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Abstract

Difference-in-Differences (DiD) is a useful statistical technique employed by researchers to estimate
the effects of exogenous events on the outcome of some response variables in random samples of
treated units (i.e. units exposed to the event) ideally drawn from an infinite population. The term
effect should be intended as the difference between the actual post-event realization of the response
and the (non-existing and therefore unobservable) hypothetical realization of that same response for
the same treated units, were the event absent. To circumvent the implicit missing variables problem,
DiD methods use the realizations of the response variable observed in comparable random samples
of untreated units. The latter are samples of units drawn from the same infinite population, but they
are not exposed to the event. They serve as control or comparison groups. They provide the
“substitutes” for the non-existing untreated realizations of the responses in treated units during post-
treatment periods. In short, DiD assumes that without treatment, and under certain circumstances,
treated units would behave exactly as the control or untreated units during post treatment periods.
Then for the estimation purposes, the method adopts a combination of before-after and treatment-
control group comparisons. The event that affects the response variables was termed “treatment”,
but it could be equally termed “causal factor” to emphasise that with DiD we are not estimating a
mere statistical association among variates. With DiD we cultivate the ambition of evaluating
whether a precise causative link between causes and effects —defined according to a model based on
a proper identification of the relationship among variables— is actually consistent with the data, and
estimate how intensive and statistically robust the causal-effect link actually is. DiD analysis has been
widely employed in economics, public policy, health research, management, environment analysis,
and other fields. There is a discussion about the true “fatherhood” of the method and, not
surprisingly, there are clear pioneering antecedents of DiD applications outside economics. Examples
include medicine (the study of the causes of London” worst cholera epidemics of 1849 with 14,137
victims) and agriculture (studies of changes of soil productivity enhanced by new cultivation
techniques in Africans’ neighbour areas in the 1980s conducted by revolutionary governments after
the victory of their anti-colonialist movements in the second half of the 1970s). A recognised common
methodological basis is R. A. Fisher’s analysis of variance (ANOVA). This Review is an introduction
to the DiD techniques. It starts from the very basic methods used to estimate the so-called Average
Treatment Effect upon Treated (ATET) in a 2—period and 2—group case and proceeds by covering
many of the issues that emerge in a multi-unit and multi-period context. Particular attention will be
devoted to the statistical assumptions needed for a correct definition of the identification process of
the causal-effect relationship in the multi-period case, namely to the parallel trend hypothesis, to the
no anticipation assumption, and to the SUTVA assumption. In the multi-period case, both the
Homogeneous case (when treated units start being treated in the same periods) and the Heterogeneous
case (when treated units start being treated in different periods) will be considered. Some space will
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be devoted to the developments associated to the DiD techniques employable in the presence of data
clustering or spatial-temporal dependence. The Review includes brief presentations of some policy-
oriented applications of DiD. Areas covered are income taxation, migration, regulation and
environment management.

Keywords: difference-in-differences (DID); review for causal inference; applied and empirical
economics; treatment and control; extensions of the DID estimator to heterogenous treatment
framework

JEL codes: C23 (Single Equation Panel Data Models and Spatial-temporal Models); C50 (General
Econometric Modelling); C54 (Quantitative Policy Modelling); D04 (Microeconomic Policy:
Formulation; Implementation; and Evaluation); E6 (Macroeconomic Policy; Macroeconomic Aspects
of Public Finance; and General Outlook)

1. Introduction to DiD

With a DiD analysis we try to estimate whether a response variable (i.e. a variable exposed to a
treatment) will achieve a mean value that, computed for the set of all treated units (treated group), is
statistically different than the mean value computed for the set of some comparable untreated units
(untreated or control group), once any factors affecting the link between the treatment and the effect
(confounders) are ruled out. Therefore, the DiD analysis aims at “discovering” if a time contingent
causal-effect relationship (post hoc, ergo propter hoc) between the response variable and the treatment
is statistically consistent with the data. Examples of changes in response variables analysed with DiD
after a treatment are numerous and encompass various research fields. They may be the human
mortality rate, the unemployment, the quantity of corn harvested, to mention a few. The treatment
or causal factor may include the use of a new pharmaceutical drug, the implementation of new
training program for unemployed workers, the application of a new agricultural technique, etc. Other
known examples of a response variable are SAT (Site Acceptance Test) scores of equipment under
quality check, the level of pollution in a county before and after the adoption of environmental
measures, or the tree cover density in a region subjected to reforestation. Thanks to its flexibility, DiD
has been widely used in economics, public policy, health research, management and numerous other
fields.

To purse the above causal analysis, DiD relies on a combination of before-after and treated-
untreated group comparisons, but it is worth emphasising from the very beginning that the variable
corresponding to the treatment must be expressed as a dichotomous variable (Zero vs One; Yes vs
No) and not as a continuous variable. As it will be clarified later, treatment variables will play a role
similar to the role played by dummy variables in traditional regression analysis. Not surprisingly,
the term “treatment dummy” is frequently used in DiD studies or in studies that are structured as
DiD models. The term dummy for example appears already in Ashenfelter & Card (1985) in their
study of the effect of some training program in the USA where the longitudinal structure of earnings
of trainees and comparisons group are used to estimate the effectiveness of the program for
participants. In their study of the relationship between casual factor and response variable, Card &
Krueger (1994) provide another early clear illustration of how the treatment is included in the
analysis. They investigated whether an increase of minimum wage by New Jersey in 1992 from $4.25
to $5.05 (treatment) resulted in a statistically significant change in employment level amongst fast
food restaurant workers in New Jersey (treated units) from that in neighbouring Pennsylvania, which
did not change its minimum wage (untreated units). The treatment was not the amount of the wage
increase (a possible continuous variable) but the “mere” asymmetric implementation (say, Yes in
New Jersey and No in Pennsylvania) of the policy measure.

In general, the DiD analysis aims at estimating the mean difference between actual and potential
realizations (the unobserved realizations of the response in the absence of the treatment) of a response
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variable in treated units after the occurrence of an asymmetric exogenous event (the treatment
administered to treated units only) and uses instrumentally the actual response realizations recorded
in untreated units. Yet, this modification of mean differences generally occurs over time, and the
passage of time represents a complicating challenge in a DiD study. Whatever the response variable
we study, the passage of time may affect in a potentially significant way the actual realization of the
response as the data generation process proceeds through a possibly long-time span and
encompasses several pre-treatment and post-treatment periods. Hence, the specific effect
attributable to the passage of time (and the numerous factors potentially concealed in the passage
of time) on the mean value of the response variable in both the control group and the treatment group
must be properly considered. In other words, the researcher must determine if it was the treatment
itself the cause of any change in the mean value of the response variable within the treatment group
over and above what was caused by the pure passage of time or by time-conditioned factors. In
summary, the main ingredients of the DiD approach to the estimation of the causal-effect relationship
are the existence of a treatment administered to treated units only, the behaviour of the treated and
untreated response variables before and after the moment the treatment was implemented, and an
appropriate consideration for the passage of time.

In this Review we will present the DiD estimation approach to the causal-effect relationship. We
will try to highlight how with the DiD method the effect of the treatment can be estimated
separately from the effect of the passage of time. To do so we will first present the simplest DiD
framework in which the treatment status of each unit can vary over time according to the following
dynamics: an initial time period (e.g. months, years) in which there is no treatment is followed by a
time period with treatment administered to some units only. The moment in which the treatment is
introduced represents the temporal turning point of the entire period under examination. The units
under investigation can in turn be assigned to two groups: those classified as never treated (the control
group) because they are never subjected to the treatment during the entire sample period and those
units that are treated in the post-intervention period only (the treated group). We will assume (section
1.1) that the latter are uninterruptedly treated from the introduction of the treatment until the end
of the observed periods. In the initial simplest DiD framework we will assume that the treatment is
the only relevant independent variable affecting the outcome of the response dependent variable.
Then, we will discuss the OLS way to estimate the effect of the treatment (section 2) as well as the
identification problems related to the estimation process (section 1.4). We will call this initial
framework Homogeneous case without cofactors. Homogeneity means that all the treated units will
start to receive the treatment in the same moment. The presence of cofactors will be discussed later
when the Homogeneous case with cofactors will be analysed in section 6. Analogously, the model
structure in which treatments are administered in different periods to different treated units and
never administered to some other units will be considered later in section 7 and it will be termed
Heterogeneous Case (with or without cofactors). DiD techniques to be used under more complicated
data structure (e.g. data generating clustering phenomenon or spatial-temporal relations) will be
analysed in sections 8, 8.1, 8.2, and 8.3 at the end of the Review before the concluding section 9 which
also contains important warnings and caveats. A final set of sections (section 10 and followings)
surveys some applications taken from the literature and discusses methods and results.

A particular aspect of DiD on which we decided to focus is the exogeneity character of the
treatment and the so-called parallel trend assumption (section 1.2). They represent fundamental
elements of the method. As some of the papers discussed at the end of the Review will show clearly,
in many cases DiD represents the statistical approach need to overcome the simultaneity and
endogeneity difficulties inherent in many circumstances in more traditional OLS estimation
techniques. Yet, this advantage of DiD over alternative techniques requires that some crucial
assumptions about the data generation process are satisfied.

This Review will also review other aspects of the DiD methods that, in our opinion, are not
sufficiently considered by DiD literature. In particular, in section 1.3 we discuss the Stable Unit
Treatment Value Assumption (SUTVA) and show why DiD identification process requires that the
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treatment applied to one (or more) unit should not affect the outcome for other units. In other words,
we discuss why the potential outcome of a generic unit in the analysed sample should not depend
on the treatment status of some other units in the same sample or on the mechanism by which units
are assigned to the control or treatment groups. We also pay special attention to the role that
confounding factors have in DiD (section 5) and in sections 7, 7.1, 7.2, and 7.3 we analyse the most
widespread methods proposed to estimate DiD when the sample period encompasses more than two
periods and there is treatment heterogeneity. As anticipated above, complex data structure, such as
data clustering and spatial-temporal dependence, that can affect the DiD estimation strategy, are
discussed in sections 8, 8.1, 8.2, and 8.3.

Although this simple Review is conceived for applied economists, readers should keep in mind
that DiD most attractive features are its (relative) simplicity and wide applicability. After all, to carry
out a basic DiD study, we just require observations from a treated group and an untreated
(comparison) group both before and after the intervention is enacted. Accordingly, in the last sections
we discuss some papers that have applied DiD techniques in various research areas relevant in a
public economics or public policy perspective. We stress that health care is not an area covered by
this review because readers can access many several DiD studies that have been used to evaluate new
policies and health programs. For example, in the USA dozens of studies have estimated the effects
of expanded Medicaid eligibility through the Affordable Care Act (ACA). Following the Supreme
Court ruling on the ACA, each State in the US choses whether to expand its threshold for Medicaid
eligibility. This possibility created groups of treated states and comparison (untreated) States and
enabled the application of DiD. These studies have informed ongoing policy debates in the US about
the future of the ACA and the reader is referred to that literature (see Zeldow and Hatfield, 2021 for
an introduction).

Finally, we stress that this Review covers the basic (almost intuitive) DiD techniques. There are
other more advanced reviews (Callaway, 2021; Roth et. al., 2023, just to mention two papers) as well
as chapter 5 of Angrist and Pischke (2009) and chapter 21 of Wooldridge (2010) that should be
consulted by more advanced users.

We lastly stress that SW packages useful to implement basic and more advanced DiD methods
can be found in the following websites (alphabetic order):

R®: https://asjadnaqvi.github.io/DiD/docs/02_R/

Stata®: https://asjadnaqvi.github.io/DiD/docs/01_stata/

In the Appendix to the Review will include a few homemade ad hoc data sets to be used as
examples of the DiD estimation techniques analysed in the Review and to conduct exercises.

1.1. A 2 x 2 (Two Groups and Two Periods) Homogenous DiD with No Cofactors

This Review presents a review of basic methods and recent developments introduced in the DiD
literature in the last 30 years. Clearly, the fundamental notions of DiD could be assumed to be almost
common knowledge and in theory they should not require a new basic review to be added to the
many that already exists. Yet, since we want to offer a (may be incomplete, but) self-contained
treatment of the subject we start with the basic framework need to identify a DiD model.

Assume that we have randomly drawn from an infinite population two samples of individuals
(with or without the same numerousness of units), respectively denoted as G1 and G2. We call i an
individual belonging to G1 and j an individual belonging to G2. Assume that the two periods under
study are two years, each divided for expositional convenience in 12 months. We observe in each
month of the first of the two years under study the realization of a random variable y representing
the relevant variable under our investigation (income, unemployment, indebtedness, hours of work,
rate of financial criminality, level of fever, etc.). For reasons that will become clear very shortly we
call y the response variable. If y;is the realization of y for an individual i in G1 recorded during each
month t = (1, ..., 24), then Yy, 24y = N ~1 ¥, ¥i:is month t mean value of y generated by data of
individuals belonging to Gl with N representing the total number of individuals in GI.
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individuals of that group formed by M individuals. As a result, for each year we record 12 mean
monthly values for each group. Altogether, we have 48 mean observations in the 2-groups x 2-years
dataset.

We assume that the monthly evolution of Y, and Y, during the first 12 months is linearly
parallel. In other words, we assume that the time evolution of the two series of mean values follows
a parallel path having the same time slope so that the two paths are separated only by a group-specific
constant (a sort of individual fixed effect used in the fixed effects least squares with dummy variables
panel data analysis). Then, the plot of the time behaviour of the 24 mean values during the first year
(first 12 months) corresponds to the left portion of Figure 1 reproduced below (the first 12 months to
the left of the vertical line).

Assume now that at the end of the first year (i.e. in correspondence to the vertical line in Figure
1) “something” affecting only G2 happened, ceteris paribus. That something is generally assumed to
correspond to an exogenous event and it is called Treatment (e.g. a new regulation, a more or less
exogenous change of tax rates implemented in G2, some new subsidies paid to firms of that group,
higher interest rates, a natural event, a new pharmaceutical therapy, etc.). This way of introducing
Treatments should make clear that the word “period” used in this DiD review is not synonymous
of calendar unit of time but of “temporal phase”. In the 2 x 2 case we have two periods/phases: the
first one (lasting 12 months) with no event and the second (lasting 12 months) with an event affecting
the units of a group (G2 in our example) right from the arrival of the event and continuously until the
end of our sample time.

We assume that individuals in G2 cannot anticipate the introduction of the treatment (and
therefore cannot react in advance to its occurrence). Now it becomes relevant the right part of Figure
1 (the part to the right of the vertical line). Inspection shows that the time path of the expected values
of y for the treated group G2 which, after the treatment, can be specified as:

E] yj‘ Treatment = 1] = Expected Value of y; in G2 conditional upon the realization of the event

(where Treatment = 1 means when the treatment is operative).

The G2 path has been twisted upward about the point in the plot corresponding to the last month
of the first year (i.e. the last pre-treatment or pre-event month) while the time path of G1 proceeds
according to the previous linear trend and is:

E[ yi| Treatment = 0] = Expected Value of y. in G1 conditional upon the absence of the event

(where Treatment = 0 means when the treatment is not operative).

Hence, we assume that E[y] in G1 is unaffected by the treatment that is implemented with respect
to G2 units only, and additionally that the treatment affecting G2 has no spillover effects on GI.
Then, the dashed line represents the possible realizations of the expected values of the mean values
of y for G2 in the absence of treatment but under the linear parallel trend hypothesis discussed
above. In other words, the dashed line indicates what the path of the expected realizations of y in G2
would had been expected were the “perturbing” event (the treatment) absent, as if the Galilean inertia
principle for uniform linear motion of corps was at work (no intervening external forces). Clearly,
these realizations are not observed: actually, they do not exist. For that reason, we name them
“potential realizations” as if they were the effect resulting from the application of a “vis inertiae, or
force of inactivity” to use the terms employed by Newton in his Philosophiae Naturalis Principia
Mathematica of 1687) because their force depends only upon their position (potential energy).

We now have all the ingredients useful to measure the average effect that the treatment had on
G2 (the treated group). The mean effect of the treatment is the difference between the value assumed
by the mean y in G2 after the treatment (solid line) and the value that it would had potentially
assumed by pure vis inertige in the absence of the treatment (dashed line). That effect corresponds to
the segment CH in Figure 1 whose length is the difference between the abscissa of point C and the
abscissa of point H.
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month 12 Treatment is introduced

Ely]

months

Figure 1. Effects of the treatment on E[y] in treated units. Notes. The two solid lines are the mean values of the
response y. Line BD refers to the control units (not subjected to treatment) and the upper broken line refers to
the treated units. The vertical line indicates when the treatment was introduced. BB’ is drawn for pure graphical
reference. CH is the mean effect of the treatment. By observing the broken line alone, one cannot be sure that the
new path is due to the treatment or to something else. It is the comparison with the control group what might
give us the perception (sometimes just the optical illusion?) that the treatment can be the cause of the change of

the broken line path.

