

Article

Not peer-reviewed version

The Impact Sex-Related Differences of Infrarenal Aortic Neck Morphology on Endovascular Aneurysm Repair for Similar-Sized Aortic Aneurysms

[Ombretta Martinelli](#) , [Antonio Marzano](#) ^{*} , [Maria Irene Bellini](#) , [Roberto Gattuso](#) , [Luca Di Marzo](#) , [Valeria Gonta](#) , [Jihad Jabbour](#) , [Wassim Mansour](#) , [Simone Cuozzo](#)

Posted Date: 23 December 2024

doi: [10.20944/preprints202412.1885.v1](https://doi.org/10.20944/preprints202412.1885.v1)

Keywords: abdominal aortic aneurysm; endovascular repair; gender-related aortic neck anatomy; neck-related outcomes; off-label EVAR

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

The Impact Sex-Related Differences of Infrarenal Aortic Neck Morphology on Endovascular Aneurysm Repair for Similar-Sized Aortic Aneurysms

Ombretta Martinelli ¹, Antonio Marzano ^{1,*}, Maria Irene Bellini ², Roberto Gattuso ¹, Luca Di Marzo ¹, Valeria Gonta ¹, Jihad Jabbour ¹, Wassim Mansour ¹ and Simone Cuozzo ¹

¹ Vascular Surgery Division, Department of Surgery "Paride Stefani", Policlinico Umberto I - "La Sapienza" University of Rome, Rome – Italy

² General Surgery Division, Surgery Department, Policlinico Umberto I - "La Sapienza" University of Rome, Rome – Italy

* Correspondence: antonio.marzano@uniroma1.it; Tel: +39 3479096370

Abstract: Objectives: the purpose of this study was to determine whether gender-related proximal neck anatomic variables influence the applicability and outcomes of aortic endografting in women with abdominal aortic aneurysms of similar size. **Methods:** this retrospective study includes all consecutive patients who underwent elective EVAR for abdominal aortic aneurysms (AAA) with a maximum diameter ranging from 5.0 to 6.0 cm between January 2019 and December 2023. **Results:** a total of 117 patients were consecutively enrolled between January 2019 and December 2023, comprising 56 females (47.9%) and 61 males (52.1%). Females were older than males (mean age: 78.2 vs. 74.3 years, respectively; $p<0.001$). Hostile anatomic features of the proximal aortic neck were observed more frequently in women than in men (33.9% vs. 16.3%; $p<0.01$), including neck length <10 mm (30.3% vs. 10%; $p<0.01$) and/or a diameter at the seal zone >28 mm (10.7% vs. 3.3%; $p<0.01$). Women also exhibited a higher frequency of neck angulation >60° compared to men, although this difference was not statistically significant (7.1% vs. 6.6%; $p<0.2$). No significant sex-based differences were observed concerning the presence of circumferential calcification/thrombosis >50% or a conical neck shape. Technical success was achieved in 98.2% of women and 98.3% of men. Similarly, no significant differences were found between sexes regarding proximal neck-related complications, re-interventions, or open conversions due to these complications. Due to the more challenging aortic neck anatomy, endografts with suprarenal fixation were used more frequently in women than in men (46.4% vs. 30%; $p<0.01$). Additionally, a significantly higher proportion of EVAR procedures performed outside the IFU were observed in women compared to men (26.7% vs. 18%; $p<0.01$). Univariate analysis revealed that off-IFU procedures were associated with a significantly higher risk of type IA endoleak and endoleak-related interventions ($p<0.001$). However, the rate of complications following off-label procedures did not significantly differ between men and women. **Conclusions:** A more complex and even hostile aortic neck anatomy was observed in women compared to men in our series, despite matched AAA sizes. The more challenging proximal neck features may have led to more frequent supra-renal fixation of the stent graft and off-label EVAR procedures performed in women than in men. Despite a statistically significant higher incidence of type 1A endoleaks following EVAR performed outside the IFU, the outcomes were comparable between genders. Accurate endograft selection and the availability of more versatile devices have improved the feasibility of EVAR, reducing complications related to proximal seal zones caused by the hostile aortic neck characteristics often associated with the female gender.

Keywords: abdominal aortic aneurysm; endovascular repair; gender-related aortic neck anatomy; neck-related outcomes; off-label EVAR

1. Introduction

Endovascular repair (EVAR) is now considered the first-choice treatment modality for abdominal aortic aneurysm (AAA) due to its lower morbidity and mortality compared to open surgery. Several studies have shown that females tend to have more complex AAA geometries, including smaller diameters, a larger maximum-to-normal diameter ratio, and a wider lumbar vertebral curvature, compared to males [1].

The higher anatomical complexity of AAAs in women increases with aneurysm size and may lead to hostile aortic neck features as well as juxta- and suprarenal involvement when the AAA reaches the diameters currently indicated for treatment [2,3]. Since EVAR procedures require adequate sealing zones for successful outcomes, the infrarenal aortic neck anatomy is a crucial factor and may explain the disparity in EVAR eligibility between sexes [4,5].

