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Abstract 

Difference-in-Differences (DiD) is a useful statistical technique employed by researchers to estimate 

the effects of exogenous events on the outcome of some response variables in random samples of 

treated units (i.e. units exposed to the event) ideally drawn from an infinite population. The term 

effect should be intended as the difference between the actual post-event realization of the response 

and the (non-existing and therefore unobservable) hypothetical realization of that same response for 

the same treated units, were the event absent. To circumvent the implicit missing variables problem, 

DiD methods use the realizations of the response variable observed in comparable random samples 

of untreated units. The latter are samples of units drawn from the same infinite population, but they 

are not exposed to the event. They serve as control or comparison groups. They provide the 

“substitutes” for the non-existing untreated realizations of the responses in treated units during post-

treatment periods. In short, DiD assumes that without treatment, and under certain circumstances, 

treated units would behave exactly as the control or untreated units during post treatment periods. 

Then for the estimation purposes, the method adopts a combination of before-after and treatment-

control group comparisons. The event that affects the response variables was termed “treatment”, 

but it could be equally termed “causal factor” to emphasise that with DiD we are not estimating a 

mere statistical association among variates. With DiD we cultivate the ambition of evaluating 

whether a precise causative link between causes and effects –defined according to a model based on 

a proper identification of the relationship among variables– is actually consistent with the data, and 

estimate how intensive and statistically robust the causal-effect link actually is. DiD analysis has been 

widely employed in economics, public policy, health research, management, environment analysis, 

and other fields. There is a discussion about the true “fatherhood” of the method and, not 

surprisingly, there are clear pioneering antecedents of DiD applications outside economics. Examples 

include medicine (the study of the causes of London’ worst cholera epidemics of 1849 with 14,137 

victims) and agriculture (studies of changes of soil productivity enhanced by new cultivation 

techniques in Africans’ neighbour areas in the 1980s conducted by revolutionary governments after 

the victory of their anti-colonialist movements in the second half of the 1970s). A recognised common 

methodological basis is R. A. Fisher’s analysis of variance (ANOVA). This Review is an introduction 

to the DiD techniques. It starts from the very basic methods used to estimate the so-called Average 

Treatment Effect upon Treated (ATET) in a 2–period and 2–group case and proceeds by covering 

many of the issues that emerge in a multi-unit and multi-period context. Particular attention will be 

devoted to the statistical assumptions needed for a correct definition of the identification process of 

the causal-effect relationship in the multi-period case, namely to the parallel trend hypothesis, to the 

no anticipation assumption, and to the SUTVA assumption. In the multi-period case, both the 

Homogeneous case (when treated units start being treated in the same periods) and the Heterogeneous 

case (when treated units start being treated in different periods) will be considered. Some space will 
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be devoted to the developments associated to the DiD techniques employable in the presence of data 

clustering or spatial-temporal dependence. The Review includes brief presentations of some policy-

oriented applications of DiD. Areas covered are income taxation, migration, regulation and 

environment management. 

Keywords: difference-in-differences (DID); review for causal inference; applied and empirical 

economics; treatment and control; extensions of the DID estimator to heterogenous treatment 

framework 

JEL codes: C23 (Single Equation Panel Data Models and Spatial-temporal Models); C50 (General 

Econometric Modelling); C54 (Quantitative Policy Modelling); D04 (Microeconomic Policy: 

Formulation; Implementation; and Evaluation); E6 (Macroeconomic Policy; Macroeconomic Aspects 

of Public Finance; and General Outlook) 

 

1. Introduction to DiD 

With a DiD analysis we try to estimate whether a response variable (i.e. a variable exposed to a 

treatment) will achieve a mean value that, computed for the set of all treated units (treated group), is 

statistically different than the mean value computed for the set of some comparable untreated units 

(untreated or control group), once any factors affecting the link between the treatment and the effect 

(confounders) are ruled out. Therefore, the DiD analysis aims at “discovering” if a time contingent 

causal-effect relationship (post hoc, ergo propter hoc) between the response variable and the treatment 

is statistically consistent with the data. Examples of changes in response variables analysed with DiD 

after a treatment are numerous and encompass various research fields. They may be the human 

mortality rate, the unemployment, the quantity of corn harvested, to mention a few. The treatment 

or causal factor may include the use of a new pharmaceutical drug, the implementation of new 

training program for unemployed workers, the application of a new agricultural technique, etc. Other 

known examples of a response variable are SAT (Site Acceptance Test) scores of equipment under 

quality check, the level of pollution in a county before and after the adoption of environmental 

measures, or the tree cover density in a region subjected to reforestation. Thanks to its flexibility, DiD 

has been widely used in economics, public policy, health research, management and numerous other 

fields. 

To purse the above causal analysis, DiD relies on a combination of before-after and treated-

untreated group comparisons, but it is worth emphasising from the very beginning that the variable 

corresponding to the treatment must be expressed as a dichotomous variable (Zero vs One; Yes vs 

No) and not as a continuous variable. As it will be clarified later, treatment variables will play a role 

similar to the role played by dummy variables in traditional regression analysis. Not surprisingly, 

the term “treatment dummy” is frequently used in DiD studies or in studies that are structured as 

DiD models. The term dummy for example appears already in Ashenfelter & Card (1985) in their 

study of the effect of some training program in the USA where the longitudinal structure of earnings 

of trainees and comparisons group are used to estimate the effectiveness of the program for 

participants. In their study of the relationship between casual factor and response variable, Card & 

Krueger (1994) provide another early clear illustration of how the treatment is included in the 

analysis. They investigated whether an increase of minimum wage by New Jersey in 1992 from $4.25 

to $5.05 (treatment) resulted in a statistically significant change in employment level amongst fast 

food restaurant workers in New Jersey (treated units) from that in neighbouring Pennsylvania, which 

did not change its minimum wage (untreated units). The treatment was not the amount of the wage 

increase (a possible continuous variable) but the “mere” asymmetric implementation (say, Yes in 

New Jersey and No in Pennsylvania) of the policy measure. 

In general, the DiD analysis aims at estimating the mean difference between actual and potential 

realizations (the unobserved realizations of the response in the absence of the treatment) of a response 
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variable in treated units after the occurrence of an asymmetric exogenous event (the treatment 

administered to treated units only) and uses instrumentally the actual response realizations recorded 

in untreated units. Yet, this modification of mean differences generally occurs over time, and the 

passage of time represents a complicating challenge in a DiD study. Whatever the response variable 

we study, the passage of time may affect in a potentially significant way the actual realization of the 

response as the data generation process proceeds through a possibly long-time span and 

encompasses several pre-treatment and post-treatment periods. Hence, the specific effect 

attributable to the passage of time (and the numerous factors potentially concealed in the passage 

of time) on the mean value of the response variable in both the control group and the treatment group 

must be properly considered. In other words, the researcher must determine if it was the treatment 

itself the cause of any change in the mean value of the response variable within the treatment group 

over and above what was caused by the pure passage of time or by time-conditioned factors. In 

summary, the main ingredients of the DiD approach to the estimation of the causal-effect relationship 

are the existence of a treatment administered to treated units only, the behaviour of the treated and 

untreated response variables before and after the moment the treatment was implemented, and an 

appropriate consideration for the passage of time. 

In this Review we will present the DiD estimation approach to the causal-effect relationship. We 

will try to highlight how with the DiD method the effect of the treatment can be estimated 

separately from the effect of the passage of time. To do so we will first present the simplest DiD 

framework in which the treatment status of each unit can vary over time according to the following 

dynamics: an initial time period (e.g. months, years) in which there is no treatment is followed by a 

time period with treatment administered to some units only. The moment in which the treatment is 

introduced represents the temporal turning point of the entire period under examination. The units 

under investigation can in turn be assigned to two groups: those classified as never treated (the control 

group) because they are never subjected to the treatment during the entire sample period and those 

units that are treated in the post-intervention period only (the treated group). We will assume (section 

1.1) that the latter are uninterruptedly treated from the introduction of the treatment until the end 

of the observed periods. In the initial simplest DiD framework we will assume that the treatment is 

the only relevant independent variable affecting the outcome of the response dependent variable. 

Then, we will discuss the OLS way to estimate the effect of the treatment (section 2) as well as the 

identification problems related to the estimation process (section 1.4). We will call this initial 

framework Homogeneous case without cofactors. Homogeneity means that all the treated units will 

start to receive the treatment in the same moment. The presence of cofactors will be discussed later 

when the Homogeneous case with cofactors will be analysed in section 6. Analogously, the model 

structure in which treatments are administered in different periods to different treated units and 

never administered to some other units will be considered later in section 7 and it will be termed 

Heterogeneous Case (with or without cofactors). DiD techniques to be used under more complicated 

data structure (e.g. data generating clustering phenomenon or spatial-temporal relations) will be 

analysed in sections 8, 8.1, 8.2, and 8.3 at the end of the Review before the concluding section 9 which 

also contains important warnings and caveats. A final set of sections (section 10 and followings) 

surveys some applications taken from the literature and discusses methods and results. 

A particular aspect of DiD on which we decided to focus is the exogeneity character of the 

treatment and the so-called parallel trend assumption (section 1.2). They represent fundamental 

elements of the method. As some of the papers discussed at the end of the Review will show clearly, 

in many cases DiD represents the statistical approach need to overcome the simultaneity and 

endogeneity difficulties inherent in many circumstances in more traditional OLS estimation 

techniques. Yet, this advantage of DiD over alternative techniques requires that some crucial 

assumptions about the data generation process are satisfied. 

This Review will also review other aspects of the DiD methods that, in our opinion, are not 

sufficiently considered by DiD literature. In particular, in section 1.3 we discuss the Stable Unit 

Treatment Value Assumption (SUTVA) and show why DiD identification process requires that the 
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treatment applied to one (or more) unit should not affect the outcome for other units. In other words, 

we discuss why the potential outcome of a generic unit in the analysed sample should not depend 

on the treatment status of some other units in the same sample or on the mechanism by which units 

are assigned to the control or treatment groups. We also pay special attention to the role that 

confounding factors have in DiD (section 5) and in sections 7, 7.1, 7.2, and 7.3 we analyse the most 

widespread methods proposed to estimate DiD when the sample period encompasses more than two 

periods and there is treatment heterogeneity. As anticipated above, complex data structure, such as 

data clustering and spatial-temporal dependence, that can affect the DiD estimation strategy, are 

discussed in sections 8, 8.1, 8.2, and 8.3. 

Although this simple Review is conceived for applied economists, readers should keep in mind 

that DiD most attractive features are its (relative) simplicity and wide applicability. After all, to carry 

out a basic DiD study, we just require observations from a treated group and an untreated 

(comparison) group both before and after the intervention is enacted. Accordingly, in the last sections 

we discuss some papers that have applied DiD techniques in various research areas relevant in a 

public economics or public policy perspective. We stress that health care is not an area covered by 

this review because readers can access many several DiD studies that have been used to evaluate new 

policies and health programs. For example, in the USA dozens of studies have estimated the effects 

of expanded Medicaid eligibility through the Affordable Care Act (ACA). Following the Supreme 

Court ruling on the ACA, each State in the US choses whether to expand its threshold for Medicaid 

eligibility. This possibility created groups of treated states and comparison (untreated) States and 

enabled the application of DiD. These studies have informed ongoing policy debates in the US about 

the future of the ACA and the reader is referred to that literature (see Zeldow and Hatfield, 2021 for 

an introduction). 

Finally, we stress that this Review covers the basic (almost intuitive) DiD techniques. There are 

other more advanced reviews (Callaway, 2021; Roth et. al., 2023, just to mention two papers) as well 

as chapter 5 of Angrist and Pischke (2009) and chapter 21 of Wooldridge (2010) that should be 

consulted by more advanced users. 

We lastly stress that SW packages useful to implement basic and more advanced DiD methods 

can be found in the following websites (alphabetic order): 

R®: https://asjadnaqvi.github.io/DiD/docs/02_R/ 

Stata®: https://asjadnaqvi.github.io/DiD/docs/01_stata/ 

In the Appendix to the Review will include a few homemade ad hoc data sets to be used as 

examples of the DiD estimation techniques analysed in the Review and to conduct exercises. 

1.1. A 2 × 2 (Two Groups and Two Periods) Homogenous DiD with No Cofactors 

This Review presents a review of basic methods and recent developments introduced in the DiD 

literature in the last 30 years. Clearly, the fundamental notions of DiD could be assumed to be almost 

common knowledge and in theory they should not require a new basic review to be added to the 

many that already exists. Yet, since we want to offer a (may be incomplete, but) self-contained 

treatment of the subject we start with the basic framework need to identify a DiD model. 

Assume that we have randomly drawn from an infinite population two samples of individuals 

(with or without the same numerousness of units), respectively denoted as G1 and G2. We call i an 

individual belonging to G1 and j an individual belonging to G2. Assume that the two periods under 

study are two years, each divided for expositional convenience in 12 months. We observe in each 

month of the first of the two years under study the realization of a random variable y representing 

the relevant variable under our investigation (income, unemployment, indebtedness, hours of work, 

rate of financial criminality, level of fever, etc.). For reasons that will become clear very shortly we 

call y the response variable. If 𝑦𝑖𝑡is the realization of y for an individual i in G1 recorded during each 

month t = (1, …, 24), then 𝑌𝑖𝑡∈(1,..,24) = 𝑁
−1∑ 𝑦𝑖𝑡

𝑁
𝑖=1 is month t mean value of y generated by data of 

individuals belonging to G1 with N representing the total number of individuals in G1. 

Correspondingly, 𝑌𝑗𝑡∈(1,...,24) = 𝑀
−1∑ 𝑦𝑖𝑡

𝑀
𝑗=1 is month t mean value for group G2, generated by all j 
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individuals of that group formed by M individuals. As a result, for each year we record 12 mean 

monthly values for each group. Altogether, we have 48 mean observations in the 2-groups × 2-years 

dataset. 

We assume that the monthly evolution of 𝑌𝑖𝑡  and 𝑌𝑗𝑡  during the first 12 months is linearly 

parallel. In other words, we assume that the time evolution of the two series of mean values follows 

a parallel path having the same time slope so that the two paths are separated only by a group-specific 

constant (a sort of individual fixed effect used in the fixed effects least squares with dummy variables 

panel data analysis). Then, the plot of the time behaviour of the 24 mean values during the first year 

(first 12 months) corresponds to the left portion of Figure 1 reproduced below (the first 12 months to 

the left of the vertical line). 

Assume now that at the end of the first year (i.e. in correspondence to the vertical line in Figure 

1) “something” affecting only G2 happened, ceteris paribus. That something is generally assumed to 

correspond to an exogenous event and it is called Treatment (e.g. a new regulation, a more or less 

exogenous change of tax rates implemented in G2, some new subsidies paid to firms of that group, 

higher interest rates, a natural event, a new pharmaceutical therapy, etc.). This way of introducing 

Treatments should make clear that the word “period” used in this DiD review is not synonymous 

of calendar unit of time but of “temporal phase”. In the 2 × 2 case we have two periods/phases: the 

first one (lasting 12 months) with no event and the second (lasting 12 months) with an event affecting 

the units of a group (G2 in our example) right from the arrival of the event and continuously until the 

end of our sample time. 

We assume that individuals in G2 cannot anticipate the introduction of the treatment (and 

therefore cannot react in advance to its occurrence). Now it becomes relevant the right part of Figure 

1 (the part to the right of the vertical line). Inspection shows that the time path of the expected values 

of y for the treated group G2 which, after the treatment, can be specified as: 

[ 1]  Expected Value of  in G2 conditional upon the realization of the eventj jE y Treatment y= 
 

(where Treatment = 1 means when the treatment is operative). 

