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Abstract: Energy consumption is a critical issue in the energy sector, and recent events such as the global energy
crisis, costs, the need to reduce greenhouse emissions, and extreme weather conditions have increased the
demand for energy efficiency. Accurately predicting energy consumption is one of the key steps to addressing
inefficiency in energy consumption, and its optimization. In this regard, accurate predictions of energy
consumption would not only help to minimize wastage, but also to save cost. In this article, we propose
intelligent models using an ensemble of Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) neural networks for predicting energy consumption in smart buildings. The proposed model
outperforms other state-of-the-art deep learning models for predicting minute energy consumption, with a
mean square error of 0.109. The proposed model also accurately captures latent trends in the data better than
the traditional models. The results highlight the potential of using hybrid deep learning models for improved
energy efficiency management in smart buildings.

Keywords: smart buildings; energy consumption; hybrid deep learning; energy predictions; building energy
management systems

1. Introduction

Efficiency is an important topic in the energy sector, and consideration of energy consumption
was because of the global energy crisis in 1970 [1]. Recently, there has been a new wave of energy
crisis in the UK and Europe. This was triggered by the Russia’s invasion of Ukraine, as well as an
increase in world population leading to the rapid increase in demand. In addition, the need to reduce
greenhouse emissions, extreme weather conditions, etc., all of which have impacted the surge in
demand for energy [2], prompting many countries to embark on campaign to minimize energy [3].
According to the World Energy Council, climate change has been one of the biggest challenges
affecting all regions of the world. For instance, the European Climate Action listed the negative effects
of this and aims to decrease greenhouse emissions and improve energy efficiency by reducing
primary energy consumption. Leading the energy consumption according to [4] are buildings,
contributing most of the total energy consumptions and carbon emissions in the world. Similarly,
energy demands are projected to increase by 55% from 2005 to 2030 with buildings accounting for
40% of the total energy consumed [5]. Due to this huge challenge, more attention is being paid to
smart buildings by providing comfortable, economical, and sustainable operations for occupants.

In recent years, emerging and disruptive technologies such as Artificial Intelligence (Al) and the
Internet of Things (IoT) have been shaping the energy management future, building a world of smart
and connected agents that needs minimal or no human intervention. These technologies are being
integrated into building automation systems to create smart buildings [6]. Smart buildings have been
widely adopted by developed countries due to the popularity of intelligent technologies such as
smart grid [7], and its ability for sustainable and efficient energy management system (EEMS). EEMS
is the main feature of a smart building for managing energy use, hence the need (as an integral part
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of the EEMS) for accurate consumption predictions to aid occupants in managing, planning, and
minimizing energy waste and cost [8].

Due to the current global increase in energy prices, smart buildings have become paramount
because of their inbuilt sensors to help monitor the occupants’ behaviors and regulate their energy
consumption. Currently, UK policy advises installing sustainable technologies in houses. Hence,
prediction of smart building energy consumption is important in improving consumption. However,
the main challenge in smart building energy management systems is low prediction accuracy [9].

Energy consumption prediction in smart buildings is essential and it represents an important
piece of information for efficient set points of critical loads (such as Heating, Ventilation and Air
Conditioning (HVACs) and scheduling of energy-producing assets. Studies have shown that
predicting the consumption of each appliance will improve the attitude of the occupants towards
energy saving [10]. The ability to forecast energy consumption can aid occupants in adjusting the
operation of buildings thus, leading to improved energy efficiency management, sustainable
development, reducing energy cost, environmental influence and reducing expenses on energy [11].
Energy from the power plant is instantly consumed as it is generated, hence, predicting accurate
energy consumption in advance is important for the stability of the power supply.

Energy management at home has received a lot of attention in recent times because the final
consumers basically must drastically reduce the overall electricity consumed as the cost-of-living
continues to skyrocket. Therefore, more technology-based approaches are being applied to automate
energy management. Several intelligent approaches, such as mathematical models and classical
machine learning models, for energy consumption prediction have been explored in the past by
researchers. However, approaches based on deep neural networks are considered more accurate and
robust than other previously used methods [12, 13, 14].