When EVAR is considered technically feasible, the presence of more than one hostile neck characteristic significantly increases the risk of immediate or delayed complications and the need for re-interventions [6–8]. Additionally, hostile neck anatomy often places EVAR procedures 'outside the instructions for use (IFU)' for some or all off-the-shelf endografts currently available on the market. Although the outcomes of off-label EVAR use remain largely undocumented, adverse events are reported more frequently when EVAR is performed outside IFU guidelines [9,10].

This study was designed to assess differences in aortic neck morphology between women and men with similarly sized AAAs and to determine whether these gender-related differences influence the applicability and outcomes of endografting in women.

2. Materials and Methods

A retrospective analysis of single-center data was conducted using an anonymized database (Microsoft Excel®) containing prospectively collected consecutive cases of elective EVAR for AAA performed between January 2019 and December 2023. Only elective EVAR procedures for AAAs ranging from 5.0 to 6.0 cm in size were included to ensure two homogeneous populations for comparison.

After excluding cases of suprarenal AAAs and those who underwent complex EVAR procedures (fenestrated, branched, chimney) or endovascular sealing repair with the Nellix endograft, a total of 117 patients met the eligibility criteria and were divided into two groups based on sex.

This study complied with the principles of the Declaration of Helsinki, and approval was obtained from the local ethics committee, which waived the need for patient consent due to the retrospective and de-identified nature of the study.

The aortic neck anatomic characteristics, rates of suprarenal fixation, use of aortic cuffs, aortic neck-related complications, re-interventions, open conversions, and mortality were recorded and analyzed by sex. The incidence of EVAR performed outside IFU was also assessed. Cases with missing data for these variables were excluded from the analysis. Both the terms 'sex' and 'gender' are used to refer to males and females.

In accordance with the European Society of Vascular Surgery (ESVS) guidelines [11], the suitability of aortic neck anatomy for EVAR was retrospectively evaluated through the review of patients' CT images using dedicated software with multiplanar and volume reconstructions (OsiriX MD; Pixmeo SARL, Bernex, Switzerland). The maximal aneurysm diameter was measured via CTA, from outer wall to outer wall, perpendicularly to the aorta, in an anterior–posterior plane [12]. The infrarenal aortic neck length was defined as the first diameter showing a 10% increase over the diameter at the most caudal renal artery, while the aortic neck angulation was measured as the maximum angle observed in all views between the proximal aortic neck and the longitudinal axis of the aneurysm.

In agreement with the Delphi Consensus Group (Italy, 2017) [13], a hostile aortic neck was defined by the presence of one or more of the following characteristics: length between the lowest renal artery and the aneurysm sac <10 mm, angulation $>60^\circ$, diameter at the seal zone >28 mm, conical shape, or circumferential calcium or thrombosis $>50\%$ in the proximal seal zone.

For subgroup analysis regarding IFU adherence with respect to proximal neck anatomy, procedures were classified as 'outside IFU' or 'off-label' if at least one anatomical parameter violated the manufacturer's criteria for the specific device.

Standard EVAR procedures were performed using the following devices: Endurant II and Endurant IIS (Medtronic, Santa Rosa, CA, USA), Gore Excluder (W.L. Gore and Associates, Flagstaff, AZ, USA), Gore C3-CONFORMABLE (W.L. Gore and Associates, Flagstaff, AZ, USA), Zenith (Cook, Bloomington, IN, USA), INCRAFT (Cordis Corp, Bridgewater, NJ, USA), Ovation (Endologix, Irvine, CA, USA), AFX (Endologix, Irvine, CA, USA), and Alto (Endologix, Irvine, CA, USA).

An aortic cuff was employed to achieve adequate sealing at the proximal aortic neck in cases with marginally favorable anatomy.

As recommended by the Society for Vascular Surgery guidelines [14], technical success was defined as the successful introduction and deployment of the device without the need for additional or secondary surgical or endovascular procedures, death, type I or III endoleaks, or graft limb occlusion within 24 hours after the procedure. Aortic neck-related mortality was defined as death resulting from AAA rupture after EVAR, complications from secondary procedures, or surgical conversion [15,16].

According to our follow-up protocol, all patients underwent Duplex ultrasound (DUS) or contrast-enhanced ultrasound (CEUS) at 1, 3, 6, and 12 months post-procedure, followed by annual examinations thereafter. A CTA scan was performed at 1 month and subsequently only if DUS or CEUS detected endoleaks or a significant change in the residual AAA sac size (≥ 0.5 cm).

Statistical analysis was performed using SPSS version 27. Between-group differences in gender-related characteristics were assessed using chi-square tests for categorical variables and t-tests for continuous variables. A p-value <0.05 was considered statistically significant.