The G2 path has been twisted upward about the point in the plot corresponding to the last month 

of the first year (i.e. the last pre-treatment or pre-event month) while the time path of G1 proceeds 

according to the previous linear trend and is: 

= [ 0]  Expected Value of  in G1 conditional upon the absence of the eventi iE y Treatment y

(where Treatment = 0 means when the treatment is not operative). 

Hence, we assume that E[y] in G1 is unaffected by the treatment that is implemented with respect 

to G2 units only, and additionally that the treatment affecting G2 has no spillover effects on G1. 

Then, the dashed line represents the possible realizations of the expected values of the mean values 

of y for G2 in the absence of treatment but under the linear parallel trend hypothesis discussed 

above. In other words, the dashed line indicates what the path of the expected realizations of y in G2 

would had been expected were the “perturbing” event (the treatment) absent, as if the Galilean inertia 

principle for uniform linear motion of corps was at work (no intervening external forces). Clearly, 

these realizations are not observed: actually, they do not exist. For that reason, we name them 

“potential realizations” as if they were the effect resulting from the application of a “vis inertiae, or 

force of inactivity” to use the terms employed by Newton in his Philosophiae Naturalis Principia 

Mathematica of 1687) because their force depends only upon their position (potential energy). 

We now have all the ingredients useful to measure the average effect that the treatment had on 

G2 (the treated group). The mean effect of the treatment is the difference between the value assumed 

by the mean y in G2 after the treatment (solid line) and the value that it would had potentially 

assumed by pure vis inertiae in the absence of the treatment (dashed line). That effect corresponds to 

the segment CH in Figure 1 whose length is the difference between the abscissa of point C and the 

abscissa of point H. 
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Figure 1. Effects of the treatment on E[y] in treated units. Notes. The two solid lines are the mean values of the 

response y. Line BD refers to the control units (not subjected to treatment) and the upper broken line refers to 

the treated units. The vertical line indicates when the treatment was introduced. BB’ is drawn for pure graphical 

reference. CH is the mean effect of the treatment. By observing the broken line alone, one cannot be sure that the 

new path is due to the treatment or to something else. It is the comparison with the control group what might 

give us the perception (sometimes just the optical illusion?) that the treatment can be the cause of the change of 

the broken line path. 

The measure of the length of the segment CH = C – H can be recovered as follows: 

𝐶𝐻 ≡ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑢𝑝𝑜𝑛 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

= (𝐶 − 𝐵′) − (𝐻 − 𝐷) − (𝐷 − 𝐵′) 

= (𝐶 − 𝐵) − (𝐴 − 𝐵) − (𝐷 − 𝐵) 

= (𝐶 − 𝐴) − (𝐷 − 𝐵) 

By manipulating the last equation, we express CH as a difference between two differences: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑢𝑝𝑜𝑛 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 = (𝐶 − 𝐷) − (𝐴 − 𝐵) 

In the latter version, the measure of the treatment effect corresponds to the difference between 

two terms. The first term (included in the first parenthesis) measures the difference in the 

realizations of the expected value of y for both groups (treated and untreated) in the post-treatment 

period, i.e. when Treatment = 1 in the above expected values formulas. The second term (included in 

the second parenthesis) measures the difference between the initial intercepts for the two groups 

i.e. when Treatment = 0. The latter corresponds to the constant vertical distance of the two lines in the 

pre-treatment period and (under the hypothesis that the time trends are initially parallel and would 

had remained parallel in the absence of treatment). In other words, it is assumed that the constant 

initial difference (segment AB) is constant during the entire period 1 because it depends only upon 

the above mentioned idiosyncratic constant elements and then, because of the Galilean inertia 

principle, it is bound to remain constant in the absence of treatment (the only new intervening force), 

even in period 2. This motivates the plot dashed line in period 2 in Figure 1 and the previous 

description of those (unobserved) values as “potential”. 

Therefore, the Average Effect of the Treatment upon Treated (ATET from now on) is obtained by 

differencing the mean response for the treatment and control units over time to eliminate time-

invariant unobserved characteristics and also differencing the mean response of the groups (treated 

and untreated) to eliminate time-varying unobserved effects common to both groups. In other 

words, the DiD technique eliminates the influx of time-varying factors (confounders) by comparing 

the treatment group with a control group that is subjected to the same time-varying factors 

(confounders) as the treatment-receiving group. 
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As an example, we may think that y is the employment rate, and that the treatment is a subsidy 

paid only to firms in G2 (e.g. a particular area of the country) for every new employee. If expected 

unemployment in G1 and G2 follows a parallel trend in period 1 (when no subsidy was paid to firms), 

expected unemployment in G2 should stick to the linear trend of period 1 and remain parallel to that 

of G1. The dashed line would represent the potential expected value of unemployment in G2 in case 

of no subsidy granted to firms of G2 in period 2. 

Figure 1 shows that the untreated group G1 has a role of paramount importance in the 

measurement procedure depicted above. G1 (untreated) acts as a control group and supplies (loosely 

speaking) the substitutes for the unobservable (because they are never realised) counterfactual 

observations of G2 to be used when studying the effect of the treatment. To be specific, the hypothesis 

is that in the absence of treatment reality would have evolved in G2 as described by the E[y] recorded 

in G1 with the obvious consequence that the right curly bracket in Figure 1 would not exists because 

C → H. In other words, it would be 𝐸[𝑦𝑗|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1] = 𝐸[𝑦𝑗|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 0]. 

We can now proceed to estimate the effect of the event using all the expected values as follows. 

Recall that in Figure 1 

• C is the expected value of y for the treated group conditional upon the application of the 

treatment on that group 

• D is the expected value of y for the untreated group conditional upon the absence of the 

treatment for that group 

• A is the expected value of y for the treated group conditional upon the absence of the treatment 

• B is the expected value of y for the untreated group conditional upon the absence of the treatment 

Therefore, calling h = (i, j) a generic individual in the population (either treated or untreated, i.e. 

G1 + G2) we may write a linear regression model as follows 

𝑦ℎ𝑡 = 𝛽0 + 𝛽1 × 𝐷1 + 𝛽2 × 𝐷2 + 𝛽3 × [𝐷1 × 𝐷2] + 𝜀ℎ𝑡 (1) 

where: 

• yht is the value of the response variable for a unit in the population under study. Its value is 

measured in each group and each t, i.e. before and after the introduction of the treatment. It will 

correspond either to the i-th or to j-th observation at time t depending on the group (treated or 

untreated) of the unit. 

• β0 is the intercept of the regression model, common to treated and untreated units. 

• D1 is the Time Period Dummy which is a dummy variable that takes the value 0 or 1 depending 

on whether the h.th observation of the response variable refers to the pre (D1 = 0) or post 

treatment period (D1 = 1) independently on the group (treated or control) the observation 

belongs to. It simply indicates if that t is a period in which the treatment existed or not. 

• D2 is the Treatment Indicator Dummy which is a dummy variable that takes the value 0 or 1 

depending on whether the h.th measurement refers to an individual in the control group 

(untreated) or in the treatment group respectively, independently on the time period. 

Therefore, D2 = 0 when the observation belongs to an untreated unit and D2 = 1 when the 

observation belongs to a treated unit (independently upon when the treatment was introduced). 

Clearly, in the simplified example of this section with only two periods, D2 = 0 means that the 

unit is never treated. Other settings are discussed in other sections. 

• D1× D2 is the interaction term between the time dummy and the treatment dummy. It s the most 

important coefficient to estimate. It measures the average effect of the treatment on treated units 

the estimated average differential impact of the treatment. 

As it will be commented below, the above equation (1) represents the basic but elegant form of 

a DiD analysis for the homogenous case with no cofactors. In Table 1 we analytically discuss the 

relevance of each coefficient. Here we stress that the elegance of DiD (Goodman-Bacon, 2021 p. 254) 

makes it clear which comparisons generate the estimates, what leads to bias, and how to test the 

design. The expression in terms of sample means connects the regression to potential outcomes and 
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shows that, under common trends assumption, a two-group/two-period (2×2) DiD identifies the 

average treatment effect on the treated. 

The estimated coefficients of equation (1) have definite relations with the critical points of Figure 

1. These relations are illustrated in the following 2 × 2 Table 1 which gives a more explicit description 

of how the states of the word (time and treatment) can combine and how they affect the realization 

of y in the above equation (1). 

Table 1. Combinations of periods and treatment. 

 D1 = 0 D1 = 1 

D2 = 0  𝑦ℎ𝑡 = 𝛽0 + 𝜀𝑡 𝑦ℎ𝑡 = 𝛽0 + 𝛽1 + 𝜀𝑡 

D2 = 1 𝑦ℎ𝑡 = 𝛽0 + 𝛽2 + 𝜀𝑡 𝑦ℎ𝑡 = 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝜀𝑡 

In what follows, the estimated coefficients obtained from an OLS regression of the model 

correspond to the expected values presented above. For the fitted model, the corresponding 

expectations are as follows. The caps (^) above the coefficients indicate that they are the estimated 

(fitted) values of the corresponding coefficients. Replacing yht with the expected value of yht also 

allows us to drop the error term 𝜀𝑡  since by hypotheses in a well-behaved OLS regression model, the 

expected value of the error term is a zero mean and constant variance term. Hence, we can rewrite 

the content of each cell of the 2 × 2 matrix of Table 1 as follows. 

The North-West cell is 

𝛦[𝑦ℎ𝑡|𝐷1 = 0, 𝐷2 = 0] = 𝛽̂0 

In terms of the hypothetical data set generating Figure 1, 𝛽̂0 corresponds to point B and must 

be interpreted as the average baseline common to the two groups (constant). 

The North East cell is 

𝛦[𝑦ℎ𝑡|𝐷1 = 1, 𝐷2 = 0] = 𝛽̂0 + 𝛽̂1 

In terms of the hypothetical data generating Figure 1, 𝛽̂0 still corresponds to point B and, as 

above, and must be interpreted as the model baseline average (constant). 𝛽̂1, which corresponds to 

slope of segment DB, and is the time trend in control group in treatment . 

The South-West cell is 

𝛦[𝑦ℎ𝑡|𝐷1 = 0, 𝐷2 = 1] = 𝛽̂0 + 𝛽̂2 

In terms of the hypothetical data generating Figure 1, we have that 

(i) 𝛽̂0 corresponds to point B, as above, and must be interpreted as the model baseline average 

(constant) and 

(ii) 𝛽̂2, which corresponds to segment AB, is the constant difference between the two groups before 

the treatment. 

The South-East cell is 

𝛦[𝑦ℎ𝑡|𝐷1 = 1, 𝐷2 = 1] = 𝛽̂0 + 𝛽̂1 + 𝛽̂2 + 𝛽̂3 

In terms of the hypothetical data generating Figure 1, the sum 𝛽̂0 + 𝛽̂1 + 𝛽̂2 + 𝛽̂3 corresponds to 

point C. 

We now proceed to calculate the difference in the expected value of y between the before (pre-) 

and after (post-) treatment phases of the study. 

For the treatment group, the difference in expectations works out as follows: 

𝛦[𝑦ℎ𝑡|𝐷1 = 1, 𝐷2 = 1] − 𝛦[𝑦ℎ𝑡|𝐷1 = 0, 𝐷2 = 1] = (𝛽̂0 + 𝛽̂1 + 𝛽̂2 + 𝛽̂3) − (𝛽̂0 + 𝛽̂2) = 𝛽̂1 + 𝛽̂3 

which is the difference in estimated response between the after-treatment and before-treatment 

phases of the study recorded within the treatment group. 

Similarly, for the control group we have: 

𝛦[𝑦ℎ𝑡|𝐷1 = 1, 𝐷2 = 0] − 𝛦[𝑦ℎ𝑡|𝐷1 = 0, 𝐷2 = 0] =  (𝛽̂0 + 𝛽̂1) − (𝛽̂0) = 𝛽̂1 

The above is the difference in estimated response within the control group between the after-

treatment and before-treatment phases of the study. 
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The difference between the two differences measures the average net effect of the treatment on 

the treated group, that is, 

1 3 1 3[DiD Effect] ˆ ˆ ˆ ˆ( ) ( )    = + − =
 

The estimated coefficient 𝛽̂3 is what we have called ATET (Average Treatment Effect upon Treated) 

and it has been obtained from the estimates of a linear model in which there a no cofactors (other 

independent variables affecting y). Its difference with respect to the similar measure of the treatment 

called ATE is discussed later. 

For a more analytically grounded derivation of [DiD Effect]  one may consult Angrist and 

Pischke (2009, p. 229) who discuss the expected DiD effect and then show the OLS regression that 

may be used for its estimation. Following the opposite route, Wooldridge (2010, p. 148) first starts 

from an OLS regression equation augmented with Treatment Dummies and then expresses and 

interprets the estimated relevant dummy as an estimate of the expected DiD treatment effect. 

The following Remarks summarises the OLS use for a DiD strategy. 

Remark n.1: the basic ingredients 

We start with a set of i.i.d. individuals i = 1, …, n and a tuple (𝑌𝑖 , 𝑋𝑖 , 𝑇𝑖) where 𝑌𝑖 ∈ ℝ is the 

response variable, 𝑋𝑖 ∈ ℝ is a cofactor vector (it may not be present) and 𝐷𝑖 ∈ {0,1} is the treatment 

assignment. We assume that the potential outcome (realization of the response variable) depends on 

treatment and can be 

𝑌𝑖 = 𝑌𝑖(𝐷𝑖) = {
𝑌𝑖(0)  ≡ The response we had observed with 𝐷𝑖 = 0 

or 
𝑌𝑖(1) ≡ The response we actually observe with 𝐷𝑖 = 1 

 

We define the causal effect of the treatment as 𝑌𝑖(1) − 𝑌𝑖(0), the difference in potential outcomes 

of individual i, so that on average (population) we have that the Average Treatment Effect upon 

Treated (ATET) is 𝜏 = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)]. Clearly, each realization of the response can be observed in 

just one state of the word, i.e. conditional on either 𝐷𝑖 = 0  or 𝐷𝑖 = 1 , not both. Under the 

assumption that the treatment assignment is random (there is no systematic association between the 

potential outcome of an individual and the treatment), OLS methods can help us to overcome this 

missing data problem. 

Remark n.2: ATET and OLS estimator 

The OLS method of estimation of equation (1) correctly identifies the ATET in a DiD regression 

under parallel trend and no anticipation effects for it allows us to define the estimand which 

involves unobservable counterfactuals in a form (equation 1) that depends only on observed 

outcomes. This process is called “identification” (see below for more discussion). 

Then, ATET is the expected value of the DiD effect between the treatment and control group (i.e. 

CH in Figure 1). After the DiD model is estimated, the estimated coefficient of the interaction term 

(D1 × D2), i.e. 𝛽̂3, will give us the estimated difference-in-differences effect of the treatment that we 

are seeking. The coefficient’s t-score and corresponding p-value will tell us whether the effect is 

statistically significant and if so, we can construct the 95% or 99% confidence intervals around the 

estimated coefficient using the coefficient’s standard error reported by the model output. 

Finally, recall that we have randomly selected the participants (treated) and the non-

participants (untreated). Therefore, at this stage we do not pose ourselves the question: why didn’t 

the non-participants participate? As we shall see, this question is outside the realm of DiD analysis. 

The general DiD assumption is that there is a sort of powerful external force determining in a random 

way the correct random sampling. 

