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Abstract: Increasing global concern over COVID-19 has recently brought greater attention to studies
due to the ease of person-to-person transmission and the current lack of effective antiviral therapy.
Here, we proposed the application of the adverse outcome pathway (AOP) framework to support
research on the pathogenesis of viral disease. We first constructed adverse outcome pathways
(AOPs) applicable to COVID-19 management to understand whether the infection causes severe
acute respiratory distress. Based on the AOP framework where mechanistic elucidation of the path-
way from the interaction of chemicals (or viruses) to apical endpoints is represented, our COVID-
19 AOP indicated that the molecular initiating event (MIE) was angiotensin-converting enzyme 2
(ACE2) interaction, and the key events (KEs) were the increased pro-inflammatory cytokines in im-
mune cells, with increased mortality as an apical adverse outcome (AO). However, there is still
limited information on the toxicity mechanisms of AOPs in COVID-19; therefore, detailed KEs and
AOs on toxicity mechanisms will be required to fill these gaps in the data. This study demonstrated
that the COVID-19 AOP framework is a suitable tool to design new drugs and to integrate crowded-
sourced information for the battle against the COVID-19 pandemic.
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1. Introduction

Coronaviruses have caused severe and fatal respiratory tract infections in humans.
The separate emergences of severe acute respiratory syndrome coronavirus (SARS-CoV)
and coronavirus disease 2019 (COVID-19) have emphasized that the interaction between
the virus and host should be elucidated for developing treatments and vaccines. COVID-
19 emerged with clinical presentations consistent with viral pneumonia, and the infection
caused severe respiratory distress syndrome similar to SARS-CoV [1-3]. COVID-19, which
has a genome sequence similar to that of SARS-CoV, is a novel type of coronavirus owing
to a high degree of variation in the sequence of the S glycoprotein [1,4-6]. Clinical data
from Wuhan, China, showed multiorgan dysfunction, namely, acute respiratory distress
syndrome (ARDS) [7-10]. In addition, the most severe sequela of pathogenic coronavirus
infection-induced SARS is lung fibrosis; nearly 45% of SARS patients experience lung fi-
brosis after 3-6 months, which potentially sets an essential context for COVID-19 [11-15].
The high potential for re-emergence of a similar virus infection should be contemplated.
Here, we proposed the application of the adverse outcome pathway (AOP) framework to
support research on the pathogenesis of viral disease. Crowdsourcing towards the estab-
lishment of COVID-19 AOPs is organized by the European Commission’s Joint Research
Centre (JRC) (www.ciao-covid.net). An AOP endorsed by OECD was initially developed
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as knowledge management for capturing and disseminating mechanistic information to
support regulatory toxicology. An AOP is described as a series of changes in the measur-
able biological event and state linkage between a molecular initiating event (MIE) and key
events (KEs) that triggers a perturbation and occurrence of an adverse outcome (AO) [16-
18]. The immediate application of the AOP framework needs to support the investigation
and depiction of the mode of action of COVID-19 from the molecular to the population
level, which has the potential to become the basis of a mechanistic understanding of virus-
induced multiorgan injury and its remediation properties and further validation of drug
candidates for use in practice. The underlying concept of AOP development provides
practical use of mechanistic knowledge for the design and development of alternatives to
animal testing. Moreover, quantitative analyses of key event relationships (KERs) and
cross-species interpretation contribute to the study of a new epidemic disease based on
mechanistic information from vast research fields of human diseases and medicine.

2. Mechanistic understanding between COVID-19 infection

Recently, we published a data fusion pipeline for enriching and refining AOP 320
based on molecular information, and biological pathway data were proposed [19], as
shown in Figure 1. The coronavirus S (spike) glycoprotein employs ACE2 (angiotensin-
converting enzyme 2) as a receptor for host cell entry. Binding of the coronavirus S glyco-
protein to ACE2 subsequently triggers a conformational change in the S glycoprotein of
the coronavirus, allowing for proteolytic digestion by host cell proteases (TMPRSS2), re-
sulting in cell membrane fusion [20-22].

