 ∈ 𝜸|𝔊 ⇔ 𝛤 |𝔊 found for a given 𝛤|𝔊, 𝕾′ and 𝔊, and

𝔜 =⋃ 𝕾𝑋|𝔊

𝔛∈𝑋
(𝔛)

is the merging operation of the substates 𝔖𝔛
𝑞 ∈ 𝕾𝑋|𝔊 with the same key 𝔛 ∈ 𝕏𝑛 into

the set of values 𝔜 ∈ 𝕐𝑛.

The representation 𝑌 = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋

 can be used to implement the model 𝑌̂(𝑋̅|𝔊); we call this

implementation a graph model and denote it as

𝑌̂(𝑋̅|𝔊)Γ = ⟨𝛤 |𝔊, 𝕾′⟩
𝑋̅
= 𝑌̂ , (𝟗)

This implementation is similar to a representation in the form of a set of substates (formula 4),

except that the set 𝕾𝑋̅|𝔊 must first be found as

𝕾𝑋̅|𝔊 = 𝔖𝔛 (γ(𝛤 |𝔊|𝕾′))

3.5. Simulation of the Graph Model 𝒀̂(𝑿̅|𝕲)𝜞 as a Calculation of a Subset of the Values 𝖄̂ ⊆ 𝕐𝒏̂ on the

Subset 𝖃̅ ⊆ 𝕏𝒏̅̅̅̅ and the Parameters G

For the graph model 𝑌̂(𝑋̅|𝔊)Γ, we can define the simulation as the operator

𝖃̅
𝑌̂(𝑋̅|𝔊)

Γ

⇒ 𝖄̂ , (𝟏𝟎)

where 𝖃̅ ⊆ 𝕏𝑛̅̅ ̅̅ is the subset of known values of the set of independent variables 𝑋̅ ⊂ 𝑉 and 𝖄̂ ⊆ 𝕐𝑛̂

is the subset of unknown values of dependent variables 𝑌̂ ⊂ 𝑉.

The simulation can be implemented as a search for the simulation graph γ|𝔊 ∈ 𝛄|𝔊 ⇔ 𝛤|𝔊 for a

given initial set 𝕾′ and a set 𝔊. Then, from the set 𝕾𝑋̅|𝔊, 𝔜̂ ∈ 𝖄̂ is constructed for each 𝔛̅ ∈ 𝖃̅ as:

𝖃̅
∀𝔛̅∈𝖃̅(𝔜̂∈𝖄̂=⋃𝔖𝔛(γ(𝛤|𝔊|𝕾′))(𝔛̅))

⇒ 𝖄̂

In the simulation problem, we can significantly optimize the search for the graph γ|𝔊. Since the

set 𝖃̅ is usually much smaller than 𝕏𝑛̅̅ ̅̅ , we can search or calculate only a part of the substates from

𝔖𝔛(γ|𝔊), which contain all the required keys 𝔛̅ ∈ 𝖃̅:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 15 of 28

𝕾𝖃̅ = {𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) | 𝔛(𝔖𝔛

𝑞) ∈ 𝖃̅} , (𝟏𝟏)

We can also optimize 𝕾′ by including substates that are as close as possible (from the point of

view of the distance in graph 𝛤 |𝔊) to substates from the desired 𝕾𝖃̅ or even equivalent to these

substates. This will reduce the number of calculations not related to the search for 𝕾𝖃̅ (see Figure 4).

Figure 4. Reduction of the number of calculations by including substates that are as close as possible to those

from the desired 𝕾𝖃̅.

For the graphical model 𝑌̂(𝑋̅|𝔊)Γ , an interactive simulation can also be performed. In the

simplest case, this requires many models {𝑌̂(𝑋̅|𝔊)Γ𝑖} ; however, a more interesting and optimal

approach is to undertake interactive manipulation of the values of the nodes S ∈ 𝑆(𝛤 |𝔊) when

imperative representations (sequential calculation of the functions Θ|𝔓) of the operation γ(𝛤 |𝔊|𝕾′)

are used. This approach was explored briefly in. [23]

Two patterns are possible here:

• Push pattern:
This pattern can help synchronize the simulation with some external processes (for example, to
synchronize with real-time). The essence of the pattern is that some function 𝛩|𝔒 cannot be calculated
until all its arguments 𝑆 are defined; thus, we can locally pause the simulation, leaving some of the
root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤|𝔊) uninitialized. We can then continue it by defining these nodes.

• Pool pattern:
This pattern can be used to implement an asynchronous simulation reaction to some external events—
for example, to respond to user input. As in the previous case, some 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊) remain
uninitialized. However, the simulation does not stop there. Their values are constructed as needed to
calculate the next 𝛩|𝔒. Using this approach, it is figuratively possible to imagine that undefined 𝑆𝑟𝑜𝑜𝑡
is computed by some set of unknown transition functions, possibly also combined into a transition
graph. In other words, there is some “shadow” or “unknown” part of the graph 𝛤 |𝔊 and, as a result
of its calculation, the 𝑆𝑟𝑜𝑜𝑡 is initialized (see Figure 5).

Figure 5. Representing the input/output as a set of unknown transition functions.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 16 of 28

4. Logical Processors

We show how the graph model 𝑌̂(𝑋̅|𝔊)Γ can be implemented using the reactive-streams

paradigm in the form of a computational graph. We also show how the simulation can be evaluated

on this graph and offer ways to optimize it. Additionally, in Appendix H, we implement a simple

computational graph and perform a simulation with it.

4.1. Reactive Streams and Graph Model 𝑌̂(𝑋̅|𝔊)𝛤

The concept of reactive streams was formulated in 2014 in manifest [10–12] and extended by

AKKA library developers with tools for composing reactive streams into computational graphs,

[13,24] which are already widely used in practice. [9,25–27] The graph nodes are logical processors,

and the edges are the channels representing the stream of messages that transmit data; each of the

processors transforms the messages in some way. Generally, reactive streams are an implementation

of the well-known dataflow-programming paradigm.[25]

This chapter will follow the approach described in (i.e., we will compose a computational system

from small blocks that process data streams) [22,28,29]. However, we will use reactive streams to do

all the hard work for us to distribute computation and load balancing.