The measure of the length of the segment CH = C — H can be recovered as follows:

CH = Average Effect of the Treatment upon Treated
=(—-B)—(H-D)—(D-B"
=(C—-B)-(A—B)— (D -B)
=(C—-4)-{D-B)

By manipulating the last equation, we express CH as a difference between two differences:
Average Ef fect of the Treatment upon Treated = (C — D) — (A—B)

In the latter version, the measure of the treatment effect corresponds to the difference between
two terms. The first term (included in the first parenthesis) measures the difference in the
realizations of the expected value of y for both groups (treated and untreated) in the post-treatment
period, i.e. when Treatment =1 in the above expected values formulas. The second term (included in
the second parenthesis) measures the difference between the initial intercepts for the two groups
i.e. when Treatment = 0. The latter corresponds to the constant vertical distance of the two lines in the
pre-treatment period and (under the hypothesis that the time trends are initially parallel and would
had remained parallel in the absence of treatment). In other words, it is assumed that the constant
initial difference (segment AB) is constant during the entire period 1 because it depends only upon
the above mentioned idiosyncratic constant elements and then, because of the Galilean inertia
principle, it is bound to remain constant in the absence of treatment (the only new intervening force),
even in period 2. This motivates the plot dashed line in period 2 in Figure 1 and the previous
description of those (unobserved) values as “potential”.

Therefore, the Average Effect of the Treatment upon Treated (ATET from now on) is obtained by
differencing the mean response for the treatment and control units over time to eliminate time-
invariant unobserved characteristics and also differencing the mean response of the groups (treated
and untreated) to eliminate time-varying unobserved effects common to both groups. In other
words, the DiD technique eliminates the influx of time-varying factors (confounders) by comparing
the treatment group with a control group that is subjected to the same time-varying factors
(confounders) as the treatment-receiving group.
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As an example, we may think that y is the employment rate, and that the treatment is a subsidy
paid only to firms in G2 (e.g. a particular area of the country) for every new employee. If expected
unemployment in G1 and G2 follows a parallel trend in period 1 (when no subsidy was paid to firms),
expected unemployment in G2 should stick to the linear trend of period 1 and remain parallel to that
of G1. The dashed line would represent the potential expected value of unemployment in G2 in case
of no subsidy granted to firms of G2 in period 2.

Figure 1 shows that the untreated group G1 has a role of paramount importance in the
measurement procedure depicted above. G1 (untreated) acts as a control group and supplies (loosely
speaking) the substitutes for the unobservable (because they are never realised) counterfactual
observations of G2 to be used when studying the effect of the treatment. To be specific, the hypothesis
is that in the absence of treatment reality would have evolved in G2 as described by the E[y] recorded
in G1 with the obvious consequence that the right curly bracket in Figure 1 would not exists because
C — H. In other words, it would be E[yj|Treatment = 1] = E[yj|Treatment = 0].

We can now proceed to estimate the effect of the event using all the expected values as follows.

Recall that in Figure 1

e C is the expected value of y for the treated group conditional upon the application of the
treatment on that group

e D is the expected value of y for the untreated group conditional upon the absence of the
treatment for that group

e  Ais the expected value of y for the treated group conditional upon the absence of the treatment

e  Bistheexpected value of y for the untreated group conditional upon the absence of the treatment

Therefore, calling & = (i, j) a generic individual in the population (either treated or untreated, i.e.
G1 + G2) we may write a linear regression model as follows
Yhe = Bo+ P1 X D1+ B, X D2 + B3 X [D1 X D2] + &5, (1)
where:

e  ym is the value of the response variable for a unit in the population under study. Its value is
measured in each group and each ¢, i.e. before and after the introduction of the treatment. It will
correspond either to the i-th or to j-th observation at time ¢ depending on the group (treated or
untreated) of the unit.

e  pois the intercept of the regression model, common to treated and untreated units.

e D1 is the Time Period Dummy which is a dummy variable that takes the value 0 or 1 depending
on whether the h.th observation of the response variable refers to the pre (D1 = 0) or post
treatment period (D1 = 1) independently on the group (treated or control) the observation
belongs to. It simply indicates if that ¢ is a period in which the treatment existed or not.

e D2 is the Treatment Indicator Dummy which is a dummy variable that takes the value 0 or 1
depending on whether the h.th measurement refers to an individual in the control group
(untreated) or in the treatment group respectively, independently on the time period.
Therefore, D2 = 0 when the observation belongs to an untreated unit and D2 = 1 when the
observation belongs to a treated unit (independently upon when the treatment was introduced).
Clearly, in the simplified example of this section with only two periods, D2 = 0 means that the
unit is never treated. Other settings are discussed in other sections.

e  DIx D2 is the interaction term between the time dummy and the treatment dummy. It s the most
important coefficient to estimate. It measures the average effect of the treatment on treated units
the estimated average differential impact of the treatment.

As it will be commented below, the above equation (1) represents the basic but elegant form of
a DiD analysis for the homogenous case with no cofactors. In Table 1 we analytically discuss the
relevance of each coefficient. Here we stress that the elegance of DiD (Goodman-Bacon, 2021 p. 254)
makes it clear which comparisons generate the estimates, what leads to bias, and how to test the
design. The expression in terms of sample means connects the regression to potential outcomes and
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shows that, under common trends assumption, a two-group/two-period (2x2) DiD identifies the
average treatment effect on the treated.

The estimated coefficients of equation (1) have definite relations with the critical points of Figure
1. These relations are illustrated in the following 2 x 2 Table 1 which gives a more explicit description
of how the states of the word (time and treatment) can combine and how they affect the realization
of y in the above equation (1).

Table 1. Combinations of periods and treatment.

D1=0 Di1=1
D2=0 Yne = Bo + & Yae = Bo+ Bt &
D2=1 Yne = Bo+ B + & Ve =Bo+Bi+Br+Bs+¢e

In what follows, the estimated coefficients obtained from an OLS regression of the model
correspond to the expected values presented above. For the fitted model, the corresponding
expectations are as follows. The caps (*) above the coefficients indicate that they are the estimated

(fitted) values of the corresponding coefficients. Replacing l/ht with the expected value of Yt also
allows us to drop the error term &, since by hypotheses in a well-behaved OLS regression model, the
expected value of the error term is a zero mean and constant variance term. Hence, we can rewrite
the content of each cell of the 2 x 2 matrix of Table 1 as follows.

The North-West cell is
E[yn|D1=10,D2 = 0] = j, )

In terms of the hypothetical data set generating Figure 1, f, corresponds to point B and must
be interpreted as the average baseline common to the two groups (constant).

The North East cell is
E[yht|D1=11D2=0]=BO + B .

In terms of the hypothetical data generating Figure 1, 5, still corresponds to point B and, as
above, and must be interpreted as the model baseline average (constant). f3;, which corresponds to
slope of segment DB, and is the time trend in control group in treatment .

The South-West cell is
E[ynID1 = 0,02 = 1] = fo + b,

In terms of the hypothetical data generating Figure 1, we have that

(i) By corresponds to point B, as above, and must be interpreted as the model baseline average

(constant) and

(ii) f,, which corresponds to segment AB, is the constant difference between the two groups before
the treatment.

The South-East cell is
E[Yht|D1=1'DZ=1]=E0+ﬁ1+ﬁz+ﬁ3 . . . .

In terms of the hypothetical data generating Figure 1, the sum £, + ; + 5, + 3 corresponds to
point C.

We now proceed to calculate the difference in the expected value of y between the before (pre-)
and after (post-) treatment phases of the study.

For the treatment group, the difference in expectations works out as follows:

E[yn|D1=1,D2 =1] — E[y,|ID1=0,D2=1] = (Bo + B1 + B2 + Bs) — (Bo +,[?2) =By + B
which is the difference in estimated response between the after-treatment and before-treatment
phases of the study recorded within the treatment group.

Similarly, for the control group we have:

Elyn|D1=1,D2 = 0] = E[yn D1 =10,D2 = 0] = (By + 1) = (Bo) = b1

The above is the difference in estimated response within the control group between the after-

treatment and before-treatment phases of the study.
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The difference between the two differences measures the average net effect of the treatment on
the treated group, that is,

E[DiD Effect] = (B, + B,) = (B,) = B,
The estimated coefficient f; is what we have called ATET (Average Treatment Effect upon Treated)
and it has been obtained from the estimates of a linear model in which there a no cofactors (other
independent variables affecting ). Its difference with respect to the similar measure of the treatment

called ATE is discussed later.
For a more analytically grounded derivation of E[DiD Effect]| one may consult Angrist and

Pischke (2009, p. 229) who discuss the expected DiD effect and then show the OLS regression that
may be used for its estimation. Following the opposite route, Wooldridge (2010, p. 148) first starts
from an OLS regression equation augmented with Treatment Dummies and then expresses and
interprets the estimated relevant dummy as an estimate of the expected DiD treatment effect.

The following Remarks summarises the OLS use for a DiD strategy.

Remark n.1: the basic ingredients

We start with a set of i.i.d. individuals i = 1, ..., n and a tuple (V;,X;,T;) where Y; € R is the
response variable, X; € R is a cofactor vector (it may not be present) and D; € {0,1} is the treatment
assignment. We assume that the potential outcome (realization of the response variable) depends on
treatment and can be

Y;(0) = The response we had observed with D; = 0
Y, =Yi(D) = or
Y;(1) = The response we actually observe with D; = 1

We define the causal effect of the treatment as Y;(1) — Y;(0), the difference in potential outcomes
of individual i, so that on average (population) we have that the Average Treatment Effect upon
Treated (ATET) is 7 = E[Y;(1) — Y;(0)]. Clearly, each realization of the response can be observed in
just one state of the word, ie. conditional on either D; =0 or D; =1, not both. Under the
assumption that the treatment assignment is random (there is no systematic association between the
potential outcome of an individual and the treatment), OLS methods can help us to overcome this
missing data problem.

Remark n.2: ATET and OLS estimator

The OLS method of estimation of equation (1) correctly identifies the ATET in a DiD regression
under parallel trend and no anticipation effects for it allows us to define the estimand which
involves unobservable counterfactuals in a form (equation 1) that depends only on observed
outcomes. This process is called “identification” (see below for more discussion).

Then, ATET is the expected value of the DiD effect between the treatment and control group (i.e.
CH in Figure 1). After the DiD model is estimated, the estimated coefficient of the interaction term
(D1 x D2), i.e. 5, will give us the estimated difference-in-differences effect of the treatment that we
are seeking. The coefficient’s t-score and corresponding p-value will tell us whether the effect is
statistically significant and if so, we can construct the 95% or 99% confidence intervals around the
estimated coefficient using the coefficient’s standard error reported by the model output.

Finally, recall that we have randomly selected the participants (treated) and the non-
participants (untreated). Therefore, at this stage we do not pose ourselves the question: why didn’t
the non-participants participate? As we shall see, this question is outside the realm of DiD analysis.
The general DiD assumption is that there is a sort of powerful external force determining in a random
way the correct random sampling.

1.2. Violations of the Parallel Trend Assumption

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2025 d0i:10.20944/preprints202508.1089.v1

10 of 51

Remark n.1 and Figure 1 clearly indicate that the parallel trend assumption is one fundamental
ingredient of DiD. Yet, the presence of parallel trends should not be ascertained from simple optical
observation of plots like Figure 1. There may be cases in which the pre-treatment trends of the
treatment and control groups may appear different and the power to detect violations of parallel
trends hypothesis is low. Or it may be the case that the pre-treatment trends were the same, but we
have a reason to think that some other shock in the economy different than the treatment may cause
the post-treatment trends to differ. Then, the question is: can we still use DiD when we are unsure
about the validity of the parallel trends assumption? Rambachan and Roth (2023) note that one may
assume that the pre-existing difference in trends persists from pre to post treatment periods and
simply extrapolate this out. For example, we might assume that a difference in trends of 1% per
month in the employment rate data set in treated and untreated areas would continue to hold after
the treatment (say a policy wage intervention). Then, if the control group (no intervention) has
employment grow at 3% per month after the intervention is passed, we would assume the treated
group employment would have grown at 4% per month and compare the actual employment rate to
this theoretical counterfactual. However, assuming the pre-treatment difference in trends carries out
exactly in the post-treatment period is a very strong assumption, particularly if we did not have many
pre-treatment periods over which to observe it. Rambachan and Roth (2023) suggest that researchers
may instead want to consider robustness to some degree of deviation from the pre-existing trend, so
that linear extrapolation need only be “approximately” correct, instead of exactly correct. This
difference is realized by allowing the trend to deviate non-linearly from the pre-existing path by an
amount, call it M —the bigger that amount, the more deviation from pre-existing trend is allowed.
Once one abstains from imposing that the parallel trends assumption holds exactly, the
(pseudo)parallel trend is tested by testing the restrictions on the possible post-treatment differences
in trends (the above M) given the point identified pre-trends estimate. Such restrictions formalize the
intuition motivating pre-trends tests, namely that pre-trends are informative about counterfactual
post-treatment differences in trends. Then their paper shows that given M, we can identify a
confidence set for the treatment parameter of interest. In doing so we clearly violate the “pure”
parallel trend assumption needed to identify the DiD parameters and instead resort to a sort of partial
identification approach. Researchers can then also find and report the breakdown point — how much
of a deviation from the pre-existing difference in trends is needed before we can no longer reject the
null. As an example, Rambachan and Roth (2023) consider the impact of a teacher collective
bargaining reform on employment, in which parallel trends seem to hold for males, but in which
there is a pre-existing negative trend for females. They show the DiD estimate for males at M=0 (linear
extrapolation of the pre-existing trend), and then CI which get wider as they allow more and more of
a deviation in trends (increasing M > 0). In contrast, for females, the DiD estimator is of opposite sign
to what would be obtained when we extrapolate the pre-existing trend at M = 0, and then one sees
how these results change as more deviations from these existing trends are allowed for.

Rambachan and Roth (2023) provide inference procedures that are uniformly valid so long as
the difference in trends satisfies a variety of restrictions on the class of possible differences in trends
and derive novel results on the power of these procedures. They recommend that applied researchers
report robust confidence sets under economically motivated restrictions on parallel trends and
conduct formal sensitivity analyses, in which they report confidence sets for the causal effect of
interest under a variety of possible restrictions on the underlying trends. Such sensitivity analyses
make transparent what assumptions are needed in order to draw particular conclusions.

A second approach is provided by Bilinski and Hatfield (2020). They recommend a move away
from relying on traditional parallel trend pre-tests because of problems can emerge in both directions.
Sometimes we may fail to reject parallel trends because the test power is low or, on the contrary,
because the power is high. Yet, when we reject parallel trends, this doesn’t tell us much about the
magnitude of the violation and whether it matters much for the results — with big enough samples,
trivial differences in pre-trends will lead to rejection of parallel trends. Bilinski and Hatfield (2020)
argue that the most popular approach to testing parallel trend is incorrect and frequently misleading
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and present test reformulations in a non-inferiority framework that rule out violations of model
assumptions that exceed a threshold. We then focus on the parallel trends assumption, for which we
propose a "one step up" method: 1) reporting treatment effect estimates from a model with a more
complex trend difference than is believed to be the case and 2) testing that that the estimated
treatment effect falls within a specified distance of the treatment effect from the simpler model. This
reduces bias while also considering power, controlling mean-squared error. Our base model also
aligns power to detect a treatment effect with power to rule out violations of parallel trends.

A third approach is proposed by Freyaldenhoven, Hansen and Shapiro (2019). Their idea is a
solution similar to instrumental variables to net out the violation of parallel trends. For example,
suppose that one wants to look at the impact of a minimum wage change on youth employment. The
concern is that states may increase minimum wages during good times, so that labour demand will
cause the trajectory of youth employment to differ between treated and control areas, even without
the effect of minimum wages. Their solution is to find a covariate (e.g. adult employment) which is
also affected by the confounder (labour demand), but which is not affected by the policy (i.e. if you
believe minimum wages do not affect adult employment). Then this covariate can be used to reveal
the dynamics of the confounding variable and adjust for it, giving the impact of the policy change.
Importantly, this does NOT mean simply controlling for this covariate (which only works if the
covariate is a very close proxy for the confounder of concern), but rather using it in a 2SLS or GMM
estimator. Another example concerns the impact of SNAP program participation on household
spending, where the main dataset has SNAP participation and the outcomes, and the concern is that
income trends may determine both program participation and spending. Using a second dataset that
has SNAP participation and income, they can instrument participation with leads of income, which
requires assuming that households do not reduce labour supply in anticipation of getting the
program.

