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Abstract: Increasing global concern over COVID-19 has recently brought greater attention to studies 

due to the ease of person-to-person transmission and the current lack of effective antiviral therapy. 

Here, we proposed the application of the adverse outcome pathway (AOP) framework to support 

research on the pathogenesis of viral disease. We first constructed adverse outcome pathways 

(AOPs) applicable to COVID-19 management to understand whether the infection causes severe 

acute respiratory distress. Based on the AOP framework where mechanistic elucidation of the path-

way from the interaction of chemicals (or viruses) to apical endpoints is represented, our COVID-

19 AOP indicated that the molecular initiating event (MIE) was angiotensin-converting enzyme 2 

(ACE2) interaction, and the key events (KEs) were the increased pro-inflammatory cytokines in im-

mune cells, with increased mortality as an apical adverse outcome (AO). However, there is still 

limited information on the toxicity mechanisms of AOPs in COVID-19; therefore, detailed KEs and 

AOs on toxicity mechanisms will be required to fill these gaps in the data. This study demonstrated 

that the COVID-19 AOP framework is a suitable tool to design new drugs and to integrate crowded-

sourced information for the battle against the COVID-19 pandemic. 
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1. Introduction 

Coronaviruses have caused severe and fatal respiratory tract infections in humans. 

The separate emergences of severe acute respiratory syndrome coronavirus (SARS-CoV) 

and coronavirus disease 2019 (COVID-19) have emphasized that the interaction between 

the virus and host should be elucidated for developing treatments and vaccines. COVID-

19 emerged with clinical presentations consistent with viral pneumonia, and the infection 

caused severe respiratory distress syndrome similar to SARS-CoV [1-3]. COVID-19, which 

has a genome sequence similar to that of SARS-CoV, is a novel type of coronavirus owing 

to a high degree of variation in the sequence of the S glycoprotein [1,4-6]. Clinical data 

from Wuhan, China, showed multiorgan dysfunction, namely, acute respiratory distress 

syndrome (ARDS) [7-10]. In addition, the most severe sequela of pathogenic coronavirus 

infection-induced SARS is lung fibrosis; nearly 45% of SARS patients experience lung fi-

brosis after 3–6 months, which potentially sets an essential context for COVID-19 [11-15]. 

The high potential for re-emergence of a similar virus infection should be contemplated. 

Here, we proposed the application of the adverse outcome pathway (AOP) framework to 

support research on the pathogenesis of viral disease. Crowdsourcing towards the estab-

lishment of COVID-19 AOPs is organized by the European Commission’s Joint Research 

Centre (JRC) (www.ciao-covid.net). An AOP endorsed by OECD was initially developed 
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as knowledge management for capturing and disseminating mechanistic information to 

support regulatory toxicology. An AOP is described as a series of changes in the measur-

able biological event and state linkage between a molecular initiating event (MIE) and key 

events (KEs) that triggers a perturbation and occurrence of an adverse outcome (AO) [16-

18]. The immediate application of the AOP framework needs to support the investigation 

and depiction of the mode of action of COVID-19 from the molecular to the population 

level, which has the potential to become the basis of a mechanistic understanding of virus-

induced multiorgan injury and its remediation properties and further validation of drug 

candidates for use in practice. The underlying concept of AOP development provides 

practical use of mechanistic knowledge for the design and development of alternatives to 

animal testing. Moreover, quantitative analyses of key event relationships (KERs) and 

cross-species interpretation contribute to the study of a new epidemic disease based on 

mechanistic information from vast research fields of human diseases and medicine. 

2. Mechanistic understanding between COVID-19 infection 

Recently, we published a data fusion pipeline for enriching and refining AOP 320 

based on molecular information, and biological pathway data were proposed [19], as 

shown in Figure 1. The coronavirus S (spike) glycoprotein employs ACE2 (angiotensin-

converting enzyme 2) as a receptor for host cell entry. Binding of the coronavirus S glyco-

protein to ACE2 subsequently triggers a conformational change in the S glycoprotein of 

the coronavirus, allowing for proteolytic digestion by host cell proteases (TMPRSS2), re-

sulting in cell membrane fusion [20-22]. 