We will denote messages (values) by 𝑀 , logical processors (reactors) by 𝐿𝑃 , channels

connecting the processors by 𝐷, and the numeral graph by 𝐶.

We can transform an arbitrary graphical model 𝑌̂(𝑋̅|𝔊)Γ (formula 9) into a computational

graph 𝐶:

• To represent each substate 𝔖𝔛
𝑞 ∈ 𝔖𝔛(𝛤 |𝔊) with the message 𝑀 = [𝔖𝔛

𝑞].

• To replace all 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊) for which 𝑆′𝑘=1, … , 𝑆′𝑘=𝑛 ∈ 𝑆(𝕾′) with equivalent processors 𝐿𝑃𝑒𝑣𝑎𝑙 :

𝑆′
𝑘=1 ⇒ 𝐷𝑘=1, … , 𝑆′

𝑘=𝑛 ⇒

⇒ 𝐷𝑘=𝑛
𝛩|𝔓 ⇒ 𝐿𝑃𝑒𝑣𝑎𝑙
→ 𝑆̀ ⇒ 𝐷

and all 𝛩|𝔓 (for which 𝑆̀ ∈ 𝑆(𝕾′)) with processors 𝐿𝑃𝑒𝑣𝑎𝑙 equivalent to the inverse functions

𝛩−1|𝔓:

𝑆′̀ ⇒ 𝐷
 𝛩|𝔓 ⇒ 𝛩−1|𝔓⇒ 𝐿𝑃𝑒𝑣𝑎𝑙

→ 𝑆𝑘=1 ⇒

⇒ 𝐷𝑘=1, … , 𝑆𝑘=𝑛 ⇒ 𝐷𝑘=𝑛

• To successively replace all functions 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊) and all arguments 𝑆𝑘=1, … , 𝑆𝑘=𝑛 that are

already replaced by the channels 𝐷𝑘=1, … , 𝐷𝑘=𝑛, which are equivalent to 𝐿𝑃𝑒𝑣𝑎𝑙 :

𝐷𝑘=1, … ,𝐷𝑘=𝑛
𝛩|𝔓 ⇒ 𝐿𝑃𝑒𝑣𝑎𝑙
→ 𝑆̀ ⇒ 𝐷

• And to successively replace all 𝛩|𝔓, the result 𝑆̀ of which has already been replaced by channel 𝐷,

by 𝐿𝑃𝑒𝑣𝑎𝑙 that equivalent to the inverse functions 𝛩−1|𝔓:

𝐷
 𝛩|𝔓 ⇒ 𝛩−1|𝔓⇒ 𝐿𝑃𝑒𝑣𝑎𝑙

→ 𝑆𝑘=1 ⇒

⇒ 𝐷𝑘=1, … , 𝑆𝑘=𝑛 ⇒ 𝐷𝑘=𝑛

As a result, we obtain a graph 𝐶 containing the equivalent 𝐿𝑃𝑒𝑣𝑎𝑙 for each Θ|𝔓 ∈ Θ(𝛤 |𝔊) but

possibly differing structures compared to 𝛤|𝔊, since its construction was carried out starting from

S′ ∈ S(𝕾′) rather than from the root nodes 𝑆𝑟𝑜𝑜𝑡 ∈ 𝑆(𝛤 |𝔊) (see Figure 6).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 17 of 28

Figure 6. Example of constructing of the computational graph 𝐶 from the model 𝑌̂(𝑋̅|𝔊)𝛤.

Next, each root channel 𝐷𝑟𝑜𝑜𝑡 ∈ 𝐷(𝐶) must be connected with a logical processor 𝐿𝑃𝑖𝑛𝑖𝑡 , whose

task is to send the corresponding 𝑀′ = [𝔖′𝔛𝑞] (where 𝔖′𝔛𝑞 ∈ 𝔖𝔛(𝕾′)) , which starts the

computational process (see Figure 7).

Moreover, all or part of the channels 𝐷 ∈ 𝐷(𝐶) must be connected with one or more 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,

which will collect part or all of the calculated substates 𝔖𝔛
𝑞 ∈ 𝔖𝔛(γ|𝔊) belonging to the graph γ|𝔊 ∈

𝛄|𝔊 ⇔ 𝛤|𝔊, given by the set of initial states 𝕾′ (see Figure 7).

Figure 7. Addition of 𝐿𝑃𝑖𝑛𝑖𝑡 and 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 into the computational graph 𝐶.

4.2. Graph 𝑪 Optimization

Simply replacing Θ|𝔓 functions with processors 𝐿𝑃𝑒𝑣𝑎𝑙 yields an extremely suboptimal and

potentially infinite processing graph 𝐶 , which is not good from the viewpoint of minimizing

computing resources. To solve this problem, we can optimize graph 𝐶. For example, consider two

optimization methods:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 18 of 28

• Folding of cyclic sequences in the graph 𝛤 |𝔊:

Consider a chain with an arbitrary length of the same functions 𝜃|𝔓, as in Figure 8.a. This can be

transformed into a chain of logical processors 𝐿𝑃𝑒𝑣𝑎𝑙 of equal length, as in Figure 8.b. We can fold

this chain into a single 𝐿𝑃𝑒𝑣𝑎𝑙 by adding a message-return loop as in Figure 8.c. Thus, more than

one message 𝑀 will go through one 𝐿𝑃𝑒𝑣𝑎𝑙 , so that if 𝜃|𝔓 has more than one argument, it can lead

to collisions. To resolve collisions and also to implement breakage of the loop, we need to determine the

loop-iteration number of messages 𝑀. The simple way to do this is to add an iteration counter for each

loop in 𝐶. Another approach is to use history-sensitive values.[21] As a more complex example, we

consider the graph 𝛤 |𝔊 in Figure 9.a, which can be converted and collapsed into a compact graph 𝐶

as in Figure 9.b.