This article makes the following contributions to the state of the art.
eProviding a comprehensive review of existing energy prediction approaches in smart buildings
*The study investigates the use of a hybrid Convolutional Neural Network, CNN-Gated Recurrent
Unit, Long Short-Term Memory, and CNN-Bidirectional LSTM in predicting smart buildings'
energy consumption.
¢ Extensive performance comparisons of the proposed models with other state-of-the-art deep
learning models.

2. Related Works

Predicting energy usage has become an important topic and a notable low-cost approach to
energy efficiency which has progressed quickly [15]. Over the last decade, the increasing energy
demand has prompted researchers to find the best approaches to reducing energy consumption,
making energy decisions, and improving energy utilization.

Several methods have been implemented for the prediction of energy consumption, this includes
time series [16], ARIMA [17], regression models [18], support vector machine and support vector
regressor [19], and deep neural network [20]. These prediction models are categorized into four major
groups namely: statistical models, machine learning models, deep learning models, and hybrid
models. The study in [21] implemented a clustering method to analyze a building's electricity
consumption daily, although an autoencoder algorithm was used, it failed to detect outliers,
especially in the large dataset where outliers are present. Another study in [22] utilized a multiple
regression model to predict energy demand of heating systems. An accuracy of 0.9744 root square
was recorded by the model and found 90 percent of the computed value have errors below 20%. From
the study, it is learned that the regression model is best for quality and speed when used with a
smaller number of variables.

In [23] a study was performed to analyze and predict the energy consumed in smart buildings
in Malaysia. In that study, the hourly consumption data were collected from commercial smart
buildings and K-Nearest Neighbour (KNN) method was used for energy consumption prediction.
The result depicts high accuracy with k =5. However, new research presented in [24] argues that the
proposed method in [23] used only KNN to predict energy consumption, and since no other model
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was compared against, it was difficult to ascertain if KNN was the best method. Thus, researchers in
[24] added ANN and SVM to compare against KNN. The study demonstrates that despite ANN and
SVN being more complex than KNN, SVN still showed the most promising result in analyzing and
predicting consumption.

Another study in [25] introduced a forecasting method that implements a 2-stage procedure. The
first stage performance has a MAPE of 5.21 percent which was considered average. However, SVM
appeared unsuitable for large data because as the dataset increased the training time also increased
linearly. In [26], researchers wanted to prove that SVR can aid energy-saving decision-making when
applied to energy consumption prediction. The result of the SVR study confirmed their hypothesis
that SVR can produce good accuracy with r2 more than 0.99 and MSE less than 0.001, hence making
it ideal for predicting building energy consumption, especially where there is the unavailability of
data or missing data.

Comparatively, experimental results from previous machine learning studies show that every
method performed better or worse depending on factors such as the size of dataset, data pre-
processing, duration of training etc. Therefore, several authors decided to use more advanced deep
learning technologies to make the prediction. For instance, [11] used a multilayer perceptron to
forecast heating and cooling loads in a residential building, in which the model was trained on the
parameter data. The authors reported a high coefficient of 0.993. Researchers in [27] used a residual
neural network to forecast electrical energy consumption which provides a day-ahead estimation in
a residential building, the forecast was tested individually on several residential buildings, and the
model obtained an accurate result with an error rate of 8% which was better than the base model. The
significant increase in performance of the energy model was due to the use of hybrid machine
learning.

Apart from the use of conventional machine learning algorithms for energy consumption
prediction, recent developments and successes in the use of deep learning for solving complex
forecasting problems based on time series data has gained focus by researchers [45]. For example, the
study in [28] made use of various deep learning methods (Gated Recurrent Unit (GRU), LSTM, and
RNN) to predict the energy consumption of three smart buildings. The result proved that
hyperparameter tuning improved the prediction accuracy of energy consumption in all three
buildings. The study presented in [29] developed a hybrid CNN-GRU model to predict energy
consumption in a residential building, the model performed well when compared to other base
models. However, GRU had a shortcoming, it was not as versatile as LSTM.