1.3. The Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1978, 1980, 1990)

DiD identification require that the treatment applied to one (or more) unit does not affect the
outcome for other units. Following the definition of Angrist et al. (1996), Rubin (1980, 1990),
Wooldridge (2010, 905) by Stable Unit Treatment Value Assumption (SUTVA) in causal studies we
mean that the potential outcome for a generic unit does not depend on the treatment status of the
other units or on the mechanism by which units are assigned to the control and treatment groups. In
other words, treated and untreated units are expected not to mutually interfere and do not influence
their outcomes (Cox, 1958). The authors themselves point out that the assumption is critical and does
not always match with real situations. For instance, let us consider a generic market in which
operators mutually know and interact, thus influencing the reactions to exogeneous or external
events, or policies in which “spillover effects” among neighbours can affect the choices of people
involved in the experiment (Sobel, 2006). Similarly, one could consider panel data settings in which
units interact across temporal (e.g., anticipation effects), cross-sectional (Xu, 2024), and spatial
dimensions (Wang, 2021; Wang et al., 2020; Xu, 2024). Imbens and Rubin (2015, pp. 10) use the
example of the fertilizer applied to one plot that affected the yields in contiguous untreated plots.
Another example might be that of students assigned to attend a tutoring program to improve their
grades (treated units) who might interact with other students in their school who were not assigned
to the tutoring program (untreated control units) and influence the grades of the latter. Treated
students might affect “informally” the performance of the control students since their interaction can
generate spillover effects of the treatment in favour of untreated students. Under these
circumstances, to enable causal inference, the analysis might be completed at the school level rather
than the individual level. SUTV A would then require no interference across schools, a more plausible
assumption than no interference across students.

Hence, SUTVA demands that the potential outcomes for some untreated unit do not vary with
the treatments assigned to some other treated units. In other words, a subject’s potential outcome is
not affected by other subjects” exposure to the treatment. The SUTVA implies that each individual
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has one and only one potential outcome under each exposure condition, that is with and without
treatment (Schwartz et al., 2012), thus making the causal effect “stable”. On the contrary, when the
SUTVA is not fulfilled, there could exist multiple potential outcomes for each individual under each
exposure condition (i.e., the causal effect is not unique), potentially leading to lead to misleading
inferences. In non-economic frameworks, researchers often add a second aspect of stability in causal
studies and closely related to the original SUTVA, that is, the so called “consistency assumption”
(Cole and Frangakis, 2009; VanderWeele, 2009) or “no-multiple-versions-of-treatment assumption”,
which states that potential outcomes of individuals exposed to the treatment coincide with their
observed outcomes. In other words, there are no hidden forms of treatment leading to different
potential outcomes (Cerqua et al., 2022; 2023).

Laffers and Mellace (2020) introduced a third source of violation of the SUTVA, that is, the
presence of measurement errors in either the observed outcome or the treatment indicator. While this
new perspective extends the definition of the SUTVA, the authors also propose a way to relax the
assumption by means of a sensitivity study. Specifically, they suggest computing the maximum share
of units for which SUTVA can be violated without changing the conclusion about the sign of the
treatment effect. According to the specificities of the empirical setting of interest, several other
attempts to extend and to relax the SUTVA can be found in the recent literature (see, for instance, the
paper by Qiu and Tong, 2021; VanderWeele et al., 2015 for a recent review on causal inference in the
presence of interference). For instance, considering the case when all units are affected by the
treatment, Cerqua et al. (2022) make use of a machine learning counterfactual framework in which
the no-interference part of the SUTVA is substituted by a milder definition only requiring that the
potential outcomes for treated units are not affected by the individual characteristics of the other
treated units. Indeed, in Cerqua et al. (2023), the authors remove entirely the no-interference
assumption and rely solely on the no-multiple-versions-of-treatment assumption, as they are aware
that in many socio-economic applications agents are sensibly affected by interference across both
space and time. Other strategies attempt to relax the assumption by using clustered or hierarchical
data structures (for instance, individuals living restricted areas such as neighbourhoods) with
potential spatial spillovers. VanderWeele (2010), for instance, introduced the definition of individual-
and-neighbourhood-level SUTVA and neighbourhood-level SUTVA to deal with empirical setting in
which cluster-level interventions are considered. Among others, Huber and Steinmayr (2021) allow
for the interaction between individuals and higher-level structures (e.g., regions) and suggest a non-
parametric modelling to separate individual-level treatment effects from spillover effects. However,
while the SUTVA may be violated on the individual level, it must hold at the aggregate level. The
latter can be referred to the regional SUTVA, which admits spillover effects between individuals
within regions, but rules out spillovers across regions. Under this new setting, the total treatment
effect may be split up into an individual effect and a within-region spillover effect driven by the
treatment of other individuals in the region. Eventually, Ogburn et al. (2020) and Ogburn et al. (2024)
considered the potential spillover effect produced by a network in which individuals mutually
interact and treated individuals may spread the treatment to their social contacts.

In the rest of the Review, we will adopt the definition of SUTVA provided in Remark n.2, that
is,

Remark n.3: the SUTVA assumption

The potential outcomes for any unit do not vary with the treatments assigned to other units, and,
for each unit, there are no different forms or versions of each treatment level, which lead to different
potential outcomes.

Essentially, Remark 3 states that an individual's potential outcome under a given treatment
depends neither on the treatment received by other individuals nor on different versions of the
treatment itself. In other words, each individual has only one potential outcome for each level of
treatment, and this outcome is independent of the treatment received by others. Specifically, we must
make sure (i) that an individual's outcome is not influenced by the treatment received by other
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individuals. For example, if we are evaluating the effect of a drug, SUTVA implies that whether a
patient takes the drug does not affect the outcome of another patient who might not take it and (ii)
that for each level of treatment, there is a unique version of the treatment that leads to a given
potential outcome. This means that there are no different versions of the treatment that could lead to
different outcomes for the same individual.

We may conclude that SUTVA is crucial for the correct interpretation of causal effects because,
if violated, it can lead to biased estimates of treatment effects. For example, if interference is present
(a student treated with a new textbook shares the improvements of her/his knowledge with an
untreated fellow student), we may not be able to distinguish the effect of the treatment from the
effect of the interactions between treated and untreated individuals.

1.4. Exogeneity and Identification. DiD and Traditional Econometrics

In OLS regression analysis we are interested in assessing the effect of a (usually) continuous
variable x on a dependent Y under the hypothesis of exogeneity. The “true” causal effect of x on Y
can be identified as long as independent changes of x only produce a direct effect on Y, by ruling out
any potential indirect effect of x on Y occurring via the relation of x with unobservable factors.
Without this exogeneity condition, OLS produced biased estimated parameters. Using Cerulli’s
(2015) example, we assume that the regression model is
Y=8x+u
where 8 represents the causal effect of x on Y and u is a non-observable factor. By differentiation we
have

dy/dx = B + du/dx
du u
The model is identified as long as Ix =0.1f Ix # 0 the autonomous changes in x are not

exogenously determined, as x has also an indirect effect on Y through its effect on u and since u is not
observed we cannot separate the direct effect (f) and the indirect effect ( Z—Z) and the model is no
longer identified.

The counterfactual approach of the DiD to causality can be reformulated in terms of OLS model
with the x assuming a binary form (say x0 for the treated and x1 for the untreated) instead of a
continuous x. If we can observe two responses (YO state: treatment and Y1 state: no treatment) we
write

Y, =Fx; +uy
Yo = Bxo +uq

Subtracting the second equation from the first we have
Vi =Y = Bxs —x0) +us — U

Or
Ay = BAx + Au
Then
Ay Au
Pt

A o . . .
If ﬁ # 0 a bias similar to the previous one is generated even when we use binary form data

typically associated with treatment events and counterfactuals. Exogeneity of treatment is a necessary
condition.

In DiD analysis we may go a little further and portrait the identification problem using the
assumptions made above in section 1.1. We can re-write the target estimand of section 1.1 (which
involved unobserved counterfactuals) in a form that depends only on observed outcomes. In DiD we
call this process “identification”. To do so we assume that the change in response from pre- to post-
intervention in the control group is a good proxy for the counterfactual change in untreated
potential outcomes in the treated group. When in a 2 periods framework we observe the treated and
control units only once before treatment (f = 1) and once after treatment (¢ = 2), we write this as:

E[y°(2) —y°(D)ID = 1] = E[y°(2) = y°(1)ID = 0]
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Notice that it involves unobserved counterfactual outcomes, namely y°(2)|D = 0 (the potential
realization of y in case of no treatment; recall from Figure 1 that these data no not exist). This is other
way to state the parallel trend assumption or the counterfactual assumption.

We also need to make more explicit another assumption of section 1.1. For DiD the treatment
status of a unit can vary over time. However, we only permit two treatment histories: never treated
(the control group) and treated in the post-intervention period only (the treated group). Thus, we will
use D =0 and D =1 to represent the control and treated groups, with the understanding that the
treated group only receives treatment whenever

T > To. Every unit has two potential outcomes, but we only observe one — the one corresponding
to their actual treatment status. The consistency assumption links the potential outcomes y(t) at
time t with treatment d with treatment d € D = (0,1) to the observed outcomes y(t):

y(©) = (1= D)y°(t) + Dy*(t)

Finally, we add the assumption that future treatment does not affect past outcomes. Thus, in the
pre-intervention period, the potential outcome with (future) treatment and the potential outcome
with no (future) treatment are the same (no anticipation effects).

Using the assumptions made above, we can re-write the target estimand (which involved
unobserved counterfactuals) in a form that depends only on observed outcomes. In DiD this process
is specifically called “identification” and should not be confused with the specification problems
typical of traditional OLS single equation regressions or with the so called over or under
identification problems emerging from multi equations OLS systems. DiD identification relies on the
Counterfactual Assumption and the Consistency Assumption discussed above, and ends with the
familiar DiD estimator where for reducing notation we use D instead of D2 of equation (1) and
indicate periods as numbers between parenthesis (see Callaway, 2022, 8):

ATET = E[y1(2 )—4°(2 )‘D - 1] = Definition of ATET
:E[yl(Z)‘D - 1} —E[yO(Z)‘D - 1]
= E[yl(Q )‘D - 1} - {E[yO(Q )-4°01 )‘D - o} + E[yo(l )‘D = 1}} by counterfactual assumption
- {E[yl(Q)‘D = 1} - E[yo(l)‘D = 1}} - {E[yoﬂ)‘D - 0] - E[yo(l)‘D - 0}}
= {E[ym )| D =1]-E[y1)|D = 1]} - {E[ym )| D =0]-E[y1)|D = 0]} by consistency assumption

You may compare the above ATET with the result obtained in section 1.1. To simplify reading
and comparison we summarise the meaning of the above terms as follows:

E[y(2)|D = 1]is the post-intervention average response of the treated group

E[y(1)|D = 1]is the pre-intervention average response of the treated group

E[y(2)|D = 0]is the post-intervention average response of the control group

E[y(1)|D = 0]is the pre-intervention average response of the control group

In summary, DiD identification begins with the ATET, applies the Counterfactual Assumption
and the Consistency Assumption, and ends with the familiar DiD estimator.

In section 3 we present a worked example in which the above expected values are computed
and used to calculate the ATET coefficient as a difference among differences.

When we observe the treated and control units multiple times before and after treatment, we
must adapt the target estimand and identifying assumptions accordingly. Identification problems
with multi period DiD is discussed later.

Appendix A provides an example with an easy visualization of the data set

2. The OLS Version of the Two-Way Fixed Effects Regression (TWFE)

TWEE is the most common way to implement a DiD identification strategy under the
assumption of treatment homogeneity. In this section we present what Roth, Sant’ Anna, Bilinski, and
Poe (2023, p. 2224) call a “static” TWFE which regresses the outcome variable on individual and
period fixed effects and an indicator for whether the unit / is treated in period t. Recall that in section
1.2 we have defined
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ATET = E[y*(2) — y°(2)|D2 = 1]
={Ely(2)IDz = 1] - E[y(1)|D2 = 1]}
—{Ely(2)ID2 = 0] — E[y(1)|D2 = 0}
Then, the estimated ATET can be written by replacing population means by their sample
analogues (indicated by upper bars) to obtain
ATET = {E[3(2)ID2 = 1] - E[y(1)|D2 = 1]} — {E[3(2)|D2 = 0] - E[7(1)|D2 = 0]}
The above expression is algebraically equivalent to either of the following OLS regression system
{yht =0+ 1 + aDpy + vpe
Yne = 0: +1j + aDpe + v
where in the system i indicates treated units, j indicates untreated units, and ¢ is time, and / in
equation (2) below can be either i or j. The interpretation of the quantities involved in (2) is the
following:

e yy.is the response variable
e  0,is a time effect

e 1]; Or 7];is a unit (not group) fixed effect

e Dy,is the dummy (indicator) for whether or not unit h is affected by the treatment in period ¢
(the term D1 x D2 of the last column of Table 2)
e vy, areidiosyncratic, time-varying unobservable factors.

Table 2. Example of data set for DiD with more than two years.

y TREATMENT = D1 x
D2
Consumptio . .
D1 =Time period D2 =Treatment

ill indicate th
n Treatment dummy application 0 will indicate the

expenditure individual is not
f ffect the t
Year ? a.n . 0 if it is a year with 0 if the individual is 2 etc ed by the tax
individual policy
. no treatment never treated L .
belongingto_ ... . . . e . 1 will indicate that in
1if it is a year when1 if the individual is .
a grotip treatment existed treated (sooner or later) a certain year the
recorded in individual is affected
a year by the tax policy
2000 yia2000 0 1 0
2001 . 0 1 0
2002 . 0 1 0
2003 y ‘ ‘ ‘
104
2005
2006 v ‘ ‘ ‘
2000  y2a2000 0 1 0
2001 . 0 1 0

2002 . 0 1 0

2003

2005

2006
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2000  yic2000 0 0 0

2001 0 0 0

2002 0 0 0

2003 yic2o0 1 0 0

2004 . 1 0 0

2005 . 1 0 0

2006 yicz00 1 0 0

Table 2a. Example of a DiD data set.
1 1 0 5
1 2 0 5
1 3 0 5
1 4 0 5
1 5 0 5
1 6 0 5
1 7 0 5
1 8 0 5
1 9 0 5
1 10 0 5
2 1 0 1
2 2 0 1
2 3 0 1
2 4 0 1
2 5 1 2
2 6 1 2
2 7 1 2
2 8 1 2
2 9 1 2
2 10 1 2
3 1 0 2
3 2 0 2
3 3 0 2
3 4 0 2
3 5 1 4
3 6 1 4
3 7 1 4
3 8 1 4
3 9 1 4
3 10 1 4
Table 2b. Data set of a worked example.
Consumers’Id  Time Consumption € D1 D2
1 2010 12 0 1
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2 2010 9 0 1
3 2010 13 0 1
4 2010 14 0 1
5 2010 15 0 1
6 2010 13 0 0
7 2010 14 0 0
8 2010 13 0 0
9 2010 16 0 0
10 2010 15 0 0
1 2011 15 1
2 2011 1 1
3 2011 19 1
4 2011 18 1
5 2011 22 1
6 2011 13.5 0
7 2011 1 0
8 2011 15 0
9 2011 15.5 0
10 2011 14.4 0

Equivalently, the previous system can be written in a single equation (panel data) version as
follows:

Yne = An + Ve + Ba[D1y X D2¢] + epy 2)
where a, is the individuals fixed effect, y, is the time fixed effect, and D1, X D2, is the treatment
dummy interaction. We can estimate equation (2) and interpret the estimated coefficients according
to the result reported in Remark n.4 below, that is,

Remark n.4: causal interpretation of the TWFE estimator

Under parallel trend, treatment homogeneity and no spill-over, &is the TWFE estimation of the
causal effect of receiving the treatment.

As the very name suggests TWFE is the case where there are exactly two time periods, where no
units is treated in the first time period, and where some units become treated in the second time
period while other units remain untreated in the second time period. Notice that when we say periods
we do not necessarily refer to units of time (years, months etc.) but to “time intervals”: the first
(possibly composed by several years, several months, etc.) in which there is no treatment for nobody
and the second (possibly composed by several years, several months, etc.) in which some units are
treated (uniformly).