• Folding of graph 𝐶:

Inside each 𝐿𝑃𝑒𝑣𝑎𝑙 , we can implement more than one function 𝛩|𝔓 ∈ 𝛩(𝛤 |𝔊), thus reducing the

number of nodes in the graph 𝐶. This folding can be performed over a wide range, up to the realization

of all 𝛤 |𝔊 in one 𝐿𝑃𝑒𝑣𝑎𝑙 . For example, graph 𝐶 from Figure 9.b can be folded into single 𝐿𝑃𝑒𝑣𝑎𝑙

and will look like Figure 9.c.

Figure 8. Example of the folding of the simple computational graph 𝐶.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 19 of 28

Figure 9. Example of the folding of a more complex computational graph 𝐶.

In general, the optimization problem for graph 𝐶 is rather complex and goes beyond the scope

of this article.

4.3. Simulation of the Graph Model 𝒀̂(𝑿̅|𝕲)𝛤Using the Computational Graph 𝐶

In the simplest case, we can simulate the model 𝑌̂(𝑋̅|𝔊)Γ (formula 10) using the graph 𝐶

constructed on it in two stages:

• Calculate the set of substates

𝕾𝑋̅|𝔊 = 𝔖𝔛 (𝛾(𝛤 |𝔊|𝕾′))

For this, we initialize the calculation by sending 𝑀′ messages using the processors 𝐿𝑃𝑖𝑛𝑖𝑡 . Using the

processors 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , we collect all the calculated messages, 𝑀 = [𝔖𝔛
𝑞].

• Find all substates for each key 𝔛̅ ∈ 𝖃̅ and then collect the values 𝔜̂ ∈ 𝖄̂ from the found substates (formula

6).

In most cases, this approach will be computationally expensive, since in practice, usually

|𝔛(γ|𝔊)| > |𝖃̅|.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 20 of 28

Generally, simulation optimization is the minimization of the number of calculated substates

𝔖𝔛
𝑞 such that 𝔛(𝔖𝔛

𝑞) ∉ 𝖃̅ . Several approaches are possible here—for example, constructing a

minimalistic 𝛤 |𝔊 with a certain well-known collection 𝖃̅. Alternatively, lazy algorithms that cut off

the calculations Θ|𝔓 whose result is not required to cover 𝖃̅ could be used. However, this topic is

beyond the scope of the present article.

5. Practice

In this chapter we show our approach in practice. First, we describe modeled object, then

define it mathematical model and the analytical solution. In the next step, explain the procedure of

construction of graph and parallelization scheme and present the results. This chapter contains

shortened description, please check Appendix F, G and H for the full one.

5.1. Description of the Modeled Object and the Construction of Model 𝒀̂(𝑿̅|𝔊):

As an example, consider the classic model of saline mixing. Here, the simulated object is a system

of two connected tanks of volumes 𝑣1 = 4𝐿 and 𝑣2 = 8𝐿. Over time 𝑡, a saline solution circulates

from the first tank to the second with a speed 𝑞3 = 5𝐿/𝑚 and in the opposite direction with a speed

of 𝑞2 = 2𝐿/𝑚. In addition, the saline solution is poured into the first tank at a speed of 𝑞1 = 3𝐿/𝑚

and drains from the second tank at the same speed 𝑞4 = 3𝐿/𝑚, i.e., the volume of the saline solution

in the tanks does not change. Initially, the first and second tanks are entirely filled with solutions with

initial salt concentrations of 𝜔1 = 0𝑔/𝐿 and 𝜔2 = 20𝑔/𝐿 , respectively. A saline solution with a

concentration of 𝜔3 = 10𝑔/𝐿 is supplied to the first tank constantly. Thus, the set of variables

reflecting the properties of interest will look like:

𝑉 =

[

𝑡
ω1
ω2
ω3
𝑣1
𝑣2
𝑞1
𝑞2
𝑞3
𝑞4]

.

The modeling task is to predict the change in the salt concentrations 𝜔1 = 0𝑔/𝐿 and 𝜔2 =

20𝑔/𝐿 over time 𝑡.

As part of the modeling problem to be solved, we represent the simulated object in the form of

the model 𝑌̂(𝑋̅|𝔊)𝐹 (formula 3), breaking the variables 𝑉 as

𝑋̅ = [𝑡],

𝑌̂ = [
ω1

ω2
],

𝔊 =

[

𝑣1 = 4
𝑣2 = 8
𝑞1 = 3
𝑞2 = 2
𝑞3 = 5
𝑞4 = 3
ω3 = 10]

and specifying their dependence as a set of functions:

𝑌̂ = 𝐹(𝑋̅|𝔊)

=

[

ω̂1(𝑡̅) =

13𝑒
(√105−15)𝑡̅

16 √105

21
−
13𝑒−

(15+√105)𝑡̅

16 √105

21
− 5𝑒

(√105−15)𝑡̅

16 − 5𝑒−
(15+√105)𝑡̅

16 + 10

ω̂2(𝑡̅) =
5𝑒−

(15+√105)𝑡̅

16 √105

21
−
5𝑒

(√105−15)𝑡̅

16 √105

21
+ 5𝑒

(√105−15)𝑡̅

16 + 5𝑒−
(15+√105)𝑡̅

16 + 10]

 , (𝟏𝟐)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 21 of 28

Which are obtained by solving of the Cauchy problem

{

𝑑𝜔̂1

𝑑𝑡̅
=
3 ∗ 10 + 2 ∗ 𝜔̂2 − 5 ∗ 𝜔̂1

4
𝜔̂1(0) = 0

𝑑ω̂2

𝑑𝑡̅
=
5 ∗ ω̂1 − 2 ∗ ω̂2 − 3 ∗ ω̂2

8
ω̂2(0) = 20

.

