
Article Not peer-reviewed version

Robust Low-Overlap Point Cloud

Registration via Edge-Guided Features

and Quaternion Averaging

Yiwei Zhou * , Mingfeng Li , Ding Tan , Bo Yang

Posted Date: 23 June 2025

doi: 10.20944/preprints202506.1804.v1

Keywords: point cloud registration; edge feature; feature descriptor; quaternion averaging; iterative closest

point

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4538040


 

 

Article 

Robust Low-Overlap Point Cloud Registration via 
Edge-Guided Features and Quaternion Averaging 
Yiwei Zhou *, Mingfeng Li, Ding Tan and Bo Yang 

School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China 
* Correspondence: yiweizhou320@gamil.com 

Abstract 

Robust point cloud registration under low-overlap conditions remains a significant challenge in 3D 
computer vision and perception. To address this issue, we propose a novel registration framework 
that integrates edge-guided feature extraction, FPFH-based correspondence estimation, and 
quaternion averaging. The proposed method begins by detecting edge features through a normal-
extrema-based strategy, which identifies geometrically salient points to enhance structural 
consistency in sparse overlapping regions. Next, FPFH descriptors are employed to establish point 
correspondences, followed by quaternion averaging to obtain a globally consistent initial alignment. 
Finally, a point-to-plane ICP refinement step is applied to improve the registration precision. 
Comprehensive experiments are conducted on three benchmark datasets—Stanford Bunny, Dragon, 
and Happy Buddha—to evaluate the performance of the proposed method. Compared with classical 
ICP and RANSAC-ICP algorithms, our method achieves significantly improved registration accuracy 
under low-overlap conditions, with the highest improvement reaching 75.7%. The results 
demonstrate the effectiveness and robustness of the proposed framework in challenging partial 
overlap scenarios. 

Keywords: point cloud registration; edge feature; feature descriptor; quaternion averaging; iterative 
closest point 
 

1. Introduction 

The convenient acquisition of point cloud data has led to its widespread application in image 
processing and object reconstruction [1]. Point cloud registration (PCR) is a fundamental problem in 
this domain, aiming to estimate the six-degree-of-freedom relative pose between two point clouds [2] 
by determining the optimal rigid transformation matrix. Accurate estimation of this transformation 
is critical for downstream tasks such as 3D reconstruction and localization. 

Classical registration methods, such as the Iterative Closest Point(ICP) algorithm proposed by 
Besl and McKay [3], and the Normal Distributions Transform (NDT) introduced by Magnusson and 
Martin [4], have demonstrated strong performance under high-overlap conditions. However, these 
methods often converge to local minima when dealing with low-overlap data. To address this, Rusu 
et al. incorporated the Random Sample Consensus (RANSAC) algorithm [5] to provide a coarse 
alignment, which is subsequently refined using ICP [6]. While this pipeline helps avoid local traps, it 
remains sensitive to outliers and performs poorly in sparse correspondence scenarios [7]. 

Recent learning-based methods, such as PRNet by Y. Wang et al. [8] and the improved HOUV 
algorithm by Yan Y. et al. [9], have shown promising performance by leveraging large-scale feature 
matching in overlapping regions. However, their reliance on sufficient overlap makes them less 
effective in low-overlap cases, where feature sparsity severely hampers registration accuracy [10]. 

Several studies have explored alternative strategies to address this challenge. Zhang et al. 
introduced a method combining shape and texture features [11], while Sun et al. proposed a 
registration framework incorporating Intrinsic Shape Signature (ISS) keypoints as edge features [12]. 
These approaches improve robustness under low-overlap conditions. Nonetheless, traditional edge 
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detectors such as ISS and Harris-3D depend on global geometric statistics [13], making them 
computationally expensive and less scalable for dense point clouds. 