To illustrate formally TWFE we need some notation. Let us define the following quantities:

e t*and t*—1 the two periods that for simplicity correspond to two years
e D the treatment indicator D1 x D2 of Table 2 so that

1 for treated units during treatment periods
" 10 for untreated units

Then for t € {t* —1,t"} define ym(1) to be unit i's potential treated response in period ¢ and
correspondingly ym(0) to be unit i’s potential untreated response in period t. Impose that

Ypr 1 (1> =Y (0) for all units. This is the no anticipation condition of section 1. It states that the

treatment should not affect the response variable in periods before the treatment takes place. The
result from the above assumption and conditions is that

Uy = Ypea (0) and gy 0 = Dyyy (1) +(1= D, )y, . (0)
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In the first time period we observe untreated potential outcomes for the response variable for all
units and in the second period we observe treated potential outcomes of the response variable for
treated units and untreated potential outcomes of the response variable for untreated units.

Using the above definitions, we may define the ATET resulting from the DiD identification of
the treatment effect as follows

ATET = E[y,.(1) - y,.(0)|D = 1]

which is equivalent to the one given in the previous section.

Using Callaway’s (2022, p. 6) definition, the ATET is the mean difference between treated and
untreated potential outcomes among the treated group. Perhaps a main reason that the DID
literature most often considers identifying the ATET rather than, say, the average effect of treatment
is that, for the treated group, the researcher observes untreated potential outcomes (in pre-treatment
time periods) and treated potential outcomes (in post-treatment time periods). The DID identification
strategies exploit the above framework. As a result, it is natural to identify causal effect parameters
that are local to the treated group.

Clearly, the model presented in equation (2) is the static specification of the TWFE, which yields
a sensible estimand when there is no heterogeneity in treatment effects across either time or units.
Following Roth, Sant’Anna, Bilinski, and Poe (2023, p. 2224) we can stress the relevance of these
hypotheses more formally.

Define a period (e.g. year) g >t and let Tht (. g ) = Yii(g) - Yni(o). Suppose that for all units h, T(g)
=7 whenever ¢ > g. This implies that (a) all units have the same treatment effect, and (b) the treatment
has the same effect regardless of how long it has been since treatment started. Then, under a suitable
generalization of the parallel trends assumption and no anticipation assumption, the population
regression coefficient « in equation (2) is equal to t.

Yet, issues arise, however, when there is heterogeneity of treatment effects over time, as shown
in Borusyak and Jaravel (2018), de Chaisemartin and D’Haultfoeuille (2020), and Goodman-Bacon
(2021), among others. More generally, if treatment effects vary across both time and units, then 1,/(g)
may get negative weight in the TWFE estimand for some combinations of t and g.

Figure 2 gives the idea of parallel trend with 3 units (unit 1 blue colour is untreated) and 10
periods. The plot has been generated using the data of Table 2a reported in the Appendix. The
following plot illustrates the time paths of the response variable. Notice that Unit 1 is never treated;
Units 2 and Unit 3 start treatment at time 5 and are always treated from t =5 to t =10.

<——— TREATMENT

Outcome variable
N
|

Time variable

Figure 2. Parallel trends plot with 2 treated units (homogeneous case) and one control. Notes. The bottom solid line is
the response variable y of the untreated unit ID1. The treatment is introduced at the end of period 4. The two

upper lines correspond to the data of ID2 and ID3. Trends are imposed to be parallel in treated and untreated
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periods for simplicity. Comparing the treated units (ID2 and ID3) with the control group (ID1) might give us an
understanding of whether the treatment is responsible for the change of the line path of the response variables
ID2 and ID3.

2.1. Testing for the Parallel Trends and Anticipation Effects Assumptions in the TWFE Model

Given the fundamental importance of the parallel trend assumption, a natural question is: how
to test for parallel trends in a panel data TWFE? In order to find answers, we start from the above
model written as

Yne = Bo + Zﬁkl(tzknth Dtap+ve+en
k=T,
where I(-) is the indicator function, the treatment is indexed by Di, whit Dr = 1 indicating that
observation h is part of the treated groups/units and Dr = 0 indicates that it is part of the
comparison/control group. Let f index time from {1, ..., T} and suppose that an intervention begins at
time To for the treated units (same treatment periods for all treated units: the so-called homogenous
case. See below). All other symbols have their usual meaning. The treatment effects of interest are fx,
representing differential post-period changes in the treated group relative to comparison at each time

point. The average of these coefficients, that is,
T

1
B=r—r =1 Z B
k=T,
is the average ATET.

We may exploit the above definition of the coefficients to derive some tests of the DiD
identification hypothesis.

Parallel trends test: the slope test. In a parallel trends test for DiD identification, we may try and
estimate whether there is a difference in slope between treatment and comparison groups prior to
the intervention. Call 0 the different coefficient. Then, rewrite the above equation in a form that
incorporates the pre-treatment coefficient 0:

Ve =By ) Bil(t =k Dy = 1) +6(Dy X 6) + @y + 7 + e
k=To

We can now test whether the (pre-treatment) differential slope 0 = 0. If the null hypothesis for
this test is non rejected (i.e., pv > 0.05), researchers may conclude that trends are parallel.

Anticipation effects: Researchers may instead examine the validity of the identification of the
parameter by DiD by testing whether there is a significant “treatment” effect prior to the intervention,
that is. an effect starting at T* < To. In this context, they might use the modified original panel model:
Yne = Bo+ X p O [t = kN Dy = 1) + ap + ¥ + ene

and estimate it by omitting data from after To If the test statistic

0= T—T—1 Ze"

is significant, this again suggests a Vlolatlon of parallel trends. (Alternatively, a joint F-test can be
used to test whether placebo effects at all possible T* < To were insignificant.)

2.2. More on the Parallel Trend Assumption

We have already stressed that DiD does not identify the treatment effect if treatment and control
groups were on different trajectories prior to the treatment (common trend or parallel trend
assumption).

With respect to equation (1) as the OLS equation of our DiD model we recall that

e  Selection bias relates to the fixed characteristics of the units 7,
e Time trend 6,is the same for treated and untreated units.
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These assumptions guarantee that the common trends assumption is satisfied but they cannot
be tested directly. This is quite disappointing because it leaves the tests for parallel trend the optical
ability to visual checking on trends reported in plots.

In Figure 1, we illustrated the case of an obvious pre-treatment parallel trend. In other cases, the
assumption may be easily violated. Therefore, the question is: what has to be done? For those who
think that hypothesis testing is in the realm of optics and not in the realm of mathematical statistics, a
way to proceed is to inspect visually the plot of the treated and untreated data. Figure 1 is clearly a
case of non-optically distorted test of parallel trend. The alternative presentation could be the make
the G2 line start from A (eliminate the difference AB, which is the idiosyncratic constant element)
and observe whether or not G1 and G2 lines overlap before the introduction of the treatment and
diverge in period 2. More in general, optics cannot be a good substitute for mathematical statistics.

We may go back to initial 2 x 2 case and present a discussion of the parallel trend relevance. We
had 2 groups, one treated and one untreated, and we indicate them as follows g € {0,1}where 0 is
untreated (control) and 1 is treated. We also had 2 years and then we write t € {0,1} where 0 is the
before treatment period and 1 is the treatment period. The guarantee a consistent estimate of the
ATET we need to make the following parallel trend assumption
E(yi01|Dgt = 1) - E(yi00|Dgt = 1) = E(yi01|Dgt = 0) - E(}’ioongt = 0)

If the treated units had not received the treatment, the groups defined by Dy, = 1land Dy, = 0
should have response variable showing the same paths as in Figures 1 and 2. The group effects must
be time invariant, and the time effect must be group invariant.

Within a 2-period framework, the possible “test” of this assumption is only graphical but for
more than 2 periods same testing procedure based on Wald test are available. Many sw offer such
statistical tests. We will present them alongside applications at the end of the Review.

In the linear case, Wooldridge (2021) has shown that tests of the Parallel Trend assumption are
easily carried out in the context of pooled OLS estimation. In other words, in linear DiD models
within a staggered treatment framework, the parallel trends assumption can be tested using pooled
OLS estimation. This approach leverages the inclusion of cohort and time period dummies, along
with cohort-by-time treatment indicators, in a linear regression model. The key idea is that under the
parallel trends assumption, the coefficients on these interaction terms, when estimated via pooled
OLS, are consistent for the estimation of ATET. Moreover, the tests are the same whether based only
on the D;; = 0 observations (imputation regression) or on pooled OLS using all observations—
provided full flexibility is allowed in the treatment indicators. In other words, tests obtained pooling
over the entire sample are equivalent to the commonly used ‘pre-trend’ tests (i.e. common tests used
to examine the parallel trends assumption) that use only the untreated observations. As discussed by
Wooldridge (2021), this means the tests using post-treatment data are not ‘contaminated’ by using
treated observations—if the treatment effects are allowed to be flexible.

The algebraic equivalence of the pooled tests and pre-trends tests carries over to the nonlinear
case provided the canonical link function is used in the Linear Exponential Function (LEF). In a DiD
analysis with panel data, when using a linear exponential family (LEF) with the canonical link
function, the pooled tests (using all data) and pre-trends tests (using only untreated observations) are
algebraically equivalent. This means that the same underlying statistical properties and results can
be obtained regardless of whether you pool all the data or focus only on the pre-treatment
observations to check for parallel trends. Technically, if one uses a different mean function or
different objective function, the test should be carried out using only the Di = 0 observations
(although it seems unlikely the difference would be important in practice). Wooldridge (2023)
recently discusses the non-linear case.

In general, one should consider that the implications for applied work revolve around the (often-
implausible) parallel trend assumption needed for the identification (using non-treated post
treatment observations as counterfactuals) of a DiD model. Yet rather than just asserting that parallel
trends hold, or abandoning projects where a pre-test rejects parallel trends (not to speak of the so-
called optical test based the trend plots!), new approaches focus on thinking carefully about what
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sort of violations of parallel trends are plausible and examining robustness to these. Importantly,
these methods should be used when there is reason to be sceptical of parallel trends ex ante,
regardless of the outcome of a test of whether parallel trends hold pre-intervention. This type of
sensitivity analysis will allow one to get bounds on likely treatment effects. For instance, a recent
application comes from Manski and Pepper (2018), who look at how right-to-carry laws affect crime
rates, obtaining bounds on the treatment effect under different assumptions about how much the
change in crime rates in Virginia would have differed from those in Maryland in the absence of this
policy change in Virginia.

In summary, the default DiD estimation equation should allow for a linear trend difference.
This is a key recommendation of Bilinski and Hatfield (2020).

Which approach to use to examine robustness will depend on how many pre-periods you have:
with only a small number of pre-intervention periods, the Rambachan and Roth approach of
bounding seems most applicable for sensitivity analysis; when you have more periods you can
consider fitting different pre-trends as in Bilinski and Hatfield (2020). Some issues are discussed in
sections below.

3. Simple Worked Examples

We offer two simple numerical examples of ATET estimation with OLS and of the interpretation
of the estimated coefficients. The second example relates to the interpretation of the response variable
paths (before and after the treatment) as a tool for the evaluation of the presence of parallel trends.

3.1. Example n.1

Assume we have a total of 10 Consumers in 2 equal-sized groups (a group of 5 treated consumers
and a group of 5 untreated consumers); 2 periods corresponding to two years, namely 2010 and 2011;
a Treatment occurring at the end of 2010 (consumption tax reduction for the control group only). We
name treated consumers Mrs. 1- 5; and untreated consumers: Mrs. 6 -10. Data and dummies are
presented in Table 2b in the Appendix.

Using the above dataset, we show by direct calculation of mean values how to recover the ATET
induced by the treatment. We need the following quantities:

e  The mean Consumption in the Control group before the treatment is
E[ylD1=0 A D2 =0] = 14.2

e  The mean Consumption in the Treated group before treatment is
ElylD1=0 A D2 =1] =12.6

¢  The mean Consumption in Control group after the treatment is
E[y|D1 =1 A D2 = 0] = 14.48

e  The mean Consumption in Treated group after the treatment is

E[yD1=1 A D2 =1] =18.2
Estimated results can be synthesized in the following 2x2 matrix

Control Treated
Pre-Treatment 14.2 12.6
Post-Treatment 14.48 18.2

Therefore, we obtain the ATET as the difference of the two differences:
DiD = 3.72 — (—1.6) = 5.32

Clearly, the above calculation does not tell us how “good” the computed ATET is from an
inferential point of view. In other words, 5.32 has no CI around it or P-values. That’s why we must
re-obtain the result following a route that allows to introduce inferential elements. Now we estimate
ATET with the OLS after the creation using the above defined D1, D2 and TRET = D1x D2. (reported
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in small letters in the Table below). We run the OLS (with the option of robust SE) regression of
equation (1) and obtain the results reported below.

Linear regression Number of obs = 20
F(3, 16) = 4.63
Prob > F = 0.0163
R-squared = 0.5951
Root MSE = 1.8926
Robust
consumption | Coefficient std. err. t P>t [95% conf. interval]
d1i .2799999 .6822023 0.41 0.687 -1.166204 1.726204
d2 -1.6 1.183216 -1.35 0.195 -4.108306 .9083058
TRET 5.32 1.692749 3.14 0.006 1.731532 8.908468
_cons 14.2 .5830952 24.35 0.000 12.96389 15.43611

Then, the estimated ATET is 5.32, which, according to the t-test reported in the table, is
statistically significant at any level. Recall that TRET is the D1xD2 dummy variable.
We can interpret the above estimated coefficients as it follows:

¢  The estimated Constant = 14.2 (with a p-value smaller than 0.05) is the mean value of the
Consumption in the control group in 2010 (i.e. before the treatment). We can compare it with the
result obtained from the numerical calculation reported above. The two figures coincide.

e If we sum the coefficient Constant and the d2 coefficient, i.e. if we calculate 14.2 + (- 1.6), we
obtain 12.6. This is the expected Consumption of the control group in 2011, i.e. during the year
of treatment.

. If we sum the coefficient Constant and the d1 coefficient, i.e. if we calculate 14.2 + 0.28 = 14.48,
we obtain the mean value of the Consumption in the treatment group in 2010, i.e. before the
treatment.

e  Theestimated TRET =5.32 is the (statistically significant) treatment effect. Treated units increase
their average consumption by 5.32 euros with respect to untreated individuals.

In formula, we may write, after indicating differences with the symbol A, the calculation of ATET
as
EA[Consump|TaxTreatment = 1] — EA[Consump|TaxTreatment = 0] =

3.72 — (-1.6) = 5.32

As it was stressed above, equation (1) is estimated with OLS under the robust SE option, which
allows adjusting the model-based standard errors using the empirical variability of the model
residuals which are the difference between observed outcome and the outcome predicted by the
statistical model. The motivation of this choice is that as shown by Bertrand, Duflo, and Mullainathan
(2004) the standard errors for DiD estimates are inconsistent if they do not account for the serial
correlation of the outcome of interest. For a more complete discussion, see Cameron and Miller
(2015) and MacKinnon (2019) and the references therein.

Generalising our discussion beyond the 2-group example studied above, we may stress that the
response variables under investigation usually vary at the group and time levels, and so it makes
sense to correct for serial correlation. Bertrand, Duflo, and Mullainathan (2004) show that using
cluster—robust standard errors at the group level where treatment occurs provides correct coverage
in the presence of serial correlation when the number of groups is not too small. Bester, Conley, and
Hansen (2011) further show that using cluster-robust standard errors and using critical values of a ¢
distribution with G - 1 degrees of freedom, where G is the number of groups, is asymptotically valid
for a fixed number of groups and a growing sample size. In other words, consistency does not require
the number of groups to be arbitrarily large, that is, to grow asymptotically. Cluster-robust standard
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errors with G-1 degrees of freedom are the default standard errors in many sw performing DiD
analysis.

Hence, we could still obtain reliable standard errors even when the number of groups is not
large. But what about data with a very small number of groups? Cluster-robust standard errors may
still have poor coverage when the number of groups is very small or when the number of treated
groups is small relative to the number of control groups. For cases where the number of groups is
small, Stata sw provides three alternatives. In what follows I reproduce the description of the
alternatives provided by Stata to deal with the issue
(https://www .stata.com/manuals/tedidintro.pdf.). The first alternative is to use the wild cluster
bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach, and Miller (2008)
and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides better inference than
using cluster—-robust standard errors with t(G - 1) critical values. The second alternative comes from
Imbens and Kolesar” (2016), who show that with a small number of groups, you may use bias-
corrected standard errors with the degrees of freedom adjustment proposed by Bell and McCaffrey
(2002). For the third alternative, one may use aggregation type methods like those proposed by
Donald and Lang (2007); they show that their method works well when the number of groups is small
but the number of individuals in each group is large.

When the disparity between treatment and control groups is large, for example, because there is
only one treated group or because the group sizes vary greatly, cluster-robust standard errors and
the other methods mentioned above underperform. Yet the bias-corrected and cluster—bootstrap
methods provide an improvement over the cluster—-robust standard errors.