We can also represent the simulated object in the form of model 𝑌̂(𝑋̅|𝔊)𝑆 (formula 4). In this

case, the values of the variable 𝑡 will be used as keys and those of the variables 𝜔1 and 𝜔2 can be

separated by different substates, such that we obtain two types of substates 𝔖𝔛
𝑞=1 = [𝜔1]

[𝑡]

𝑞=1
 and

𝔖𝔛
𝑞=2 = [𝜔2]

[𝑡]
𝑞=2

. In the code, we can represent the values 𝔛̅, 𝔜̂ and the substate 𝔖𝔛
𝑞 as OOP

classes (source code B.1.L27).

One simple, but impractical, way to construct a set of substates 𝕾𝑋̅|𝔊 is to generate

𝔖𝔛
𝑞=1, 𝔖

𝔛
𝑞=2 ∈ 𝕾𝑋̅|𝔊 using a set of functions (formula 12) with some step of key ∆𝑡 (source code

B.2.L60).

Using the model 𝑌̂(𝑋̅|𝔊), we can perform the simulation (formula 5) for some segment 𝖃̅ =

[𝑡𝑏𝑒𝑔𝑖𝑛 , 𝑡𝑒𝑛𝑑] and obtain the corresponding set of values 𝖄̂ (source code B.1.L71 is an implementation

of 𝑌̂ = 𝐹(𝑋̅|𝔊) and the source code B.2.L70 is an implementation of 𝕾𝑋̅|𝔊 = 𝑌̂). Looking at the output

plots, we can see that they are similar (see Figure 10).

We can compare the results of executing of models 𝑌̂(𝑋̅|𝔊)𝐹 and 𝑌̂(𝑋̅|𝔊)𝑆 just by accumulating

different overall output values:

ε = ∑ ∑(𝑌̂(𝑋̅|𝔊)𝐹𝑖 − 𝑌̂(𝑋̅|𝔊)𝑆𝑖)

|𝑌|

𝑖=1𝔛̅∈𝕏𝑛̅̅ ̅̅

.

Evaluating this algorithm (source B.3.L24), we obtain ε = 1.1546319456101628e−14.

Figure 10. Results of a simulation of the 𝑌̂(𝑋̅|𝔊)𝐹 (first plot) and 𝑌̂(𝑋̅|𝔊)𝑆 (second plot) models. Where X axis

is time and Y axis is salt concentration, green line ω1 is salt concentration in tank 1 and red line ω2 is salt

concentration in tank 2.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 22 of 28

5.2. Building and Simulating a Graphical Model 𝒀̂(𝑿̅|𝕲)𝛤:

The graph 𝛤 |𝔊 for this example will represent an infinite chain of pairs of nodes S connected

by edges Θ|𝔒. For convenience, in addition to the index of depth 𝑑, we to index the nodes S with

indices of width 𝑤 ∈ 𝑁, such that the nodes 𝑆𝑑 , with the same index 𝑑, will have different values of

𝑤. Moreover, we set w = k = q, where k is the index of the argument (edges) Θ|𝔒𝑑 and q is the index

of the substate assigned to 𝑆𝑑,𝑤. Each pair 𝑆𝑑,𝑤=1 and 𝑆𝑑,𝑤=2 corresponds to a certain moment of

discrete-time 𝑡̅. For simplicity, we will use a fixed time-step ∆𝑡 = 𝑑 ∗ 𝛾, where 𝑑 is the depth index

and 𝛾 is the time-step coefficient. Also, we restrict model time to a small interval [𝑡𝑏𝑒𝑔𝑖𝑛 , 𝑡𝑒𝑛𝑑] ⊃ 𝑡̅.

In this case, the graph 𝛤 |𝔊 will contain

n =
 𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔𝑖𝑛

∆𝑡
+ 1

pairs of nodes 𝑆𝑑,𝑤.

The simplest way to implement the transition functions Θ|𝔒𝑑,𝑤=1 and Θ|𝔒
𝑑,𝑤=2 is to use the

functions 𝜔̂1(𝑡̅) and 𝜔̂2(𝑡̅) from the set 𝐹(𝑋̅|𝔊) (formula 13). In this case,

Θ|𝔒𝑑,𝑤=1([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) =

= [𝜔̂1(𝑡̅ + ∆𝑡)][𝑡̅+∆𝑡]
𝑞=1

;

Θ|𝔒𝑑,𝑤=2([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) =

= [𝜔̂2(𝑡̅ + ∆𝑡)][𝑡̅+∆𝑡]
𝑞=2

.

A slightly more complicated implementation is to rewrite the system of differential equations

(formula 14) to be solved by the Euler method

{

 ω̂1,𝑖 = ω̂1,𝑖−1 + ∆𝑡 ∗
𝑞1 ∗ ω3 + 𝑞2 ∗ 𝜔̂2,𝑖−1 − 𝑞3 ∗ 𝜔̂1,𝑖−1

𝑣1

ω̂2,𝑖 = ω̂2,𝑖−1 + ∆𝑡 ∗
𝑞3 ∗ ω̂1,𝑖−1 − 𝑞2 ∗ ω̂2,𝑖−1 − 𝑞4 ∗ ω̂ 2,𝑖−1

𝑣2

as iterated by ∆𝑡:

𝜔̂1,0 = 0; ω̂2,0 = 20; 𝑖 = 1,2,3, …

In this case

Θ|𝔒𝑑,𝑤=1([𝜔̂1]
[𝑡̅]

𝑘=1
, [𝜔̂2]

[𝑡̅]
𝑘=2

) = [𝜔̂1 + ∆𝑡 ∗
𝔒. 𝑞1 ∗ 𝔒.𝜔3 +𝔒. 𝑞2 ∗ 𝜔̂2 −𝔒. 𝑞3 ∗ 𝜔̂1

𝔒. 𝑣1
]

[𝑡̅+∆𝑡]

𝑞=1

;

Θ|𝔒
𝑑,𝑤=2([𝜔̂1]

[𝑡̅]
𝑘=1

, [𝜔̂2]
[𝑡̅]

𝑘=2
) = [𝜔̂2 + ∆𝑡 ∗

𝔒. 𝑞3 ∗ 𝜔̂1 −𝔒. 𝑞2 ∗ 𝜔̂2 −𝔒. 𝑞4 ∗ 𝜔̂ 2

𝔒. 𝑣2
]

[𝑡̅+∆𝑡]

𝑞=2

.