Over the past decade, Convolutional Neural Network (CNN) has achieved ground-breaking
results for performing excellently well in solving computer vision problems. This has prompted both
developers and researchers to solve more complex tasks that the classic artificial neural network
(ANN) could not solve [30].

A novel Multi-Channel and Multi-Scale Convolutional Neural Network - Long Short-Term
Memory (MCSCNN-LSTM) was presented by [19] to predict energy consumption using only
historical data. The proposed hybrid model is compared against other deep learning models. The
authors confirmed that the hybrid model has superior performance when predicting irregular trends
and patterns of energy consumption.

Overall, there have been several efforts to predict energy consumption in smart buildings.
Several popular techniques including KNN, support vector machine (SVN), ANN, convolution
neural network (CNN), and long-term short memory (LSTM) had been successfully applied in the
prediction of energy consumption with moderate performance, poor data processing, little or no
parameter tuning, and the dataset size was also found to be the major contributors to the poor result
of the model. Although Bi-directional LSTM had the best performance in accuracy when
implemented in smart buildings, in this article, we combined CNN-LSTM to produce a better energy
prediction in the buildings because of the ability of CNN to exploit spatial correlation and automatic
extraction of discriminating features from input data. However, the structure of the CNN does not
consider the temporal dependence between past and future data and that is where the LSTM comes
in. The LSTM layers can capture and remember long term and short-term seasonality such as yearly
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and weekly patterns thus eradicating vanishing gradient problems leading to faster and accurate
modelling.

3. Methodology

3.1. Proposed Hybrid Framework for Energy Consumption Predictions in Smart Buildings

Figure 1 below illustrates the proposed hybrid method for energy consumption prediction. The
study uses a real energy consumption dataset from a smart building. Spatial factors associated with
the time series variables which are multivariate are extracted from the CNN convolution layer and
the pooling layers and fed into LSTM layer with outliers removed. The LSTM layer uses transmitted
spatial characteristics to model irregularly in the time series data such as irregular time patterns,
trends, and seasonality. Lastly, the CNN-LSTM model in a fully connected state can produce
predicted energy consumption. The predicted values of the energy consumption are then analyzed
and evaluated by relevant performance metrics [40].

3.2. Theoretical Overview of the Proposed Solution

In this section, the theoretical underpinnings of our methods as illustrated in Figure 10 are
presented and then discussed.

3.2.1. Convolutional Neural Network Building Blocks (layers)

A convolutional neural network consists of multiple layers of architecture known as building
blocks. CNN can transform and process time-series data using three layers namely, the convolutional
layer, pooling layer, and fully connected layer [31].

a.  The Convolutional Layer

This layer in the CNN architecture is the most important component that performs two types of
operations such as convolution operation and non-linear operation. Convolution operation consists
of the time series data and the kernel. while nonlinear operation is an activation function that is
usually applied to the convolution operation's final output. The kernel is also called a filter, it
performs convolution on time series data. A kernel is like a grid of discrete numbers, each number in
the grid is called the weight of the kernel. During the CNN model training process, numbers are
randomly assigned to each weight of the kernel. Then, for each training period (epoch), the weights
assigned to the kernel are tuned, making the kernel learn to identify and extract important features
[32].

b.  The pooling Layer

The pooling layer is important in a convolutional neural network, it is also called the down-
sampling layer, it aids the prevention of a model getting overfitted and helps maintain invariance in
a model. Pooling layers aid in reducing the size of the model layer while decreasing the neurons in
networks and extracting important features. In the pooling layer, there are different pooling
techniques like max polling, min pooling, gated pooling, average pooling, tree pooling, etc. Average
pooling and max pooling are the most used techniques in the pooling layer. Max-pooling shows the
maximum output from all units while average-pooling reports average output from all windows.
Max-pooling down-samples the weights assigned to the kernel in the convolutional layer, therefore,
reducing the possibility of overfitting and computational cost [33].

c.  Fully Connected Layer

FC layer is the last layer of CNN architecture. In this layer, there is full connectivity of neurons

in the first and last layers. This layer helps outline the representation between the input and output.
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Figure 1. The proposed framework for energy consumption prediction using hybrid deep neural
networks.
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Figure 2. Schematic diagram showing a typical CNN model, LeNet architecture.