3.2. Example n.2

Use the data of Table 3 in the Appendix (stuck in panel data form, i.e. in the version that is
always recommended is defined by individual identity and time indicator) to generate a working
data set for the future application of DiD. Answer the following “trivial” questions. How many units
belong to the panel? By looking at D2, say how many units are treated Are the latter treated in the
same years? What does D1 indicate? How is the dummy whose estimated coefficient corresponds to
ATET obtained?

Table 3. Data for the parallel trend illustration.

Consumers’ Identity Time Consumption € D1 D2
1 2009 11 0 1
1 2010 12 0 1
1 2011 15 1 1
2 2009 8.6 0 1
2 2010 9 0 1
2 2011 17 1 1
3 2009 12.5 0 1
3 2010 13 0 1
3 2011 19 1 1
4 2009 13 0 1
4 2010 14 0 1
4 2011 18 1 1
5 2009 14 0 1
5 2010 15 0 1
5 2011 22 1 1
6 2009 12 0 1
6 2010 13 0 0
6 2011 13.5 1 0
7 2009 13.7 0 0
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7 2010 14 0 0
7 2011 14 1 0
8 2009 12.7 0 0
8 2010 13 0 0
8 2011 15 1 0
9 2009 14.9 0 0
9 2010 16 0 0
9 2011 15.5 1 0
10 2009 14.7 0 0
10 2010 15 0 0
10 2011 14.4 1 0

Assume the treatment is introduced at the end of year 2010 (look at the dummies). Write the FE
panel data version of equation (1) with time and individual effects and estimate both ATET and the
Time Effect. Using any graph routine that you may know, show that the parallel trend exists
(graphically). Figure 3 below shows the requested plots.

Observed means Linecar-trends model
20 20
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Figure 3. Parallel trends plots using the worked example data of Table 2c. Notes. In Figure 3 we plot the mean values
of the response variable, before and after treatment (2010). The left plot shows the observed means whereas the
right plot illustrates the linear trend of both series of means after they are forced to start from a same intercept
(the initial difference is supposed to remain constant and is removed). Under parallel trend, the elimination of
the initial (supposedly constant) difference should make the pre-treatment path to overlap. If the treatment is
effective the post-treatment paths should show appreciable differences among each other. The above plots are
obtained from the post-estimation code estat plottrends which is run after the Stata command xtdidregress (Treated
data = dashed lines).

If you cannot produce the above plots using your SW, try to interpret those provided above. Yet,
never forget that statistical inference is not a variant of “observing panoramic views” however
elaborated they might be presented. In any future analysis that you will perform, please recall that
the presence of parallel trends cannot be diminished and debased to a mere matter of good optical
observation, however sophisticated the plots can be.

As one can see for both groups, there was an increase in the mean of the outcome response
variable after 2010. Therefore, the increase in the treatment group cannot be attributable entirely to
the tax treatment (see section 1). Yet, the deviation from a common trend was more sizable from the
treatment group and the difference may indicate the effect of the treatment. The example shows how
the DiD strategy relies on two differences. The first is a difference across time periods. Separately for
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the treatment group and the control group, we compute the difference of the outcome mean before
and after the treatment. This across-time difference eliminates time-invariant unobserved group
characteristics that confound the effect of the treatment on the treated group. But eliminating group-
invariant unobserved characteristics is not enough to identify an effect. There may be time-varying
unobserved confounders with an effect on the outcome mean, even after we control for time-
invariant unobserved group characteristics. Therefore, we incorporate a second difference—a
difference between the treatment group and the control group. DID eliminates time-varying
confounders by comparing the treatment group with a control group that is subject to the same time-
varying confounders as the treatment group. The reader can evaluate the above statements by
reproducing with the data used in this estimation the differences calculated in section 3.

The ATET is then consistently estimated as a one parameter in a liner OLS equation by
differencing the mean outcome for the treatment and control groups over time to eliminate time-
invariant unobserved characteristics and also differencing the mean outcome of these groups to
eliminate time-varying unobserved effects common to both groups.

4. ATET vs ATE

In the previous sections, we have used the acronyms ATET to indicate the estimation of the
average causal effect on treated units when our data set includes both pre-treatment and post-
treatment observations. It should not be confused with the Average Treatment Effect (ATE) which
measures the effect of a treatment on a group of units estimated when we have observations recorded
only for the after-treatment period (we do not have pre-treatment observations). Yet, we would like
to know if the treatment has an effect on the response variable y of the treated vs untreated units. In
an ideal world, we would observe y when a subject is treated (which we denote in what follows as
y1), and we would observe y when the same subject is not treated (which we denote as yo). If the only
difference in the data generation process of treated and untreated responses is the presence or absence
of the treatment, we could average the difference between y: and yo across all the subjects in our
dataset to obtain a measure of the average impact of the treatment. However, this ideal experiment
setting is almost never available because we cannot observe a specific subject having received the
treatment and having not received the treatment. When for instance the response is the level of
consumption, and the treatment is the presence or the absence of a consumption tax for a specific
group of consumers it is impossible to observe the consumers’ expenditure under both treatment (the
presence of the tax) and absence of the treatment (no taxes). As a result, we cannot estimate
individual-level treatment effects because of a missing-data problem. Econometricians have
developed potential-outcome models to overcome this problem. Potential-outcome models bypass
this missing-data problem and allow us to estimate the distribution of individual-level treatment
effects. A potential-outcome model specifies the potential outcomes that each individual would
obtain under each treatment level, the treatment assignment process, and the dependence of the
potential outcomes on the treatment assignment process. These models are beyond the purpose of
this DiD Review.

To illustrate the difference between ATE and ATET estimates, we follow Cameron and Trivedi
(2005, p. 866). Define 4 = y; — yothe above difference between the response variable in the treated
and untreated states. Back to Figure 1 one immediately realises that A cannot be observed (Group 2
after the treatment). Then we define
ATE = E[A] = Population average Treatment Ef fect
whereas
ATET = E[A[D = 1] = Population average Treatment Ef fect upon Treated

With the sample analogues (using the hypothesis of section 1):

M

ATE =Mt Z[AJ.]
j=1
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M -135,(D1xD2);
ATET = wawaj E: [A;]D; = 1]
j=1 j=1
The ATEversion may be useful when the treatment has “universal applicability” (Cameron and
Trivedi, 2005, p. 866) and we may consider the effect of the treatment for a randomly selected member
of the population.
On the contrary, the ATET version is the measure of the average effect on treated units. It may
be useful when the treatment has a universal applicability, and one wants to estimate its effect on a
randomly selected subset of the population. Yet the estimation of the ATE is not straightforward,
because as it was mentioned above, we cannot simultaneously observe average outcomes of
participants who are at the same time not participants and a control group does not exist. An
indication on how to specify treated and “untreated” observation to estimate the ATE is in Cameron
and Trivedi (2005, p. 867). Techniques are available to estimate various versions of ATE. Wooldridge
(2010, Ch. 21) discusses the assumptions and identification of ATE and presents the results (p. 929)
of different estimation approaches. The reader can also check the content of the repository material
contained in the links reported at the end of Section 1.

5. The Confounding Factors

At the beginning of section 1 we wrote that confounding factors should be controlled for in DiD
analysis. A confounder in DiD is a variable with a time-varying effect on the response outcome or
a time-varying difference between groups. For example, if we run a DiD study on hearth disease and
therapy effects, we know that some coffee drinkers are smokers whilst some others are not. So
smoking is a confounding variable in the study of the association between coffee drinking and heart
disease. The increase in heart disease may be due to the smoking and not the coffee and can interact
with the treatment administered to some units of patients. Hence, in DiD we may adopt as a starting
concept the colloquial definition of a confounder in cross-sectional settings: a variable associated with
both treatment and outcome. As in the example of coffee drinkers, we may then think that the
confounding elements in a DiD analysis arise because some covariates evolve over time differently
in the treated and control groups or because the effects of covariates on outcomes vary over time.
Then, confounders that vary over time and/or have time-varying effects on the outcome can cause
violations of the parallel trends assumption. This concern has led scholars to develop methods to
estimate the ATET coefficients under the assumption that parallel trends holds conditionally on
covariates (see Roth et al. 2023 for a recent review). Methods that make a conditional parallel trends
assumption prevailingly assume that control for pre-treatment covariates suffices. Researchers are
often explicitly cautioned against controlling for post-treatment variables to avoid potential “post-
treatment bias” (Rosenbaum 1984; Myint, 2023).

To see why confounding factors can affect adversely our DiD estimations we should recall that
in DiD our target estimand is the average effect of treatment on the treated (ATET):

ATET (¢t ) = E[y*(¢ ») —y°(t )ID = 1]
for some time t* > T, where T, is the time the intervention is introduced to the treatment group. Yet,
in most settings, a confounder is a factor associated with both treatment D and response y. This is
why randomized trials are not subject to bias through confounders — no factor is associated with the
randomly assigned treatment. In other words, the potential outcomes and treatment are independent.
Otherwise, we must make the following orthogonality assumptions:

Assumption of unconditional Independence between Response and Treatment: y? L D

or

Assumption of conditional (on covariate X) Independence between Response and Treatment:
y4 1 D|X

In both of these versions, the treatment D is independent of the potential outcomes y¢d, either
unconditionally or conditional on X.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1089.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2025 d0i:10.20944/preprints202508.1089.v1

27 of 51

As for practical applications, notice that these relations are only satisfied in randomized trials;
otherwise, there is no guarantee that X is sufficient to make D and y4 conditionally independent. Even
if we continue collecting covariates, it is likely that some unmeasured new covariates are still a
common cause of D and yd. Paradoxically, the less covariates we have the smaller the probability of
running into confounding factors trouble.

In summary, in DiD studies the presence of confounding factors violates the counterfactual
assumption when

(1) the covariate is associated with treatment

(2) there is a time-varying relationship between the covariate and outcomes

(3) there is differential time evolution in covariate distributions between the treatment and control
populations (the covariate must have an effect on the outcome).

As a conclusion we may state that confounders are covariates that change differently over time
in the treated and comparison group or have a time varying effect on the outcome. When the
confounder is appropriately included in a DiD regression model, unbiased estimates of ATET can be
obtained with optimal SE. However, when a time-varying confounder is affected by the treatment,
DiD may not be generate unbiased estimates of the causal effect. For more in-depth discussions of
confounding for DiD, we recommend Wing, Simon, and Bello-Gomez (2018) and Zeldow and
Hatfield (2021).

6. More Than Two Periods with Homogeneity

Assume we have some groups of units and that time units (years) > 2. After some year a
treatment is introduced and imposed to only a randomly selected subset of groups. If the treatment
is administered to that subset of groups at the same moment and is maintained till the end of the time
period and the rest of groups is never affected, we have a case of panel data homogenous DiD. This
is the case of no differential treatment time. The opposite case is given by the administration of the
same treatment in different moments to different groups (group 1 receives the same treatment at g >
to > initial year, some other group at g+, some other at g«) where to is the year of the first
administration of the treatment to some group. This s the heterogeneous case, also called staggered
case. Clearly, once the treatment is administered (to any group) it is maintained till the end of the
data set.

The data reported in Table 2 were tailored to illustrate numerically the homogeneous case and
to show the values of d1 and d2 in different years. The example presented in Figure 4 below gives a
sort of graphical representation of the homogenous case (two groups/units are never treated; 4
groups/unites are continually treated from 2003 until 2007). Recall that we define treatment
homogeneity as the condition corresponding to a different starting moment in which units are treated
in the sample period under study. Yet, in this Review, we always assume for both the homogenous
and the heterogeneous case, that once the treatment is administered it stays in operation until the end
of the sample period under study. Callaway (2022, p. 10) calls this Staggered Treatment Assumption.
We indicate this assumption as a Remark n.5:
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Figure 4. Time paths recorded for 6 units with 2 untreated units and 4 units subjected to different time treatment. Notes.
In Figure 4 we plot the simulated response variable of each of the 6 units illustrated in Table 5, before and after
each treatment (2002, 2003, 2004, and 2005). Treatments are represented by vertical lines. Data are simulated; so,
we put y = 0 for units 1 and 2 from 2000 to 2007 (always untreated) as well as for the other units before their
treatments, i.e. at least from 2000 to 2002 (excluded). We assume, for the sake of illustration, that treatment causes
ady>0.

Remark n.5: Staggered Treatment Assumption (Callaway, 2022, 10)

For any unit and all t = (1, ..., T) we assume that D2i+1 =1 — D2: = 1. In other words, we assume
that the treatment, once introduced, is kept active for all treated units until the end of the sample
period. The treatment is irreversible.

The following Table 4 shows the distribution of the treatment across units and time that defines
homogeneity.

Table 4. Example of six units and eight years panel with homogeneity of treatment and irreversibility.

2000 2001 2002 2003 2004 2005 2006 2007

Period 1 (no treatment Dit =
UNITS 0)

1

» Never treated
3 Not yet treated

4 Not yet treated

5 Not yet treated

6 Not yet treated

Notes. The table accounts for a treatment design where (i) the design is not staggered, meaning that groups’
treatments do not change over time and can change at most once; (ii) the treatment is binary, as always assumed

in this Review; and (iii) there is no variation in treatment timing: all treated groups start receiving the treatment
at the same date.

The TWEFE can be employed to estimate a DiD model when data are generated according to the
above framework. As a result, one may calculate the ATET at any t > To of the post treatment period
starting in To as.

ATET(t > T,) = E[yfreeted(t) — ypmtreated ()|D = 1]ve > T,
or the average ATET as

ATET(t > Tp) = E[pfreated(t > T,) — yEntreted(t > To)|D = 1]vt > T,
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Notice that, with panel TWFE model we increase the statistical power of DiD (under parallel
average outcomes in pre-to post intervention periods) but the possible presence of serial correlation
in treatment and outcome variables may be a problem (see section 9.2).

7. More Than Two Periods with Heterogeneity

Assume we have some groups of units and that time indicator > 2 and that the treatment is
administered to a subset of groups in different moments during the sample period. If the treatment
once introduced is maintained until the end of the period, we have a case of panel data DiD with
staggered treatment (se Remark 5 above). We will always refer to Remark 5 as a case of “treatment
irreversibility”. The following Table 5 provides an illustration of the staggered treatment design for
the case of 6 units and 8 time periods with 2 never treated units, and 4 units that started to be treated
in different moments .

Table 5. Example of six units and eight years panel with heterogeneity of treatment (different treatment

windows).
YEARS
UNITS 2000 2001 2002 2003 2004 2005 2006 2007
1
2 Never treated
3 Notyettreated Treated
1 Notyettreated  Treated
5 Not yet treated
6 Not yet treate

Notes. The table accounts for a treatment design where (i) the design is staggered, meaning that groups’ treatments
change over time and can change at most once; (ii) the treatment is binary, as always assumed in this Review;
and (iii) there is more than one variation in treatment timing: treated groups start receiving the treatment at
different dates.

When the treatment is introduced in different periods of time its impact changes (within treated
units) over time, and we face a situation when average treatment effects vary over time and over
cohort (i.e. each group of units whose treatment started in the same moment and lasted for the same
time). Note that in Table 5 each unit from 3 to 6 is a specific cohort. In general, a cohort can be formed
by a plurality of groups/units. If we had an extra unit (say, number 7) with a treatment starting in
2005 (beginning) and ending in 2007 (end), that unit would form a cohort with unit 6. The plot of
possible time paths before and after treatments is illustrated in the following Figure 4.

With heterogeneity of treatment, ATET cannot be estimated by mere application of the TWFE
method since the DiD estimate of the treatment effect depend on the choice of the evaluation window.
In other words, when groups are treated at different points in time, the assumption about a constant
ATET may be violated because the standard DiD estimator estimates an ATET that is common to all
groups across time. When groups are treated at different points in time, the assumption about a
constant ATET may be violated. Callaway (2022, p.3) discusses this issue and what are the possible
effects of the “bad comparisons” resulting from using for comparison groups that were treated in
previous periods.

Different estimators can be employed to overcome the above difficulties. We concentrate of 4
estimators (Callaway and Sant’Anna, 2021, Wooldridge, 2021): extended two-way fixed effects
(TWEE), regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-
probability weighting (AIPW). However, some general assumptions are necessary.

To estimate the staggered DiD we need the following identification assumptions that ensure the
validity of staggered DiD estimation.

1. Irreversibility of the treatment or Staggered treatment (This assumption posits that once units
receive treatment, they remain treated throughout the observation period.
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2. Parallel Trends Assumption with respect to Never-Treated Units: When we examine groups
and periods where treatment isn’t applied (C=1), we assume the average potential outcomes for
the group initially treated at time g. The group that never received treatment would have
followed similar trends in all post-treatment periods t > g. Then, if we have T=(1, ..., S) and g =
(2, ..., S) with t > g. However, this assumption relies on two important conditions:

a. There must be a sufficiently large group of units that have never received treatment in our
data.

b. These never-treated units must be similar enough to the units that eventually receive
treatment so that we can validly compare their outcomes.