  

Figure 1. Common process of COVID-19 infection 

The approach brings together information from curated life science databases and 

results in AOP-linked molecular descriptions of adverse outcomes supported by empiri-

cal data and bioinformatic analysis. Based on the concept proposed herein, to apply the 

AOP framework to explore COVID-19, the data fusion pipeline further detailed the path-

ogenesis. 

3. Adaptation to Adverse Outcome Pathways 

Further to enrich AOP 320 (Figure 2A), initial results detailing the molecular interac-

tions in AOP 320 indicate substantial overlap with AOP 319, which describes substance 

interaction with ACE2 leading to lung fibrosis, as shown in Figure 2B [19]. Based on the 

concept proposed herein, to apply the AOP framework to explore COVID-19, there are 
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two types of toxicity mechanisms. Initial events detail the viral S-protein perturbation in 

AOP320 and ACE2 downregulation in AOP 319. One of the significant MIEs in AOP320 

is the binding of S glycoprotein to the ACE2 receptor, leading to increased mortality. In 

the case of AOP319, lung fibrosis is triggered by inhibition of ACE2 protein catalytic ac-

tivity. It remains possible that ACE2 down regulation is influenced by the interaction of 

the spike (S) protein with the ACE2 receptor [23]. 

 

Figure 2. Schematic diagram of the putative AOPs for Covid 19. AOP 320 (A) and AOP 

319 (B) in OECD AOP wiki (https://aopwiki.org/). 

As shown in Figure 3, AOP 320 indicates that cell internalization of the 

ACE2/COVID-19 complex and viral replication trigger excess proinflammatory cytokine 

release by immune cells, which might play a major role in severe COVID-19 AO. These 

processes are most likely accompanied by NF-ƙB activation by COVID-19 proteins and 

IL-1β and IL-6 as KEs [24-26]. In particular, IL-6 has been reported to be dramatically in-

creased in COVID-19 patients, with a strong implication in acute inflammation by activat-

ing JAK/STAT signaling and shedding ACE2 [24,27]. Finally, IL-6 contributes to excessive 

cytokine release, increasing the plasma levels of proinflammatory and profibrotic media-

tors. Similar to MIE in AOP 320, AOP 319 for lung fibrosis is characterized by ACE2 inhi-

bition leading to excessive deposition of extracellular matrix (ECM) proteins, such as 

transforming growth factor-beta (TGF-β). However, the link between COVID-19 infection 

and lung fibrosis is still unclear. In our AOP 319 framework, we suggest the perturbation 

of the renin-angiotensin system in which Ang II accumulates by the interaction of COVID-

19, which has undergone the downregulation of ACE2. 
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Figure 3. Simplified diagram of the renin-angiotensin system in normal and COVID-19 

infection conditions. 

The renin-angiotensin system (RAS) is a homeostatic regulator signalling pathway 

engaged in vascular function control. The regulation of blood pressure, vasoconstriction, 

vasodilation, and blood volume restore this signalling pathway [28]. Especially ACE2 is 

one of major enzyme of blood pressure regulation in the renin-angiotensin system. It is 

well known that angiotensin II (Ang II), a ligand for type I angiotensin receptor (AT1R), 

is the main effector peptide of the RAS and induces vasoconstriction, inflammation and 

fibrosis [29,30]. Figure 3 shows that ACE2 catalyzes Ang II to Ang (1–7), leading to vaso-

dilation and anti-inflammatory and antifibrotic signals [31]. In the other way, ACE1 

cleaves angiotensin I and generating angiotensin (Ang) II, which provokes vasocon-

striction leading to the increases of vascular inflammation and fibrosis in patients infected 

with COVID-19. The effect of ACE1 signaling is by AT1R activation. ACE1 mediated 

AT1R functions as the critical mediator of Ang II actions and the counteract effects of 

ACE2, which is responsible for Ang II conversion to Ang (1–7) [32]. A higher irregularity 

between the action of ACE1 and ACE2 provokes ARD triggered by COVID 19. When 

COVID-19 is bound to its ACE2 receptor and TMPRSS2, ACE2 receptor down-regulation 

provokes an inhibitory effect of conversion from Ang I to Ang (1-7). Subsequently, the 

accumulation of Ang II binds to AT1R, resulting in IL-6 amplification, which triggers both 

inflammation and fibrosis. Therefore, ACE2 dysfunction associated with increased 

plasma IL-6 levels could be one of the tissue KEs for multi-organ failure via the activation 

of AT1R signaling. 