1.2. Violations of the Parallel Trend Assumption 
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Remark n.1 and Figure 1 clearly indicate that the parallel trend assumption is one fundamental 

ingredient of DiD. Yet, the presence of parallel trends should not be ascertained from simple optical 

observation of plots like Figure 1. There may be cases in which the pre-treatment trends of the 

treatment and control groups may appear different and the power to detect violations of parallel 

trends hypothesis is low. Or it may be the case that the pre-treatment trends were the same, but we 

have a reason to think that some other shock in the economy different than the treatment may cause 

the post-treatment trends to differ. Then, the question is: can we still use DiD when we are unsure 

about the validity of the parallel trends assumption? Rambachan and Roth (2023) note that one may 

assume that the pre-existing difference in trends persists from pre to post treatment periods and 

simply extrapolate this out. For example, we might assume that a difference in trends of 1% per 

month in the employment rate data set in treated and untreated areas would continue to hold after 

the treatment (say a policy wage intervention). Then, if the control group (no intervention) has 

employment grow at 3% per month after the intervention is passed, we would assume the treated 

group employment would have grown at 4% per month and compare the actual employment rate to 

this theoretical counterfactual. However, assuming the pre-treatment difference in trends carries out 

exactly in the post-treatment period is a very strong assumption, particularly if we did not have many 

pre-treatment periods over which to observe it. Rambachan and Roth (2023) suggest that researchers 

may instead want to consider robustness to some degree of deviation from the pre-existing trend, so 

that linear extrapolation need only be “approximately” correct, instead of exactly correct. This 

difference is realized by allowing the trend to deviate non-linearly from the pre-existing path by an 

amount, call it M –the bigger that amount, the more deviation from pre-existing trend is allowed. 

Once one abstains from imposing that the parallel trends assumption holds exactly, the 

(pseudo)parallel trend is tested by testing the restrictions on the possible post-treatment differences 

in trends (the above M) given the point identified pre-trends estimate. Such restrictions formalize the 

intuition motivating pre-trends tests, namely that pre-trends are informative about counterfactual 

post-treatment differences in trends. Then their paper shows that given M, we can identify a 

confidence set for the treatment parameter of interest. In doing so we clearly violate the “pure” 

parallel trend assumption needed to identify the DiD parameters and instead resort to a sort of partial 

identification approach. Researchers can then also find and report the breakdown point – how much 

of a deviation from the pre-existing difference in trends is needed before we can no longer reject the 

null. As an example, Rambachan and Roth (2023) consider the impact of a teacher collective 

bargaining reform on employment, in which parallel trends seem to hold for males, but in which 

there is a pre-existing negative trend for females. They show the DiD estimate for males at M=0 (linear 

extrapolation of the pre-existing trend), and then CI which get wider as they allow more and more of 

a deviation in trends (increasing M > 0). In contrast, for females, the DiD estimator is of opposite sign 

to what would be obtained when we extrapolate the pre-existing trend at M = 0, and then one sees 

how these results change as more deviations from these existing trends are allowed for. 

Rambachan and Roth (2023) provide inference procedures that are uniformly valid so long as 

the difference in trends satisfies a variety of restrictions on the class of possible differences in trends 

and derive novel results on the power of these procedures. They recommend that applied researchers 

report robust confidence sets under economically motivated restrictions on parallel trends and 

conduct formal sensitivity analyses, in which they report confidence sets for the causal effect of 

interest under a variety of possible restrictions on the underlying trends. Such sensitivity analyses 

make transparent what assumptions are needed in order to draw particular conclusions. 

A second approach is provided by Bilinski and Hatfield (2020). They recommend a move away 

from relying on traditional parallel trend pre-tests because of problems can emerge in both directions. 

Sometimes we may fail to reject parallel trends because the test power is low or, on the contrary, 

because the power is high. Yet, when we reject parallel trends, this doesn’t tell us much about the 

magnitude of the violation and whether it matters much for the results – with big enough samples, 

trivial differences in pre-trends will lead to rejection of parallel trends. Bilinski and Hatfield (2020) 

argue that the most popular approach to testing parallel trend is incorrect and frequently misleading 
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and present test reformulations in a non-inferiority framework that rule out violations of model 

assumptions that exceed a threshold. We then focus on the parallel trends assumption, for which we 

propose a "one step up" method: 1) reporting treatment effect estimates from a model with a more 

complex trend difference than is believed to be the case and 2) testing that that the estimated 

treatment effect falls within a specified distance of the treatment effect from the simpler model. This 

reduces bias while also considering power, controlling mean-squared error. Our base model also 

aligns power to detect a treatment effect with power to rule out violations of parallel trends. 

A third approach is proposed by Freyaldenhoven, Hansen and Shapiro (2019). Their idea is a 

solution similar to instrumental variables to net out the violation of parallel trends. For example, 

suppose that one wants to look at the impact of a minimum wage change on youth employment. The 

concern is that states may increase minimum wages during good times, so that labour demand will 

cause the trajectory of youth employment to differ between treated and control areas, even without 

the effect of minimum wages. Their solution is to find a covariate (e.g. adult employment) which is 

also affected by the confounder (labour demand), but which is not affected by the policy (i.e. if you 

believe minimum wages do not affect adult employment). Then this covariate can be used to reveal 

the dynamics of the confounding variable and adjust for it, giving the impact of the policy change. 

Importantly, this does NOT mean simply controlling for this covariate (which only works if the 

covariate is a very close proxy for the confounder of concern), but rather using it in a 2SLS or GMM 

estimator. Another example concerns the impact of SNAP program participation on household 

spending, where the main dataset has SNAP participation and the outcomes, and the concern is that 

income trends may determine both program participation and spending. Using a second dataset that 

has SNAP participation and income, they can instrument participation with leads of income, which 

requires assuming that households do not reduce labour supply in anticipation of getting the 

program. 

1.3. The Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1978, I980, 1990) 

DiD identification require that the treatment applied to one (or more) unit does not affect the 

outcome for other units. Following the definition of Angrist et al. (1996), Rubin (1980, 1990), 

Wooldridge (2010, 905) by Stable Unit Treatment Value Assumption (SUTVA) in causal studies we 

mean that the potential outcome for a generic unit does not depend on the treatment status of the 

other units or on the mechanism by which units are assigned to the control and treatment groups. In 

other words, treated and untreated units are expected not to mutually interfere and do not influence 

their outcomes (Cox, 1958). The authors themselves point out that the assumption is critical and does 

not always match with real situations. For instance, let us consider a generic market in which 

operators mutually know and interact, thus influencing the reactions to exogeneous or external 

events, or policies in which “spillover effects” among neighbours can affect the choices of people 

involved in the experiment (Sobel, 2006). Similarly, one could consider panel data settings in which 

units interact across temporal (e.g., anticipation effects), cross-sectional (Xu, 2024), and spatial 

dimensions (Wang, 2021; Wang et al., 2020; Xu, 2024). Imbens and Rubin (2015, pp. 10) use the 

example of the fertilizer applied to one plot that affected the yields in contiguous untreated plots. 

Another example might be that of students assigned to attend a tutoring program to improve their 

grades (treated units) who might interact with other students in their school who were not assigned 

to the tutoring program (untreated control units) and influence the grades of the latter. Treated 

students might affect “informally” the performance of the control students since their interaction can 

generate spillover effects of the treatment in favour of untreated students. Under these 

circumstances, to enable causal inference, the analysis might be completed at the school level rather 

than the individual level. SUTVA would then require no interference across schools, a more plausible 

assumption than no interference across students. 

Hence, SUTVA demands that the potential outcomes for some untreated unit do not vary with 

the treatments assigned to some other treated units. In other words, a subject’s potential outcome is 

not affected by other subjects’ exposure to the treatment. The SUTVA implies that each individual 
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has one and only one potential outcome under each exposure condition, that is with and without 

treatment (Schwartz et al., 2012), thus making the causal effect “stable”. On the contrary, when the 

SUTVA is not fulfilled, there could exist multiple potential outcomes for each individual under each 

exposure condition (i.e., the causal effect is not unique), potentially leading to lead to misleading 

inferences. In non-economic frameworks, researchers often add a second aspect of stability in causal 

studies and closely related to the original SUTVA, that is, the so called “consistency assumption” 

(Cole and Frangakis, 2009; VanderWeele, 2009) or “no-multiple-versions-of-treatment assumption”, 

which states that potential outcomes of individuals exposed to the treatment coincide with their 

observed outcomes. In other words, there are no hidden forms of treatment leading to different 

potential outcomes (Cerqua et al., 2022; 2023). 

Laffers and Mellace (2020) introduced a third source of violation of the SUTVA, that is, the 

presence of measurement errors in either the observed outcome or the treatment indicator. While this 

new perspective extends the definition of the SUTVA, the authors also propose a way to relax the 

assumption by means of a sensitivity study. Specifically, they suggest computing the maximum share 

of units for which SUTVA can be violated without changing the conclusion about the sign of the 

treatment effect. According to the specificities of the empirical setting of interest, several other 

attempts to extend and to relax the SUTVA can be found in the recent literature (see, for instance, the 

paper by Qiu and Tong, 2021; VanderWeele et al., 2015 for a recent review on causal inference in the 

presence of interference). For instance, considering the case when all units are affected by the 

treatment, Cerqua et al. (2022) make use of a machine learning counterfactual framework in which 

the no-interference part of the SUTVA is substituted by a milder definition only requiring that the 

potential outcomes for treated units are not affected by the individual characteristics of the other 

treated units. Indeed, in Cerqua et al. (2023), the authors remove entirely the no-interference 

assumption and rely solely on the no-multiple-versions-of-treatment assumption, as they are aware 

that in many socio-economic applications agents are sensibly affected by interference across both 

space and time. Other strategies attempt to relax the assumption by using clustered or hierarchical 

data structures (for instance, individuals living restricted areas such as neighbourhoods) with 

potential spatial spillovers. VanderWeele (2010), for instance, introduced the definition of individual-

and-neighbourhood-level SUTVA and neighbourhood-level SUTVA to deal with empirical setting in 

which cluster-level interventions are considered. Among others, Huber and Steinmayr (2021) allow 

for the interaction between individuals and higher-level structures (e.g., regions) and suggest a non-

parametric modelling to separate individual-level treatment effects from spillover effects. However, 

while the SUTVA may be violated on the individual level, it must hold at the aggregate level. The 

latter can be referred to the regional SUTVA, which admits spillover effects between individuals 

within regions, but rules out spillovers across regions. Under this new setting, the total treatment 

effect may be split up into an individual effect and a within-region spillover effect driven by the 

treatment of other individuals in the region. Eventually, Ogburn et al. (2020) and Ogburn et al. (2024) 

considered the potential spillover effect produced by a network in which individuals mutually 

interact and treated individuals may spread the treatment to their social contacts. 

In the rest of the Review, we will adopt the definition of SUTVA provided in Remark n.2, that 

is, 

Remark n.3: the SUTVA assumption 

The potential outcomes for any unit do not vary with the treatments assigned to other units, and, 

for each unit, there are no different forms or versions of each treatment level, which lead to different 

potential outcomes. 

Essentially, Remark 3 states that an individual's potential outcome under a given treatment 

depends neither on the treatment received by other individuals nor on different versions of the 

treatment itself. In other words, each individual has only one potential outcome for each level of 

treatment, and this outcome is independent of the treatment received by others. Specifically, we must 

make sure (i) that an individual's outcome is not influenced by the treatment received by other 
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individuals. For example, if we are evaluating the effect of a drug, SUTVA implies that whether a 

patient takes the drug does not affect the outcome of another patient who might not take it and (ii) 

that for each level of treatment, there is a unique version of the treatment that leads to a given 

potential outcome. This means that there are no different versions of the treatment that could lead to 

different outcomes for the same individual. 

We may conclude that SUTVA is crucial for the correct interpretation of causal effects because, 

if violated, it can lead to biased estimates of treatment effects. For example, if interference is present 

(a student treated with a new textbook shares the improvements of her/his knowledge with an 

untreated fellow student), we may not be able to distinguish the effect of the treatment from the 

effect of the interactions between treated and untreated individuals. 

1.4. Exogeneity and Identification. DiD and Traditional Econometrics 

In OLS regression analysis we are interested in assessing the effect of a (usually) continuous 

variable x on a dependent Y under the hypothesis of exogeneity. The “true” causal effect of x on Y 

can be identified as long as independent changes of x only produce a direct effect on Y, by ruling out 

any potential indirect effect of x on Y occurring via the relation of x with unobservable factors. 

Without this exogeneity condition, OLS produced biased estimated parameters. Using Cerulli’s 

(2015) example, we assume that the regression model is 

𝑌 = 𝛽𝑥 + 𝑢 

where β represents the causal effect of x on Y and u is a non-observable factor. By differentiation we 

have 

𝑑𝑦/𝑑𝑥 = 𝛽 + 𝑑𝑢/𝑑𝑥 

The model is identified as long as 
𝑑𝑢

𝑑𝑥
= 0. If 

𝑑𝑢

𝑑𝑥
≠ 0 the autonomous changes in x are not 

exogenously determined, as x has also an indirect effect on Y through its effect on u and since u is not 

observed we cannot separate the direct effect (β) and the indirect effect ( 
𝑑𝑢

𝑑𝑥
 ) and the model is no 

longer identified. 

The counterfactual approach of the DiD to causality can be reformulated in terms of OLS model 

with the x assuming a binary form (say x0 for the treated and x1 for the untreated) instead of a 

continuous x. If we can observe two responses (Y0 state: treatment and Y1 state: no treatment) we 

write 

𝑌1 = 𝛽𝑥1 + 𝑢1 

𝑌0 = 𝛽𝑥0 + 𝑢0 

Subtracting the second equation from the first we have 

𝑌1 − 𝑌0 = 𝛽(𝑥1 − 𝑥0) + 𝑢1 − 𝑢0 

Or 

∆𝑦 = 𝛽∆𝑥 + ∆𝑢 

Then 
∆𝑦

∆𝑥
= 𝛽 +

∆𝑢

∆𝑥
 

If 
∆𝑢

∆𝑥
≠ 0 a bias similar to the previous one is generated even when we use binary form data 

typically associated with treatment events and counterfactuals. Exogeneity of treatment is a necessary 

condition. 

In DiD analysis we may go a little further and portrait the identification problem using the 

assumptions made above in section 1.1. We can re-write the target estimand of section 1.1 (which 

involved unobserved counterfactuals) in a form that depends only on observed outcomes. In DiD we 

call this process “identification”. To do so we assume that the change in response from pre- to post-

intervention in the control group is a good proxy for the counterfactual change in untreated 

potential outcomes in the treated group. When in a 2 periods framework we observe the treated and 

control units only once before treatment (t = 1) and once after treatment (t = 2), we write this as: 

𝐸[𝑦0(2) − 𝑦0(1)|𝐷 = 1] = 𝐸[𝑦0(2) − 𝑦0(1)|𝐷 = 0] 
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Notice that it involves unobserved counterfactual outcomes, namely 𝑦0(2)|𝐷 = 0 (the potential 

realization of y in case of no treatment; recall from Figure 1 that these data no not exist). This is other 

way to state the parallel trend assumption or the counterfactual assumption. 

We also need to make more explicit another assumption of section 1.1. For DiD the treatment 

status of a unit can vary over time. However, we only permit two treatment histories: never treated 

(the control group) and treated in the post-intervention period only (the treated group). Thus, we will 

use D = 0 and D = 1 to represent the control and treated groups, with the understanding that the 

treated group only receives treatment whenever 

T > T0. Every unit has two potential outcomes, but we only observe one — the one corresponding 

to their actual treatment status. The consistency assumption links the potential outcomes 𝑦𝑑(𝑡) at 

time t with treatment d with treatment d ∈ D = (0,1) to the observed outcomes 𝑦(𝑡): 

𝑦(𝑡) = (1 − 𝐷)𝑦0(𝑡) + 𝐷𝑦1(𝑡) 

Finally, we add the assumption that future treatment does not affect past outcomes. Thus, in the 

pre-intervention period, the potential outcome with (future) treatment and the potential outcome 

with no (future) treatment are the same (no anticipation effects). 