We implement the nodes S and the sets of edges Θ|𝔓 as OOP classes (source code C.1.L89). S

nodes are essentially variables that are not initially defined. The transition graph 𝛤 |𝔊 and the

simulation graph γ|𝔊 can be represented as classes containing collections of nodes S of sets of edges

Θ|𝔓 (source code C.1.L149). Moreover, the graph γ|𝔊 is the same as graph 𝛤|𝔊, but with all variables

S defined.

Due to the simplicity of the transition graph 𝛤 |𝔊, we can implement the function build_Γ(𝑛, ∆𝑡),

which automatically constructs 𝛤 |𝔊 based on the given number of steps and the time-step (source

code C.1.L190).

The search for the simulation graph γ(𝛤 |𝔊|𝕾′) is a calculation of the values of all nodes S from

the initial set of substates

𝕾′ = {S𝑑=0,𝑤=1 = 𝔖𝔛
𝑗=1, S𝑑=0,𝑤=1 = 𝔖𝔛

𝑗=2}.

We implement the search as method Γ.γ(𝕾′), using the indices 𝑑 and 𝑤 as the key in the set

𝕾′ (source code C.1.L156). The method first initializes the nodes S𝑑=0,𝑤=1 and S𝑑=0,𝑤=2 with the

initial substates 𝔖′𝔛𝑗=1 and 𝔖′𝔛𝑗=2 and then calculates the values of the rest nodes S𝑑,𝑤 by calling

each method Θ|𝔒𝑑,𝑤.eval() until all S𝑑,𝑤 are defined. The method Θ|𝔒𝑑,𝑤.eval() checks whether the

arguments

S𝑑−1,𝑤=1, S𝑑−1,𝑤=2
Θ|𝔒𝑑,𝑤
→ …

are defined and, if so, evaluates the result

…
Θ|𝔒𝑑,𝑤
→ S𝑑,𝑤 .

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 23 of 28

The set of substates 𝔖𝔛(γ|𝔊) can be obtained from the simulation graph γ(𝛤 |𝔊|𝕾′) by simply

extracting the values from the nodes S and combining them into the set 𝕾𝑋̅|𝔊. We implement this in

the form of the method γ|𝔊.𝔖() (source code C.1.L179); next, 𝕾𝑋̅|𝔊 can be used to obtain the values

of 𝔜̂ ∈ 𝖄̂ from the values of 𝔛̅ ∈ 𝖃̅.

5.3. Constructing and Calculating Graph 𝑪 Using the Graphical Model 𝑌̂(𝑋̅|𝔊)𝛤

As an example, we construct graph 𝐶 using the model 𝑌̂(𝑋̅|𝔊)Γ for mixing salt solutions. To

implement it, we use the AKKA Streams library. There was a similar approach to implement the

SwiftVis tool.

We can build an unoptimized version of graph 𝐶 by simply replacing the functions Θ|𝔓𝑑,𝑤=1

and Θ|𝔓
𝑑,𝑤=2 with logical processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=1 and 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=2 and adding 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,

𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=1, and 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=2.

We represent the substates in the form of the messages 𝑀𝑑,𝑤 = [𝔖𝔛
𝑞,𝑑,𝑤] produced by the

corresponding 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤 , where 𝑞 = 𝑤 . In particular, the substates from the set 𝕾′ can be

represented as 𝑀𝑑=0,𝑤=1 = [S𝑑=0,𝑤=1 = 𝔖′𝔛𝑞=1] and 𝑀𝑑=0,𝑤=2 = [S𝑑=0,𝑤=2 = 𝔖′𝔛𝑞=2].

This will work as follows (see source code D.1): the initial messages 𝑀𝑑=0,𝑤=1 and 𝑀𝑑=0,𝑤=2 are

sent by logical processors 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=1 and 𝐿𝑃𝑖𝑛𝑖𝑡𝑑=0,𝑤=2 to the processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑑=1,𝑤=1 ,

𝐿𝑃𝑒𝑣𝑎𝑙𝑑=1,𝑤=2. Then, the messages will distribute throughout the graph, where a copy of each substate

is fed into the processor 𝐿𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , which builds the resulting set of substates 𝕾𝑋̅|𝔊.

Since the standard blocks Zip, Flow.map, Broadcast, and Merge from the AKKA Streams library

were used to construct graph 𝐶, the implementation of each 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤 will be a nested graph.

Since the obtained graph 𝐶 consists of recurring pairs 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=1 and 𝐿𝑃𝑒𝑣𝑎𝑙𝑑,𝑤=2, it can be

optimized by implementing two cycles using 2 logical processors 𝐿𝑃𝑒𝑣𝑎𝑙𝑤=1 and 𝐿𝑃𝑒𝑣𝑎𝑙𝑤=2.

Since it is necessary in this case to determine which incoming messages refer to particular

iterations of the cycle, we add the iteration (depth) counter 𝑑 to them, 𝑀𝑑,𝑤 = [𝑑, 𝔖𝔛
𝑞], and modify

the grouping function Zip so that it selects pairs of incoming 𝑀𝑑,𝑤 with the same value 𝑑 (source

code D.2). When we execute this code, we obtain the simulation result (see Figure 11), which was the

same as our findings from the implementation of the 𝑌̂(𝑋̅|𝔊)𝑆 model (see Figure 10).