Spike protein

TMPRSS2 ACE2 receptor
Cell membrane

Figure 1. Common process of COVID-19 infection

The approach brings together information from curated life science databases and
results in AOP-linked molecular descriptions of adverse outcomes supported by empiri-
cal data and bioinformatic analysis. Based on the concept proposed herein, to apply the
AOP framework to explore COVID-19, the data fusion pipeline further detailed the path-
ogenesis.

3. Adaptation to Adverse Outcome Pathways

Further to enrich AOP 320 (Figure 2A), initial results detailing the molecular interac-
tions in AOP 320 indicate substantial overlap with AOP 319, which describes substance
interaction with ACE2 leading to lung fibrosis, as shown in Figure 2B [19]. Based on the
concept proposed herein, to apply the AOP framework to explore COVID-19, there are
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two types of toxicity mechanisms. Initial events detail the viral S-protein perturbation in
AOP320 and ACE2 downregulation in AOP 319. One of the significant MIEs in AOP320
is the binding of S glycoprotein to the ACE2 receptor, leading to increased mortality. In
the case of AOP319, lung fibrosis is triggered by inhibition of ACE2 protein catalytic ac-
tivity. It remains possible that ACE2 down regulation is influenced by the interaction of
the spike (S) protein with the ACE2 receptor [23].
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Figure 2. Schematic diagram of the putative AOPs for Covid 19. AOP 320 (A) and AOP
319 (B) in OECD AOQOP wiki (https://aopwiki.org/).

As shown in Figure 3, AOP 320 indicates that cell internalization of the
ACE2/COVID-19 complex and viral replication trigger excess proinflammatory cytokine
release by immune cells, which might play a major role in severe COVID-19 AO. These
processes are most likely accompanied by NF-&B activation by COVID-19 proteins and
IL-1$ and IL-6 as KEs [24-26]. In particular, IL-6 has been reported to be dramatically in-
creased in COVID-19 patients, with a strong implication in acute inflammation by activat-
ing JAK/STAT signaling and shedding ACE2 [24,27]. Finally, IL-6 contributes to excessive
cytokine release, increasing the plasma levels of proinflammatory and profibrotic media-
tors. Similar to MIE in AOP 320, AOP 319 for lung fibrosis is characterized by ACE2 inhi-
bition leading to excessive deposition of extracellular matrix (ECM) proteins, such as
transforming growth factor-beta (TGF-f3). However, the link between COVID-19 infection
and lung fibrosis is still unclear. In our AOP 319 framework, we suggest the perturbation
of the renin-angiotensin system in which Ang Il accumulates by the interaction of COVID-
19, which has undergone the downregulation of ACE2.
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Figure 3. Simplified diagram of the renin-angiotensin system in normal and COVID-19
infection conditions.

The renin-angiotensin system (RAS) is a homeostatic regulator signalling pathway
engaged in vascular function control. The regulation of blood pressure, vasoconstriction,
vasodilation, and blood volume restore this signalling pathway [28]. Especially ACE2 is
one of major enzyme of blood pressure regulation in the renin-angiotensin system. It is
well known that angiotensin II (Ang II), a ligand for type I angiotensin receptor (AT1R),
is the main effector peptide of the RAS and induces vasoconstriction, inflammation and
fibrosis [29,30]. Figure 3 shows that ACE2 catalyzes Ang II to Ang (1-7), leading to vaso-
dilation and anti-inflammatory and antifibrotic signals [31]. In the other way, ACEl
cleaves angiotensin I and generating angiotensin (Ang) II, which provokes vasocon-
striction leading to the increases of vascular inflammation and fibrosis in patients infected
with COVID-19. The effect of ACE1 signaling is by ATIR activation. ACE1 mediated
ATIR functions as the critical mediator of Ang II actions and the counteract effects of
ACE2, which is responsible for Ang II conversion to Ang (1-7) [32]. A higher irregularity
between the action of ACE1 and ACE2 provokes ARD triggered by COVID 19. When
COVID-19 is bound to its ACE2 receptor and TMPRSS2, ACE2 receptor down-regulation
provokes an inhibitory effect of conversion from Ang I to Ang (1-7). Subsequently, the
accumulation of Ang Il binds to AT1R, resulting in IL-6 amplification, which triggers both
inflammation and fibrosis. Therefore, ACE2 dysfunction associated with increased
plasma IL-6 levels could be one of the tissue KEs for multi-organ failure via the activation
of ATIR signaling.
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Figure 4. The network of AOPs of relevance to COVID-19.