A univariate analysis using Cox regression modeling was conducted to evaluate whether off-label EVAR procedures were more prone to complications and to identify potential sex-related differences in these complications.

3. Results

A total of 117 patients were consecutively enrolled, comprising 56 females (47.9%) and 61 males (52.1%). Females were significantly older than males (mean age: 78.2 years vs. 74.3 years, respectively; $p<0.001$). The mean AAA diameter was 56.0 mm in the female group and 57.3 mm in the male group. The main preoperative demographic characteristics and co-morbidities for each gender are summarized in Table 1. A statistically significant gender difference was observed in the preoperative status according to the American Society of Anesthesiologists (ASA) score, with ASA III recorded in 9 women and 4 men.

Table 1. Main population baseline characteristics and comorbidities.

Variable	Group 1 (females)	Group 2 (males)	p
Number	56 (47.9%)	61 (52.1%)	
Mean Age (years)	78.2	74.3	$p<0.001$
Coronary arterial disease	16 (30.1)	19 (32.7)	ns
Arrhythmia	28 (52.8)	19 (31.1)	<0.001
Arterial Hypertension	38 (71.6)	45 (73.7)	ns
Diabetes	26 (49.0)	31 (50.8)	ns
Chronic kidney disease	12 (22.6)	15 (24.5)	ns
Carotid disease	26 (49.0)	30 (49.1)	ns

Previous TIA/stroke	7 (13.2)	10 (16.3)	ns
Severe atherosclerotic disease of the aorta	17 (32.0)	18 (29.5)	ns
Chronic peripheral arterial disease	9 (16.9)	23 (37.7)	<0.001
Previous deep venous thrombosis	12 (23.2)	6 (9.8)	<0.001
ASA score III*	9 (19.1)	4 (6.55)	<0.001

*ASA (American Society of Anesthesiologists) score III: patients with substantive functional limitations and one or more moderate to severe diseases.

Anatomic characteristics of the proximal aortic neck by gender are reported in Table 2. One or more hostile anatomic features of the proximal aortic neck were found in 19 women (33.9%) and 10 men (16.3%) ($p<0.015$), neck length <15 mm was observed in 30.3% of women and 10% of men ($p<0.01$), diameter at the seal zone >28 mm was observed in 10.7% of women and 3.3% of men ($p<0.01$). Neck angulation $>60^\circ$ was more frequent in women (7.1%) than in men (6.6%), but this difference was not statistically significant ($p<0.2$). The incidence of circumferential calcification/thrombosis or conical neck shape was similar between groups (Table 3).

Table 2. Anatomical characteristics of the proximal aortic neck in the cohort (percentages in brackets).

Variable (mm)	Group 1 (females)	Group 2 (males)	p
AAA axial diameter: mean (range)	56,0 (50-67)	58,9 \pm 4.9 (50-78)	ns
Neck length mean (range)	13.6 (8-28)	19.9 \pm 6.5 (8-32)	ns
Neck diameter mean (range)	25.8 (16-32)	21.8 \pm 32.6 (17-29)	<0.01
Neck angle mean (range)	48.8 (16-69)	40.1 \pm 23.7 (11-64)	<0.01

Table 3. Anatomical characteristics of AAA and of proximal aortic neck according with the sex.

Variables	Group 1 (females)	Group 2 (males)	p
Hostile neck features	19 (33.9%)	10 (16.3%)	<0.01
Neck length <10 mm	17 (30.3%)	6 (10.0%)	<0.01
Neck diameter >28 mm	6 (10.7%)	2 (3.3%)	<0.01
Neck angle $>60^\circ$	4 (7.1%)	4 (6.6%)	ns
Circumferential calcification/thrombosis $>50\%$	5 (8.9%)	5 (8.3%)	ns
Conical shape	3 (5.6%)	4 (6.6%)	ns

Technical success was achieved in 98.2% of women and 98.3% of men. The types of endografts used, the number of suprarenal fixations, proximal cuffs, and non-adherence to IFU by gender are listed in Table 4. No significant differences were found in the choice of endograft or number of proximal cuffs used between women and men, while suprarenal fixation was significantly more frequent in women (46.6%) than in men (30.0%; $p<0.01$).

Table 4. Anatomical characteristics of AAA and of proximal aortic neck according with the sex.

Device (percentage)	Group 1 (females)	Group 2 (males)	p
Zenith Flex	10 (17.8%)	8 (13.3%)	ns
Endurant II/IIS	8 (14.2%)	6 (11.6%)	
Gore Excluder	8 (14.2%)	11 (18.3%)	
INCRAFT	1 (1.7%)	0	
Ovation	3 (5.3%)	1 (5.0%)	
AFX	12 (21.4%)	17 (20.0%)	
Alto	4 (7.1%)	3 (5.0%)	
Gore C3 Conformable	10 (17.8%)	14 (21.6%)	
Suprarenal fixation	26 (46.4%)	18 (30.0%)	P< 0.01
Proximal cuff	7 (12.5%)	6 (10.0%)	ns
Non-adherence to IFU	15 (26.7)	11 (18.0)	P< 0.01

During a comparable follow-up period (mean: 34.8 ± 22.2 months in women vs. 36.7 ± 23.4 months in men), no significant differences were observed in proximal neck-related complications, re-interventions, or open conversions (Table 5). Due to the challenging aortic neck anatomy, a significantly higher proportion of women underwent EVAR outside IFU criteria (26.7% vs. 18%; $p<0.01$).