Normal Vector Extrema Change (NVEC) has been widely adopted in differential geometry to 
describe sharp variations in surface curvature, and edge extraction methods based on this principle 
have been widely applied in 3D printing [14] and boundary detection in medical imaging [15]. 
Meanwhile, quaternions, as compact mathematical tools for representing rigid body transformations 
in three-dimensional space, have been extensively used in point cloud registration [16], especially in 
multi-view alignment [17] and spacecraft attitude estimation [18]. 

Motivated by these insights, this study presents an edge-guided and quaternion-averaged fusion 
algorithm to enhance registration robustness under low-overlap conditions, by leveraging the 
complementary strengths of NVEC-based edge detection and quaternion averaging. 

2. Research Methods 

In this study, two input point clouds are defined as the source and target point clouds. First, 
edge features are extracted from the raw point cloud using the Normal Vector Extrema Change 
method. Subsequently, Fast Point Feature Histogram are computed for the extracted edge points, and 
feature correspondences are established through KDTree-based nearest neighbor search. An initial 
pose estimation is then performed using these correspondences, with an emphasis on preserving 
local geometric consistency. Finally, a point-to-plane ICP algorithm is applied for fine alignment, 
completing the precise registration process. The complete workflow is illustrated in Figure 1. 

 

Figure 1. Framework of the Registration Pipeline. 

2.1. Edge Extraction Based on Normal Vector Extrema Change 

Based on the definition of geometric variation, this study introduces a method for edge feature 
extraction grounded in Normal Vector Extrema Change (NVEC). By computing the maximum 
angular deviation between normal vectors in the local neighborhood of each point in the cloud, the 
method determines whether the point lies on a geometric edge. This approach effectively reduces 
computational complexity while improving the efficiency of edge detection. 

Let the input point cloud be denoted as { }
=1

N

i i
p . A voxel downsampling process is applied to 

normalize point density and reduce computational redundancy. The 3D space is partitioned into 
cubic voxels, and each voxel is represented by the geometric centroid of the points it contains, 
resulting in a sparse point cloud dP . The voxel size is estimated as follows: 

πδ
= ⋅∆3

3L l
N

 (1) 

where δ denotes the sampling ratio, N is the number of original points, and ∆l is the maximum 
edge length of the point cloud’s bounding box. This adaptive strategy ensures the preservation of 
geometric features across varying scales. 

For each point i dp P∈ , a local neighborhood is constructed, and its normal vector is estimated 

using Principal Component Analysis (PCA). A covariance matrix is computed within a spherical 
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region, and the normal vector 


in is defined as the eigenvector corresponding to the smallest 

eigenvalue. To avoid directional ambiguity, all normals are consistently oriented toward the centroid 
of the point cloud. 

For each point ip , its k-nearest neighbors in Euclidean space form the neighborhood set { }
=1

k

j j
p

, denoted as ( )kN i . A radius constraint is applied: 

− <i jp p r  (2) 

where k is typically set between 10 and 30 to ensure local stability, and 3r L= is chosen to constrain 
outlier inclusion and preserve local geometric consistency. 

Let 


in and 


jn denote the normal vectors of point ip and its neighbor jp , respectively. The 

angle between them is computed as: 

θ
 ⋅ =   
 

 

 
arccos i j

ij

i j

n n

n n
 (3) 

Since all normals are normalized, this simplifies to: 

( )θ = ⋅
 

arccosij i jn n  (4) 

The maximum angular deviation of the normal vector is defined as the edge response of point 

ip : 

( )
θ

∈
= max

k
i ijj N i

E  (5) 

If iE approaches zero, the point lies on a smooth surface; conversely, a large value indicates a 

geometric edge. 
To improve robustness, the variance of angular deviations is also used as a secondary criterion: 

( )σ θ θ
=

= −∑
2

2

1

1 k

i ij l
jk

 (6) 

According to empirical engineering experience, the angular threshold θthresh  is set to 12°, and 

the variance threshold σ thresh  is set to 8°. A point is classified as an edge point if: 

i threshE θ>  and i threshσ σ>  (7) 

To further suppress noise and outliers, an edge response range constraint is imposed: 

θ θ> >high i lowE  (7) 

where θhigh  is set to 45°, and θlow  is set to 8°. These thresholds help eliminate spurious boundaries 

caused by measurement noise. 