As a result, we suggest that the AOP network that triggers immune responses by
COVID-19 replication and Ang II accumulation by TMPRSS2 activation and ACE2 down-
regulation could lead to acute inflammation and pulmonary fibrosis, as shown in Figure
4. From the derived AOP network, it was observed that each event shares at least one
common MIE and KEs. For instance, the MIE, defined as ACE2 binding, and increases in
plasma IL-6 are shared in this AOP network. Gomolak et al. showed that IL-6 levels were
almost 60-fold higher in mice treated with 1000 ng/kg/min Ang II than in control mice
regarding AOP319 [33]. We further provide a mechanistic link for AOP 320 that the in-
crease in plasma IL-6 may relate to the level of Ang Il accumulation caused by COVID-19
infections. IL-6 has been reported to be dramatically increased in COVID-19 patients, with
a strong implication in acute inflammation and cytokine storm by activating JAK/STAT
signaling and shedding ACE2 [24]. Ang II accumulation by ACE2 downregulation in
AOP319 is questionable since it opens the possibility for the development of selective
drugs that specifically target the ACE2 receptor domain used by the RBD of SARS-CoV-2
to enter the host cell without altering the production of Ang 1-7. An additional consider-
ation concerns whether to include potential KEs from ROS synthesis to pulmonary fibro-
sis. It should be noted that Ang II promotes TGF-3-dependent fibrosis through ROS syn-
thesis [31,34-38]. All these lines of evidence suggest that TGF-{ plays a crucial role in the
development of fibrosis. Finally, our results indicate that COVID-19 binding to ACE2
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causes toxicity mainly through aberrant induction and imbalances of various pro-inflam-
matory cytokines and growth factors, ultimately leading to increased mortality. The bind-
ing of ACE2 leads to both acute inflammation and pulmonary fibrosis that is applicable
to human health perspectives on COVID-19. However, more direct experimental evidence
is still required to confirm not only the ACE2-RBD interaction but also the inter- and in-
tracellular COVID-19 and human protein interactions.