Figure 11. Simulation of the 𝑌̂(𝑋̅|𝔊)Γmodel using graph 𝐶. Where X axis is time and Y axis is salt concentration,

green line ω1 is salt concentration in tank 1 and red line ω2 is salt concentration in tank 2, gray line ω3 is saline

solution concentration supplied to tank 1 constantly.

6. Discussion

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 24 of 28

One of the primary contributions of this research is the synthesis of classical mathematical

modeling techniques with the practical, high-performance synchronization mechanisms provided by

reactive streams. Similar to earlier approaches such as the Time Warp algorithm[1,2] and actor-based

frameworks used in HPC simulation platforms[9], our method decomposes the complete object state

into substates with unique keys. This modular representation not only supports reuse and flexibility

but also enables the direct mapping of transition functions to logical processors. The resulting

computational graph is reminiscent of systems such as RxHLA[7] and CQRS + ES architectures[8],

which emphasize decoupling and distributed processing.

Representing the model as a transition graph 𝛤 |𝔊 and initial set of sates 𝕾′ offers several

benefits:

• Modularity and Reusability: By encapsulating transition rules as independent functional blocks,

the approach supports reuse and flexibility. This modular structure is similar in spirit to block-

diagram environments like Simulink [30–32] and has parallels in dataflow programming models

discussed by Kuraj and Solar-Lezama [21].

• Scalability: Our implementation leverages the inherent parallelism of modern multi-core and

distributed architectures. This approach aligns with the findings of actor-based models [9,25,26]

and contemporary research on reactive programming in distributed systems [10,24].

• Interactive Simulation: The push and pool patterns introduced in our model are analogous to

techniques used in recent studies on interactive and fault-tolerant reactive systems [23,33]. This

design allows the simulation to respond in real time to external events or user inputs.

In summary, the proposed method of using reactive streams as a synchronization protocol for

parallel simulation provides a compelling framework that unites rigorous mathematical modeling

with practical, scalable implementation techniques. While challenges remain—particularly in

optimization, continuous simulation, and fault tolerance, the initial results and conceptual clarity

offer a solid foundation for further research and development. The integration of our approach with

similar studies in the field [1–10,13,21–28,33,34] highlights its potential and provides clear directions

for future work.

7. Future Work

Many unanswered questions remain, some of which we present for future research:

• Effective optimization of computational graph 𝐶 and simulation on it:

Chapters 4.2 and 4.3 dealt with this topic. However, due to its complexity and vastness, it did not fit

into this article. In general, this is a very important issue from a practical point of view. Solving it will

significantly reduce the number of resources required to perform simulations. Another interesting

question is the automation of the optimization of graph 𝐶. Say that, initially, we have non-optimal

𝐶, for example, obtained by the method described in Chapter 4.1. We want to automatically make C

compact and computationally easy, without loss of accuracy and consistency.

To resolve the optimization task the ML technique can be used. For example, reinforcement rearming

agents can be trained to explore various graph configurations (i.e., different ways to fold or collapse

the computational graph) and learn which configurations yield the best performance in terms of

latency, throughput, or resource consumption [36–40]. Also, techniques like neural architecture

search (NAS) can be adapted to optimize the layout and parameters of the computational graph. This

includes automatically deciding how to fold cyclic sequences, balance load among logical processors,

and minimizing redundant computations [39–41].

• Accurate simulation of continuous-valued models:

Many properties of modeled objects can be represented in continuous quantities, for example, values

from the set ℝ. However, the simulation (the calculation of which is based on message forwarding)

is inherently discrete. An open question remains as to how accurately continuous quantities can be

calculated. The question is how to increase the accuracy of calculating such quantities without

increasing the requirements for computer resources.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 25 of 28

• Fault-tolerance of reactive streams:

We did not touch on fault tolerance of simulation in this work, but in most real/practical applications,

fault tolerance is very important. This question was partially explored in [23] but we also suggest this

for future work.

• Manual and automatic graph construction 𝐶:

From a practical viewpoint, it is interesting to be able to use some IDE to manually construct a

computational graph 𝐶, and to do this such that the corresponding graph 𝛤|𝔊 will be consistent and

optimal. For example, this might be done similarly to the Simulink package, [30,42] SwiftVis tool,

[25,43] or XFRP language [24,44]. It is also interesting to find ways to automate the construction of 𝐶.

For example, the model can initially be defined as a certain set of rules by which graph 𝐶 can be

automatically and even dynamically constructed. Specialized programming languages are also an

interesting area to explore. For example, the EdgeC [33,35] language can be considered a tool to

describe computational graphs.

Also, ML technique can be applied wildly here. For example, graph learning techniques from graph

neural networks (GNNs) can be applied to learn the structure of the optimal computational graph

from historical data. The learned model can then suggest or automatically construct a more efficient

graph based on current simulation requirements. Adaptive scheduling ML algorithms can

dynamically adjust the scheduling of tasks across logical processors, optimizing the execution order

and balancing the load [45,46]. This is particularly useful in interactive or real-time simulations where

conditions may change frequently.

• Testing with complex models and comparing with other parallelizing approaches:

This work provides a small, simple example of parallel simulation to show how the described

approach can be implemented in practice. However, the questions of checking this approach with

large and complex models and comparing its effectiveness with other parallelizing approaches

remain open.

Conclusions

The proposed method effectively integrates the reactive streams paradigm with classical

mathematical modeling techniques to create a scalable framework for parallel simulation. By using a

graph-based representation of object states and transition functions, this approach enhances

modularity and reusability while supporting efficient computation through logical processors. The

implementation using AKKA reactive streams demonstrates its scalability and practical feasibility for

distributed systems. Despite its promise, the work highlights challenges such as graph optimization,

continuous model simulation, fault tolerance, and automation of graph construction, which offer

significant areas for future research and development. The study lays a strong foundation for

advancing parallel simulation techniques, emphasizing both theoretical robustness and practical

scalability.