3.2.2 Long Short-Term-Memory Approach

LSTM is a type of Recurrent Neural Network that learns the hidden relationships and patterns
between data points in sequence and has contributed to widely to deep learning success stories [43].
It is built to handle long-term memory tasks, like speech recognition [34], music generation [35], and
energy consumption prediction and forecasting [36]. Also, long short-term memory is rained with
historical time series data to make predictions of the future energy consumption of a building.

About a decade ago, long short-term memory models gained immense interest in building
energy consumption prediction and forecasting domain, it has been used more frequently with other
deep learning models like GRU, RNN, CNN, and DNN, this is because of the tremendous success is
its capability to solve time series tasks, memorize information for a longer time in the network, and
its ability to reduce exploding and vanishing problems associated with gradients present in
traditional recurrent neural network units and [37].
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3.2.3. Long Short-Term Memory Block

LSTM building block comprises memory cells that are self-connected. Also, these cells can
remember the significant state in the past. Furthermore, three gates in the LSTM block permit the
LSTM memory cell to store information over a long time [38]. The gates are forget, input and output
gates. The input gate decides on the needed information to be included and updated in the current
timestamp for future prediction. Forget gate decides to what extent information should be
remembered or forgotten from previous time stamps. While the output gate determines future
predicted values. The operation of three gates can mathematically be expressed as follows
respectively in equations (1-6) [33].

fO= a(Wr [V, xt] + by (1)
iO= oW, [RE,xt] + b, )
0= g(W,[h¢V,xt] + b, 3)
¢®= tanh (W[, xt] + b, 4)
¢® = FO 4 D 4 (O 4 5© (5)

h® = 0® x tanh(c®) (6)

Where equations (1-3) describe the forget, input and output gates. Equations (4-5) uses the input
and the output gates of the candidate cells to compute the values for the new cell. Equation (6) uses
the output gate. 0*((t)) and new cell value to compute the output of the new cell.

LSTM block
/l—l Lo} > (t)
"9 P ()
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Figure 3. Schematic diagram of LSTM memory block [44].

3.3. The Proposed Hybrid CNN-LSTM Method

Figure 4 below shows the high-level architecture of CNN-LSTM method for energy
consumption prediction in smart buildings. This study uses a real energy consumption dataset from
a smart building. Spatial factors associated with the time series variables which are multivariate are
extracted from the CNN convolution layer and the pooling layers and fed into LSTM layer with
outliers removed. The LSTM layer uses transmitted spatial characteristics to model irregularly in the
time series data such as irregular time patterns, trends, and seasonality. Lastly, the CNN-LSTM
model in a fully connected state can produce predicted energy consumption. The predicted values of
the energy consumption are then analyzed and evaluated by several error metrics [39].
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Figure 4. The high-level Architecture of the Proposed CNN-LSTM model.

Predicting energy consumption using the CNN-LSTM methods requires a series of connections
between CNN and LSTM. The model can keep irregular time information and extract complicated
features from the building’s sensor variables collected to predict energy consumption. First, CNN-
LSTM upper layer is made up of CNN. This CNN layer receives features that can affect energy
consumption such as smart appliances, and voltage as well as building characteristics like the
behavior of occupants, household occupancy, and data time. The CNN layer is made up of an input
layer, a hidden layer, and the output layer, features, and variables from the sensor are received by
the input layer, the output layer fed in the import features from input layer to LSTM, while the hidden
layer is the heart of the network where the information processing mechanism happens, it usually
consists of other hidden layers such as convolution layer, ReLU layer also known as the activation
function. In the convolution layer, the convolution operation is applied to the incoming sequence of
time series order, then the result is passed into the next layer. Visual stimulation of individual
neurons is emulated by the convolution operation. The individual neuron in the convolution layer
then processes only the multivariate data for the receiving field thus reducing parameters and
making the proposed network deeper.