Using the assumptions made above, we can re-write the target estimand (which involved 

unobserved counterfactuals) in a form that depends only on observed outcomes. In DiD this process 

is specifically called “identification” and should not be confused with the specification problems 

typical of traditional OLS single equation regressions or with the so called over or under 

identification problems emerging from multi equations OLS systems. DiD identification relies on the 

Counterfactual Assumption and the Consistency Assumption discussed above, and ends with the 

familiar DiD estimator where for reducing notation we use D instead of D2 of equation (1) and 

indicate periods as numbers between parenthesis (see Callaway, 2022, 8): 
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You may compare the above ATET with the result obtained in section 1.1. To simplify reading 

and comparison we summarise the meaning of the above terms as follows: 

𝐸[𝑦(2)|𝐷 = 1]is the post-intervention average response of the treated group 

𝐸[𝑦(1)|𝐷 = 1]is the pre-intervention average response of the treated group 

𝐸[𝑦(2)|𝐷 = 0]is the post-intervention average response of the control group 

𝐸[𝑦(1)|𝐷 = 0]is the pre-intervention average response of the control group 

In summary, DiD identification begins with the ATET, applies the Counterfactual Assumption 

and the Consistency Assumption, and ends with the familiar DiD estimator. 

In section 3 we present a worked example in which the above expected values are computed 

and used to calculate the ATET coefficient as a difference among differences. 

When we observe the treated and control units multiple times before and after treatment, we 

must adapt the target estimand and identifying assumptions accordingly. Identification problems 

with multi period DiD is discussed later. 

Appendix A provides an example with an easy visualization of the data set 

2. The OLS Version of the Two-Way Fixed Effects Regression (TWFE) 

TWFE is the most common way to implement a DiD identification strategy under the 

assumption of treatment homogeneity. In this section we present what Roth, Sant’Anna, Bilinski, and 

Poe (2023, p. 2224) call a “static” TWFE which regresses the outcome variable on individual and 

period fixed effects and an indicator for whether the unit h is treated in period t. Recall that in section 

1.2 we have defined 
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𝐴𝑇𝐸𝑇 = 𝐸[𝑦1(2) − 𝑦0(2)|𝐷2 = 1] 

≡ {𝐸[𝑦(2)|𝐷2 = 1] − 𝐸[𝑦(1)|𝐷2 = 1]}

− {𝐸[𝑦(2)|𝐷2 = 0] − 𝐸[𝑦(1)|𝐷2 = 0]} 

Then, the estimated ATET can be written by replacing population means by their sample 

analogues (indicated by upper bars) to obtain 

𝐴𝑇𝐸𝑇̂ = {𝐸[𝑦(2)|𝐷2 = 1] − 𝐸[𝑦(1)|𝐷2 = 1]} − {𝐸[𝑦(2)|𝐷2 = 0] − 𝐸[𝑦(1)|𝐷2 = 0]} 

The above expression is algebraically equivalent to either of the following OLS regression system 

{
𝑦ℎ𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝛼𝐷ℎ𝑡 + 𝜐ℎ𝑡
𝑦ℎ𝑡 = 𝜃𝑡 + 𝜂𝑗 + 𝛼𝐷ℎ𝑡 + 𝜐ℎ𝑡

 

where in the system i indicates treated units, j indicates untreated units, and t is time, and h in 

equation (2) below can be either i or j. The interpretation of the quantities involved in (2) is the 

following: 

• 𝑦ℎ𝑡is the response variable 

• 𝜃𝑡is a time effect 

• ori j  is a unit (not group) fixed effect 

• 𝐷ℎ𝑡is the dummy (indicator) for whether or not unit h is affected by the treatment in period t 

(the term D1 × D2 of the last column of Table 2) 

• 𝜐ℎ𝑡  are idiosyncratic, time-varying unobservable factors. 

Table 2. Example of data set for DiD with more than two years. 

Year 

y 

 

Consumptio

n 

expenditure 

of an 

individual 

belonging to 

a group 

recorded in 

a year 

 

D1 = Time period 

Treatment dummy 

 

0 if it is a year with 

no treatment 

1 if it is a year when 

treatment existed 

D2 = Treatment 

application 

 

0 if the individual is 

never treated  

1 if the individual is 

treated (sooner or later) 

TREATMENT = D1 × 

D2 

 

0 will indicate the 

individual is not 

affected by the tax 

policy 

1 will indicate that in 

a certain year the 

individual is affected 

by the tax policy 

 

2000 y1A2000 0 1 0 

2001 . 0 1 0 

2002 . 0 1 0 

2000 y2A2000 0 1 0 

2001 . 0 1 0 

2002 . 0 1 0 

. 

. 

. 

    

. 

. 
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. 

 

     

2000 y1C2000 0 0 0 

2001 . 0 0 0 

2002 . 0 0 0 

     

  . 

. 

. 

 

    

Table 2a. Example of a DiD data set. 

1 1 0 .5 

1 2 0 .5 

1 3 0 .5 

1 4 0 .5 

1 5 0 .5 

1 6 0 .5 

1 7 0 .5 

1 8 0 .5 

1 9 0 .5 

1 10 0 .5 

2 1 0 1 

2 2 0 1 

2 3 0 1 

2 4 0 1 

2 5 1 2 

2 6 1 2 

2 7 1 2 

2 8 1 2 

2 9 1 2 

2 10 1 2 

3 1 0 2 

3 2 0 2 

3 3 0 2 

3 4 0 2 

3 5 1 4 

3 6 1 4 

3 7 1 4 

3 8 1 4 

3 9 1 4 

3 10 1 4 

Table 2b. Data set of a worked example. 

Consumers’ Id 

  

Time 

  

Consumption € 

  

D1 

  

D2 

  
1 2010 12 0 1 
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2 2010 9 0 1 

3 2010 13 0 1 

4 2010 14 0 1 

5 2010 15 0 1 

6 2010 13 0 0 

7 2010 14 0 0 

8 2010 13 0 0 

9 2010 16 0 0 

10 2010 15 0 0 

1 2011 15 1 1 

2 2011 17 1 1 

3 2011 19 1 1 

4 2011 18 1 1 

5 2011 22 1 1 

6 2011 13.5 1 0 

7 2011 14 1 0 

8 2011 15 1 0 

9 2011 15.5 1 0 

10 2011 14.4 1 0 

Equivalently, the previous system can be written in a single equation (panel data) version as 

follows: 

𝑦ℎ𝑡 = 𝛼ℎ + 𝛾𝑡 + 𝛽3[𝐷1ℎ × 𝐷2𝑡] + 𝜀ℎ𝑡     (2) 

where 𝛼ℎ is the individuals fixed effect, 𝛾𝑡 is the time fixed effect, and 𝐷1ℎ × 𝐷2𝑡 is the treatment 

dummy interaction. We can estimate equation (2) and interpret the estimated coefficients according 

to the result reported in Remark n.4 below, that is, 

Remark n.4: causal interpretation of the TWFE estimator 

Under parallel trend, treatment homogeneity and no spill-over, 𝛼̂is the TWFE estimation of the 

causal effect of receiving the treatment. 

As the very name suggests TWFE is the case where there are exactly two time periods, where no 

units is treated in the first time period, and where some units become treated in the second time 

period while other units remain untreated in the second time period. Notice that when we say periods 

we do not necessarily refer to units of time (years, months etc.) but to “time intervals”: the first 

(possibly composed by several years, several months, etc.) in which there is no treatment for nobody 

and the second (possibly composed by several years, several months, etc.) in which some units are 

treated (uniformly). 

To illustrate formally TWFE we need some notation. Let us define the following quantities: 

• t* and t* – 1 the two periods that for simplicity correspond to two years 

• Dh the treatment indicator D1 × D2 of Table 2 so that 

1 for treated units during treatment periods 

0 for untreated unitshD


= 
  

Then for 𝑡 ∈ {𝑡∗ − 1, 𝑡∗} define yht(1) to be unit i’s potential treated response in period t and 

correspondingly yht(0) to be unit i’s potential untreated response in period t. Impose that 

1 1(1) (0)ht* ht*y y
− −

= for all units. This is the no anticipation condition of section 1. It states that the 

treatment should not affect the response variable in periods before the treatment takes place. The 

result from the above assumption and conditions is that 

1 1(0)  and  (1)+ 1 (0)ht* ht* ht* h ht* h ht*y y y D y ( D )y
− −

= = −
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In the first time period we observe untreated potential outcomes for the response variable for all 

units and in the second period we observe treated potential outcomes of the response variable for 

treated units and untreated potential outcomes of the response variable for untreated units. 

Using the above definitions, we may define the ATET resulting from the DiD identification of 

the treatment effect as follows 

[ 1 (0) 1]t* t*ATET y ( ) y D=  − =
 

which is equivalent to the one given in the previous section. 

Using Callaway’s (2022, p. 6) definition, the ATET is the mean difference between treated and 

untreated potential outcomes among the treated group. Perhaps a main reason that the DID 

literature most often considers identifying the ATET rather than, say, the average effect of treatment 

is that, for the treated group, the researcher observes untreated potential outcomes (in pre-treatment 

time periods) and treated potential outcomes (in post-treatment time periods). The DID identification 

strategies exploit the above framework. As a result, it is natural to identify causal effect parameters 

that are local to the treated group. 

Clearly, the model presented in equation (2) is the static specification of the TWFE, which yields 

a sensible estimand when there is no heterogeneity in treatment effects across either time or units. 

Following Roth, Sant’Anna, Bilinski, and Poe (2023, p. 2224) we can stress the relevance of these 

hypotheses more formally. 

Define a period (e.g. year) g > t and let τh,t (g) = Yh,t(g) – Yh,t(∞). Suppose that for all units h, τh,t(g) 

= τ whenever t ≥ g. This implies that (a) all units have the same treatment effect, and (b) the treatment 

has the same effect regardless of how long it has been since treatment started. Then, under a suitable 

generalization of the parallel trends assumption and no anticipation assumption, the population 

regression coefficient α in equation (2) is equal to τ. 

Yet, issues arise, however, when there is heterogeneity of treatment effects over time, as shown 

in Borusyak and Jaravel (2018), de Chaisemartin and D’Haultfoeuille (2020), and Goodman-Bacon 

(2021), among others. More generally, if treatment effects vary across both time and units, then τh,t(g) 

may get negative weight in the TWFE estimand for some combinations of t and g. 

Figure 2 gives the idea of parallel trend with 3 units (unit 1 blue colour is untreated) and 10 

periods. The plot has been generated using the data of Table 2a reported in the Appendix. The 

following plot illustrates the time paths of the response variable. Notice that Unit 1 is never treated; 

Units 2 and Unit 3 start treatment at time 5 and are always treated from t = 5 to t =10. 

 

Figure 2. Parallel trends plot with 2 treated units (homogeneous case) and one control. Notes. The bottom solid line is 

the response variable y of the untreated unit ID1. The treatment is introduced at the end of period 4. The two 

upper lines correspond to the data of ID2 and ID3. Trends are imposed to be parallel in treated and untreated 
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periods for simplicity. Comparing the treated units (ID2 and ID3) with the control group (ID1) might give us an 

understanding of whether the treatment is responsible for the change of the line path of the response variables 

ID2 and ID3. 

2.1. Testing for the Parallel Trends and Anticipation Effects Assumptions in the TWFE Model 

Given the fundamental importance of the parallel trend assumption, a natural question is: how 

to test for parallel trends in a panel data TWFE? In order to find answers, we start from the above 

model written as 

𝑦ℎ𝑡 = 𝛽0 + ∑ 𝛽𝑘

𝑇

𝑘=𝑇0

𝛪(𝑡 = 𝑘 ∩ 𝐷ℎ = 1) + 𝛼ℎ + 𝛾𝑡 + 𝜀ℎ𝑡 

where 𝐼(⋅) is the indicator function, the treatment is indexed by Dh, whit Dh = 1 indicating that 

observation h is part of the treated groups/units and Dh = 0 indicates that it is part of the 

comparison/control group. Let t index time from {1, ..., T} and suppose that an intervention begins at 

time T0 for the treated units (same treatment periods for all treated units: the so-called homogenous 

case. See below). All other symbols have their usual meaning. The treatment effects of interest are βk, 

representing differential post-period changes in the treated group relative to comparison at each time 

point. The average of these coefficients, that is, 

𝛽 =
1

𝑇 − 𝑇0 − 1
∑ 𝛽𝑘

𝑇

𝑘=𝑇0

 

is the average ATET. 

We may exploit the above definition of the coefficients to derive some tests of the DiD 

identification hypothesis. 

Parallel trends test: the slope test. In a parallel trends test for DiD identification, we may try and 

estimate whether there is a difference in slope between treatment and comparison groups prior to 

the intervention. Call θ the different coefficient. Then, rewrite the above equation in a form that 

incorporates the pre-treatment coefficient θ: 

𝑦ℎ𝑡 = 𝛽0
′ + ∑ 𝛽𝑘

′

𝑇

𝑘=𝑇0

𝛪(𝑡 = 𝑘 ∩ 𝐷ℎ = 1) + 𝜃(𝐷ℎ × 𝑡) + 𝛼ℎ + 𝛾𝑡 + 𝜀ℎ𝑡
′  

We can now test whether the (pre-treatment) differential slope θ = 0. If the null hypothesis for 

this test is non rejected (i.e., pv > 0.05), researchers may conclude that trends are parallel. 

Anticipation effects: Researchers may instead examine the validity of the identification of the 

parameter by DiD by testing whether there is a significant “treatment” effect prior to the intervention, 

that is. an effect starting at T* < T0. In this context, they might use the modified original panel model: 

𝑦ℎ𝑡 = 𝛽0 + ∑ 𝜃𝑘
𝑇0−1
𝑘=𝑇∗ 𝛪(𝑡 = 𝑘 ∩ 𝐷ℎ = 1) + 𝛼ℎ + 𝛾𝑡 + 𝜀ℎ𝑡 

and estimate it by omitting data from after T0. If the test statistic 

𝜃 =
1

𝑇 − 𝑇∗ − 1
∑ 𝜃𝑘

𝑇0−1

𝑘=𝑇∗

 

is significant, this again suggests a violation of parallel trends. (Alternatively, a joint F-test can be 

used to test whether placebo effects at all possible T* < T0 were insignificant.) 

2.2. More on the Parallel Trend Assumption 

We have already stressed that DiD does not identify the treatment effect if treatment and control 

groups were on different trajectories prior to the treatment (common trend or parallel trend 

assumption). 

With respect to equation (1) as the OLS equation of our DiD model we recall that 

• Selection bias relates to the fixed characteristics of the units 𝜂ℎ 

• Time trend 𝜃𝑡is the same for treated and untreated units. 
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These assumptions guarantee that the common trends assumption is satisfied but they cannot 

be tested directly. This is quite disappointing because it leaves the tests for parallel trend the optical 

ability to visual checking on trends reported in plots. 

In Figure 1, we illustrated the case of an obvious pre-treatment parallel trend. In other cases, the 

assumption may be easily violated. Therefore, the question is: what has to be done? For those who 

think that hypothesis testing is in the realm of optics and not in the realm of mathematical statistics, a 

way to proceed is to inspect visually the plot of the treated and untreated data. Figure 1 is clearly a 

case of non-optically distorted test of parallel trend. The alternative presentation could be the make 

the G2 line start from A (eliminate the difference AB, which is the idiosyncratic constant element) 

and observe whether or not G1 and G2 lines overlap before the introduction of the treatment and 

diverge in period 2. More in general, optics cannot be a good substitute for mathematical statistics. 