2.2. FPFH Descriptors and Matched Point Pairs 

To construct local descriptors for edge points, the Fast Point Feature Histogram (FPFH) method 
is employed due to its robustness in capturing neighborhood geometry while maintaining invariance 
to rigid transformations. For each edge point ip , a spherical neighborhood with radius r is defined 

to balance local geometric stability and descriptive capability. 
Let the set of edge descriptors for the source point cloud sP be denoted as { }ip , and those for 

the target point cloud tQ as { }jq . For each descriptor in the source set, its two nearest neighbors in 
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the target descriptor space—denoted as ′
ip and ′

iq —are identified, with corresponding distances 

1d and 2d , respectively. 

To suppress ambiguous matches, a ratio test is applied. A match is accepted only if: 

ρ<1

2

d
d

 (8) 

where ρ is the ratio threshold, set to 0.8 in this study. This filtering strategy helps eliminate incorrect 
correspondences arising from repetitive structures or similar local patterns. 

To further enhance the robustness of the matching process, a mutual consistency check is 
performed, inspired by the concept of inverse consistency. Specifically, if a point ip in the source 

point cloud is matched to a point jq in the target, the reverse correspondence—from jq back to ip

—must also hold: 

→ →,i j j ip q q p  (9) 

This constraint ensures one-to-one matching and eliminates inconsistent or one-to-many 
correspondences, which are common in densely sampled point clouds. As a result, the geometric 
consistency of the final correspondences is significantly improved. 

The final set of reliable matched point pairs, filtered by both the ratio test and mutual consistency 
check, is denoted as ( ){ },i ip q , represented as the set M . 

2.3. Local Rigid Transformation Estimation and Quaternion Averaging 

For the constructed set of matched point pairs, density-based spatial clustering is performed on 
the source point cloud P  using the DBSCAN algorithm. This method identifies core points whose 
local neighborhoods contain a sufficient number of nearby points and groups them into clusters kC

. Points not assigned to any cluster are discarded. 
This strategy naturally filters out outliers introduced during descriptor matching. For each point 

in the resulting valid clusters kC , its corresponding point in the matches pair set M is retrieved to 

form a new set of valid correspondences ( ){ },ik ikp q , collectively denoted as kM . These pairs form 

the basis for subsequent rigid transformation estimation. 
For each matched point pair set kM , the rigid transformation is estimated using Singular Value 

Decomposition (SVD). The centroids of the source and target point sets are first computed: 

= =

= =∑ ∑
1 1

1 1,
k kN N

i i
i ik k

p p q q
N N

 (10) 

The centered covariance matrix is then constructed: 

( )( )
=

= − −∑
1

kN T

k i i
i

H q q p p  (11) 

Applying SVD to kH , we obtain: 

= ∑ T
k k k kH U V  (12) 

The resulting rotation matrix kR  and translation vector kt  are given by: 

= = −,T
k k k k kR V U t q R p  (13) 

This transformation represents the estimated rigid alignment for the selected cluster. 
Since rigid transformations lie in the Special Euclidean group ( )3SE , direct averaging in 

Euclidean space is not valid. To obtain a globally consistent estimate, the quaternion representation 
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of each rotation matrix ( )∈ 3kR SO is computed and denoted as ∈4
kq . These quaternions are then 

averaged to obtain a representative rotation: 

=

= ∑
1

1 K

i
i

q q
K

 (14) 

The averaged quaternion q is converted back to a rotation matrix, denoted as avgR . The 

corresponding translation vector is computed as: 

= − ⋅avg avgt q R p  (15) 

Here, q and p represent the centroids of the source and target sets, respectively. This estimated 

transformation pair ( ),avg avgR t serves as the initial global pose for subsequent fine registration. 