LSTM is the lower layer of the CNN-LSTM model that memorizes time information regarding
significant features from the energy consumption sensor extracted from the CNN. LSTM can
remember long-term information by updating the hidden state which makes it easy to understand
the temporal relationship. The obtained output value from the CNN layer is passed into the LSTM
gate units. LSTM is best for predicting energy consumption because it solves vanishing and explosive
gradients associated with RNN. The LSTM is made up of memory cells that update their current state
using each gate unit activation function. The activation function is a continuous value from 0 to 1 and
it is controlled to fit into the value.

it = S(Wpipe + Wiihe—y + W0 ceq + by

)

ft = S(Wpfpt + thht—l + cho Ci—1 + bf
8)

0t = §(Wpope + Whohi1 + Wep0 ¢ + b,
)

Where h: is the LSTM cell hidden state which is updated in every step t. the equations (10-12)
above show the individual gate units (input, output, and forget gate) operation that constitutes the
LSTM, notation i, f, and o represent the output of the individual gate.

ct=flocy + i o S(Wpepr + Wichey + b
(10)

ht = ot 0 8(ct)

(11)

From the above equations (7-11), the notation ¢ and & are the hidden states. Also, the cell states
that are determined through the gate units, the activation function such as Tanh is represented with
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the o notation, the activation function non-linear making it possible to squash the input into the -1,1
range. Bias vector is the b notation while w represents each gate unit weight matrix. The notation Pt
stores complex features as output and the output is used in the LSTM memory cell as input. CNN-
LSTM network that uses LSTM cells is superior in predicting energy consumption because it can
model time information signals and provide cutting-edge results [40].

The fully connected layer which is the last layer of CNN-LSTM architecture is a type of feed-
forward ANN, it consists of neurons connected with each neuron from the pooling layer to generate
energy consumption over a certain time. The fully connected layers receive input from the pooling
or convolutional layer, these inputs are usually in the form of metrics like feature maps, and these
metrics are fed into the LSTM to produce a final output. The output value from LSTM is flattened to
produce a vector feature and this vector is passed as input into the fully connected layers. [40].

4. Experiments and Results

In this section, we present the evaluation experiments of the proposed solution. A total of 12
models including deep learning models such as LSTM, CNN, GRU, and hybrid models including
CNN-LSTM, CNN-GRU, and CNN-Bidirectional LSTM were built and evaluated for their ability to
accurately predict energy consumption in smart buildings. The experiments were conducted on
minutely, hourly, and daily time intervals, and the model performance was measured using the root
mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE) metrics.

The proposed CNN-LSTM model was compared to other models in terms of its ability to make
short-term, medium-term, and long-term predictions. The dataset was aggregated from minutely
timestamps to hourly and daily timestamps to evaluate the model performance at different time
intervals. A sliding window algorithm with a window size of 2 was utilized in the experiment, where
the model was fed with two consecutive time steps as input and used to predict the next value.

4.1. Energy Consumption Dataset and Analysis

In this study, the energy consumption data of a seven-story office building in Thailand was
adopted and used for the experiments [46]. Several time series variables included in the dataset were
used to predict the plug load energy consumption. This dataset is displayed as a one-minute time
unit with real energy consumption data collected from the office building. A total of 790,558
datapoints from the year 2018 to 2019 specifically to only floor one of the office buildings was used
for this experiment and a total of 49,456 missing data were recorded. Table 1 below describes each
variable contained in the dataset. In addition, the dataset was decomposed as shown in the table into
these components to fully understand the data better. Seasonality is usually periodic up and down
present in the dataset, trends are patterns in the data that span across the seasonal period while
residual is the noise present in the data that cannot be explained. Figure 6 shows the trends in
seasonality and residual energy consumption for one of the plug loads represented as variable
“z1_plug”.

z1 light z1 plug z2 AC1 z2 AC2 z2 AC3 z2 AC4 z2 light z2 plug 23 light z3 plug z4 light