We may go back to initial 2 × 2 case and present a discussion of the parallel trend relevance. We 

had 2 groups, one treated and one untreated, and we indicate them as follows 𝑔 ∈ {0,1}where 0 is 

untreated (control) and 1 is treated. We also had 2 years and then we write 𝑡 ∈ {0,1} where 0 is the 

before treatment period and 1 is the treatment period. The guarantee a consistent estimate of the 

ATET we need to make the following parallel trend assumption 

𝐸(𝑦𝑖01|𝐷𝑔𝑡 = 1) − 𝐸(𝑦𝑖00|𝐷𝑔𝑡 = 1) = 𝐸(𝑦𝑖01|𝐷𝑔𝑡 = 0) − 𝐸(𝑦𝑖00|𝐷𝑔𝑡 = 0) 

If the treated units had not received the treatment, the groups defined by 𝐷𝑔𝑡 = 1and 𝐷𝑔𝑡 = 0 

should have response variable showing the same paths as in Figures 1 and 2. The group effects must 

be time invariant, and the time effect must be group invariant. 

Within a 2-period framework, the possible “test” of this assumption is only graphical but for 

more than 2 periods same testing procedure based on Wald test are available. Many sw offer such 

statistical tests. We will present them alongside applications at the end of the Review. 

In the linear case, Wooldridge (2021) has shown that tests of the Parallel Trend assumption are 

easily carried out in the context of pooled OLS estimation. In other words, in linear DiD models 

within a staggered treatment framework, the parallel trends assumption can be tested using pooled 

OLS estimation. This approach leverages the inclusion of cohort and time period dummies, along 

with cohort-by-time treatment indicators, in a linear regression model. The key idea is that under the 

parallel trends assumption, the coefficients on these interaction terms, when estimated via pooled 

OLS, are consistent for the estimation of ATET. Moreover, the tests are the same whether based only 

on the 𝐷𝑖𝑡 = 0  observations (imputation regression) or on pooled OLS using all observations— 

provided full flexibility is allowed in the treatment indicators. In other words, tests obtained pooling 

over the entire sample are equivalent to the commonly used ‘pre-trend’ tests (i.e. common tests used 

to examine the parallel trends assumption) that use only the untreated observations. As discussed by 

Wooldridge (2021), this means the tests using post-treatment data are not ‘contaminated’ by using 

treated observations—if the treatment effects are allowed to be flexible. 

The algebraic equivalence of the pooled tests and pre-trends tests carries over to the nonlinear 

case provided the canonical link function is used in the Linear Exponential Function (LEF). In a DiD 

analysis with panel data, when using a linear exponential family (LEF) with the canonical link 

function, the pooled tests (using all data) and pre-trends tests (using only untreated observations) are 

algebraically equivalent. This means that the same underlying statistical properties and results can 

be obtained regardless of whether you pool all the data or focus only on the pre-treatment 

observations to check for parallel trends. Technically, if one uses a different mean function or 

different objective function, the test should be carried out using only the Dit = 0 observations 

(although it seems unlikely the difference would be important in practice). Wooldridge (2023) 

recently discusses the non-linear case. 

In general, one should consider that the implications for applied work revolve around the (often-

implausible) parallel trend assumption needed for the identification (using non-treated post 

treatment observations as counterfactuals) of a DiD model. Yet rather than just asserting that parallel 

trends hold, or abandoning projects where a pre-test rejects parallel trends (not to speak of the so-

called optical test based the trend plots!), new approaches focus on thinking carefully about what 
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sort of violations of parallel trends are plausible and examining robustness to these. Importantly, 

these methods should be used when there is reason to be sceptical of parallel trends ex ante, 

regardless of the outcome of a test of whether parallel trends hold pre-intervention. This type of 

sensitivity analysis will allow one to get bounds on likely treatment effects. For instance, a recent 

application comes from Manski and Pepper (2018), who look at how right-to-carry laws affect crime 

rates, obtaining bounds on the treatment effect under different assumptions about how much the 

change in crime rates in Virginia would have differed from those in Maryland in the absence of this 

policy change in Virginia. 

In summary, the default DiD estimation equation should allow for a linear trend difference. 

This is a key recommendation of Bilinski and Hatfield (2020). 

Which approach to use to examine robustness will depend on how many pre-periods you have: 

with only a small number of pre-intervention periods, the Rambachan and Roth approach of 

bounding seems most applicable for sensitivity analysis; when you have more periods you can 

consider fitting different pre-trends as in Bilinski and Hatfield (2020). Some issues are discussed in 

sections below. 

3. Simple Worked Examples 

We offer two simple numerical examples of ATET estimation with OLS and of the interpretation 

of the estimated coefficients. The second example relates to the interpretation of the response variable 

paths (before and after the treatment) as a tool for the evaluation of the presence of parallel trends. 

3.1. Example n.1 

Assume we have a total of 10 Consumers in 2 equal-sized groups (a group of 5 treated consumers 

and a group of 5 untreated consumers); 2 periods corresponding to two years, namely 2010 and 2011; 

a Treatment occurring at the end of 2010 (consumption tax reduction for the control group only). We 

name treated consumers Mrs. 1- 5; and untreated consumers: Mrs. 6 -10. Data and dummies are 

presented in Table 2b in the Appendix. 

Using the above dataset, we show by direct calculation of mean values how to recover the ATET 

induced by the treatment. We need the following quantities: 

• The mean Consumption in the Control group before the treatment is 

𝐸[𝑦|𝐷1 = 0 ∧  𝐷2 = 0] = 𝟏𝟒. 𝟐 

• The mean Consumption in the Treated group before treatment is 

𝐸[𝑦|𝐷1 = 0 ∧  𝐷2 = 1] = 𝟏𝟐. 𝟔 

• The mean Consumption in Control group after the treatment is 

𝐸[𝑦|𝐷1 = 1 ∧  𝐷2 = 0] = 𝟏𝟒. 𝟒𝟖 

• The mean Consumption in Treated group after the treatment is 

𝐸[𝑦|𝐷1 = 1 ∧  𝐷2 = 1] = 𝟏𝟖. 𝟐 

Estimated results can be synthesized in the following 2x2 matrix 

 Control Treated 

Pre-Treatment 14.2  12.6 

Post-Treatment 14.48  18.2 

Therefore, we obtain the ATET as the difference of the two differences: 

𝐷𝑖𝐷 = 3.72 −  (−1.6) = 5.32 

Clearly, the above calculation does not tell us how “good” the computed ATET is from an 

inferential point of view. In other words, 5.32 has no CI around it or P-values. That’s why we must 

re-obtain the result following a route that allows to introduce inferential elements. Now we estimate 

ATET with the OLS after the creation using the above defined D1, D2 and TRET = D1× D2. (reported 
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in small letters in the Table below). We run the OLS (with the option of robust SE) regression of 

equation (1) and obtain the results reported below. 

 

Then, the estimated ATET is 5.32, which, according to the t-test reported in the table, is 

statistically significant at any level. Recall that TRET is the D1×D2 dummy variable. 

We can interpret the above estimated coefficients as it follows: 

• The estimated Constant = 14.2 (with a p-value smaller than 0.05) is the mean value of the 

Consumption in the control group in 2010 (i.e. before the treatment). We can compare it with the 

result obtained from the numerical calculation reported above. The two figures coincide. 

• If we sum the coefficient Constant and the d2 coefficient, i.e. if we calculate 14.2 + (– 1.6), we 

obtain 12.6. This is the expected Consumption of the control group in 2011, i.e. during the year 

of treatment. 

• If we sum the coefficient Constant and the d1 coefficient, i.e. if we calculate 14.2 + 0.28 = 14.48, 

we obtain the mean value of the Consumption in the treatment group in 2010, i.e. before the 

treatment. 

• The estimated TRET = 5.32 is the (statistically significant) treatment effect. Treated units increase 

their average consumption by 5.32 euros with respect to untreated individuals. 

In formula, we may write, after indicating differences with the symbol Δ, the calculation of ATET 

as 

𝐸𝛥[𝐶𝑜𝑛𝑠𝑢𝑚𝑝|𝑇𝑎𝑥𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1] − 𝐸𝛥[𝐶𝑜𝑛𝑠𝑢𝑚𝑝|𝑇𝑎𝑥𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 0] = 

3.72 − (−1.6) = 5.32 

As it was stressed above, equation (1) is estimated with OLS under the robust SE option, which 

allows adjusting the model-based standard errors using the empirical variability of the model 

residuals which are the difference between observed outcome and the outcome predicted by the 

statistical model. The motivation of this choice is that as shown by Bertrand, Duflo, and Mullainathan 

(2004) the standard errors for DiD estimates are inconsistent if they do not account for the serial 

correlation of the outcome of interest. For a more complete discussion, see Cameron and Miller 

(2015) and MacKinnon (2019) and the references therein. 

Generalising our discussion beyond the 2-group example studied above, we may stress that the 

response variables under investigation usually vary at the group and time levels, and so it makes 

sense to correct for serial correlation. Bertrand, Duflo, and Mullainathan (2004) show that using 

cluster–robust standard errors at the group level where treatment occurs provides correct coverage 

in the presence of serial correlation when the number of groups is not too small. Bester, Conley, and 

Hansen (2011) further show that using cluster–robust standard errors and using critical values of a t 

distribution with G − 1 degrees of freedom, where G is the number of groups, is asymptotically valid 

for a fixed number of groups and a growing sample size. In other words, consistency does not require 

the number of groups to be arbitrarily large, that is, to grow asymptotically. Cluster–robust standard 

                                                                              
       _cons         14.2   .5830952    24.35   0.000     12.96389    15.43611
        TRET         5.32   1.692749     3.14   0.006     1.731532    8.908468
          d2         -1.6   1.183216    -1.35   0.195    -4.108306    .9083058
          d1     .2799999   .6822023     0.41   0.687    -1.166204    1.726204
                                                                              
 consumption   Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                             Robust
                                                                              

                                                Root MSE          =     1.8926
                                                R-squared         =     0.5951
                                                Prob > F          =     0.0163
                                                F(3, 16)          =       4.63
Linear regression                               Number of obs     =         20

. reg consumption d1 d2 TRET,  rob
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errors with G−1 degrees of freedom are the default standard errors in many sw performing DiD 

analysis. 

Hence, we could still obtain reliable standard errors even when the number of groups is not 

large. But what about data with a very small number of groups? Cluster–robust standard errors may 

still have poor coverage when the number of groups is very small or when the number of treated 

groups is small relative to the number of control groups. For cases where the number of groups is 

small, Stata sw provides three alternatives. In what follows I reproduce the description of the 

alternatives provided by Stata to deal with the issue 

(https://www.stata.com/manuals/tedidintro.pdf.). The first alternative is to use the wild cluster 

bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach, and Miller (2008) 

and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides better inference than 

using cluster–robust standard errors with t(G − 1) critical values. The second alternative comes from 

Imbens and Kolesar´ (2016), who show that with a small number of groups, you may use bias-

corrected standard errors with the degrees of freedom adjustment proposed by Bell and McCaffrey 

(2002). For the third alternative, one may use aggregation type methods like those proposed by 

Donald and Lang (2007); they show that their method works well when the number of groups is small 

but the number of individuals in each group is large. 

When the disparity between treatment and control groups is large, for example, because there is 

only one treated group or because the group sizes vary greatly, cluster–robust standard errors and 

the other methods mentioned above underperform. Yet the bias-corrected and cluster–bootstrap 

methods provide an improvement over the cluster–robust standard errors. 

3.2. Example n.2 

Use the data of Table 3 in the Appendix (stuck in panel data form, i.e. in the version that is 

always recommended is defined by individual identity and time indicator) to generate a working 

data set for the future application of DiD. Answer the following “trivial” questions. How many units 

belong to the panel? By looking at D2, say how many units are treated Are the latter treated in the 

same years? What does D1 indicate? How is the dummy whose estimated coefficient corresponds to 

ATET obtained? 

Table 3. Data for the parallel trend illustration. 

Consumers’ Identity Time Consumption € D1 D2 

1 2009 11 0 1 

1 2010 12 0 1 

1 2011 15 1 1 

2 2009 8.6 0 1 

2 2010 9 0 1 

2 2011 17 1 1 

3 2009 12.5 0 1 

3 2010 13 0 1 

3 2011 19 1 1 

4 2009 13 0 1 

4 2010 14 0 1 

4 2011 18 1 1 

5 2009 14 0 1 

5 2010 15 0 1 

5 2011 22 1 1 

6 2009 12 0 1 

6 2010 13 0 0 

6 2011 13.5 1 0 

7 2009 13.7 0 0 
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7 2010 14 0 0 

7 2011 14 1 0 

8 2009 12.7 0 0 

8 2010 13 0 0 

8 2011 15 1 0 

9 2009 14.9 0 0 

9 2010 16 0 0 

9 2011 15.5 1 0 

10 2009 14.7 0 0 

10 2010 15 0 0 

10 2011 14.4 1 0 

Assume the treatment is introduced at the end of year 2010 (look at the dummies). Write the FE 

panel data version of equation (1) with time and individual effects and estimate both ATET and the 

Time Effect. Using any graph routine that you may know, show that the parallel trend exists 

(graphically). Figure 3 below shows the requested plots. 

 

Figure 3. Parallel trends plots using the worked example data of Table 2c. Notes. In Figure 3 we plot the mean values 

of the response variable, before and after treatment (2010). The left plot shows the observed means whereas the 

right plot illustrates the linear trend of both series of means after they are forced to start from a same intercept 

(the initial difference is supposed to remain constant and is removed). Under parallel trend, the elimination of 

the initial (supposedly constant) difference should make the pre-treatment path to overlap. If the treatment is 

effective the post-treatment paths should show appreciable differences among each other. The above plots are 

obtained from the post-estimation code estat plottrends which is run after the Stata command xtdidregress (Treated 

data = dashed lines). 

If you cannot produce the above plots using your SW, try to interpret those provided above. Yet, 

never forget that statistical inference is not a variant of “observing panoramic views” however 

elaborated they might be presented. In any future analysis that you will perform, please recall that 

the presence of parallel trends cannot be diminished and debased to a mere matter of good optical 

observation, however sophisticated the plots can be. 

As one can see for both groups, there was an increase in the mean of the outcome response 

variable after 2010. Therefore, the increase in the treatment group cannot be attributable entirely to 

the tax treatment (see section 1). Yet, the deviation from a common trend was more sizable from the 

treatment group and the difference may indicate the effect of the treatment. The example shows how 

the DiD strategy relies on two differences. The first is a difference across time periods. Separately for 
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the treatment group and the control group, we compute the difference of the outcome mean before 

and after the treatment. This across-time difference eliminates time-invariant unobserved group 

characteristics that confound the effect of the treatment on the treated group. But eliminating group-

invariant unobserved characteristics is not enough to identify an effect. There may be time-varying 

unobserved confounders with an effect on the outcome mean, even after we control for time-

invariant unobserved group characteristics. Therefore, we incorporate a second difference—a 

difference between the treatment group and the control group. DID eliminates time-varying 

confounders by comparing the treatment group with a control group that is subject to the same time-

varying confounders as the treatment group. The reader can evaluate the above statements by 

reproducing with the data used in this estimation the differences calculated in section 3. 

The ATET is then consistently estimated as a one parameter in a liner OLS equation by 

differencing the mean outcome for the treatment and control groups over time to eliminate time-

invariant unobserved characteristics and also differencing the mean outcome of these groups to 

eliminate time-varying unobserved effects common to both groups. 