Table 5. Technical success, AAA-related mortality and neck-related complications, re-interventions, open conversion.

Variable	Women	Men	P
Technical success	55 (98.2%)	60 (98.3%)	
Neck-related mortality	2 (3.5%)	2 (3.2%)	
Type IA	10 (17.8%)	6 (9.8%)	
Distal migration	3 (5.6%)	3 (4.9%)	
EL/migration reinterventions	9 (16.0%)	5 (8.1%)	ns
Open conversion	3 (5.6%)	3 (9.8%)	

In the female group, complications during off-label EVAR included 6/10 type IA endoleaks (60%), 2/3 stent graft migrations (66.6%), 6/9 secondary interventions (66.6%), and 2/3 open conversions (66.6%). In the male cohort, complications included 3/9 type IA endoleaks (33.3%), 2/3 stent graft migrations (66.6%), 2/5 secondary interventions (40%), and 2/3 open conversions (66.6%).

One noteworthy case in the female group involved a low-flow type IA endoleak detected during completion angiography. Despite intraoperative efforts, the endoleak could not be resolved. Given the patient's fragile clinical condition, a conservative 'watchful waiting' approach was chosen over aggressive open repair. The endoleak sealed spontaneously within one month, as confirmed by contrast-enhanced ultrasound (CEUS) and CTA.

On univariate analysis, off-label EVAR procedures were associated with a statistically significant higher incidence of type IA endoleaks and their related re-interventions ($p<0.001$), while the incidence

of other complications was not significantly affected by IFU adherence. A greater number of women underwent off-label EVAR procedures ($p<0.01$). However, univariate analysis revealed no significant sex-related differences in complication rates, re-interventions, or neck-related complications.

4. Discussion

This study has shown that, for the same size of AAA, women were older and had a significantly higher ASA III score than men, indicating a greater surgical risk for open AAA repair. Given their higher surgical risk burden, it would be expected that the less invasive EVAR procedure should be the preferred choice for women. However, it is reported that fewer women than men are deemed eligible for elective EVAR [20,21]. This gender disparity in EVAR eligibility might be attributed to the more advanced and complex AAA anatomy related to the smaller native aortic dimensions in women at the time of operation [22,23].

Since challenging aortic neck morphology is the most common factor prohibiting EVAR [24,25], we found that women had more frequent hostile neck features than men with aneurysms of the same diameter. These gender differences in neck anatomy may be attributable to a greater aortic degenerative process and subsequent more pronounced neck remodeling in women when the AAA reaches dimensions indicated for treatment.

Our findings align with previous studies showing a higher prevalence of pathological neck anatomy in women compared to men, although those studies did not control for aneurysm size [26,27]. When women do undergo EVAR, their more frequent hostile neck characteristics may challenge procedural outcomes. It would follow that women might experience higher rates of mortality, neck-related complications, re-interventions, and open conversions [28,29].

Interestingly, in our study, although women had shorter, larger, and more angulated aortic necks, these factors did not affect technical success or overall procedural outcomes when compared to men. Although women experienced a higher incidence of type IA endoleaks and related re-intervention rates, these differences were not statistically significant and did not compromise EVAR feasibility or outcomes in terms of AAA rupture or open conversion.

These findings are consistent with recent studies, including the Lucy Trial by Ash et al. and the Engage Registry by O'Donnell et al., both of which reported comparable EVAR outcomes between sexes despite more complex aortic morphology in females [30,31].

The similar outcomes between men and women in our study, despite hostile neck anatomy in females, can likely be attributed to the use of modern endografts with low profiles and high conformability, which are better suited for the complex anatomy often seen in women [32–34]. Additionally, the experience of operators in EVAR surgical planning and the use of active suprarenal fixation or proximal cuffs to extend the effective seal length beyond the hostile neck anatomy may have contributed to these positive outcomes.

Notably, women in our study were more likely to undergo suprarenal fixation to achieve adequate sealing compared to men.

Although suprarenal bare-metal stenting has been associated with risks of kidney dysfunction, endovascular stent graft separation, and subsequent endoleaks or aneurysm rupture, none of these complications were observed in our patients [35–38].

Despite advancements in endograft technology, hostile aortic neck anatomy may render EVAR “outside IFU” for some or all off-the-shelf devices. In our series, a significantly higher proportion of women underwent EVAR outside IFU criteria compared to men. Although several studies have explored the relationship between IFU adherence and EVAR outcomes, no clear consensus has been reached.