 

Figure 4. The network of AOPs of relevance to COVID-19. 

As a result, we suggest that the AOP network that triggers immune responses by 

COVID-19 replication and Ang II accumulation by TMPRSS2 activation and ACE2 down-

regulation could lead to acute inflammation and pulmonary fibrosis, as shown in Figure 

4. From the derived AOP network, it was observed that each event shares at least one 

common MIE and KEs. For instance, the MIE, defined as ACE2 binding, and increases in 

plasma IL-6 are shared in this AOP network. Gomolak et al. showed that IL-6 levels were 

almost 60-fold higher in mice treated with 1000 ng/kg/min Ang II than in control mice 

regarding AOP319 [33]. We further provide a mechanistic link for AOP 320 that the in-

crease in plasma IL-6 may relate to the level of Ang II accumulation caused by COVID-19 

infections. IL-6 has been reported to be dramatically increased in COVID-19 patients, with 

a strong implication in acute inflammation and cytokine storm by activating JAK/STAT 

signaling and shedding ACE2 [24]. Ang II accumulation by ACE2 downregulation in 

AOP319 is questionable since it opens the possibility for the development of selective 

drugs that specifically target the ACE2 receptor domain used by the RBD of SARS-CoV-2 

to enter the host cell without altering the production of Ang 1-7. An additional consider-

ation concerns whether to include potential KEs from ROS synthesis to pulmonary fibro-

sis. It should be noted that Ang II promotes TGF-β-dependent fibrosis through ROS syn-

thesis [31,34-38]. All these lines of evidence suggest that TGF-β plays a crucial role in the 

development of fibrosis. Finally, our results indicate that COVID-19 binding to ACE2 
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causes toxicity mainly through aberrant induction and imbalances of various pro-inflam-

matory cytokines and growth factors, ultimately leading to increased mortality. The bind-

ing of ACE2 leads to both acute inflammation and pulmonary fibrosis that is applicable 

to human health perspectives on COVID-19. However, more direct experimental evidence 

is still required to confirm not only the ACE2-RBD interaction but also the inter- and in-

tracellular COVID-19 and human protein interactions. 

4. COVID 19 AOP application in drug discovery 

ACEIs/ARBs (Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor 

Blockers), the powerful COVID 19 targeting the RAS, are used to treat a wide range of 

implications related to hypertension, cardiovascular disease, and renal disease. ACEIs 

functions not only lower blood pressure but also protect the pathogenesis of COVID-19 

[39]. ACEIs/ARBs may prevent COVID-19 viral entry by stabilizing ACE2–AT1R complex 

and blocking viral protein ACE2 interaction and cell internalization. However, ACE2 ac-

tivity is not directly influenced by ACEIs and the messenger RNA level of ACE2 increased 

with ACEI but was not observed with ARBs which did not show any association of mor-

tality [40,41]. It is therefore suggested that the putative COVID-19 AOP network is appli-

cable to viral infection management to understand the detailed molecular interactions that 

could comprise the different types of virus infections and replications, such as MERS-CoV 

and SARS-CoV, mediated by consensus ACE2 binding as MIE and KEs. For instance, anti-

RBD (MIE) combined with anti-inflammatory therapies (KEs) can be a promising treat-

ment to reduce the risk of AO. The putative COVID-19 AOP network is applicable to viral 

infection management to understand toxicity mechanisms that could comprise the differ-

ent types of virus infections and replications, such as MERS-CoV and SARS-CoV, medi-

ated by consensus ACE2 binding as MIE and KEs. For instance, anti-RBD (MIE) combined 

with anti-inflammatory therapies (KEs) can be a promising treatment to reduce the risk of 