2.4. Point-to-Plane ICP Fine Registration 

The traditional ICP algorithm estimates the optimal rigid transformation that aligns the source 
point cloud to the target by minimizing the Euclidean distance between corresponding points. In 
contrast, the point-to-plane ICP variant minimizes the sum of squared distances between 
transformed source points and the tangent planes of their corresponding points in the target point 
cloud. Given an initial pose estimate, the objective function is formulated as: 

( ){ }
=

 ⋅ − + ∑
2

, 1
min

N
T
i i iR t i

n q Rp t  (16) 

where ip  denotes the i-th point in the source point cloud, iq  is its corresponding nearest neighbor 

in the target ip , in  is the unit normal vector at iq , R and t are the rotation matrix and translation 

vector to be estimated. 
During each iteration, the orthogonal projection residual is computed as the point-to-plane 

distance: 

( ) = ⋅ − + 
T

i i i ir n q Rp t  (17) 

This residual measures how far the transformed point ip deviates from the tangent plane at iq

. 
The surface normals in are pre-computed on the target point cloud Q using local neighborhood 

PCA. For each source point ip its nearest neighbor iq in the target is identified, and the residuals are 

computed using the corresponding surface normals. Based on the least-squares principle, the 
incremental rigid transformation is estimated. The transformation is iteratively refined until 
convergence is achieved or the maximum number of iterations is reached. The final rigid 
transformation is obtained by composing the converged incremental transformation with the initial 
pose. 

3. Experiment 

3.1. Data Set 

In this study, the Stanford 3D Scanning Repository was utilized as the experimental dataset [19]. 
As one of the earliest and most widely used publicly available 3D scanned datasets in the fields of 
computer graphics and computational geometry, it was collected and released by the Stanford 
Computer Graphics Laboratory. This dataset has been widely adopted for evaluating tasks such as 
point cloud registration, 3D reconstruction, surface resampling, and normal estimation. The point 
clouds were acquired using a Cyberware 3030 MS 3D laser scanner through segmented 360-degree 
scanning. Each scan frame contains approximately 35,000 to 50,000 points. 
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3.2. Implementation Detail 

The computer configuration used in the experiment is an Intel(R) I9-13900K CPU (Intel, Santa 
Clara, CA, USA), an NVIDIA GeForce GTX4060 graphics card (NVIDIA, Santa Clara, CA, USA), with 
8 GB of video memory. In this experiment, three datasets—Bunny, Dragon, and Happy Buddha—
were selected, with multiple viewpoint point clouds from each dataset used for testing. Parameters 
not explicitly mentioned in the code were set to their default values. 

3.3. Accuracy Evaluation Metrics 

For edge extraction evaluation, precision and recall are adopted as error metrics. They are 
computed as: 

+
Precision = TP

TP FP
 (18) 

+
Recall = TP

TP FN
 (19) 

where TP  denotes the number of true positives, i.e., correctly identified edge points; FP  
represents false positives, i.e., non-edge points incorrectly classified as edge points; and FN  refers 
to false negatives, i.e., actual edge points that were not correctly identified. Precision reflects the 
discriminative capability of the edge detector, while recall reflects the completeness of edge detection. 

For registration accuracy, the Root Mean Square Error (RMSE) is used as a quantitative metric. 
Given a set of point correspondences ( ){ },i ip q , where ip  and iq  are corresponding points from the 

transformed source and target point clouds respectively, the RMSE is calculated as follows: 

=

+ −∑ 2

1

1RMSE = 
N

N

i i
i

Rp t q  (20) 

where N  is the number of matched point pairs, R  and t  are the estimated rotation matrix and 
translation vector. RMSE measures the average geometric alignment error of the registered point 
clouds, serving as an indicator of overall registration accuracy. 

4. Discussion 

4.1. Edge Extraction Validation 

Edge extraction experiments were conducted on the bunny000 model from the Bunny dataset. 
The result of ISS-based edge extraction is shown in Figure 2(a), while the result obtained using the 
proposed NVEC method is presented in Figure 2(b). 