In situations where these conditions are not met, we can use an alternative parallel trends
assumption that involves the not-yet treated units as valid comparison groups.

3. Parallel Trends Assumption with respect to Not-Yet Treated Units: When we're studying
groups treated first at time g, we assume that we can use the units that are not-yet treated by
time s (where s > t) as valid comparison groups for the group initially treated at time g.

Different estimation strategies have been proposed to estimate the ATET coefficient in the above
cases. Surveys and discussion are, among others, in Callaway (2022), Callaway and Sant’Anna, (2021),
de Chaisemartin and D’haultfeeuille (2023) and in Roth, Sant’ Anna, Bilinski, and Poe (2023).

A problem common to any estimation strategy is the choice of the control units. When there is
heterogeneity the control group can be defined in either way: a) one can use the units that are never
treated; b) one can use the units not in cohort g and not yet treated by time ¢, where g is the year of
the beginning of the treatment of the cohort. In the worked example of section 7.5, g can be 2011,
2012, 2013 for the three cohorts. In this section we will consider a panel of G groups observed at T
periods, respectively indexed by the d by the placeholders g and t, which can refer to any group or
time period. T placeholders g and t, which can refer to any group or time period.

In what follows we present four popular methods! able to deal with the above issue, namely the
extended TWFE method, the Regression Adjustment (RA) method, the Iterative Probability
Weighting (IPW) method, and the Augmented Iterative Probability Weighting (AIPW) method. Some
of them fit a model for the response/outcome variable of interest; others fit a model for the treatment
or bot response and treatment. Also, Table 6 reported in the Appendix provides an example with
data of 13 consumers/units/ID and 6 years. Treatment is staggered and irreversible until 2014. Data
must be interpreted according to the summary provided in the Appendix. The Appendix contains
the estimated results obtained by employing the above mentions techniques.

Table 6. Example of staggered heterogeneous treatment.

First Year of

ID Year Consumption D1 D2 TRET
Treatment
1 2009 11 1 0 0 2011
1 2010 12 1 0 0 2011
1 2011 15 1 1 1 2011
1 2012 14.8 1 1 1 2011

1 Callaway (2022) discusses an ampler set of estimation strategies. According to Callaway (2022, 4)
all of them explicitly make, in a first step, the same good comparisons that show up in the TWFE
regression (i.e., the comparisons that use units that become treated relative to units that are not-yet-
treated) while explicitly avoiding the “bad comparisons” that show up in the TWFE regression (i.e.,
the comparisons that use already-treated units as the comparison group). Then, in a second step, they
combine these underlying treatment effect parameters into target parameters of interest such as an
overall average treatment effect on the treated. See Section Alternative Approaches in Callaway
(2022, 20).
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6 2009 12 0 0 0 Never treated
6 2010 13 0 0 0 Never treated
6 2011 13.5 0 1 0 Never treated
6 2012 13.9 0 1 0 Never treated
6 2013 14.2 0 1 0 Never treated
6 2014 15.1 0 1 0 Never treated
7 2009 13.7 0 0 0 Never treated
7 2010 14 0 0 0 Never treated
7 2011 14 0 1 0 Never treated
7 2012 14.9 0 1 0 Never treated
7 2013 15.1 0 1 0 Never treated
7 2014 14.9 0 1 0 Never treated
8 2009 12.7 0 0 0 Never treated
8 2010 13 0 0 0 Never treated
8 2011 15 0 1 0 Never treated
8 2012 15.5 0 1 0 Never treated
8 2013 16.1 0 1 0 Never treated
8 2014 17.2 0 1 0 Never treated
9 2009 14.9 0 0 0 Never treated
9 2010 16 0 0 0 Never treated
9 2011 15.5 0 1 0 Never treated
9 2012 16 0 1 0 Never treated
9 2013 16.7 0 1 0 Never treated
9 2014 17 0 1 0 Never treated
10 2009 14.7 0 0 0 Never treated
10 2010 15 0 0 0 Never treated
10 2011 14.4 0 1 0 Never treated
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10 2012 15 0 1 0 Never treated
10 2013 15.7 0 1 0 Never treated
10 2014 16.1 0 1 0 Never treated
11 2009 13.1 1 0 0 2012
11 2010 14 1 0 0 2012
11 2011 14.8 1 0 0 2012
11 2012 16 1 1 1 2012
11 2013 16.2 1 1 1 2012
11 2014 15.5 1 1 1 2012
12 2009 12.9 1 0 0 2012
12 2010 13.3 1 0 0 2012
12 2011 14.7 1 0 0 2012
12 2012 16.1 1 1 1 2012
12 2013 16.7 1 1 1 2012
12 2014 18 1 1 1 2012
13 2009 12 1 0 0 2013
13 2010 12.8 1 0 0 2013
13 2011 13 1 0 0 2013
13 2012 13.9 1 0 0 2013
13 2013 15.4 1 1 1 2013
13 2014 16 1 1 1 2013

Additional information for using data of Table 6 to estimate alternative versions of the staggered
DiD models are provided below.
Description of the variables of Table 6.

= DEPENDENT VARIABLE: CONSUMPTION

= COACTOR: INCOME

= HETEROGENOUS TREATMENT: A Consumption Credit (for instance a policy measure that
supports consumption (for instance a consumption local credit card with public warrant.

DiD DUMMIES

D1 =0 if the consumer was never treated

D1 =1 if the consumer was treated, sooner or later

D2 =0 if the treatment did not exist in that year for that consumer
D2 =1 if the treatment exists in that year for that consumer

ID CONSUMERS

1 to 5 are Treated from 2011

6 to 10 are Never Treated

11 to 12 are Treated from 2012
13 is Treated from 2013 to 2014

TREATMENT TIMING

From 2009 to 2010 No Treatment existed

From 2011 to 2012 there was a treatment on individuals 1, 2, 3, 4, and 5
In 2012 a Treatment was extended to individuals 11 and 12

In 2013 a Treatment further extended to individuals of unit 13
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UNITS AND COHORTS
Cohorts Units and Observations
Never Treated Units 5 units 30 Observations
First Cohort Units Treated from 2011 5 units 30 Observations
Second Cohort Units Treated from 2012 2 units 12 Observations
Third Cohort Units Treated from 2013 1 unit 6 Observations

The units treated since 2011 form the first cohort, and so on. Once the treatment is introduced,
each unit in the treated cohort remains treated until the end of the sample period. TWFE, RA and
IPW estimations of ATET can be obtained by applying the methods presented in the text (section 7
and following).

Table 7. DiD Estimates using the staggered heterogeneous data reported in Table 6 (No Cofactors).

ATET (SE in parenthesis)

Cohorts YEARS TWFE RA IPW AIPW

2010 // .18 (.20) .18 (.20) 18 (.2)
2011 5,207 (.99) 5327 (93)  5.32**(.93) 5.32%* (.93)

2011 2012 5.22%% (1.1) 526" (1.01)  5.26 *** (1.01) 5.26* (1.01)
2013 6.0** (1.06) 6*** (.97) 6*** (.97) 6*** (.97)
2014 5.92*** (1.03) 5.92%%*(96)  5.92*** (.96) 5.92*** (.96)
2010 /1 .05 (.24) .05 (.24) .05 (.24)
2011 /1 ,82 (47) .82 (.47) .82 (.47)

2012 2012 1.23** (.31) 727 (.10) 727%(10) .72 # (.10)
2013 1.17% (.44) .62 (.23) .62 (.23) .62 (.23)
2014 .97 (1.27) 42 (.94) 42 (94) 42 (.94)
2010 // 2 (.16) 2 (.16) 2 (.16)
2011 // -0.08 -0.08 (.42)  -0.08 (.42)

2013 2012 // .32 (.07) 32°%(.08)  .32** (.08)
2013 1.5%** (.22) 1% (.09) 1% (.09) 1% (.09)
2014 1.35** (.43) 1.1%* (.24) 1.1 ((.25) 1.1((.25)

Overall *3% %% o4k %%

ATET 4.32** (1.11) 4.22%** (1.003) 4.22***(1.00) 4.22*** (1.00)

Average

ATET by

years

2011 5.2 (.99) 5.32%%*(93)  5.32**(.93) 5.32%** (.93)

2012 4.08** (1.16) 3.96 ** (1.05) 3.96 ** (1.05) 3.96 ** (1.05)

2013 4.2** (1.21) 4.03** (1.08)  4.03**(1.08) 4.03** (1.08)

2014 4.11** (1.28) 3.94** (1.13) 3.94* (1.13) 3.94* (1.13)

Notes. Notice that the absence of covariates RA, IPW, and AIPW generate the same ATET estimations for each
cohort as well as the same Average ATET for 2011. The reader may replicate the exercise and include the Cofactor
Income (included in the data set) and obtain different ATET/CATET estimates.

7.1. The Extended TWFE Method (Wooldridge, 2021)
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According to Wooldridge (2021) "there is nothing inherently wrong with using TWFE in
situations such as staggered interventions". He proposed an extended TWFE estimator in DiD
research design to account for block and staggered treatments based on his finding that the traditional
TWEE estimator and a two-way Mundlak (TWM) estimator are equivalent. To show the equivalence,
Wooldridge (2021) defines the two-way Mundlak regression as a regression of Yir on a constant term,
Xit (independent variable of interest), T™'Y,.X; (the unit-specific average over time), and
N7'Y¥N . X, (the cross-sectional average). By Frisch-Waugh-Lovell theorem and some algebraic
calculations, we can see the coefficient of X is the same as the one in the traditional TWFE regression
discussed for the homogenous case in section 2. Moreover, adding time-invariant variables (Zi) and
unit-invariant variables (M:) does not change the coefficient of Xi.

Based on the findings above, Wooldridge (2021) finds that an unbiased, consistent, and
asymptotic efficient estimator for heterogeneous ATETSs in DiD can be obtained by running a TWFE
regression with an inclusion of interactions between treatment-time cohorts and time or,
equivalently, by running a pooled OLS regression with an inclusion of panel-level averages of
covariates. This estimator allows for heterogenous effects over time, over covariates, or over both.

As an illustration we rewrite the traditional TWFE DiD regression of section 2

Ynt = O¢ +1p + aDpe + e
in the extended Wooldridge (2021)'s proposed model

Yne =1+ Z ag Gpe + ZVst + Z Z:BgthtthF + Upe

9=q5=q
where g denotes the first period the treatment occurs, Grg is a group dummy, and Fs is a dummy

indicating post-treatment period (Fs =1 if t =s, where s € [q, T]).

In the post-estimation results obtained with Extended TEFE, only the ATT estimates (for each
cohort) at the treatment time and for the periods thereafter are shown; this is because Wooldridge
(2021) proves that including time dummies and their related interactions for periods prior to the
earliest treatment period doesn't affect the coefficient estimates of interest.

The extended TWEFE estimator uses as control group the never treated group and has a big
advantage: it can be obtained from a very basic regression (pooled OLS) so that most researchers can
understand it easily. However, it also has a computational disadvantage (there are many interactions
and therefor the computation of a great number of coefficient estimates is necessary).

7.2. The Regression Adjusted Method (Callaway and Sant’Anna, 2021)

To estimate the ATET for each cohort at each time, the RA, IPW, and AIPW estimators transform
the estimation into a classical two groups and two periods difference-in-differences setup. Thus, these
techniques restrict the data to an estimation sample with only two groups and only two periods based
on the values of g and t. As for the two groups, one group includes all observations in cohort g; the
other group includes untreated observations not in cohort g, (control group). For the two periods,
one period is the data in time t; the other period is a period when cohort g is not treated (base-line
time).

The estimation procedures differ in the way control groups are identified. A possibility is to use
the units that are never treated as the control group. An alternative is to use as the control group the
units not in cohort ¢ and not yet treated at time ¢.

RA uses the data of the never treated control group to estimate the information about the effect
of the treatment on the outcome/response variable of the treated groups. Therefore, we have as many
benchmark (pre-treatment) years (i.e. g1 periods) as there are years with a new treatment and as
many benchmark/control groups as there are never treated groups. Ra computes ATET for each
cohort and time starting from each t before the treatment (¢-1) of each treated cohort. For
implementation of Callaway and Sant’ Anna (2021) models see the links reported at the end of section
1.
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7.3. The Inverse Probability Weighting Method, IPW, (Callaway and Sant’Anna, 2021) and the Augmented
IPW (Callaway and Sant’Anna, 2021)

The IPW estimates the probability that the observation in the benchmark group belongs to the
treated group to estimate the untreated differences. IPW computes ATET for each cohort and time
starting from each t before the treatment (g—1) of each treated cohort. Yet, IPW first builds a logistic
regression model to estimate the probability of the exposure observed to the treatment for a particular
unit/group and uses the predicted probability as a weight in the subsequent analyses. An extended
discussion of the Inverse Probability Method is beyond the scope of this Review. For an introduction,
the reader is referred to Chesnaye, Stel, Tripepi, Dekker, Fu, Zoccali, and Jager, 2022). For
implementation of Callaway and Sant’Anna (2021) models see the links reported at the end of section
1.

The AIPW estimator combines the RA and IPW estimators. For implementation of Callaway and
Sant’Anna (2021) models see the links reported at the end of Section 1.

Estimates obtained using the above methods and the the data set of Table 6 of the Appendix are
reported in the same Appendix with a more detailed description of the generation process.

8. DiD with Complex Data Structure: Clustering and Spatial-Temporal
Dependence

Inference and estimation are closely linked. Once we estimate the causal estimand, we want to
know how uncertain our estimate is and test hypotheses about it. In this section, we highlight some
common challenges and proposed solutions for inference in Did.

Whether the data arise from repeated measures or from repeated cross-sections, data used in
diff-in-diff studies are usually not independently and identically distributed (iid). For example, we
often have hierarchical data, in which individual observations are nested within larger units (e.g.,
individuals in a US state) or longitudinal data, in which repeated measures are obtained for units. In
both of these cases, assuming iid data will result in standard errors that are too small. Also, as
previously discussed in Section 1.1.1, when the assumption of reciprocal independence among the
individuals under study is violated, the SUTVA assumption is dramatically violated as well, leading
to identifiability issues with the actual treatment effect (Sun and Delgado, 2024).

Recall that in equation (1) there were no co-factors and assume now that we have two subperiods
(pre and post treatment). Since treatment is homogeneous (there is no staggered treatment), we may
think that we face the panel data version of the 2 x 2 TWFE model analysed in section 3. However,
things may not be so, and two new issues may emerge, that is,

a. data showing a grouping or clustering structure
b. data exhibiting complex dependence generated by spatial and temporal relationships.

8.1. Clustering

When data have a group structure, data are unlikely to be independent across observations. For
example, if our data are the individual test scores of students belonging to different classes of
different schools, students’ tests of pupils belonging to the same class tend to be correlated across
each other simply because students are exposed to the same factors: same teachers, same textbooks,
same school equipment, etc.). Likewise, individual consumption or work data within a regional zone
in a country can be correlated because the consumers/workers in each zone share the same cultural
tradition and work/consumption habits. If we call g the group (cluster) of the observations and
assume that the treatment is administered to some groups in the homogenous form (see section 6),
the above equation rewrites

Yngt = Bo+ B1 X D1y + By X D24 + B3 X [D1 X D2] g¢ + €pge
where £ is the individual observation, g is the group (cluster) to which the observation belongs, an ¢
is the time indicator. As one can see in the above equation, we have maintained the common intercept.
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To emphasis the presence of group correlation, the equation ca be rewritten in terms of random effect
model as follows

Yhge =V + B X D1y + By X D2y + B3 X [D1 X D2] g1 + Spge
where yng is the h-th observation in the g-th group, y is an unobserved overall mean (common
intercept). The term &4 = a4 + €44, is a random effect term given by the sum of an unobserved
random effect shared by all individuals in group g but varying across groups (a4 and an unobserved
and unstructured noise term uncorrelated in time and across both groups and individuals (engt). For

the model to be identified, the (tg, and Ehgt are assumed to have expected value zero and to be
uncorrelated among themselves and over time.

If we postulate that the above-mentioned group correlation across individual data exists, the
covariance of the error term of two observations drawn from observation in the same group (cluster)
in each t is nor zero. Following Angrist et al (2009, p. 309) we may write with respect to the original
model that the covariance is

E/ehgejg/ =p,02>0 forall h#jin each g and Vt

where pe is the intraclass correlation coefficient of the original error term (ICC).
Then the question is how to define ICC. In the light of the random effect version of equation (1)

the ICC writes
9a
Pe= 02t o2 >0

This ICC is always non-negative, allowing it to be interpreted as the proportion of total variance
that exists "between groups.” This ICC can be generalized to allow for covariate effects, in which
case the ICC is interpreted as capturing the within-class similarity of the covariate-adjusted data
values. Recall, that this expression can never be negative (unlike Fisher's original formula) and
therefore, in samples from a population which has an ICC of 0, the ICCs in the samples will be higher

than the ICC of the population.?