In our study, non-adherence to IFU resulted in a higher incidence of type IA endoleaks, but these endoleaks were effectively managed without impacting other complications or re-intervention rates (Table 6). Univariate analysis showed that outcomes of off-label EVAR were independent of sex (Table 7).

Table 6. Univariate analysis of the correlation between EVAR outside IFU and incidence of neck-related complications.

EVAR outside IFU	
	<i>p</i>
Endoleak I A	< 0.001
Migration	0.137 (ns)
Endoleak related reintervention	<0.001
Open conversion	0.532 (ns)
Postoperative renal insufficiency	0.78 (ns)

Table 7. Univariate analysis of the correlation between EVAR outside IFU and incidence of neck-related complications in the two groups.

	EVAR outside IFU		<i>p</i>
	Females	Males	
	15	11	<0.01
Endoleak 1A	7 (46.6%)	5 (45.4%)	0.698
Migration	2 (13.3%)	3 (27.2%)	0.035
Endoleak related re-intervention	7 (46.6%)	7 (63.6%)	0.238
Open conversion	1 (6.6%)	2 (18.1%)	0.235

These findings are consistent with those of Ramirez et al., who reported a higher risk of type IA endoleaks and re-interventions in off-label EVAR patients, but no difference in 2-year survival compared to on-label EVAR [39]. Similarly, Candell et al. found that adherence to IFU did not significantly impact EVAR outcomes [40].

Conversely, Barry et al. reported worse outcomes for EVAR outside IFU, regardless of suprarenal or infrarenal fixation, while Hahl et al. demonstrated that neck angulation and short neck length negatively affected all-cause mortality, aneurysm-related mortality, and graft-related adverse events [41,42].

In one noteworthy case from our female cohort, a type IA endoleak detected during off-label endografting could not be treated promptly due to the lack of an adequate proximal infrarenal aortic segment for extending the Ovation stent graft and the high risk of immediate open conversion. Remarkably, this endoleak resolved spontaneously within one month, as confirmed by contrast-enhanced ultrasound (CEUS) and CTA. The exact cause of this spontaneous resolution remains unclear but may be related to gradual improved wall accommodation by the polymer-filled rings of the Ovation device. Similar findings were reported by Bastos Gonçalves et al., who observed only one rupture in a series of 21 untreated type IA endoleaks over a mean follow-up period of 2.5 years [43]. Likewise, Kontopodis et al. described six cases of spontaneously resolved type IA endoleaks following Ovation device implantation, five of which occurred outside IFU [44].

These observations suggest that, although the correction of type IA endoleaks is strongly recommended, a conservative approach might be justified in selected high-risk cases, at least until sac enlargement necessitates re-intervention. In fact, while the use of off-the-shelf thoracoabdominal grafts, which can also be employed in the correction of type IA endoleaks, has become increasingly safe and effective, it should always be considered that many patients may be frail [45]. As demonstrated by Cuozzo et al. in the context of complex thoracoabdominal endovascular treatment, each additional procedure may result in poor short-term outcomes [46].

Despite the small sample size and the inherent limitations of a retrospective, non-randomized study, the strength of this work lies in its novel focus on gender-related differences in aortic neck

morphology in similarly sized AAAs treated with EVAR, highlighting treatment challenges and outcomes.

5. Conclusions

Our study reveals a clear gender difference in the anatomical characteristics of the aortic neck among men and women with AAAs of similar size. However, this difference does not appear to adversely affect EVAR feasibility or overall outcomes, which were comparable between the sexes. The precise explanation for our findings remains unclear, but it may be attributed to the current availability of more versatile endografts and the appropriate use of suprarenal fixation to address AAAs with hostile proximal neck anatomy.

Despite the more challenging proximal neck anatomy leading to a higher frequency of off-label EVAR in women, we did not observe any statistically significant differences in the outcomes of EVAR performed outside IFU between genders.

Overall, our findings indicate that the gender gap in EVAR outcomes has narrowed, while also highlighting the potential for further improvement through the application of more advanced technologies in patients with adverse neck anatomy.