Supplementary Materials: The following supporting information can be downloaded at:

Preprints.Org.

Author Contributions: O.S.: Conceptualization, methodology, formal analysis, writing, visualization, software.

A.P.: Conceptualization, methodology, formal analysis, writing—original draft preparation, and visualization.

I.P.: Methodology, software, formal analysis, data curation, and writing—original draft preparation. M.Y.:

Investigation, resources and editing, and visualization. H.K.: Supervision, data curation, and writing—review

and editing. V.A.: Supervision, data curation, visualization, and writing—review and editing. All authors have

read and agreed to the published version of the manuscript.

Funding: No funding

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by

the authors upon request.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.20944/preprints202504.1608.v1

 26 of 28

Acknowledgments: The research was conducted as part of the projects ‘Development of Methods and Means of

Increasing the Efficiency and Resilience of Local Decentralized Electric Power Systems in Ukraine’ and

‘Development of Distributed Energy in the Context of the Ukrainian Electricity Market Using Digitalization

Technologies and Systems’, implemented under the state budget program ’Support for Priority Scientific

Research and Scientific-Technical (Experimental) Developments of National Importance’ (CPCEL 6541230) at

the National Academy of Sciences of Ukraine.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Jeerson, D. R.; Sowizral, H. A. Fast concurrent simulation using the time warp mechanism, Rand Corp: Santa

Monica CA, 1982; Part I: Local Control.

2. Richard, R.; M. Fujimoto, Parallel and Distributed Simulation Systems, Wiley: New York, USA, 2000.

3. Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D. M.; Wilsey, P. A. An Object-Oriented, Time Warp

Simulation Kernel. in D. Caromel, R. R. Oldehoeft, and M. Tholburn, editors, In Proc. of the International

Symposium on Computing in Object-Oriented Parallel Environments (ISCOPE'98) 1998, 1505, 13-23.

4. Jefferson, D.; Beckman, B.; Wieland, F.; Blume, L.; Diloreto, M. Time warp operating system, in Proc. of the

eleventh ACM Symposium on Operating systems principles 1987, 21, 77-93.

5. Aach, J; Church, G.M. Aligning gene expression time series with time warping algorithms, Bioinformatics

2001, Volume 17, Issue 6, Pages 495–508, https://doi.org/10.1093/bioinformatics/17.6.495

6. Nicol, D.M.; Fujimoto, R.M.; Parallel simulation today, Ann. Oper. Res., 1994, 53, 249,

https://doi.org/10.1007/BF02136831.

7. Falcone, A.; Garro, A. Reactive HLA-based distributed simulation systems with rxhla, In 2018 IEEE/ACM

22nd International Symposium on Distributed Simulation and Real Time Applications (DS-RT) 2018, 1-8.

8. Debski, A.; Szczepanik, B.; Malawski, M.; Spahr, S. In Search for a scalable & reactive architecture of a cloud

application: CQRS and event sourcing case study, IEEE Software (accepted preprint), copyright IEEE(99), 2016.

9. Bujas, J.; Dworak, D.; Turek, W.; Byrski, A. High-performance computing framework with desynchronized

information propagation for large-scale simulations, J. Comp. Sci. 2019, 32, 70-86.

https://doi.org/10.1016/j.jocs.2018.09.004

10. Reactive stream initiative, https://www.reactive-streams.org (accessed on 15 April 2025).

11. Davis, A.L. Reactive Streams in Java: Concurrency with RxJava, Reactor, and Akka Streams, Apress, 2018.

12. Curasma H.P.; Estrella, J.C. Reactive Software Architectures in IoT: A Literature Review. In Proceedings of

the 2023 International Conference on Research in Adaptive and Convergent Systems (RACS '23) 2023, Association

for Computing Machinery, New York, NY, USA, Article 25, 1–8. https://doi.org/10.1145/3599957.3606212

13. The implementation of reactive streams in AKKA: https://doc.akka.io/docs/akka/current/stream/stream-

introduction.html (accessed on 15 April 2025).

14. Oeyen, B.; De Koster, J.; De Meuter, W. A Graph-Based Formal Semantics of Reactive Programming from

First Principles. In Proceedings of the 24th ACM International Workshop on Formal Techniques for Java-like

Programs (FTfJP '22) 2023, Association for Computing Machinery, New York, NY, USA, 18–25.

https://doi.org/10.1145/3611096.3601

15. Posa, R. Scala Reactive Programming: Build Scalable, Functional Reactive Microservices with Akka, Play, and

Lagom, Packt Publishing: Germany, 2018

16. Baxter, C. Mastering Akka, Packt Publishing: Germany, 2016.

17. Nolte, D.D. The tangled tale of phase space, Phys. Today, 2010, 63, 33-38.

18. Myshkis, A.D.; Classification of applied mathematical models - the main analytical methods of their

investigation, Elements of the Theory of Mathematical Models 2007, 9.

19. Briand, L.C.; Wust, J. Modeling development effort in object-oriented systems using design properties.

IEEE Transactions on Software Engineering 27.11, 2001, 963-986.

20. Briand, L.C.; Daly, J.W.; Wust. J.K. A unified framework for coupling measurement in object-oriented

systems., IEEE Transactions on software Engineering 25.1, 1999, 91-121.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://www.reactive-streams.org/
https://doc.akka.io/docs/akka/current/stream/stream-introduction.html
https://doc.akka.io/docs/akka/current/stream/stream-introduction.html
https://doi.org/10.20944/preprints202504.1608.v1

 27 of 28

21. Shibanai, K.; Watanabe, T. Distributed functional reactive programming on actor-based runtime, Proc. of

the 8th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized

Control, 2018, 13 – 22.