4. ATET vs ATE 

In the previous sections, we have used the acronyms ATET to indicate the estimation of the 

average causal effect on treated units when our data set includes both pre-treatment and post-

treatment observations. It should not be confused with the Average Treatment Effect (ATE) which 

measures the effect of a treatment on a group of units estimated when we have observations recorded 

only for the after-treatment period (we do not have pre-treatment observations). Yet, we would like 

to know if the treatment has an effect on the response variable y of the treated vs untreated units. In 

an ideal world, we would observe y when a subject is treated (which we denote in what follows as 

y1), and we would observe y when the same subject is not treated (which we denote as y0). If the only 

difference in the data generation process of treated and untreated responses is the presence or absence 

of the treatment, we could average the difference between y1 and y0 across all the subjects in our 

dataset to obtain a measure of the average impact of the treatment. However, this ideal experiment 

setting is almost never available because we cannot observe a specific subject having received the 

treatment and having not received the treatment. When for instance the response is the level of 

consumption, and the treatment is the presence or the absence of a consumption tax for a specific 

group of consumers it is impossible to observe the consumers’ expenditure under both treatment (the 

presence of the tax) and absence of the treatment (no taxes). As a result, we cannot estimate 

individual-level treatment effects because of a missing-data problem. Econometricians have 

developed potential-outcome models to overcome this problem. Potential-outcome models bypass 

this missing-data problem and allow us to estimate the distribution of individual-level treatment 

effects. A potential-outcome model specifies the potential outcomes that each individual would 

obtain under each treatment level, the treatment assignment process, and the dependence of the 

potential outcomes on the treatment assignment process. These models are beyond the purpose of 

this DiD Review. 

To illustrate the difference between ATE and ATET estimates, we follow Cameron and Trivedi 

(2005, p. 866). Define 𝛥 = 𝑦1 − 𝑦0the above difference between the response variable in the treated 

and untreated states. Back to Figure 1 one immediately realises that Δ cannot be observed (Group 2 

after the treatment). Then we define 

𝐴𝑇𝐸 = 𝔼[Δ] = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 

whereas 

𝐴𝑇𝐸𝑇 = 𝔼[Δ[𝐷 = 1] = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 𝒖𝒑𝒐𝒏 𝑻𝒓𝒆𝒂𝒕𝒆𝒅 

With the sample analogues (using the hypothesis of section 1): 

𝐴𝑇𝐸̂ = 𝑀−1∑[𝛥𝑗]

𝑀

𝑗=1
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𝐴𝑇𝐸𝑇̂ = (∑(𝐷1 × 𝐷2)𝑗

𝑀

𝑗=1

)

−1

∑ [Δ𝑗|𝐷𝑗 = 1]

∑ (𝐷1×𝐷2)𝑗
𝑀
𝑗=1

𝑗=1

 

The 𝐴𝑇𝐸̂version may be useful when the treatment has “universal applicability” (Cameron and 

Trivedi, 2005, p. 866) and we may consider the effect of the treatment for a randomly selected member 

of the population. 

On the contrary, the 𝐴𝑇𝐸𝑇̂ version is the measure of the average effect on treated units. It may 

be useful when the treatment has a universal applicability, and one wants to estimate its effect on a 

randomly selected subset of the population. Yet the estimation of the ATE is not straightforward, 

because as it was mentioned above, we cannot simultaneously observe average outcomes of 

participants who are at the same time not participants and a control group does not exist. An 

indication on how to specify treated and “untreated” observation to estimate the ATE is in Cameron 

and Trivedi (2005, p. 867). Techniques are available to estimate various versions of 𝐴𝑇𝐸̂. Wooldridge 

(2010, Ch. 21) discusses the assumptions and identification of ATE and presents the results (p. 929) 

of different estimation approaches. The reader can also check the content of the repository material 

contained in the links reported at the end of Section 1. 

5. The Confounding Factors 

At the beginning of section 1 we wrote that confounding factors should be controlled for in DiD 

analysis. A confounder in DiD is a variable with a time-varying effect on the response outcome or 

a time-varying difference between groups. For example, if we run a DiD study on hearth disease and 

therapy effects, we know that some coffee drinkers are smokers whilst some others are not. So 

smoking is a confounding variable in the study of the association between coffee drinking and heart 

disease. The increase in heart disease may be due to the smoking and not the coffee and can interact 

with the treatment administered to some units of patients. Hence, in DiD we may adopt as a starting 

concept the colloquial definition of a confounder in cross-sectional settings: a variable associated with 

both treatment and outcome. As in the example of coffee drinkers, we may then think that the 

confounding elements in a DiD analysis arise because some covariates evolve over time differently 

in the treated and control groups or because the effects of covariates on outcomes vary over time. 

Then, confounders that vary over time and/or have time-varying effects on the outcome can cause 

violations of the parallel trends assumption. This concern has led scholars to develop methods to 

estimate the ATET coefficients under the assumption that parallel trends holds conditionally on 

covariates (see Roth et al. 2023 for a recent review). Methods that make a conditional parallel trends 

assumption prevailingly assume that control for pre-treatment covariates suffices. Researchers are 

often explicitly cautioned against controlling for post-treatment variables to avoid potential “post-

treatment bias” (Rosenbaum 1984; Myint, 2023). 

To see why confounding factors can affect adversely our DiD estimations we should recall that 

in DiD our target estimand is the average effect of treatment on the treated (ATET): 

𝐴𝑇𝐸𝑇̂(𝑡 ∗) = 𝛦[𝑦1(𝑡 ∗) − 𝑦0(𝑡 ∗)|𝐷 = 1] 

for some time t* ≥ To where To is the time the intervention is introduced to the treatment group. Yet, 

in most settings, a confounder is a factor associated with both treatment D and response y. This is 

why randomized trials are not subject to bias through confounders — no factor is associated with the 

randomly assigned treatment. In other words, the potential outcomes and treatment are independent. 

Otherwise, we must make the following orthogonality assumptions: 

Assumption of unconditional Independence between Response and Treatment: 𝑦𝑑 ⊥ 𝐷 

or 

Assumption of conditional (on covariate X) Independence between Response and Treatment: 

𝑦𝑑 ⊥ 𝐷|𝑋 

In both of these versions, the treatment D is independent of the potential outcomes yd, either 

unconditionally or conditional on X. 
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As for practical applications, notice that these relations are only satisfied in randomized trials; 

otherwise, there is no guarantee that X is sufficient to make D and yd conditionally independent. Even 

if we continue collecting covariates, it is likely that some unmeasured new covariates are still a 

common cause of D and yd. Paradoxically, the less covariates we have the smaller the probability of 

running into confounding factors trouble. 

In summary, in DiD studies the presence of confounding factors violates the counterfactual 

assumption when 

(1) the covariate is associated with treatment 

(2) there is a time-varying relationship between the covariate and outcomes 

(3) there is differential time evolution in covariate distributions between the treatment and control 

populations (the covariate must have an effect on the outcome). 

As a conclusion we may state that confounders are covariates that change differently over time 

in the treated and comparison group or have a time varying effect on the outcome. When the 

confounder is appropriately included in a DiD regression model, unbiased estimates of ATET can be 

obtained with optimal SE. However, when a time-varying confounder is affected by the treatment, 

DiD may not be generate unbiased estimates of the causal effect. For more in-depth discussions of 

confounding for DiD, we recommend Wing, Simon, and Bello-Gomez (2018) and Zeldow and 

Hatfield (2021). 

6. More Than Two Periods with Homogeneity 

Assume we have some groups of units and that time units (years) > 2. After some year a 

treatment is introduced and imposed to only a randomly selected subset of groups. If the treatment 

is administered to that subset of groups at the same moment and is maintained till the end of the time 

period and the rest of groups is never affected, we have a case of panel data homogenous DiD. This 

is the case of no differential treatment time. The opposite case is given by the administration of the 

same treatment in different moments to different groups (group 1 receives the same treatment at g > 

t0 > initial year, some other group at g+1, some other at g+2) where t0 is the year of the first 

administration of the treatment to some group. This s the heterogeneous case, also called staggered 

case. Clearly, once the treatment is administered (to any group) it is maintained till the end of the 

data set. 

The data reported in Table 2 were tailored to illustrate numerically the homogeneous case and 

to show the values of d1 and d2 in different years. The example presented in Figure 4 below gives a 

sort of graphical representation of the homogenous case (two groups/units are never treated; 4 

groups/unites are continually treated from 2003 until 2007). Recall that we define treatment 

homogeneity as the condition corresponding to a different starting moment in which units are treated 

in the sample period under study. Yet, in this Review, we always assume for both the homogenous 

and the heterogeneous case, that once the treatment is administered it stays in operation until the end 

of the sample period under study. Callaway (2022, p. 10) calls this Staggered Treatment Assumption. 

We indicate this assumption as a Remark n.5: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1089.v1
http://creativecommons.org/licenses/by/4.0/


 28 of 51 

 

 

Figure 4. Time paths recorded for 6 units with 2 untreated units and 4 units subjected to different time treatment. Notes. 

In Figure 4 we plot the simulated response variable of each of the 6 units illustrated in Table 5, before and after 

each treatment (2002, 2003, 2004, and 2005). Treatments are represented by vertical lines. Data are simulated; so, 

we put y = 0 for units 1 and 2 from 2000 to 2007 (always untreated) as well as for the other units before their 

treatments, i.e. at least from 2000 to 2002 (excluded). We assume, for the sake of illustration, that treatment causes 

a dy > 0. 

Remark n.5: Staggered Treatment Assumption (Callaway, 2022, 10) 

For any unit and all t = (1, …, T) we assume that D2it-1 = 1 → D2it = 1. In other words, we assume 

that the treatment, once introduced, is kept active for all treated units until the end of the sample 

period. The treatment is irreversible. 

The following Table 4 shows the distribution of the treatment across units and time that defines 

homogeneity. 

Table 4. Example of six units and eight years panel with homogeneity of treatment and irreversibility. 

 

 
2000 2001 2002 2003 2004 2005 2006 2007 

 

UNITS 

 

1 

2 

Period 1 (no treatment Dit = 

0) 
Period 2 (treatment Dit = 0 ˄ Djt = 1) 

 

Never treated 

3 Not yet treated Treated since 2003 until 2007 

4 Not yet treated Treated since 2003 until 2007 

5 Not yet treated Treated since 2003 until 2007 

6 Not yet treated Treated since 2003 until 2007 

Notes. The table accounts for a treatment design where (i) the design is not staggered, meaning that groups’ 

treatments do not change over time and can change at most once; (ii) the treatment is binary, as always assumed 

in this Review; and (iii) there is no variation in treatment timing: all treated groups start receiving the treatment 

at the same date. 

The TWFE can be employed to estimate a DiD model when data are generated according to the 

above framework. As a result, one may calculate the ATET at any t > T0 of the post treatment period 

starting in T0 as. 

𝐴𝑇𝐸𝑇(𝑡 > 𝑇0) = 𝐸[𝑦ℎ
𝑡𝑟𝑒𝑎𝑡𝑒𝑑(𝑡) − 𝑦ℎ

𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑(𝑡)|𝐷 = 1]∀𝑡 > 𝑇0 

or the average ATET as 

𝐴𝑇𝐸𝑇
______

(𝑡 > 𝑇0) = 𝐸[𝑦̄ℎ
𝑡𝑟𝑒𝑎𝑡𝑒𝑑(𝑡 > 𝑇0) − 𝑦̄ℎ

𝑢𝑛𝑡𝑟𝑒𝑡𝑒𝑑(𝑡 > 𝑇0)|𝐷 = 1]∀𝑡 > 𝑇0 
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Notice that, with panel TWFE model we increase the statistical power of DiD (under parallel 

average outcomes in pre-to post intervention periods) but the possible presence of serial correlation 

in treatment and outcome variables may be a problem (see section 9.2). 

7. More Than Two Periods with Heterogeneity 

Assume we have some groups of units and that time indicator > 2 and that the treatment is 

administered to a subset of groups in different moments during the sample period. If the treatment 

once introduced is maintained until the end of the period, we have a case of panel data DiD with 

staggered treatment (se Remark 5 above). We will always refer to Remark 5 as a case of “treatment 

irreversibility”. The following Table 5 provides an illustration of the staggered treatment design for 

the case of 6 units and 8 time periods with 2 never treated units, and 4 units that started to be treated 

in different moments . 

Table 5. Example of six units and eight years panel with heterogeneity of treatment (different treatment 

windows). 

YEARS 

UNITS 
2000 2001 2002 2003 2004 2005 2006 2007 

1 

2 

 

Never treated 

3 Not yet treated Treated 

4 Not yet treated Treated 

5 Not yet treated Treated 

6 Not yet treated Treated 

Notes. The table accounts for a treatment design where (i) the design is staggered, meaning that groups’ treatments 

change over time and can change at most once; (ii) the treatment is binary, as always assumed in this Review; 

and (iii) there is more than one variation in treatment timing: treated groups start receiving the treatment at 

different dates. 

When the treatment is introduced in different periods of time its impact changes (within treated 

units) over time, and we face a situation when average treatment effects vary over time and over 

cohort (i.e. each group of units whose treatment started in the same moment and lasted for the same 

time). Note that in Table 5 each unit from 3 to 6 is a specific cohort. In general, a cohort can be formed 

by a plurality of groups/units. If we had an extra unit (say, number 7) with a treatment starting in 

2005 (beginning) and ending in 2007 (end), that unit would form a cohort with unit 6. The plot of 

possible time paths before and after treatments is illustrated in the following Figure 4. 

With heterogeneity of treatment, ATET cannot be estimated by mere application of the TWFE 

method since the DiD estimate of the treatment effect depend on the choice of the evaluation window. 

In other words, when groups are treated at different points in time, the assumption about a constant 

ATET may be violated because the standard DiD estimator estimates an ATET that is common to all 

groups across time. When groups are treated at different points in time, the assumption about a 

constant ATET may be violated. Callaway (2022, p.3) discusses this issue and what are the possible 

effects of the “bad comparisons” resulting from using for comparison groups that were treated in 

previous periods. 

Different estimators can be employed to overcome the above difficulties. We concentrate of 4 

estimators (Callaway and Sant’Anna, 2021, Wooldridge, 2021): extended two-way fixed effects 

(TWFE), regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-

probability weighting (AIPW). However, some general assumptions are necessary. 

To estimate the staggered DiD we need the following identification assumptions that ensure the 

validity of staggered DiD estimation. 

1. Irreversibility of the treatment or Staggered treatment (This assumption posits that once units 

receive treatment, they remain treated throughout the observation period. 
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2. Parallel Trends Assumption with respect to Never-Treated Units: When we examine groups 

and periods where treatment isn’t applied (C=1), we assume the average potential outcomes for 

the group initially treated at time g. The group that never received treatment would have 

followed similar trends in all post-treatment periods t ≥ g. Then, if we have T = (1, …, S) and g = 

(2, …, S) with t ≥ g. However, this assumption relies on two important conditions: 

a. There must be a sufficiently large group of units that have never received treatment in our 

data. 

b. These never-treated units must be similar enough to the units that eventually receive 

treatment so that we can validly compare their outcomes. 

In situations where these conditions are not met, we can use an alternative parallel trends 

assumption that involves the not-yet treated units as valid comparison groups. 

3. Parallel Trends Assumption with respect to Not-Yet Treated Units: When we’re studying 

groups treated first at time g, we assume that we can use the units that are not-yet treated by 

time s (where s ≥ t) as valid comparison groups for the group initially treated at time g. 

Different estimation strategies have been proposed to estimate the ATET coefficient in the above 

cases. Surveys and discussion are, among others, in Callaway (2022), Callaway and Sant’Anna, (2021), 

de Chaisemartin and D’haultfœuille (2023) and in Roth, Sant’Anna, Bilinski, and Poe (2023). 

A problem common to any estimation strategy is the choice of the control units. When there is 

heterogeneity the control group can be defined in either way: a) one can use the units that are never 

treated; b) one can use the units not in cohort g and not yet treated by time t, where g is the year of 

the beginning of the treatment of the cohort. In the worked example of section 7.5, g can be 2011, 

2012, 2013 for the three cohorts. In this section we will consider a panel of G groups observed at T 

periods, respectively indexed by the d by the placeholders g and t, which can refer to any group or 

time period. T placeholders g and t, which can refer to any group or time period. 