4. COVID 19 AOP application in drug discovery

ACEIs/ARBs (Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor
Blockers), the powerful COVID 19 targeting the RAS, are used to treat a wide range of
implications related to hypertension, cardiovascular disease, and renal disease. ACEIs
functions not only lower blood pressure but also protect the pathogenesis of COVID-19
[39]. ACEIs/ARBs may prevent COVID-19 viral entry by stabilizing ACE2-ATI1R complex
and blocking viral protein ACE2 interaction and cell internalization. However, ACE2 ac-
tivity is not directly influenced by ACElIs and the messenger RNA level of ACE2 increased
with ACEI but was not observed with ARBs which did not show any association of mor-
tality [40,41]. It is therefore suggested that the putative COVID-19 AOP network is appli-
cable to viral infection management to understand the detailed molecular interactions that
could comprise the different types of virus infections and replications, such as MERS-CoV
and SARS-CoV, mediated by consensus ACE2 binding as MIE and KEs. For instance, anti-
RBD (MIE) combined with anti-inflammatory therapies (KEs) can be a promising treat-
ment to reduce the risk of AO. The putative COVID-19 AOP network is applicable to viral
infection management to understand toxicity mechanisms that could comprise the differ-
ent types of virus infections and replications, such as MERS-CoV and SARS-CoV, medi-
ated by consensus ACE2 binding as MIE and KEs. For instance, anti-RBD (MIE) combined
with anti-inflammatory therapies (KEs) can be a promising treatment to reduce the risk of
AO. Therefore, trials have identified chemicals that inhibit the binding between the ACE2
receptor and the spike protein by molecular docking [42-44]. For instance, dexamethasone,
an anti-inflammatory drug, was recently considered for the treatment of severe cases of
COVID-19 [45]. Based on the mode of action, Adewale Oluwaseun Fadaka et al. showed
that the binding of dexamethasone to Mpro (-6.7 kcal/mol), Glucocorticoid (-14.3
kcal/mol) and IL-6 receptor (-3.6 kcal/mol) resulted in higher docking scores, which can
attenuate pulmonary inflammation, thereby suppressing proinflammatory cytokines and
causing lung damage as the key events [46]. Quite interestingly, the interactions of dexa-
methasone with S-RBD exhibited —6.3 kcal/mol as the high binding energy, which shared
some of the same interactive moieties as the ACE2 receptor with the S-RBD (spike-recep-
tor binding domain), as described by MIE. The docking complex with dexamethasone ex-
hibited a total of eleven interactions, comprising one hydrogen and one halogen (PHE490),
two hydrophobic (LEU455, PHE490), and eight van der Waals interactions (LYS417,
LYS458, PHE486, TYR489, PRO491, LEU492, GLN493, SER494), as shown in Figure 5. Pre-
vious studies identified the critical residues that interact with the ACE2 receptor, includ-
ing LEU455, PHE486, GLN493, SER494, and ASN501 [4,5,47]. The residues of LEU455 and
PHE486 in the S-RBD have been identified to interact with the ACE2 receptor domain
[4,5]. In light of these facts, dexamethasone can also be screened by the MIE component
to inhibit the interaction between ACE2 and S-RBD.
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Figure 5. Representative molecular docking images of dexamethasone with the receptor
binding domain of spike glycoprotein SARS-CoV-2 (S-RBD). The green color of residues
indicates van der Waals interaction with the dexamethasone in 3D and 2D representation.
The yellow color of residues indicates hydrogen, halogen, or hydrophobic interactions
with the dexamethasone. The dotted lines of red, blue, and purple colors show hydrogen,
halogen, and hydrophobic interactions respectively.

The overall COVID-19 AOP network could serve many purposes, a noticeable one
being drug design targeting the interaction between ACE2 and S-RBD. In this regard, al-
ternatives to animal testing can be engaged to support animal-free clinical decisions that
allow prediction of particular aspects of COVID-19 infection. By mechanistically linking
the AOP network, further insight into COVID-19 pathogenesis will be gained and meas-
urable at the different organization levels in the host, which in turn will open perspectives
for designing strategies to diagnose disease severity. However, there is limited evidence
concerning the relationship between KEs. These preliminary results indicate the value of
information curation and data integration, where AOPs play a central role in providing a
transparent and user-friendly platform for collaboration across diverse fields. The benefits
of bridging these fields extend in the parallel development of preventive and therapeutic
medicine.

5. Conclusions

Taken together, AOPs provide a platform for collecting and categorizing data for a
better understanding of underlying mechanisms for the entry of virus into cells mediated
by ACE2. The importance of the structural spike (S) protein is remarkable due to its key
role in COVID-19 entry through its interaction with the host receptor, ACE2. Using the
AOP framework, we have shown the mechanistic pathway links between COVID-19 bind-
ing with ACE2 and adverse outcomes. These adverse outcomes may vary, such as fibrosis,
thrombosis and inflammation, in COVID-19 patients. Thus, routine analysis and early
prevention, diagnosis and treatment may be beneficial for COVID-19 patients. Overall,
this study suggests that the AOP framework is a suitable tool to identify data gaps and to
enable the development of preventive and therapeutic medicine in viral infection-associ-
ated diseases.
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