Date

2018-07-01 00:00:00 1294 18.96 4524 0.01 0.01 0.00 13.76 17.64 10.92 0.89 35.76
2018-07-01 00:01:00 1297 18.55 4528 0.02 0.0 0.01 13.76 1721 10.95 0.87 35.81
2018-07-01 00:02:00 1297 18.55 4524 0.01 0.01 0.01 13.79 17.18 10.94 0.86 35.78
2018-07-01 00:03:00 1298 18.58 4526 0.02 0.01 0.00 13.81 16.64 10.94 0.85 35.83
2018-07-01 00:04:00 13.01 1860 4522 0.02 0.01 0.01 13.83 15.69 10.97 0.85 35.86

Figure 5. An Overview of the Energy Consumption Dataset. The electricity consumption dataset is of
individual air conditioning units, lighting and plug loads in each of the 33 zones of the 33 zones of
the building [46]
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Figure 6. Insights from the time series dataset showing trends and seasonality of energy consumption
for a single plug load

Table 1. Description of features in the dataset

Variable Names Description
Date Year, month, day, hour, minute, and second the electricity energy consumption was
recorded on the first floor of the office buildings
z1_light power consumption of lighting load for zone 1(kW)
z1_plug power consumption of plug load for zone 1(kW)
z2_AC1 power consumption of AC unit 1 (kW)
z2_AC2 power consumption of AC unit 2 (kW)
z2_AC3 power consumption of AC unit 3 (kW)
z2_AC4 power consumption of AC unit 4 (kW)
z2_light power consumption of lighting load for zone 2(kW)
z2_plug power consumption of plug load for zone 2 (kW)
z3_light power consumption of lighting load for zone 3 (kW)
z3_plug power consumption of plug load for zone 3(kW)
z4_light power consumption of lighting load for zone 4 (kW)

4.1.1. Energy Consumption by Month

A comparison was done to see the trend of energy consumption during the summer and winter
months. From Figures 7(a & b) the trends show that from June to August, the energy consumed was
below 40KW. This could be because, during summer, people hardly turn on the heaters which
consume more energy. Also, the consumption of energy was less compared to the winter month when
energy consumption was above 40KW with more plug load.

4.1.2. Energy Consumption by Hour

Figures 7(c) shows energy consumed per hour, 12:00 pm to 2:30 pm recorded the most energy
consumed. From 3:30 pm to 4 pm, there was a drastic drop in consumed energy, this could be because
the afternoon work shift was over, and staff had to turn off all loads. From 4 pm to 5:30 pm, there

was a peak in energy consumed, this could also mean that staff for the evening shift has resumed
office.
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Figure 7: Analysis of experimental dataset. Figures 7(a & b) show the energy consumption trends
from November to December (Winter) and July to August (Summer). Figure 7(c) shows the energy
consumption trends at different hours of the day.
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Figure 8: Splitting of data into training and test sets, the data was split by 80% and 20% for training
and test sets respectively.

4.2. Model Development and training

4.2.1. Converting a Time Series Task to a Supervised Learning Task

Generally, a time-series problem needs to be formatted into a supervised learning problem to
make predictions. The time series deep learning-based method requires an input and output to be
given to the model to predict or forecast the next value. sliding window technique was applied to the
multivariate time-series data to enable using it as input. sliding window algorithm with a window
size equal to two (window size =2) was used which means the model takes a 2-time step (mins, hours,
days, or months) into the future to make a prediction of energy consumption for the third minutes,
hours, days or month and take the predicted value as input to predict the fourth term value.

4.2.2. Split the Data into Training, Validation, and Testing
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The first step was to split the data into training, validation, and testing sets. As can be seen in
Figure 8, 70 percent of the data was to train the model, 10 percent to validate the model and see how
well it can generalize on the test data, and 20% was assigned to testing the model and to see how well
it could accurately make a prediction. The Figure 8 illustrates the data split.

4.2.3. Developed Models for Energy Consumption Predictions

A total of 12 models including deep learning models such as LSTM, CNN, GRU, and hybrid
models including CNN-LSTM, CNN-GRU, and CNN-Bidirectional LSTM were built and evaluated
for their ability to accurately predict energy consumption in smart buildings. The experiments were
conducted on minutely, hourly, and daily time intervals, and the model performance was measured
using the root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE)
metrics.