In what follows we present four popular methods1 able to deal with the above issue, namely the 

extended TWFE method, the Regression Adjustment (RA) method, the Iterative Probability 

Weighting (IPW) method, and the Augmented Iterative Probability Weighting (AIPW) method. Some 

of them fit a model for the response/outcome variable of interest; others fit a model for the treatment 

or bot response and treatment. Also, Table 6 reported in the Appendix provides an example with 

data of 13 consumers/units/ID and 6 years. Treatment is staggered and irreversible until 2014. Data 

must be interpreted according to the summary provided in the Appendix. The Appendix contains 

the estimated results obtained by employing the above mentions techniques. 

Table 6. Example of staggered heterogeneous treatment. 

ID Year Consumption D1 D2 TRET 
First Year of 

Treatment 

1 2009 11 1 0 0 2011 

1 2010 12 1 0 0 2011 

1 2011 15 1 1 1 2011 

1 2012 14.8 1 1 1 2011 

 
1 Callaway (2022) discusses an ampler set of estimation strategies. According to Callaway (2022, 4) 

all of them explicitly make, in a first step, the same good comparisons that show up in the TWFE 

regression (i.e., the comparisons that use units that become treated relative to units that are not-yet-

treated) while explicitly avoiding the “bad comparisons” that show up in the TWFE regression (i.e., 

the comparisons that use already-treated units as the comparison group). Then, in a second step, they 

combine these underlying treatment effect parameters into target parameters of interest such as an 

overall average treatment effect on the treated. See Section Alternative Approaches in Callaway 

(2022, 20). 
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1 2013 15.8 1 1 1 2011 

1 2014 17 1 1 1 2011 

2 2009 8.6 1 0 0 2011 

2 2010 9 1 0 0 2011 

2 2011 17 1 1 1 2011 

2 2012 18 1 1 1 2011 

2 2013 18.8 1 1 1 2011 

2 2014 19.1 1 1 1 2011 

3 2009 12.5 1 0 0 2011 

3 2010 13 1 0 0 2011 

3 2011 19 1 1 1 2011 

3 2012 19.8 1 1 1 2011 

3 2013 21 1 1 1 2011 

3 2014 22 1 1 1 2011 

4 2009 13 1 0 0 2011 

4 2010 14 1 0 0 2011 

4 2011 18 1 1 1 2011 

4 2012 19.1 1 1 1 2011 

4 2013 22 1 1 1 2011 

4 2014 21.8 1 1 1 2011 

5 2009 14 1 0 0 2011 

5 2010 15 1 0 0 2011 

5 2011 22 1 1 1 2011 

5 2012 21.9 1 1 1 2011 

5 2013 22.2 1 1 1 2011 

5 2014 22 1 1 1 2011 

6 2009 12 0 0 0 Never treated 

6 2010 13 0 0 0 Never treated 

6 2011 13.5 0 1 0 Never treated 

6 2012 13.9 0 1 0 Never treated 

6 2013 14.2 0 1 0 Never treated 

6 2014 15.1 0 1 0 Never treated 

7 2009 13.7 0 0 0 Never treated 

7 2010 14 0 0 0 Never treated 

7 2011 14 0 1 0 Never treated 

7 2012 14.9 0 1 0 Never treated 

7 2013 15.1 0 1 0 Never treated 

7 2014 14.9 0 1 0 Never treated 

8 2009 12.7 0 0 0 Never treated 

8 2010 13 0 0 0 Never treated 

8 2011 15 0 1 0 Never treated 

8 2012 15.5 0 1 0 Never treated 

8 2013 16.1 0 1 0 Never treated 

8 2014 17.2 0 1 0 Never treated 

9 2009 14.9 0 0 0 Never treated 

9 2010 16 0 0 0 Never treated 

9 2011 15.5 0 1 0 Never treated 

9 2012 16 0 1 0 Never treated 

9 2013 16.7 0 1 0 Never treated 

9 2014 17 0 1 0 Never treated 

10 2009 14.7 0 0 0 Never treated 

10 2010 15 0 0 0 Never treated 

10 2011 14.4 0 1 0 Never treated 
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10 2012 15 0 1 0 Never treated 

10 2013 15.7 0 1 0 Never treated 

10 2014 16.1 0 1 0 Never treated 

11 2009 13.1 1 0 0 2012 

11 2010 14 1 0 0 2012 

11 2011 14.8 1 0 0 2012 

11 2012 16 1 1 1 2012 

11 2013 16.2 1 1 1 2012 

11 2014 15.5 1 1 1 2012 

12 2009 12.9 1 0 0 2012 

12 2010 13.3 1 0 0 2012 

12 2011 14.7 1 0 0 2012 

12 2012 16.1 1 1 1 2012 

12 2013 16.7 1 1 1 2012 

12 2014 18 1 1 1 2012 

13 2009 12 1 0 0 2013 

13 2010 12.8 1 0 0 2013 

13 2011 13 1 0 0 2013 

13 2012 13.9 1 0 0 2013 

13 2013 15.4 1 1 1 2013 

13 2014 16 1 1 1 2013 

Additional information for using data of Table 6 to estimate alternative versions of the staggered 

DiD models are provided below. 

Description of the variables of Table 6. 

▪ DEPENDENT VARIABLE: CONSUMPTION 

▪ COACTOR: INCOME 

▪ HETEROGENOUS TREATMENT: A Consumption Credit (for instance a policy measure that 

supports consumption (for instance a consumption local credit card with public warrant. 

DiD DUMMIES 

 

D1 = 0 if the consumer was never treated  

D1 = 1 if the consumer was treated, sooner or later 

D2 = 0 if the treatment did not exist in that year for that consumer 

D2 = 1 if the treatment exists in that year for that consumer  
 

ID CONSUMERS 

 

1 to 5 are Treated from 2011 

6 to 10 are Never Treated 

11 to 12 are Treated from 2012 

13 is Treated from 2013 to 2014 

  
 

TREATMENT TIMING  
 

From 2009 to 2010 No Treatment existed  

From 2011 to 2012 there was a treatment on individuals 1, 2, 3, 4, and 5 

In 2012 a Treatment was extended to individuals 11 and 12 

In 2013 a Treatment further extended to individuals of unit 13 
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UNITS AND COHORTS 

 

Cohorts Units and Observations 

 Never Treated Units 5 units 30 Observations 

First Cohort Units Treated from 2011 5 units 30 Observations 

Second Cohort Units Treated from 2012 2 units 12 Observations 

Third Cohort Units Treated from 2013 1 unit 6 Observations 

The units treated since 2011 form the first cohort, and so on. Once the treatment is introduced, 

each unit in the treated cohort remains treated until the end of the sample period. TWFE, RA and 

IPW estimations of ATET can be obtained by applying the methods presented in the text (section 7 

and following). 

Table 7. DiD Estimates using the staggered heterogeneous data reported in Table 6 (No Cofactors). 

          ATET (SE in parenthesis) 

Cohorts YEARS  TWFE RA IPW AIPW 
           

  2010   // .18 (.20) .18 (.20) .18 (.2) 

  2011  5,20*** (.99) 5.32*** (.93) 5.32*** (.93) 5.32*** (.93) 

2011 2012  5.22*** (1.1) 5.26*** (1.01) 5.26 *** (1.01) 5.26*** (1.01) 

  2013  6.0*** (1.06) 6*** (.97) 6*** (.97) 6*** (.97) 

  2014  5.92*** (1.03) 5.92*** (.96) 5.92*** (.96) 5.92*** (.96) 

             

  2010   // .05 (.24) .05 (.24) .05 (.24) 

  2011   // ,82 (.47) .82 (.47) .82 (.47) 

2012 2012  1.23** (.31) .72*** (.10) .72*** (.10) .72 *** (.10) 

  2013  1.17** (.44) .62* (.23) .62* (.23) .62* (.23) 

  2014  .97 (1.27) .42 (.94) .42 (.94) .42 (.94) 

             

  2010   // .2 (.16) .2 (.16) .2 (.16) 

  2011   // -0.08 -0.08 (.42) -0.08 (.42) 

2013 2012   // .32*** (.07) .32** (.08) .32** (.08) 

  2013  1.5*** (.22) 1*** (.09) 1*** (.09) 1*** (.09) 

  2014  1.35** (.43) 1.1 ** (.24) 1.1 ( (.25) 1.1 ( (.25) 
           

Overall 

ATET 
  4.32** (1.11) 4.22*** (1.003) 4.22*** (1.00) 4.22*** (1.00) 

           

Average 

ATET by 

years 

          

           

2011   5.2*** (.99) 5.32*** (.93) 5.32*** (.93) 5.32*** (.93) 

2012   4.08** (1.16) 3.96 ** (1.05) 3.96 ** (1.05) 3.96 ** (1.05) 

2013   4.2** (1.21) 4.03** (1.08) 4.03** (1.08) 4.03** (1.08) 

2014   4.11** (1.28) 3.94** (1.13) 3.94** (1.13) 3.94** (1.13) 

Notes. Notice that the absence of covariates RA, IPW, and AIPW generate the same ATET estimations for each 

cohort as well as the same Average ATET for 2011. The reader may replicate the exercise and include the Cofactor 

Income (included in the data set) and obtain different ATET/CATET estimates. 

7.1. The Extended TWFE Method (Wooldridge, 2021) 
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According to Wooldridge (2021) "there is nothing inherently wrong with using TWFE in 

situations such as staggered interventions". He proposed an extended TWFE estimator in DiD 

research design to account for block and staggered treatments based on his finding that the traditional 

TWFE estimator and a two-way Mundlak (TWM) estimator are equivalent. To show the equivalence, 

Wooldridge (2021) defines the two-way Mundlak regression as a regression of Yit on a constant term, 

Xit (independent variable of interest), 𝑇−1∑ 𝑋𝑖𝑡∀𝑡  (the unit-specific average over time), and 

𝑁−1∑ 𝑋𝑖𝑡
𝑁
𝑖=1  (the cross-sectional average). By Frisch-Waugh-Lovell theorem and some algebraic 

calculations, we can see the coefficient of Xit is the same as the one in the traditional TWFE regression 

discussed for the homogenous case in section 2. Moreover, adding time-invariant variables (Zit) and 

unit-invariant variables (Mt) does not change the coefficient of Xit. 

Based on the findings above, Wooldridge (2021) finds that an unbiased, consistent, and 

asymptotic efficient estimator for heterogeneous ATETs in DiD can be obtained by running a TWFE 

regression with an inclusion of interactions between treatment-time cohorts and time or, 

equivalently, by running a pooled OLS regression with an inclusion of panel-level averages of 

covariates. This estimator allows for heterogenous effects over time, over covariates, or over both. 

As an illustration we rewrite the traditional TWFE DiD regression of section 2 

𝑦ℎ𝑡 = 𝜃𝑡 + 𝜂ℎ + 𝛼𝐷ℎ𝑡 + 𝜐ℎ𝑡  

in the extended Wooldridge (2021)'s proposed model: 

𝑦ℎ𝑡 = 𝜂 +∑𝛼𝑔

𝑇

𝑔=𝑞

𝐺ℎ𝑡 +∑𝛾𝑠𝐹𝑠

𝑇

𝑠=𝑞

+∑∑𝛽𝑔𝑠𝐷ℎ𝑡𝐺ℎ𝑔𝐹𝑠

𝑇

𝑠=𝑞

𝑇

𝑔=𝑞

+ 𝜐ℎ𝑡  

where q denotes the first period the treatment occurs, Ghg is a group dummy, and Fs is a dummy 

indicating post-treatment period (Fs = 1 if t = s, where s ∈ [q, T]). 

In the post-estimation results obtained with Extended TEFE, only the ATT estimates (for each 

cohort) at the treatment time and for the periods thereafter are shown; this is because Wooldridge 

(2021) proves that including time dummies and their related interactions for periods prior to the 

earliest treatment period doesn't affect the coefficient estimates of interest. 

The extended TWFE estimator uses as control group the never treated group and has a big 

advantage: it can be obtained from a very basic regression (pooled OLS) so that most researchers can 

understand it easily. However, it also has a computational disadvantage (there are many interactions 

and therefor the computation of a great number of coefficient estimates is necessary). 

7.2. The Regression Adjusted Method (Callaway and Sant’Anna, 2021) 

To estimate the ATET for each cohort at each time, the RA, IPW, and AIPW estimators transform 

the estimation into a classical two groups and two periods difference-in-differences setup. Thus, these 

techniques restrict the data to an estimation sample with only two groups and only two periods based 

on the values of g and t. As for the two groups, one group includes all observations in cohort g; the 

other group includes untreated observations not in cohort g, (control group). For the two periods, 

one period is the data in time t; the other period is a period when cohort g is not treated (base-line 

time). 

The estimation procedures differ in the way control groups are identified. A possibility is to use 

the units that are never treated as the control group. An alternative is to use as the control group the 

units not in cohort g and not yet treated at time t. 

RA uses the data of the never treated control group to estimate the information about the effect 

of the treatment on the outcome/response variable of the treated groups. Therefore, we have as many 

benchmark (pre-treatment) years (i.e. g–1 periods) as there are years with a new treatment and as 

many benchmark/control groups as there are never treated groups. Ra computes ATET for each 

cohort and time starting from each t before the treatment (g–1) of each treated cohort. For 

implementation of Callaway and Sant’Anna (2021) models see the links reported at the end of section 

1. 
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7.3. The Inverse Probability Weighting Method, IPW, (Callaway and Sant’Anna, 2021) and the Augmented 

IPW (Callaway and Sant’Anna, 2021) 

The IPW estimates the probability that the observation in the benchmark group belongs to the 

treated group to estimate the untreated differences. IPW computes ATET for each cohort and time 

starting from each t before the treatment (g–1) of each treated cohort. Yet, IPW first builds a logistic 

regression model to estimate the probability of the exposure observed to the treatment for a particular 

unit/group and uses the predicted probability as a weight in the subsequent analyses. An extended 

discussion of the Inverse Probability Method is beyond the scope of this Review. For an introduction, 

the reader is referred to Chesnaye, Stel, Tripepi, Dekker, Fu, Zoccali, and Jager, 2022). For 

implementation of Callaway and Sant’Anna (2021) models see the links reported at the end of section 

1. 

The AIPW estimator combines the RA and IPW estimators. For implementation of Callaway and 

Sant’Anna (2021) models see the links reported at the end of Section 1. 

Estimates obtained using the above methods and the the data set of Table 6 of the Appendix are 

reported in the same Appendix with a more detailed description of the generation process. 

8. DiD with Complex Data Structure: Clustering and Spatial-Temporal 

Dependence 

Inference and estimation are closely linked. Once we estimate the causal estimand, we want to 

know how uncertain our estimate is and test hypotheses about it. In this section, we highlight some 

common challenges and proposed solutions for inference in Did. 

Whether the data arise from repeated measures or from repeated cross-sections, data used in 

diff-in-diff studies are usually not independently and identically distributed (iid). For example, we 

often have hierarchical data, in which individual observations are nested within larger units (e.g., 

individuals in a US state) or longitudinal data, in which repeated measures are obtained for units. In 

both of these cases, assuming iid data will result in standard errors that are too small. Also, as 

previously discussed in Section 1.1.1, when the assumption of reciprocal independence among the 

individuals under study is violated, the SUTVA assumption is dramatically violated as well, leading 

to identifiability issues with the actual treatment effect (Sun and Delgado, 2024). 

Recall that in equation (1) there were no co-factors and assume now that we have two subperiods 

(pre and post treatment). Since treatment is homogeneous (there is no staggered treatment), we may 

think that we face the panel data version of the 2 × 2 TWFE model analysed in section 3. However, 

things may not be so, and two new issues may emerge, that is, 

a. data showing a grouping or clustering structure 

b. data exhibiting complex dependence generated by spatial and temporal relationships. 