22. Lohstroh, M.; Romeo, I.I.; Goens, A.; Derler, P.; Castrillon, J.; Lee, E.A.; Sangiovanni-Vincentelli, A.

Reactors: A deterministic model for composable reactive systems, In Cyber Physical Systems. Model-Based

Design, Springer, Cham, 2019, 59-85.

23. Mogk, R.; Baumgärtner, L.; Salvaneschi, G.; Freisleben, B.; Mezini, M. Fault-tolerant distributed reactive

programming, 32nd European Conference on Object-Oriented Programming (ECOOP 2018) 2018.

24. About the graphs in AKKA streams: https://doc.akka.io/docs/akka/2.5/stream/stream-graphs.html

(accessed on 15 April 2025).

25. Kurima-Blough, Z.; Lewis, M.C.; Lacher, L.; Modern parallelization for a dataflow programming

environment, in Proc. of the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA), The Steering Committee of the World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), 2017, 101-107.

26. Kirushanth, S.; Kabaso, B. Designing a cloud-native weigh-in-motion, in 2019 Open Innovations (OI), 2019.

27. Prymushko, A.; Puchko, I.; Yaroshynskyi, M.; Sinko, D.; Kravtsov, H.; Artemchuk, V. Efficient State

Synchronization in Distributed Electrical Grid Systems Using Conflict-Free Replicated Data Types. IoT

2025, 6, 6. https://doi.org/10.3390/iot6010006

28. Oeyen, B.; De Koster, J.; De Meuter, W. Reactive Programming without Functions. arXiv 2024, preprint

arXiv:2403.02296.

29. Babaei, M.; Bagherzadeh, M.; Dingel, J. Efficient reordering and replay of execution traces of distributed

reactive systems in the context of model-driven development. Proceedings of the 23rd ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems 2020.

30. Simulink https://www.mathworks.com/help/simulink/index.html?s_tid=CRUX_lftnav (accessed on 15

April 2025).

31. Karris, S.T. Introduction to Simulink with engineering applications. Orchard Publications, 2006.

32. Dessaint, L.-A.; Al-Haddad, K.; Le-Huy, H.; Sybille, G.; Brunelle P. A power system simulation tool based

on Simulink. IEEE Transactions on Industrial Electronics 1999, 46, 6, 1252-1254.

33. Kuraj, I.; Solar-Lezama, A. Aspect-oriented language for reactive distributed applications at the edge, in

Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking 2020, (EdgeSys

'20). Association for Computing Machinery, New York, NY, USA, 67–72,

https://doi.org/10.1145/3378679.3394531.

34. Babbie, E.R. The practice of social research, Wadsworth Publishing, 2009, ISBN 0-495-59841-0.

35. Broekhoff, J. Programming Languages For Programs For Stateful Distributed Systems.

36. Zoph, B.; Le, Q. V. Neural Architecture Search with Reinforcement Learning, arXiv 2016, preprint

arXiv:1611.01578.

37. Nakata, T.; Chen, S.; Saiki, S.; Nakamura M. Enhancing Personalized Service Development with Virtual

Agents and Upcycling Techniques. Int J Netw Distrib Comput 2025, 13, 5, https://doi.org/10.1007/s44227-024-

00043-y

38. Liu, M.; Zhang, L.; Chen, J.; Chen W.-A.; Yang, Z.; Lo, L.J.; Wen, J.; O’Neil, Z. Large language models for

building energy applications: Opportunities and challenges. Build. Simul. 2025, 18, 225–234,

https://doi.org/10.1007/s12273-025-1235-9

39. Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. International

Conference on Learning Representations (ICLR) 2017

40. Nie, M.; Chen, D.; Chen, H.; Wang, D. AutoMTNAS: Automated meta-reinforcement learning on graph

tokenization for graph neural architecture search, Knowledge-Based Systems 2025, Volume 310, 113023,

https://doi.org/10.1016/j.knosys.2025.113023

41. Kuş, Z.; Aydin, M.; Kiraz, B. Kiraz, A. Neural Architecture Search for biomedical image classification: A

comparative study across data modalities, Artificial Intelligence in Medicine 2025, Volume 160, 103064,

https://doi.org/10.1016/j.artmed.2024.103064

42. Chaturvedi, D.K. Modeling and simulation of systems using MATLAB and Simulink. CRC press, 2017

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doc.akka.io/docs/akka/2.5/stream/stream-graphs.html
https://doi.org/10.1145/3378679.3394531
https://doi.org/10.20944/preprints202504.1608.v1

 28 of 28

43. Lewis, M.C.; Lacher, L.L. Swiftvis2: Plotting with spark using scala. International Conference on Data Science

(ICDATA’18) 2018, Vol. 1. No. 1.

44. Yoshitaka, S.; Watanabe, T. Towards a statically scheduled parallel execution of an FRP language for

embedded systems. Proceedings of the 6th ACM SIGPLAN International Workshop on Reactive and Event-Based

Languages and Systems 2019, 11 – 20, https://doi.org/10.1145/3358503.3361276.

45. Bassen, J.; Balaji, B.; Schaarschmidt, M.; Thille, C.; Painter, J.; Zimmaro, D.; Games, A.; Fast, E.; Mitchell,

J.C. Reinforcement learning for the adaptive scheduling of educational activities. Proceedings of the 2020 CHI

conference on human factors in computing systems 2020, CHI '20: Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems, 1 – 12, https://doi.org/10.1145/3313831.337651

46. Long, L.N.B.; You, S.-S.; Cuong, T.N.; Kim, H.-S. Optimizing quay crane scheduling using deep

reinforcement learning with hybrid metaheuristic algorithm, Engineering Applications of Artificial Intelligence

2025, Volume 143,110021, https://doi.org/10.1016/j.engappai.2025.110021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 doi:10.20944/preprints202504.1608.v1

https://doi.org/10.1145/3358503.3361276
https://doi.org/10.20944/preprints202504.1608.v1