The proposed CNN-LSTM model was compared to other models in terms of its ability to make
short-term, medium-term, and long-term predictions. The dataset was aggregated from minutely
timestamps to hourly and daily timestamps to evaluate the model performance at different time
intervals. A sliding window algorithm with a window size of two was utilized in the experiment,
where the model was fed with two consecutive time steps as input and used to predict the next value.

4.3. Evaluation Metrics

The performance of the proposed CNN-LSTM model is evaluated by MAE, MSE, and RMSE.
These performance metrics evaluate the variance between the actual and predicted values.

MSE = 3%, (v, - 1)’ (12)
MAE = -3, - 5| (13)
RSME = |13, (v, - %)’ (14)

Where Y; and Y represent the actual time series value the predicted value respectively. MSE
(equation 12) measures the average square value of the predicted and actual values, MAE (equation
13) shows the percentage variance of the predicted values, and RMSE (equation 14) estimates the
percentage variance of the predicted and actual values [41, 42].

4.4. Model Evaluation

To evaluate the developed models, several experiments were conducted. The first of these
experiments is meant to validate the efficacy of CNN-LSTM hybrid model and see how well it
performs in predicting energy consumption at two minutes intervals. Subsequent experiments were
then conducted to compare it to LSTM, CNN, and GRU deep learning models. The results were
evaluated using RMSE, MSE, and MAE as the error metrics as defined in section 4.3.

4.4.1. Performance Evaluation of the Proposed Model and Other Hybrid Deep Learning Models

The results of the hybrid models for time series energy consumption prediction are presented in
the table below. The performance of the models was evaluated using the Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE) metrics. The results showed
that the proposed CNN-LSTM model outperformed the other hybrid models with a MSE of 0.109,
demonstrating its outstanding capability in predicting short-term energy consumption. The
experiment confirms that the CNN-LSTM model is a superior choice compared to other hybrid
methods for short-term energy consumption prediction.
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Table 2. Evaluation metrics of the proposed model and other deep learning models

Models RMSE MAE MSE

CNN - LSTM (Proposed Model) 0.330 0.117 0.109

CNN - GRU 0.369 0.189 0.136

CNN - Bidirectional LSTM 0.3477 0.1339 0.1209

CHN-GRU Model for Predicting Hourly Energy Consumption
12 4 = Predictions
— Actuals
104
Energy Conzumption
(KW)
B
6
4 o
0 2 @ 8 &0 100
Number of Obzervationz
Figure 9: Performance of the CNN-GRU hybrid model showing the accuracy of predictions for hourly
energy consumption
CNN-Bidirectional LSTM Model for Predicting Hourly Energy Consumption

12 A — Predictions
J —— Actuals

10 4

Energy Consumption 8

(EW)

Number of Observations

Figure 10: Performance of the CNN-LSTM hybrid model showing the accuracy of predictions for
hourly energy consumption
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CMNN-Bidirectional LSTM Medel for Predicting Hourly Energy Consumption
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Figure 11: Performance of the CNN-Bidirectional LSTM hybrid model showing the accuracy of
predictions for hourly energy consumption

4.5. Predicting Daily Energy Consumption

The third experiment evaluated the performance of the proposed CNN-LSTM model for
predicting daily energy consumption. The dataset was pre-processed to convert it from hourly
timestamps to daily time intervals, resulting in 548 observations. The proposed model was compared
to other hybrid deep learning models. The results as shown in Table 2, demonstrate that the mean
square error values were higher than zero due to the small dataset used in training. Despite this, the
proposed model outperformed other models (Figures 9-11) in predicting trends in the data, achieving
the lowest MSE value of 28.95, proving its superiority.

Table 3: Model evaluation for daily energy consumption prediction

Models RMSE MAE MSE

CNN - LSTM (Proposed Model) 5.380 3.649 28.95
CNN - GRU 8.366 7.270 70.04

CNN - Bidirectional LSTM 11.97 11.22 143.4

CNN-LSTM Model for Predicting Daily Plug load Energy Consumption

30 = Predictions
=== Actuals

25

Energy Consumption 20

(KW)
15

10

0 20 40 60 80 100

Number of Observations

Figure 12: Performance of the CNN- LSTM hybrid model showing the accuracy of predictions for
daily energy consumption
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CNN-Bidirectional LSTM Model for Predicting Daily Plug load Energy Consumption
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Figure 13. Performance of the CNN-Bidirectional LSTM hybrid model showing the accuracy of
predictions for daily energy consumption.