Author Contributions: Conceptualization, O.M. and M.I.B.; methodology, O.M.; software, S.C.; validation, O.M., L.D.M., W.M. and A.M.; formal analysis, O.M. and S.C.; investigation, O.M., S.C., M.I.B., R.G., J.J. and W.M.; resources, O.M. and L.D.M.; data curation, A.M. and O.M.; writing—original draft preparation, A.M. and O.M.; writing—review and editing, O.M. and A.M.; visualization, V.G., J.J. and R.G.; supervision, L.D.M.; project administration, O.M.; funding acquisition, O.M. and L.D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Ethics Committee of "University of Rome, La Sapienza" (protocol code SUR 2024-60, 8 February 2024).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not available due to privacy restriction.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ayo D, Blumberg SN, Gaing B, Baxter A, Mussa FF, Rockman CB, et al. Gender differences in aortic neck morphology in patients with abdominal aortic aneurysms undergoing elective endovascular aneurysm repair. *Ann Vasc Surg.* 2016; 30:100–104.
2. Karathanos C, Spanos K, Kouvilos G, Athanasoulas A, Koutsias S, Matsagkas M, Giannoukas AD. Hostility of proximal aortic neck anatomy in relation to abdominal aortic aneurysm size and its impact on the outcome of endovascular repair with the new generation endografts. *J Cardiovasc Surg (Torino).* 2020 Feb;61(1):60-66.
3. Chung C, Tadros R, Torres M, Malik R, Ellozy S, Faries P, Marin M, Vouyouka AG. Evolution of gender-related differences in outcomes from two decades of endovascular aneurysm repair. *J Vasc Surg.* 2015 Apr;61(4):843-52.
4. Behrendt CA, Kreutzburg T, Kuchenbecker J, Panuccio G, Dankhoff M, Spanos K, Kouvilos G, Debus S, Peters F, Kölbel T. Female Sex and Outcomes after Endovascular Aneurysm Repair for Abdominal Aortic Aneurysm: A Propensity Score Matched Cohort Analysis. *J Clin Med.* 2021 Jan 5;10(1):162-171.
5. Sweet MP, Fillinger MF, Morrison TM, Abel D. The influence of gender and aortic aneurysm size on eligibility for endovascular abdominal aortic aneurysm repair. *J Vasc Surg.* 2011;54:931–937. Hultgren R, Vishnevskaya L, Wahlgren CM. Women with abdominal aortic aneurysms have more extensive aortic neck pathology. *Ann Vasc Surg.* 2013 Jul;27(5):547-52.

6. Leurs LJ, Kievit J, Dagnelie PC, Nelemans PJ, Buth J. EUROSTAR Collaborators Influence of infrarenal neck length on outcome of endovascular abdominal aortic aneurysm repair. *J Endovasc Ther*. 2006;13(6):640-648.
7. Trabold T, Richter GM, Rosner R, Geisbüsch P. [Endovascular aortic repair: the hostile aneurysm neck : Morphologic definition, impact on long-term outcome, and treatment options]. *Radiologie (Heidelb)*. 2022 Jul;62(7):563-569.
8. Van Rijswijk RE, Jebbink EG, Zeebregts CJ, Reijnen MMPJ. A systematic review of anatomic predictors of abdominal aortic aneurysm remodeling after endovascular repair. *J Vasc Surg*. 2022 May;75(5):1777-1785.
9. Hoshina K, Hashimoto T, Kato M, Ohkubo N, Shigematsu K, Miyata T. Feasibility of endovascular abdominal aortic aneurysm repair outside of the instructions for use and morphological changes at 3 years after the procedure. *Ann Vasc Dis*. 2014;7(1):34-9.
10. Matsumoto T, Tanaka S, Okadome J, Kyuragi R, Fukunaga R, Kawakubo E, Itoh H, Okazaki J, Shirabe K, Fukuda A, Maehara Y. Midterm outcomes of endovascular repair for abdominal aortic aneurysms with the on-label use compared with the off-label use of an endoprosthesis. *Surg Today*. 2015 Jul;45(7):880-5.
11. Wanhainen A, Verzini F, van Herzele I, Allaire E, Bown M, Cohnert T, et al. European Society for Vascular Surgery (ESVS) 2019 Clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms *Eur J Vasc Endovasc Surg*, 57 (2019), pp. 8-93.
12. Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, A.; Mansour A., Mastracci, T.M.; Mell, M.; Murad, M.H, Nguyen, L.L... The society of vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. *J. Vasc. Surg.* 2018, 67, 2-77.
13. Marone, E.M.; Freyrie, A.; Ruotolo, C.; Michelagnoli, S.; Antonello, M.; Speziale, F.; Veroux, P.; Gargiulo, M.; Gaggiano, A. Expert Opinion on Hostile Neck Definition in Endovascular Treatment of Abdominal Aortic Aneurysms (a Delphi Consensus). *Ann. Vasc. Surg.* 2020, 62, 173–182.
14. Chaikof EL, Blankensteijn JD, Harris PL, White GH, Zarins CK, Bernhard VM, et al. Reporting standards for endovascular aortic aneurysm repair. *Journal of Vascular Surgery*. 2002;35(5):1048-60.
15. Wanhainen, A.; Verzini, F.; Van Herzele, I.; Allaire, E.; Bown, M.; Cohnert, T.; Dick, F.; van Herwaarden, J.; Karkos, C.; Koelemay, M.; et al. Editor's Choice—European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. *Eur. J. Vasc. Endovasc. Surg.* 2019, 57, 8–93.
16. Brewster DC, Cronenwett JL, Hallett Jr JW, Johnston KW, Krupski WC, Matsumura JS. Guidelines for the treatment of abdominal aortic aneurysms: report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. 2003 *Journal of vascular surgery*, 37(5), 1106-1117.
17. Powell JT, Sweeting MJ, Ulug P, Blankensteijn JD, Lederle FA, Becquemin JP, Greenhalgh RM; EVAR-1, DREAM, OVER and ACE Trialists. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. *Br J Surg*. 2017 Feb;104(3):166-178.
18. Martinelli O, Cuozzo S, Miceli F, Gattuso R, D'Andrea V, Sapienza P, Bellini MI. Elective Endovascular Aneurysm Repair (EVAR) for the Treatment of Infrarenal Abdominal Aortic Aneurysms of 5.0-5.5 cm: Differences between Men and Women. *J Clin Med*. 2023 Jun 28;12(13):4364.
19. Stather PW, Sidloff D, Dattani N, Choke E, Bown MJ, Sayers RD. Systematic review and meta-analysis of the early and late outcomes of open and endovascular repair of abdominal aortic aneurysm. *Br J Surg*. 2013 Jun;100(7):863-72.
20. Paraskevas KI. Abdominal aortic aneurysms in women. *The Lancet*. 2017; 390 (101039):1643.
21. Ulug P, Sweeting MJ, von Allmen RS, Thompson SG, Powell JT; SWAN collaborators. Morphological suitability for endovascular repair, non-intervention rates, and operative mortality in women and men assessed for intact abdominal aortic aneurysm repair: systematic reviews with meta-analysis. *Lancet*. 2017 Jun 24;389(10088):2482-2491.
22. Sweeting MJ, Thompson SG, Brown LC, Powell JT. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. *British J Surg*. 2012;56(5):655–65.