AO. Therefore, trials have identified chemicals that inhibit the binding between the ACE2 

receptor and the spike protein by molecular docking [42-44]. For instance, dexamethasone, 

an anti-inflammatory drug, was recently considered for the treatment of severe cases of 

COVID-19 [45]. Based on the mode of action, Adewale Oluwaseun Fadaka et al. showed 

that the binding of dexamethasone to Mpro (−6.7 kcal/mol), Glucocorticoid (−14.3 

kcal/mol) and IL-6 receptor (−3.6 kcal/mol) resulted in higher docking scores, which can 

attenuate pulmonary inflammation, thereby suppressing proinflammatory cytokines and 

causing lung damage as the key events [46]. Quite interestingly, the interactions of dexa-

methasone with S-RBD exhibited −6.3 kcal/mol as the high binding energy, which shared 

some of the same interactive moieties as the ACE2 receptor with the S-RBD (spike-recep-

tor binding domain), as described by MIE. The docking complex with dexamethasone ex-

hibited a total of eleven interactions, comprising one hydrogen and one halogen (PHE490), 

two hydrophobic (LEU455, PHE490), and eight van der Waals interactions (LYS417, 

LYS458, PHE486, TYR489, PRO491, LEU492, GLN493, SER494), as shown in Figure 5. Pre-

vious studies identified the critical residues that interact with the ACE2 receptor, includ-

ing LEU455, PHE486, GLN493, SER494, and ASN501 [4,5,47]. The residues of LEU455 and 

PHE486 in the S-RBD have been identified to interact with the ACE2 receptor domain 

[4,5]. In light of these facts, dexamethasone can also be screened by the MIE component 

to inhibit the interaction between ACE2 and S-RBD. 
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Figure 5. Representative molecular docking images of dexamethasone with the receptor 

binding domain of spike glycoprotein SARS-CoV-2 (S-RBD). The green color of residues 

indicates van der Waals interaction with the dexamethasone in 3D and 2D representation. 

The yellow color of residues indicates hydrogen, halogen, or hydrophobic interactions 

with the dexamethasone. The dotted lines of red, blue, and purple colors show hydrogen, 

halogen, and hydrophobic interactions respectively. 

The overall COVID-19 AOP network could serve many purposes, a noticeable one 

being drug design targeting the interaction between ACE2 and S-RBD. In this regard, al-

ternatives to animal testing can be engaged to support animal-free clinical decisions that 

allow prediction of particular aspects of COVID-19 infection. By mechanistically linking 

the AOP network, further insight into COVID-19 pathogenesis will be gained and meas-

urable at the different organization levels in the host, which in turn will open perspectives 

for designing strategies to diagnose disease severity. However, there is limited evidence 

concerning the relationship between KEs. These preliminary results indicate the value of 

information curation and data integration, where AOPs play a central role in providing a 

transparent and user-friendly platform for collaboration across diverse fields. The benefits 

of bridging these fields extend in the parallel development of preventive and therapeutic 

medicine. 

5. Conclusions 

Taken together, AOPs provide a platform for collecting and categorizing data for a 

better understanding of underlying mechanisms for the entry of virus into cells mediated 

by ACE2. The importance of the structural spike (S) protein is remarkable due to its key 

role in COVID-19 entry through its interaction with the host receptor, ACE2. Using the 

AOP framework, we have shown the mechanistic pathway links between COVID-19 bind-

ing with ACE2 and adverse outcomes. These adverse outcomes may vary, such as fibrosis, 

thrombosis and inflammation, in COVID-19 patients. Thus, routine analysis and early 

prevention, diagnosis and treatment may be beneficial for COVID-19 patients. Overall, 

this study suggests that the AOP framework is a suitable tool to identify data gaps and to 

enable the development of preventive and therapeutic medicine in viral infection-associ-

ated diseases. 
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