                
(a) ISS edge extraction                      (b) NVEC edge extraction 

Figure 2. Edge Extraction Results of the Two Methods. 

As illustrated in Figure 2, the NVEC method more effectively captures structurally meaningful 
edge points, especially in regions with complex geometric variation. It achieves this without 
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discarding essential boundary details. In contrast, the ISS method tends to miss critical geometric 
features and often produces sparse and incomplete edge representations due to its reliance on global 
saliency measures. 

Figure 3 further compares the performance of ISS, Harris-3D, and NVEC in terms of precision 
and recall. The results show that as recall increases, the precision of the NVEC method remains 
consistently high, outperforming the other two methods. This indicates that NVEC achieves a better 
balance between accuracy and coverage in edge extraction. Overall, the NVEC method provides a 
more reliable and complete edge representation, making it particularly advantageous for 
downstream tasks such as point cloud registration. 

 

Figure 3. Comparison of Recall–Precision Among Three Methods. 

4.2. Point Cloud Registration Validation 

To evaluate the effectiveness of the proposed Edge-Preserving Iterative Closest Point (EPICP) 
algorithm in point cloud registration, we conducted comparative experiments using three Stanford 
datasets: Bunny, Dragon, and Happy Buddha. Three methods were evaluated: traditional ICP, 
RANSAC-enhanced ICP, and the proposed EPICP, where RANSAC was applied as an initial pose 
optimizer for all methods. 

As shown in Table 1, EPICP achieves lower RMSE than the other two methods, indicating 
improved registration accuracy for rigid object alignment. Although EPICP incurs a slightly longer 
runtime, this can be mitigated through Python-based multithreaded parallelism, enabling efficient 
execution. 

Table 1. Summary of Registration Results on Three Datasets. 

Method 
Bunny Dragon Happy Buddha 

RMSE(cm) Time(s) RMSE(cm) Time(s) RMSE(cm) Time(s) 
ICP 0.12 6.8 0.19 7.4 0.18 7.2 

Ransac-ICP 0.08 10.2 0.14 15.4 0.14 11.4 
EPICP 0.08 11.7 0.11 18.7 0.10 11.8 

TTo further validate the robustness of EPICP under low-overlap conditions (less than 50%), two 
additional experiments were conducted. In the first experiment, the Happy Buddha model was tested 
with a 47% overlap. In the second, the Bunny model was used with only 33% overlap. All three 
methods were evaluated under identical conditions. As shown in Figure 4, EPICP consistently 
outperformed the other methods across both overlap settings. 
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Figure 4. Performance Comparison of Three Methods. 

These findings demonstrate that EPICP provides superior accuracy in low-overlap point cloud 
registration scenarios. It consistently outperforms traditional methods and exhibits strong robustness 
even when the overlap is significantly limited. 

Table 2 presents RMSE values and statistical results for the two overlap settings. Under 47% and 
33% overlap, the registration accuracy of EPICP improved by 61.9% and 75.7%, respectively, 
compared to baseline methods. The corresponding standard deviations are within acceptable 
bounds, confirming result stability. 

Table 2. Summary of Experimental Results. 

 Method RMSE(cm) Time(s) 

Experimental one 
ICP 0.58 6.5 

RANSAC-ICP 0.42 13.1 
EPICP 0.16 18.7 

Experiment two 
ICP 1.27 7.9 

RANSAC-ICP 0.99 14.5 
EPICP 0.24 24.3 

Figure 5 illustrates the RMSE variation under different overlap ratios. EPICP maintains stable 
registration accuracy under moderate-to-low overlap. When the overlap becomes extremely low, 
RMSE increases significantly and the registration becomes less stable. Nevertheless, compared with 
traditional algorithms, EPICP still exhibits notable performance advantages under challenging 
conditions. 
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Figure 5. RMSE Variation of Three Methods with Respect to Overlap Ratio. 