23. Tomee SM, Lijftogt N, Vahl A, Hamming JF, Lindeman JHN . A registry-based rationale for discrete intervention thresholds for open and endovascular elective abdominal aortic aneurysm repair in female patients. *J Vasc Surg.* 2018 Mar;67(3):735-739.
24. Karathanos C, Spanos K, Kouvvelos G, Athanasoulas A, Koutsias S, Matsagkas M, Giannoukas AD. Hostility of proximal aortic neck anatomy in relation to abdominal aortic aneurysm size and its impact on the outcome of endovascular repair with the new generation endografts. *J Cardiovasc Surg (Torino).* 2020 Feb;61(1):60-66.
25. Özdemir-van Brunschot DMD, Torsello GB, Bernardini G, Litterscheid S, Torsello GF, Beropoulos E. Long-term Results of Angulated Versus Hyperangulated Neck in Endovascular Aneurysm Repair With Endurant Endoprostheses. *J Endovasc Ther.* 2023 Feb;30(1):91-97.
26. R. Hultgren, L. Vishnevskaya, C.M. Wahlgren. Women with abdominal aortic aneurysms have more extensive aortic neck pathology *Ann Vasc Surg.* 27 (2013), pp. 547-552
27. Özdemir-van Brunschot DMD, Holzhey D, Botsios S. Sex-Related Differences in Proximal Neck Anatomy and Their Consequences in Patients after EVAR: A Matched Cohort Analysis. *J Clin Med.* 2023 Jul 27;12(15):4929.
28. De Guerre LEVM, Varkevisser RRB, Swerdlow NJ, Liang P, Li C, Dansey K, van Herwaarden JA, Schermerhorn ML. Sex differences in perioperative outcomes after complex abdominal aortic aneurysm repair. *J Vasc Surg.* 2020 Feb;71(2):374-381.
29. Gargiulo M, Gallitto E, Wattez H, Verzini F, Bianchini Massoni C, Loschi D, Freyrie A, Haulon S. Outcomes of endovascular aneurysm repair performed in abdominal aortic aneurysms with large infrarenal necks. *J Vasc Surg.* 2017 Oct;66(4):1065-1072.
30. Ash J, Chandra V, Rzucidlo E, Vouyouka A, Hunter M. LUCY results show females have equivalent outcomes to males following endovascular abdominal aortic aneurysm repair despite more complex aortic morphology. *J Vasc Surg.* 2020 Aug;72(2):566-575
31. O'Donnell TFX, Verhagen HJ, Pratesi G, Pratesi C, Tejjink JAW, Vermassen FEG, Mwipatayi P, Forbes TL, Schermerhorn ML. Female sex is associated with comparable 5-year outcomes after contemporary endovascular aneurysm repair despite more challenging anatomy. *J Vasc Surg.* 2020 Apr;71(4):1179-1189
32. Varkevisser RRB, Swerdlow NJ, Verhagen HJM, Lyden SP, Schermerhorn ML. Similar 5-year outcomes between female and male patients undergoing elective endovascular abdominal aortic aneurysm repair with the Ovation stent graft. *J Vasc Surg.* 2020 Jul;72(1):114-121
33. Storck M, Nolte T, Tenholt M, Maene L, Maleux G, Scheinert D. Women and men derive comparable benefits from an ultralow-profile endograft: 1-year results of the European OVATION registry. *J Cardiovasc Surg* 2017;58:658-664
34. Cuozzo S, Martinelli O, Brizzi V, Miceli F, Flora F, Sbarigia E, Gattuso R. Early Experience with Ovation Alto Stent-Graft. *Ann Vasc Surg.* 2023 Jan;88:346-353. doi: 10.1016/j.avsg.2022.07.030. Epub 2022 Sep 1. PMID: 36058461.
35. Van der Krog JMA, van Erp AC, Smorenburg SPM, Willems MCM, Nederhoed JH. Endovascular Graft Suprarenal Bare Metal Stent Separation After Endovascular Aneurysm Repair: Case Reports and Literature Review. *EJVES Vasc Forum.* 2023 Jul 19;60:28-32
36. Banno H, Ikeda S, Kawai Y, Fujii T, Akita N, Takahashi N, Sugimoto M, Kodama A, Komori K. Suprarenal fixation is associated with worse midterm renal function after endovascular abdominal aortic aneurysm repair compared with infrarenal fixation. *Vasc Surg.* 2020 Feb;71(2):450-456
37. Pujari A, Ramos CR, Duwayri Y, Rajani RR, Jordan WD Jr, Crawford RS, Benaroch-Gampel J. Influence of baseline kidney dysfunction on perioperative renal outcomes after endovascular aneurysm repair with suprarenal fixation. *J Vasc Surg.* 2021 Jan;73(1):92-98
38. Cuozzo S, Miceli F, Marzano A, Martinelli O, Gattuso R, Sbarigia E. Surgery for late type Ia/IIIb endoleak from a fabric tear and stent fracture of AFX2 stent graft. *J Vasc Surg Cases Innov Tech.* 2022 Jul 5;8(3):458-461. doi: 10.1016/j.jvscit.2022.06.005. PMID: 36016704; PMCID: PMC9395749.
39. Ramirez JL, Govsyeyev N, Sorber R, Iannuzzi JC, Schanzer AS, Hicks CW, Malas MB, Zarkowsky DS. Proximal Instructions for Use Violations in Elective Endovascular Aneurysm Repair in the Vascular Quality Initiative: Retrospective Analysis. *J Am Coll Surg.* 2023 Oct 1;237(4):633-643