8.2. Serial Correlation

In the 2-year framework of DiD typical of the 2 x 2 model of section 1.2, serial correlation (i.e.
the tendency of a variable and a lagged version of itself, for instance a variable at times f and at t -1,
to be correlated with one another over periods of time) is not a real problem. Yet DiD analysis if often
performed using data which have a time dimension greater than two. Although the sample can still
be divided into two “treatment periods” (D =0 and D = 1) each period can be composed by more time
observations (annual, quarterly, etc.) of the response variable and cofactors, if present. Therefore, the
serial correlation problem cannot be ignored. Moreover, if we have panel a data structure, we also
have individual effects to consider alongside time effects.

Rewrite the above basic OLS equation in panel data form and use 4 for individuals, g for groups
and f for time (say year). Recalling that the treatment is imposed at the group level we have (with no
cofactors):

Yhgt = Bg +Ae + 6 X Dyt + epge
where:
e yng is the status of the response variable of individual / in group g in time ¢
e fgis the time invariant group effect;
e  Atis the group invariant time effect;
e Dy =[D1xD2], is the interaction dummy representing the treatment state in post-treatment
period;

2 A number of different ICC statistics have been proposed, not all of which estimate the same
population parameter. There has been considerable debate about which ICC statistics are appropriate

for a given use, since they may produce markedly different results for the same data
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o ey reflects the idiosyncratic variation of the response variable across individuals, groups and
time.

If we assume that some of the components of Ehgt are common to individuals in the same group
and time (a tax imposed in some regions for some years; a regional business cycle prevailing in some
areas; a pandemia affecting only some specific regional areas and lasting for some years; etc.), we
may think of exg as the sum of two components. One is a group-year shock, vg, and the other is an
idiosyncratic individual component, zigt such that the above estimand rewrites as

Yhgt = Bg +Ae + 6 X Dy +Vge + Npge

Following Angrist and Pischke (2009, p. 317) we assume that

E[vge] = Elnngelg, t] =0

Group and time specific random effects generate a clustering problem that affects statistical
inference. In a 2 x2 framework (two years and two groups) “we have no way to distinguish the
difference-in-differences generated by a policy change from the difference-in-differences due to the
fact that” the response variable in a group (the treated) is merely subject to some cyclical path when
the other (control) is not. The common pre-treatment parallel trend assumption may fail.

The solution suggested by Angrist and Pischke (2009, p. 317) is to increase the time and group
dimension of the sample (more years and more groups). Actually, increasing the time dimension of
the sample is a solution only if we are prepared to assume that vy is not plagued by serial correlation,
which is hard to maintain particularly with economic data: unemployment in one region (group) is
most likely related with previous unemployment in that region (group). A suggested correction can
be the clustering of standard errors by groups only, and not by groups and time (passing the
clustering buck one level higher)®. Whether or not this solves the problem is still controversial because
clustered standard errors are not robust to any sort of heteroskedasticity or serial correlation
(personal view).

Yet the great advantage of having many time periods (say, many years) is that the presence (and
the order) of serial correlation for the response variable can be tested by employing a test for serial
correlation with panel data. Indeed, the independent variable of interest in DiD estimation (e.g., the
passage of a law in the very well-known Bertrand, Duflo and Mullainathan 2004 example) may itself
be very serially correlated, which will exacerbate the bias in standard errors. I consider advisable to
run various tests for serial correlation in fixed-effects panel data regression models particularly when
there is a small number of time periods relative to groups/clusters.

8.3. Spatial Dependence

When the data are georeferenced (i.e., each individual is uniquely identified by a pair of
coordinates) or are organized according to a geographical/spatial/lattice/areal structure (e.g.,
individuals belonging to administrative regions), the independence assumption may be violated
due to the potential spill-over (or contagion) effect given by the spatial proximity (Elhorst, 2010).
Spatial econometric models can easily deal with spatial interactions and spillover effects among units
by extending the classical regression models to include spatial lagged terms. Spatial lags can be
determined either by the neighbourhood or by the physical distance and can be applied to either the
dependent variable, covariates or random effects. Under this spatial econometric setting, Qiu and
Tong (2021) combines difference-in-difference estimator and spatial regression models into a two-
periods spatial DiD hedonic framework. The causal regression model is then specified as follows:

Ynt = PW¥ne + B1D1y + B2 D2t + B3[D1 X D2]pp + upe

Upe = AW Uy + Epe
Where W is a row-standardized n X n spatial weighting matrix containing information on the
spatial relationship between observations, p and A are the spatial parameters which measure the
strength of the spatial dependence in the dependent variable and error term, respectively. y,

3 A list of bias correction procedures is provided by Angrist and Pischke (2009, p. 320-2).
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P1, B2, B3 and g are the usual regression terms previously introduced. While the interpretation of
the marginal effects for continuous variable is the same as in the classical cross-sectional DiD
model, the interpretation of marginal effects for treatment effects including the spillover
treatment effects are different (see Section 2.3 of Qiu and Tong, 2021 for an analytical discussion on
the new interpretations of the causal effects). In fact, individuals in the control group can also be
affected by the treatment through treated units houses due to spatial and/or social interactions.
Alternative specifications of the above spatial regression model can be found in Delgado and Florax
(2015) and Sun and Delgado (2024). In particular, in the former the authors consider a local spatial
DID model able to explicitly capture the effect on an individual that comes from the treatment of
his/her neighbours; while in the latter, the authors expand the dynamic treatment DID estimator by
Callaway and Sant’Anna (2021) to a spatial setting with spillovers among units.

9. The Most Relevant Issues Discussed in This Review

DiD is at the core of a recent revolution in empirical economics because it aims at “discovering”
if a time contingent causal-effect relationship (post hoc, ergo propter hoc relationship) between a
response variable and a treatment/event is statistically consistent with the data. Angrist and Pischke
(2010) convincingly describe DiD as “probably the most widely applicable design-based estimator.”
In this Review we have presented DiD as an appropriate method to estimate causal-effect relationship
under some assumptions about the data generation process. However, DiD's efficiency rests on a
broad set of assumptions about the data generation process and its underling statistical properties
and practitioners should ponder that in many practical economic applications DiD might not
represent a design-based credible estimation method given the likely lack of a truly randomized
experimental design characterising many cases of actual DiD applications. Moreover, most of the
problematic issues we discuss when we analyse DiD methods and applications in this Review are not
DiD specific and for that reason they may even escape the attention of scholars. Generally, they are
inherited from standard regression analysis, particularly when the data set take the form of a panel
data structure with more than 2 periods (one pre-treatment time and one post treatment time) and 2
units (one treated and one untreated unit). Moreover, since DiD has a regression representation, in
many cases it cannot inherently provide more compelling evidence of a causal effect than regression
analysis itself does (Kahn-Lang and Lang, 2020, p. 613). This means that one must always consider
that the same regression issues of more traditional regression analysis can remerge in DiD applied
studies. Among these issues, we have emphasised in the present Review those related to whether the
model is properly specified and whether, conditional on the controls, the response variable of
interest is orthogonal to the error term. In addition, we have stressed in various sections that specific
problems characterise the application of numerous variants of DiD.

Nonetheless, DiD can certainly contribute to overcome some identification difficulties of more
traditional OLS-based methods (the exogeneity issue, for example) and this gain represents one of
the strong advantages of DiD over other procedures.

In what follows, as a way of informal warning we single out some of the specific problems that
might affect applied DiD studies.

e  Asinmany causal inference procedures, DiD relies on strong assumptions that are difficult to
test. The key assumption (parallel trends) is that the outcomes of the treated and comparison
groups would have evolved similarly in the absence of treatment (the vis inertine appearing in
the title). Yet, even in simple 2 units and 3 periods case the optical (graphical) observation of
similar trends in both groups prior to intervention is generally insufficient to establish the
existence of post-treatment parallel trends. The issue become more complicated in the multi-
unit and multi-period cases and makes it questionable the use of untreated observations as the
appropriate counterfactuals for the (non-existing) untreated observations of treated units in the
treatment periods. The search for the existence of parallel trends might became a search for the
Arabian Phoenix since it requires elaborated statistical tests. The simple graphical appearance of
a commune time path of mean realizations in the pre-treatment period might be a misleading
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suggestion of the perpetuation of a similar potential parallel trend path in the post treatment
periods (when counterfactuals cannot be observed).

e  Therefore, without a true randomized experiment, tools like DiD do not broaden the range of
“natural experiments” we can use to identify causal effects.

e Even in the case of true randomization, SUTVA problems (so called spill-over effects across
treated and untreated unites) might plague estimations and make it difficult to identify a DiD
model that consistently estimate ATET (which requires unique potential outcome for each
individual under each exposure condition).

e  Often the interpretation of the role of covariates in DiD estimates is difficult and, sometimes,
even what a covariate is might be controversial. In fact, DiD does not require the treated and
comparison groups to be balanced on covariates, unlike in cross-sectional OLS studies. Thus, a
covariate that differs by treatment group and is associated with the outcome is not necessarily a
confounder in DiD. Only covariates that differ by treatment group and are associated with
outcome trends are confounders in DiD as these can be the ones that violate the identification
assumptions.

e Importantly, it can matter whether we believe the “correct” model is a linear probability model,
probit or logit, since they assume different counterfactuals. Determining that two groups would
have experienced parallel trends requires, first of all, a justification of the chosen functional
forms for the adopted model.

Finally, a possibly pleonastic comment might be the following: DiD does not help researchers to
investigate why the original (pre-treatment period) levels of the response in treated and control
groups differed (why was the unemployment rate in region A higher than in region B, before and
independently upon the treatment?) or why the experimental design failed (no statistically
significant differences in post treatment periods among treated and untreated units). DiD, as any
other empirical techniques, should always be seen as an instrument ancillary to a sound and
reasonable theoretical analysis of economic “reality”.

10. Some Examples of DiD Applications

We present a selection of DiD applications in which the authors study the behavioural responses
of various outcome variables to events such as new taxation, energy prices, regulation reforms as the
latter are introduced in various markets/sectors. The selection does not simply reflect the preferences
of the authors of the present Review. It is also motivated by the methodological content of the quoted
papers, particularly when the authors of the papers employ some variants of the basic DiD techniques
reviewed in the Review. Therefore, the reading of the original papers is strongly recommended
because it represent a necessary integration of the material present in this Review. Therefore, the
readers should bear in mind that the following sections do not substitute a sound studying and
understanding of the original papers (Dixit et salvavi animam meam).

10.1. The Elasticity of Taxable Income (Feldstein, 1995)

A long-standing problem of applied public economics/finance is: How do we estimate the total
welfare loss associated with taxes, in particular with income taxes? Modern literature on taxes and
labour supply discusses two main alternatives:

4. The structural approach (closer to the “old” theoretical analysis of labour responses to income
taxation) which separately account for each of the potential responses to taxation (intensive and
extensive) and then aggregate.

5. The DiD approach first proposed by Feldstein (1995) which aims at estimating the elasticity of
taxable income with respect to the net-of-tax rate and claims that this elasticity is a sufficient
statistic for calculating the possible deadweight loss of income taxation.
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Feldstein’s 1995 paper is the starting point of a whole new literature*. He argued in favour of the
idea that focusing on labour supply misses margins at which individuals might also respond to
taxation. The latter may be a) the intensity of work (effort), training, occupation and career choices;
b) the form and timing of compensation; c) tax avoidance and tax evasion. Then, Feldstein diverted
the research’s attention from pure labour supply response to income taxation to the analysis of the
effects of income taxation on the entire level of income as a tax base (the taxable income). Moreover,
he argued that the elasticity of taxable income is a sufficient statistic for the empirical study of the
effects of income taxes.

To correctly identify the above elasticity, he employs a DiD method and used a Treasury
Department panel of more than 4,000 taxpayers to estimate the sensitivity of taxable income to
changes in tax rates on the basis of a comparison of the tax returns of the same individual taxpayers
before and after the Reagan’s 1986 tax reform. Therefore, in Feldstein’s paper one will find neither
the equivalent of equation (1) of section 1.1 nor the test statistics recommended for parallel trend,
anticipation effects, etc.

To describe the results of the paper we follow Feldstein and define

e  TI=the Taxable Income (defined as an aggregate measure of income from various sources)
e 7=proportional income tax rate

Then, TI depends on tax rate 7 and the Net of Tax Income NTI is
NTI = (1 - D)TI
When the tax rate changes the taxable income may change as a result of some behavioural
reaction of the taxpayer. A measure of the reaction is the elasticity of the taxable income. We can
calculate the elasticity of taxable income with respect to the net-of-tax rate (1-1) by differentiating

totally TI
dTl = orl d
-0
The above rewrites as
dTlI (1-1) dt
dTl = [
d(l—1) TI 1-17
NTI,(1-7)

Then, the problem is how to identify the elasticity of Taxable Income 7y since (the
conventional view apparently is) that the tax rate is endogenous to choice of income (reverse
causality) whereas for empirical purposes we need exogenous variation in tax rates to identify the
elasticity. This is where DiD somehow enters the analysis.

Feldstein goal was to estimate causal effect of (net-of-tax rate on taxable income. To identify the
elasticity of taxable income he used the variation in marginal tax rates (MTRs) through generated in
the USA by the TRA1986 reform of President Reagan. Then, since change in MTRs differs between
taxpayers according to tax brackets (see the plot below taken from Feldstein 1995’s quoted paper),

4 In a later paper (Feldstein, 1999) he also argues that traditional analyses of the income tax greatly
underestimate deadweight losses by ignoring its effect on forms of compensation and patterns of
consumption. He calculated the full deadweight loss using the compensated elasticity of taxable
income to changes in tax rates because leisure, excludable income, and deductible consumption are
assumed (by Feldstein) to be a Hicksian composite good. According to his estimations a deadweight
loss of as much as 30% of revenue or more than ten times Harberger's classic 1964 estimate. The
relative deadweight loss caused by increasing existing tax rates is substantially greater and, according

to Feldstein’s results, may exceed $2 per $1 of revenue. Some enormous measure, one should say!
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to account for initial differences in taxable income he compares the change in taxable income in
one income group (say A) to the change in taxable income in another income group (say B). using the
DiD approach to estimate the ATET generated by the tax reform

y = fo+ B1Post + 2Treatment + (Post xTreatment) + &

where Post is the dummy variable for the reform period (1 if after-reform and 0 pre-reform),
Treatment is the dummy identifying the treated income group (Treatment = 1) and the untreated
group (Treatment =0), Post xTreatment is the DiD variable given by the interaction between the above
two,

0 is the coefficient of interest which measures ATET, and ¢ is the classical error term.

Yet, y is not a measure of labour supply but a percentage change of the tax return i.e. the
Adjusted Gross Income (AGI) before and after the reform for various subsets of taxpayers. According
to Feldstein (1995, p. 555):

The use of tax return data rather than of a household survey permits analysing the response of
taxable income as a whole and not just of labour force participation and working hours. A panel,
in which each individual is observed both before and after the change in tax rates, permits a
"differences-in-differences” form of estimator that identifies the tax effect in a way that is not
available with a single year's cross section.

Indeed,

5=ATET ﬁPost1986,A— ﬁBeforel%G,A - ﬁPosﬂgS&B— ﬁBeforelgs(s,B

Tax Reform
In the above equation the first difference controls for time invariant differences in the earnings
potential of high-income and low-income groups, assumed to be A and B. Second difference controls
for time effects that affect the two groups identically. The difference with respect to DiD of section 1
is that there is no untreated control group in the model, but treatment and control groups differ in
the intensity of treatment (poor taxpayers are a control for rich taxpayers, and vice versa)®.
To satisfy the DiD identifying assumptions discussed in section 1, Feldstein had to assume that

e The income growth rate is the same for all income earners (medium, high and highest tax
brackets) absent the treatment (“parallel trend assumption”).

e  The taxpayers cannot adjust their income in 1985 (last year before reform) as to “choose” their
change in tax rate through TRA1986 (“no selection into treatment” and no anticipation effect).

5 The treatment incorporated in the Feldstein’s analysis was the 1986 US tax reform that lowered
marginal tax rates, and simultaneously broadened tax bases. The two elements were designed to net
out. Approximately no revenue and distributional effects absent behavioural responses means that
approximately there are no income effects. Important as the aim is to estimate the compensated

elasticity of taxable income.
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e  The comparison of taxpayers that vary in the intensity of treatment (instead of comparing taxed
to untaxed taxpayers) is legitimate. Implicitly, he needs to assume that the elasticity of taxable
income is constant in income, i.e., the same across all income groups. This last assumption will
reappear in other papers.