CNN-GRU Model for Predicting Daily Plug load Energy Consumption
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Figure 14. Performance of the CNN-GRU hybrid model showing the accuracy of predictions for
hourly energy consumption.

4.6. Model Prediction Performance with Time Change Resolution

The energy consumption prediction experiment was categorized into short-, medium-, and long-
term prediction. The experiment was carried out by aggregating the data by minutes, hours, and
days’ time resolution. Table 4 shows each model's performance according to changes in time. As the
time resolution decreases the error rate increases. This is because, at each stage of aggregating the
dataset, the number of observations keeps decreasing leaving smaller data to be trained by the model.
Furthermore, a deep neural network requires a larger amount of data to increase performance.
However, at each stage of the time change, the proposed model outperformed the other models
which proves that the proposed model is superior.

Table 4. Accuracies of both the individual deep learning model and their hybrid counterparts,
showing the performances of the models for minutely, hourly and daily energy consumptions.

Models Time Resolution Error Metrics
RMSE MAE MSE
LSTM Minutely 0.329 0.120 0.188
CNN 0.385 0.220 0.148
GRU 0.335 0.164 0.112
CNN-LSTM

(proposed model) 0.330 0.117 0.109
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CNN-GRU Hourly 1.689 1.070 2.855
CNN-Bi LSTM 1.634 0.982 2.678
CNN-LST™M 1.590 0.895 2.530
(proposed model)
CNN-GRU Daily 8.366 7.270 70.04
CNN-Bi LSTM 11.97 11.22 1434
CNN-LSTM (proposed 5.380 3.649 28.95
model)

5. Discussion

This research aimed to see how well CNN-LSTM can make predictions accurately, a total of 12
deep neural networks and hybrid neural networks was built and compared with the proposed model.
The models were built to make predictions for minutes, hourly, and daily energy consumption with
window size set to 2. From experiments, all models performed well in predicting trends and patterns
present in the dataset.

For minutes interval prediction, the proposed CNN-LSTM model had the best MSE loss error of
0.109 which proved that CNN-LSTM is a superior model in predicting energy consumption for short
term. The error metrics for the other models were not highly significantly different from the proposed
model, however, the proposed model was able to predict the peak load in the data set that the other
models could rarely predict.

The second experiment on hourly prediction proved that the proposed model is superior
compared to the other models. with the decrease in number of observations, the proposed model was
able to predict trends regardless and achieved the least MSE of 2.530. CNN-Bi LSTM followed with
a MSE of 2.678.

The last experiment used the daily dataset to predict energy consumption. The number of
observations when converted from hourly data to daily data decreased to 548, which is notably small
to train a hybrid deep learning model. However, the experiment was performed regardless, and this
experiment proved that CNN-LSTM is indeed a superior model. Only the proposed model was able
to predict the trends in the dataset. The proposed model achieved the least MSE of 28.95.

6. Conclusions

The proposed CNN-LSTM models and its variants proved to be robust and efficient for
predicting energy consumption in smart buildings. The model outperformed other deep learning
models in predicting energy consumption and energy trends on short term and medium term. The
model's performance was evaluated using energy consumption data aggregated at different time
resolutions ranging from minutes to daily. Results showed that as the time resolution decreased, the
error rate increased due to insufficient model training data. However, the proposed model still
achieved the least error rate and accurately predicted daily energy consumption even with a small
dataset. The use of the proposed model in energy management can lead to effective and efficient
energy utilization.

However, the model's accuracy decreased when predicting hourly and daily energy
consumption due to the aggregation of data and resulting smaller dataset for training the model. To
achieve a more robust and optimal performance, larger datasets are required. Additionally, collecting
data from multiple sources would enhance the generalizability of the model and validate its
performance.
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