40. Candell L, Hua H, Okuhn S, et al. Adherence to endovascular aortic aneurysm repair device instructions for use guidelines has no impact on outcomes. *J Vasc Surg.* 2015;61(5):1151–1159.
41. Barry IP, Turley LP, Mwipatayi DL, Thomas A, Mwipatayi MT, Mwipatayi BP. The Impact of Endograft Selection on Outcomes Following Treatment Outside of Instructions for Use (IFU) in Endovascular Abdominal Aortic Aneurysm Repair (EVAR). *Cureus.* 2021 May 4;13(5):e14841.
42. Hahl T, Protto S, Järvenpää V, Uurto I, Väärämäki S, Suominen V. Long-term outcomes of endovascular aneurysm repair according to instructions for use adherence status. *J Vasc Surg.* 2022;76(3):699–706.
43. Bastos Gonçalves F, Verhagen HJ, Vasanthananthan K, Zandvoort HJ, Moll FL, van Herwaarden JA. Spontaneous delayed sealing in selected patients with a primary type-Ia endoleak after endovascular aneurysm repair. *Eur J Vasc Endovasc Surg.* 2014 Jul;48(1):53-9.
44. Kontopodis N, Tavlas E, Galanakis N, Chronis C, Kafetzakis A, Tsetis D, Ioannou CV. Spontaneous Type Ia Endoleak Sealing in Patients Undergoing Endovascular Aneurysm Repair With the Ovation Stent Graft. *Ann Vasc Surg.* 2019 Jan;54:240-247.
45. Cuozzo S, Marzano A, Martinelli O, Jabbour J, Molinari A, Brizzi V, Sbarigia E. Early Experience with Inner Branch Stent-Graft System for Endovascular Repair of Thoraco-Abdominal and Pararenal Abdominal Aortic Aneurysm. *Diagnostics (Basel).* 2024 Nov 21;14(23):2612. doi: 10.3390/diagnostics14232612. PMID: 39682521; PMCID: PMC11640084.
46. Cuozzo S, Sbarigia E, Jabbour J, Marzano A, D'Amico C, Brizzi V, Martinelli O. Impact of frailty on outcomes of patients undergoing elective endovascular thoraco-abdominal aortic aneurysm repair. *J Cardiovasc Surg (Torino).* 2024 Oct 23. doi: 10.23736/S0021-9509.24.13052-2. Epub ahead of print. PMID: 39441148.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.