4.3. Ablation Study 

To validate the contribution of each module within the EPICP algorithm, a series of ablation 
experiments were conducted on the Stanford Bunny dataset. As shown in Figure 3, different module 
combinations were tested to assess their individual and joint impact on the final registration accuracy. 
In the first configuration, only point-to-plane ICP was applied without any initialization. The RMSE 
reached 1.91 cm, indicating that without a good initial pose, the registration tends to converge to a 
suboptimal solution. In the second configuration, pose initialization was enabled but without 
refinement, yielding an RMSE of 2.83 cm. This shows that initial alignment alone is insufficient and 
leads to large residual errors. In the third configuration, only outlier rejection was activated (with 
initialization and fine registration disabled), achieving an RMSE of 0.93 cm. Although the exclusion 
of mismatched correspondences improves accuracy, the absence of initialization still results in 
notable alignment errors. The fourth configuration, using only fine registration, reduced the RMSE 
to 1.02 cm, suggesting that this module contributes to accuracy, but its effect is limited without 
supporting components. Configurations five to seven, which combined two modules at a time, 
showed moderately improved performance, with RMSEs remaining relatively stable. These results 
confirm that the modules are complementary and can cooperate effectively. In the eighth 
configuration, when all three modules (initialization, outlier rejection, and fine registration) were 
activated, the RMSE was minimized, and the highest accuracy was achieved. This demonstrates the 
capability of the proposed EPICP framework to maintain high registration precision under low-
overlap conditions by leveraging robust initialization, effective correspondence filtering, and 
accurate refinement. 

Table 3. Ablation study on Bunny Dataset. 

 
Edge 

Extraction 
FPFH 

Local 
Registration 

Global 
Registration 

RMSE(cm) 

1)     1.91 
2)     2.83 
3)     0.93 
4)     1.02 
5)     1.26 
6)     1.26 
7)     1.42 
8)     0.16 

5. Conclusions 
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To address the challenge of point cloud registration under low-overlap conditions, this study 
proposes a novel registration framework that integrates edge enhancement with quaternion-based 
fusion. The proposed method overcomes the limitations of traditional approaches that often fail to 
extract reliable local features in sparse-overlap scenarios, thereby improving registration accuracy. 
Specifically, the method first calculates the maximum angular deviation between neighboring 
normals to detect geometric edges. These edge points are then used for robust feature matching. A 
local rigid transformation is subsequently estimated, followed by quaternion-based averaging to 
obtain a reliable initial pose. Finally, a point-to-plane ICP refinement step is performed to achieve 
precise alignment. Experimental results on the Stanford 3D Scanning Repository demonstrate that 
the proposed method significantly outperforms traditional techniques in terms of accuracy and 
robustness, particularly under low-overlap conditions. 

However, some limitations remain. The method relies heavily on accurate edge detection; noisy 
or incomplete edge features may affect registration outcomes. In extremely low-overlap scenarios, 
over-filtering may reduce the number of matching pairs, potentially leading to registration failure. 
Nevertheless, the proposed approach shows strong potential for achieving accurate and reliable 
registration under challenging conditions. Future work will focus on improving edge detection 
robustness, optimizing module integration, and enhancing adaptability to diverse and complex 
registration environments. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ICP Iterative Closest Point 
FPFH Fast Point Feature Histograms 
PCR Point Cloud Registration 
NDT Normal Distributions Transform 
RANSAC Random Sample Consensus 
PRNet Partial-to-partial Registration Net 
HOUV Hybrid optimization with unconstrained variables 
ISS Intrinsic Shape Signatures 
PCA Principal Component Analysis 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
SVD Singular Value Decomposition 
SE(3) Special Euclidean Group in 3D 
SO(3) Special Orthogonal Group in 3D 
TP True Positives 
FP False Positives 
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FN False Negatives 
RMSE Root Mean Square Error 
NVEC Normal Vector Extrema Change 
EPICP Edge-Preserving Iterative Closest Point 
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