The main target of Feldstein” paper was not the pure estimation of the ATET of the model but
the use of the estimated coefficient to estimate the causal effect of (net-of) tax rate on taxable income.
His general result is that the larger the increase in the net-of-tax rate (i.e., the decrease in marginal
tax rate), the larger the increase in income declared for tax purposes. He reported the following
elasticities (Feldstein, 1995 p. 565):

ESTIMATED ELASTICITIES OF TAXABLE INCOME wWITH RESPECT TO NET-OF-TAX RATES

Adjusted Adjusted Taxable
Taxpayer Groups Net of Taxable Income Plus
Classified by 1985 Tax Rate Income Gross Loss
Marginal Rate 1) ) 3)

V—l}‘e;entage Changes, 1985—-88

1. Medium (22—-38) 12.2 6.2 6.4

2. High (42—45) 25.6 21.0 20.3

3. Highest (49—-50) 42.2 71.6 44.8
Differences of Differences

4. High minus medium 13.4 14.8 13.9

5. Highest minus high 16.6 50.6 24.5

6. Highest minus medium 30.0 65.4 38.4
Implied Elasticity Estimates

7. High minus medium 1.10 1.04

8. Highest minus high 3.05 1.48

9. Highest minus medium 2.14 1.25

Results show that:

e  Estimates of the elasticities are estimates high, ranging from 1 to 3.

e  The so-called Laffer rate i.e. the rate that maximises the tax revenue, changes with the elasticity
and corresponds to 1/(1+e€)

e  The USA are on the wrong side of the Laffer curve (excessive levels of income tax rates)?

We now consider how he employed DiD to compute the above elasticities. The difference in
adjusted taxable income (ATI in column 2) is divided by the difference in net of tax rate (13.04) = 1.10.
So on and so forth. However, more recent estimates at the layers state that these estimates are way
too high.

Feldstein’s analysis raises some questions.

¢  No proper untreated control group is present in the study. Treatment and control groups differ
in the intensity of treatment.

e  An equal elasticity of taxable income across the income distribution is assumed. Elasticity of
taxable income is likely higher for high-income taxpayers (with more adjustment opportunities).

e  Small and unstratified sample: very few high-income taxpayers are included.

e  The presence of increasing earnings inequality in the US determined by for non-tax reasons
should be considered.

e  Results may be affected by a regression-to-the-mean bias due to classification of treatment
groups by pre-treatment income: Rich people in year t may tend to revert to the mean in year
t+1.

e  Panel analysis introduces a downward bias in the estimated elasticity if marginal tax rate for
rich people decreases.

e  Itisunclear whether the common trend assumption really holds. Not even the simplest tests are
conducted (parallel trends, anticipation effects, etc.).

e Estimated elasticity overestimates welfare loss if behavioural response involves transfers
between individuals.
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e  The study really provides some shaky indication about the effects of changes of MTR on the
aggregate income tax yield, but it is silent about taxpayers behavioural reactions to income
taxation in spite of the claim that “The Tax Reform Act of 1986 is a particularly useful natural
experiment for studying the responsiveness of taxpayers to changes in marginal tax rates”
(Feldstein, 1995 p. 552). The potential role that confounders (likely affected by the treatment)
may play in this estimation is completely ignored.

10.2. Top Income Taxation and the Migration Decisions of Rich Taxpayers (Kleven, Landais, and Saez, 2013)

The paper reviewed in this section uses DiD to analyse possible income tax-induced migration
across countries and tries to estimate the causal relationship between tax rates and migration. It uses
a combination of graphical evidence and systematic multinominal regression (DiD with cofactors)
and employs synthetic control®.

Specifically, Kleven, Landais, and Saez (2013) analyse the effects of top tax rates on international
migration of football players in 14 European countries since 1985. They also conduct country case
studies and multinomial regressions and find evidence of strong mobility responses to tax rates, with
an elasticity of the number of foreign (domestic) players to the net-of-tax rate around one (around
0.15). The paper shows evidence of sorting effects (low taxes attract high- ability players who displace
low-ability players) and displacement effects (low taxes on foreigners displace domestic players).

Then, the research question is: How do tax rates impact “labour” mobility of professional
football players in Europe once the 3-players limitations was abolished by the Bosman Ruling of 19957

Kleven, Landais, Saez (2013) claim that to conduct their study the average tax rate (ATR) is
appropriate tax rate for location decision and that taxpayer considers overall tax burden of location
decision (an extensive margin decision)’.

The paper aims at estimating 2 key elasticities:

_ dpnf 1- Tnf e _ dpnd 1- Tna
A=) Py Y A= Tna) Pna

Snf
where

e  pua=total of domestic players in country n
e  pur=total of foreign players in country n

The two elasticities represent of the percentage variation of the number of foreign (domestic)
players in country n with respect to the variation of the net-of-tax rate on foreign (domestic) players
in country n.

¢ This Review does not discuss synthetic controls. One should see Abadie et al (2015). A synthetic
control can be constructed as a weighted average of several units combined to recreate the trajectory
that the response variable of a treated unit would have followed in the absence of the treatment.

7 This is in contrast with the view that the appropriate tax rate for decisions on the intensive margin
is the marginal tax rate (MTR = tax rate on the last euro earned). In the paper ATR is not exact but
approximated (for a subsample of football players). Since these taxpayers earn very high salaries,
authors approximate the ATR by the top marginal tax rate (MTR). An alternative, and possible more
reliable procedure is followed by Moretti and Wilson (2017). By focusing on the locational outcomes
of star scientists, defined as scientists with patent counts in the top 5 percent of the distribution, their
paper quantifies how sensitive is migration by these stars to changes in personal and business tax
differentials across states in the USA. The study uncovers large, stable, and precisely estimated effects
of personal and corporate taxes on star scientists' migration patterns. The long-run elasticity of
mobility relative to taxes is 1.8 for personal income taxes, 1.9 for state corporate income tax, and -1.7

for the investment tax credit.
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The following Figure (Kleven, Landais, Saez, 2013, p. 1904) provides cross-country evidence on
the relationship between the top earnings tax rate and in-migration of foreign players (panel A), out-
migration of domes- tic players (panel B), and club performance (panel C). Each panel consists of two
graphs, with the pre-Bosman era (1985-1995) on the left and the post-Bosman era (1996-2008) on the
right. In each panel, authors depict the best linear fit using a univariate regression (with no country
weights). They estimate corresponding elasticities by regressing the log y-axis outcome on the log of
the net-of-tax rate (again with no country weights). of those weights. For country specific tax reform
case study, Kleven, Landais, and Saez (2013, 1907) present elasticity estimates a DiD comparison of
the treatment country and the synthetic control country before and after the reform.

1. Before Bosman ruling 1985—-1995 2. After Bosman ruling 1996—2008

Panel A. In-migration of foreign players
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In the pre-Bosman period, the fraction of foreigners is generally very low and there is no
correlation between the fraction of foreigners and tax rates. After the Bosman ruling, the fraction of
foreigners is much higher in every country (between 5 percent and 25 percent), and there is a
significant negative correlation with top earnings tax rate. The implied elasticity of the fraction of
foreigners with respect to the net-of-tax rate is zero pre-Bosman era, but very large at 1 .22 (0.45) in
the post-Bosman era. Panel B of Figure 1 plots the average fraction of players of a given nationality
playing in their home league against the average top earnings tax rate on domestic residents. In the
pre-Bosman era, the fraction of players playing at home is very in all countries (between 90 percent
and 100 percent across the entire sample). After the Bosman ruling, the fraction playing at home
drops in almost all countries, and negative correlation with tax rates becomes much stronger. The
implied elasticity of the fraction playing at home respect to the net-of-tax rate was modest pre-
Bosman at 0.09 (0.04) and much post-Bosman at 0.29.

The elasticities are always for foreign players and are obtained from a 2SLS regression of (see
Notes to Table 1 at page 1906 of the original paper)

log(P,;) =exlog(l—t,)+BXI(c=T)+yl(t =ty)) +¢
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instrumented with I(c = T) x I(t > to), where c is country (the treatment country is T i.e. a synthetic
control) and P is the number of foreign players, 7 is the Top Marginal Tax Rate, ¢ is the year, and fo is
the year of the reform.

Possible limitations are the following

e In the graphical analysis, the elasticities of the Average Tax Rate are not presented for the pre-
Bosman period and the Danish case studies because of lack of individual earnings data before
1996. Similarly, the average tax rate elasticity for Spain is based on the 1996-2003 versus 2004-
2008 comparison. It is therefore difficult to conduct a complete comparison study (not even
graphical).

e  The sample used is limited to a very special category of privileged migrants (the well-paid
football players whose behaviour is affected by several treatment-related confounding factors).
Out of sample projections seems problematic.

¢  Bosman ruling could have had differential impacts on low-tax and high-tax countries for nontax
reasons. Tax rates may correlate with country size and thus league quality. Better leagues may
have benefited more from Bosman ruling.

e  Football players contracts are generally signed in advance with respect of the year of the actual
transfer and then anticipation effects of the Borman ruling might be present.

e  Other factors could have changed from the pre-Bosman to the post-Bosman era that impacted
low-tax and high-tax countries differentially.

10.3. Toxic Emission and the Environment (Zhou, Zhang, Song, and Wang, 2019; Dong, Li, Qin, Zhang,
Chen, Zhao, and Wang, 2022)

Emission trading (buying and selling permissions to pollute the environment by releasing CO2
particles...) is supposed to be a market-driven mechanism able to reduce carbon intensity production
processes. It has been widely used in western countries, and it has produced debatable results in
terms of reduction of TONs of carbon emissions and emission price determination. In 2013 the
Chinese government established pilot carbon emission trading programs in seven provinces. The
papers discussed in this section conduct an empirical analysis, using a decomposition and DiD
approach of the effects of the 2013 environmental policy. The main conclusions are as follows: (1)
Overall, China's emission trading pilots have driven a significant decline in the carbon intensity,
resulting in an average annual decline of approximately 0.026 tons/10,000 yuan in the pilot provinces.
(2) In the sample period, emission trading pilots had a sustained and stable effect on carbon intensity
with no time lag. (3) Emission trading pilots reduce the carbon intensity by adjusting the industrial
structure. In contrast, energy structure and energy intensity channels have not yet been realized.

Zhou, Zhang, Song, and Wang, (2019, 516) use a Propensity Score Matching (PSM) approach
before the implementation of DiD to enhance the selection of the appropriate control group from the
untreated provinces. According to the authors, this helped solve possible endogenous problems and
ensure that the DiD estimation results were unbiased.

After establishing the control group, the DiD approach was used by Zhou, Zhang, Song, and
Wang, (2019, 517) to evaluate the overall effect of emission trading pilots on carbon intensity:

Dif Cly =ag+ oY +a,R+az;(Y XR)+y; +vy: +e
Where i denotes provinces and t denotes years. Dif_CI denotes first-order differences in the carbon
intensity (dependent variable); a is the coefficient of the independent variable with as corresponding
to the ATET; yi and y: represent province-fixed and time-fixed effects, respectively; and e is the
random error. Y correspond to years with the new regulation and R the regulated (pilot)
provinces/units.

In the following table (Table 3 in the original paper), column (1) reports the results of the fixed
effect estimation based on matched data. The coefficient of the variable YxR was significantly
negative. This indicates that implementing the emission trading pilots resulted in an average annual
decrease in the carbon intensity of 0.026 tons/10,000 yuan. In addition, column (2) reports the results
based on panel data; the results are consistent with column (1), indicating robust estimation results.
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Columns (3) and (4) show the DID estimation results using non-matched data. The pilots have no
significant effect on the downward trend in carbon intensity. This may be because the control group,
before matching, included provinces in the western regions. The western regions have experienced a
rapid drop in carbon intensity, weakening the significance of pilot effects on reducing carbon
intensity. Using the PSM approach to remove the unsuitable provinces from the control group can
ensure the DID approach generates unbiased estimation results. They are reported below.

Overall effect of emission trading pilofs.

Variables Matched Non-matched
(1) @) (3) 4
00617 (-2807) -0009"(-2073)
R -003"(~2.869) 003" (~2.649)
1R -0026™(~2.986) —0026%{ -3.156) 0038 (0.704) -0.026(-1.186)
_ans -0062"(~2850) 009%™ (-4734) -0072"™(~3088) -0.111™(-5310)
ProvinceYear fix effects Yes Yes Yes Yes
AR 0.1% 0008 0170 0001
Notes: t values are shown in brackets; ™, *, * indicates statistical significance at 1%, 5% and 10% levels, respectively.

Authors interpret their DiD results as an indication that the adoption of the emission trading
reform has effectively reduces China's carbon intensity.

Similar results are provided by Dong, Li, Qin, Zhang, Chen, Zhao, and Wang (2022, 12) who also
estimate the effects of the infrastructure transformation and Greenhouse gas emission performance
improvement. Their DiD results show that information infrastructure exerts significant emission
reduction compression in cities with large size, advanced digital economy, and leading economic
status, while its impact on Greenhouse gas emission performance drops in other cities.

10.4. Regulation, Privatization, Management (Galiani, Gertler, and Schargrodsky, 2005; Gertler et al. 2016)

Galiani, Gertler, and Schargrodsky (2005) and Gertler et al. (2016) study the impact of privatizing
water services on child mortality in Argentina. Using a decade of mortality data and comparing areas
with privatized (treatment) and non-privatized water companies (control), they observe similar pre-
reform (pre-1995) trends that support the parallel trends assumption of their DiD work (plot a of the
figure reproduced below).

< | Days per year notin
| good physical health

| y Ratos, | T ———— Massachusetts = ——e—- Other States
. ~ 4 — Mortaiity Rates, Privatized Water Companies - | 95% Confidence Intervals — Pre-Treatment Trends
. o~
1990 1991 1902 1993 1994 1995 1996 1997 1998 1999 2001 2002 2005 2007 2009
Year year
(a) (b)

The authors go on to find a statistically significant reduction in child mortality in areas with
privatized water services.

Panel (b) of the figure provides another example, with data on a health variable before (and
after) the 2006 Massachusetts reform, as illustrated by Courtemanche and Zapata (2014). A more
formal approach to provide support for the parallel trends assumption was followed by conducting
a placebo regression, which apply the DiD method to the pre-reform data itself. There should then
be no significant “treatment effect”. When running such placebo regressions, one option is to exclude
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all post-treatment observations and analyse the pre-reform periods only (if there is enough data
available).

A line of investigation similar to the one quoted above is provided by Schnabl (2012). He studies
the effects of the 1998 Russian financial crisis on bank lending, uses two years of pre-crisis data for a
placebo test whereas an alternative is to use all data and add to the regression specification interaction
terms between each pre-treatment period and the treatment group indicator(s). The latter method is
used by Courtemanche and Zapata (2014), studying the above Massachusetts health reform. A further
robustness test of the DiD method is to add specific time trend-terms for the treatment and control
groups, respectively, in equations like our equation (1) of section 1.1, and then check that the
difference in trends is not significant (see, Wing et al., 2018, p. 459). A general review of the above
papers is Fredriksson and Magalhaes de Oliveira (2019).
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Appendix A An Example with an Easy Visualization of the Data Set

Assume there are 3 randomly selected groups of consumers A, B, and C whose consumption is
recorded from 2000 until 2006. For simplicity, each group is composed by 5 people. At the beginning
of 2003 a treatment (a commodity tax reduction) is introduced by the local governments where A and
B live, and it is maintained till 2006 included. Therefore, we are dealing with 2 period model: the first
period/phase (3 years) without any treatment and the second period/phase (4 years) with the
treatment affecting some unites. There are barriers that do not permit consumers C to move to locality
with lower taxes.

To conduct a simple DiD study, data should be arranged as shown in Table 2 reproduced in the
Appendix. The first column shows Years; the second shows the response variable (the first pedis
refers to the individual; the second to her/his group; the third to the year); the rest of the columns
show the two dummies and their product.

Table 2 is a basic example of data stuck in panel data form. Groups A and B received the
treatment (tax reduction) all in the same year and group C was never treated. The other assumption
implicit in Table 1 is that, once introduced, the treatment was permanent. Hence, in the example we
have purposely avoided the complication represented by the differential treatment timing, where
different units or groups affected by the treatment start or end their treatment at different times. A
special case is when the treatment groups remain permanently affected by treatments that start in
different periods. The case is called staggered treatment (different time of a permanent treatment
introduction for different groups/units) and will be discussed later in section 7. The case of Table 2
(same treatment periods for each treated units) is called treatment effect homogeneity.
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