8.1. Clustering 

When data have a group structure, data are unlikely to be independent across observations. For 

example, if our data are the individual test scores of students belonging to different classes of 

different schools, students’ tests of pupils belonging to the same class tend to be correlated across 

each other simply because students are exposed to the same factors: same teachers, same textbooks, 

same school equipment, etc.). Likewise, individual consumption or work data within a regional zone 

in a country can be correlated because the consumers/workers in each zone share the same cultural 

tradition and work/consumption habits. If we call g the group (cluster) of the observations and 

assume that the treatment is administered to some groups in the homogenous form (see section 6), 

the above equation rewrites 

𝑦ℎ𝑔𝑡 = 𝛽0 + 𝛽1 × 𝐷1𝑡 + 𝛽2 × 𝐷2𝑔𝑡 + 𝛽3 × [𝐷1 × 𝐷2]𝑔𝑡 + 𝜀ℎ𝑔𝑡  

where h is the individual observation, g is the group (cluster) to which the observation belongs, an t 

is the time indicator. As one can see in the above equation, we have maintained the common intercept. 
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To emphasis the presence of group correlation, the equation ca be rewritten in terms of random effect 

model as follows 

𝑦ℎ𝑔𝑡 = 𝛾 + 𝛽1 × 𝐷1𝑡 + 𝛽2 × 𝐷2𝑔𝑡 + 𝛽3 × [𝐷1 × 𝐷2]𝑔𝑡 + 𝛿ℎ𝑔𝑡 

where yhgt is the h-th observation in the g-th group, 𝛾  is an unobserved overall mean (common 

intercept). The term 𝛿ℎ𝑔𝑡 = 𝛼𝑔 + 𝜀ℎ𝑔𝑡 is a random effect term given by the sum of an unobserved 

random effect shared by all individuals in group g but varying across groups (𝛼𝑔) and an unobserved 

and unstructured noise term uncorrelated in time and across both groups and individuals (εhgt). For 

the model to be identified, the αg, and εh,g,t are assumed to have expected value zero and to be 

uncorrelated among themselves and over time. 

If we postulate that the above-mentioned group correlation across individual data exists, the 

covariance of the error term of two observations drawn from observation in the same group (cluster) 

in each t is nor zero. Following Angrist et al (2009, p. 309) we may write with respect to the original 

model that the covariance is 

=   2 0 for all in each andh,g j,g e eE[e e ] h j g t 
 

where ρe is the intraclass correlation coefficient of the original error term (ICC). 

Then the question is how to define ICC. In the light of the random effect version of equation (1) 

the ICC writes 

𝜌𝑒 =
𝜎𝛼
2

𝜎𝛼
2 + 𝜎𝜀

2
> 0 

This ICC is always non-negative, allowing it to be interpreted as the proportion of total variance 

that exists "between groups." This ICC can be generalized to allow for covariate effects, in which 

case the ICC is interpreted as capturing the within-class similarity of the covariate-adjusted data 

values. Recall, that this expression can never be negative (unlike Fisher's original formula) and 

therefore, in samples from a population which has an ICC of 0, the ICCs in the samples will be higher 

than the ICC of the population.2 

8.2. Serial Correlation 

In the 2-year framework of DiD typical of the 2 × 2 model of section 1.2, serial correlation (i.e. 

the tendency of a variable and a lagged version of itself, for instance a variable at times t and at t – 1, 

to be correlated with one another over periods of time) is not a real problem. Yet DiD analysis if often 

performed using data which have a time dimension greater than two. Although the sample can still 

be divided into two “treatment periods” (D = 0 and D = 1) each period can be composed by more time 

observations (annual, quarterly, etc.) of the response variable and cofactors, if present. Therefore, the 

serial correlation problem cannot be ignored. Moreover, if we have panel a data structure, we also 

have individual effects to consider alongside time effects. 

Rewrite the above basic OLS equation in panel data form and use h for individuals, g for groups 

and t for time (say year). Recalling that the treatment is imposed at the group level we have (with no 

cofactors): 

𝑦ℎ𝑔𝑡 = 𝛽𝑔 + 𝜆𝑡 + 𝛿 × 𝐷𝑔𝑡 + 𝜀ℎ𝑔𝑡 

where: 

• yhgt is the status of the response variable of individual h in group g in time t; 

• βg is the time invariant group effect; 

• λt is the group invariant time effect; 

• 𝐷𝑔𝑡 = [𝐷1 × 𝐷2]𝑔𝑡 is the interaction dummy representing the treatment state in post-treatment 

period; 

 
2  A number of different ICC statistics have been proposed, not all of which estimate the same 

population parameter. There has been considerable debate about which ICC statistics are appropriate 

for a given use, since they may produce markedly different results for the same data 
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• εhgt reflects the idiosyncratic variation of the response variable across individuals, groups and 

time. 

If we assume that some of the components of εhgt are common to individuals in the same group 

and time (a tax imposed in some regions for some years; a regional business cycle prevailing in some 

areas; a pandemia affecting only some specific regional areas and lasting for some years; etc.), we 

may think of εhgt as the sum of two components. One is a group-year shock, νgt, and the other is an 

idiosyncratic individual component, ɳhgt such that the above estimand rewrites as 

𝑦ℎ𝑔𝑡 = 𝛽𝑔 + 𝜆𝑡 + 𝛿 × 𝐷𝑔𝑡 + 𝜈𝑔𝑡 + 𝜂ℎ𝑔𝑡 

Following Angrist and Pischke (2009, p. 317) we assume that 

𝐸[𝜈𝑔𝑡] = 𝐸[𝜂ℎ𝑔𝑡|𝑔, 𝑡] = 0 

Group and time specific random effects generate a clustering problem that affects statistical 

inference. In a 2 ×2 framework (two years and two groups) “we have no way to distinguish the 

difference-in-differences generated by a policy change from the difference-in-differences due to the 

fact that” the response variable in a group (the treated) is merely subject to some cyclical path when 

the other (control) is not. The common pre-treatment parallel trend assumption may fail. 

The solution suggested by Angrist and Pischke (2009, p. 317) is to increase the time and group 

dimension of the sample (more years and more groups). Actually, increasing the time dimension of 

the sample is a solution only if we are prepared to assume that νgt is not plagued by serial correlation, 

which is hard to maintain particularly with economic data: unemployment in one region (group) is 

most likely related with previous unemployment in that region (group). A suggested correction can 

be the clustering of standard errors by groups only, and not by groups and time (passing the 

clustering buck one level higher)3. Whether or not this solves the problem is still controversial because 

clustered standard errors are not robust to any sort of heteroskedasticity or serial correlation 

(personal view). 

Yet the great advantage of having many time periods (say, many years) is that the presence (and 

the order) of serial correlation for the response variable can be tested by employing a test for serial 

correlation with panel data. Indeed, the independent variable of interest in DiD estimation (e.g., the 

passage of a law in the very well-known Bertrand, Duflo and Mullainathan 2004 example) may itself 

be very serially correlated, which will exacerbate the bias in standard errors. I consider advisable to 

run various tests for serial correlation in fixed-effects panel data regression models particularly when 

there is a small number of time periods relative to groups/clusters. 

8.3. Spatial Dependence 

When the data are georeferenced (i.e., each individual is uniquely identified by a pair of 

coordinates) or are organized according to a geographical/spatial/lattice/areal structure (e.g., 

individuals belonging to administrative regions), the independence assumption may be violated 

due to the potential spill-over (or contagion) effect given by the spatial proximity (Elhorst, 2010). 

Spatial econometric models can easily deal with spatial interactions and spillover effects among units 

by extending the classical regression models to include spatial lagged terms. Spatial lags can be 

determined either by the neighbourhood or by the physical distance and can be applied to either the 

dependent variable, covariates or random effects. Under this spatial econometric setting, Qiu and 

Tong (2021) combines difference-in-difference estimator and spatial regression models into a two-

periods spatial DiD hedonic framework. The causal regression model is then specified as follows: 

𝑦ℎ𝑡 = 𝜌𝑊𝑦ℎ𝑡 + 𝛽1𝐷1𝑖𝑡 + 𝛽2𝐷2ℎ𝑡 + 𝛽3[𝐷1 × 𝐷2]ℎ𝑡 + 𝑢ℎ𝑡 

𝑢ℎ𝑡 = 𝜆𝑊𝑢ℎ𝑡 + 𝜀ℎ𝑡 

Where 𝑊  is a row-standardized 𝑛 × 𝑛  spatial weighting matrix containing information on the 

spatial relationship between observations, 𝜌 and 𝜆 are the spatial parameters which measure the 

strength of the spatial dependence in the dependent variable and error term, respectively. 𝑦 , 

 
3 A list of bias correction procedures is provided by Angrist and Pischke (2009, p. 320-2). 
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𝛽1, 𝛽2, 𝛽3 and 𝜀𝑖𝑡 are the usual regression terms previously introduced. While the interpretation of 

the marginal effects for continuous variable is the same as in the classical cross-sectional DiD 

model, the interpretation of marginal effects for treatment effects including the spillover 

treatment effects are different (see Section 2.3 of Qiu and Tong, 2021 for an analytical discussion on 

the new interpretations of the causal effects). In fact, individuals in the control group can also be 

affected by the treatment through treated units houses due to spatial and/or social interactions. 

Alternative specifications of the above spatial regression model can be found in Delgado and Florax 

(2015) and Sun and Delgado (2024). In particular, in the former the authors consider a local spatial 

DID model able to explicitly capture the effect on an individual that comes from the treatment of 

his/her neighbours; while in the latter, the authors expand the dynamic treatment DID estimator by 

Callaway and Sant’Anna (2021) to a spatial setting with spillovers among units. 

9. The Most Relevant Issues Discussed in This Review 

DiD is at the core of a recent revolution in empirical economics because it aims at “discovering” 

if a time contingent causal-effect relationship (post hoc, ergo propter hoc relationship) between a 

response variable and a treatment/event is statistically consistent with the data. Angrist and Pischke 

(2010) convincingly describe DiD as “probably the most widely applicable design-based estimator.” 

In this Review we have presented DiD as an appropriate method to estimate causal-effect relationship 

under some assumptions about the data generation process. However, DiD's efficiency rests on a 

broad set of assumptions about the data generation process and its underling statistical properties 

and practitioners should ponder that in many practical economic applications DiD might not 

represent a design-based credible estimation method given the likely lack of a truly randomized 

experimental design characterising many cases of actual DiD applications. Moreover, most of the 

problematic issues we discuss when we analyse DiD methods and applications in this Review are not 

DiD specific and for that reason they may even escape the attention of scholars. Generally, they are 

inherited from standard regression analysis, particularly when the data set take the form of a panel 

data structure with more than 2 periods (one pre-treatment time and one post treatment time) and 2 

units (one treated and one untreated unit). Moreover, since DiD has a regression representation, in 

many cases it cannot inherently provide more compelling evidence of a causal effect than regression 

analysis itself does (Kahn-Lang and Lang, 2020, p. 613). This means that one must always consider 

that the same regression issues of more traditional regression analysis can remerge in DiD applied 

studies. Among these issues, we have emphasised in the present Review those related to whether the 

model is properly specified and whether, conditional on the controls, the response variable of 

interest is orthogonal to the error term. In addition, we have stressed in various sections that specific 

problems characterise the application of numerous variants of DiD. 

Nonetheless, DiD can certainly contribute to overcome some identification difficulties of more 

traditional OLS-based methods (the exogeneity issue, for example) and this gain represents one of 

the strong advantages of DiD over other procedures. 

In what follows, as a way of informal warning we single out some of the specific problems that 

might affect applied DiD studies. 

• As in many causal inference procedures, DiD relies on strong assumptions that are difficult to 

test. The key assumption (parallel trends) is that the outcomes of the treated and comparison 

groups would have evolved similarly in the absence of treatment (the vis inertiae appearing in 

the title). Yet, even in simple 2 units and 3 periods case the optical (graphical) observation of 

similar trends in both groups prior to intervention is generally insufficient to establish the 

existence of post-treatment parallel trends. The issue become more complicated in the multi-

unit and multi-period cases and makes it questionable the use of untreated observations as the 

appropriate counterfactuals for the (non-existing) untreated observations of treated units in the 

treatment periods. The search for the existence of parallel trends might became a search for the 

Arabian Phoenix since it requires elaborated statistical tests. The simple graphical appearance of 

a commune time path of mean realizations in the pre-treatment period might be a misleading 
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suggestion of the perpetuation of a similar potential parallel trend path in the post treatment 

periods (when counterfactuals cannot be observed). 

• Therefore, without a true randomized experiment, tools like DiD do not broaden the range of 

“natural experiments” we can use to identify causal effects. 

• Even in the case of true randomization, SUTVA problems (so called spill-over effects across 

treated and untreated unites) might plague estimations and make it difficult to identify a DiD 

model that consistently estimate ATET (which requires unique potential outcome for each 

individual under each exposure condition). 

• Often the interpretation of the role of covariates in DiD estimates is difficult and, sometimes, 

even what a covariate is might be controversial. In fact, DiD does not require the treated and 

comparison groups to be balanced on covariates, unlike in cross-sectional OLS studies. Thus, a 

covariate that differs by treatment group and is associated with the outcome is not necessarily a 

confounder in DiD. Only covariates that differ by treatment group and are associated with 

outcome trends are confounders in DiD as these can be the ones that violate the identification 

assumptions. 

• Importantly, it can matter whether we believe the “correct” model is a linear probability model, 

probit or logit, since they assume different counterfactuals. Determining that two groups would 

have experienced parallel trends requires, first of all, a justification of the chosen functional 

forms for the adopted model. 

Finally, a possibly pleonastic comment might be the following: DiD does not help researchers to 

investigate why the original (pre-treatment period) levels of the response in treated and control 

groups differed (why was the unemployment rate in region A higher than in region B, before and 

independently upon the treatment?) or why the experimental design failed (no statistically 

significant differences in post treatment periods among treated and untreated units). DiD, as any 

other empirical techniques, should always be seen as an instrument ancillary to a sound and 

reasonable theoretical analysis of economic “reality”. 

10. Some Examples of DiD Applications 

We present a selection of DiD applications in which the authors study the behavioural responses 

of various outcome variables to events such as new taxation, energy prices, regulation reforms as the 

latter are introduced in various markets/sectors. The selection does not simply reflect the preferences 

of the authors of the present Review. It is also motivated by the methodological content of the quoted 

papers, particularly when the authors of the papers employ some variants of the basic DiD techniques 

reviewed in the Review. Therefore, the reading of the original papers is strongly recommended 

because it represent a necessary integration of the material present in this Review. Therefore, the 

readers should bear in mind that the following sections do not substitute a sound studying and 

understanding of the original papers (Dixit et salvavi animam meam). 

10.1. The Elasticity of Taxable Income (Feldstein, 1995) 

A long-standing problem of applied public economics/finance is: How do we estimate the total 

welfare loss associated with taxes, in particular with income taxes? Modern literature on taxes and 

labour supply discusses two main alternatives: 

4. The structural approach (closer to the “old” theoretical analysis of labour responses to income 

taxation) which separately account for each of the potential responses to taxation (intensive and 

extensive) and then aggregate. 

5. The DiD approach first proposed by Feldstein (1995) which aims at estimating the elasticity of 

taxable income with respect to the net-of-tax rate and claims that this elasticity is a sufficient 

statistic for calculating the possible deadweight loss of income taxation. 
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Feldstein’s 1995 paper is the starting point of a whole new literature4. He argued in favour of the 

idea that focusing on labour supply misses margins at which individuals might also respond to 

taxation. The latter may be a) the intensity of work (effort), training, occupation and career choices; 

b) the form and timing of compensation; c) tax avoidance and tax evasion. Then, Feldstein diverted 

the research’s attention from pure labour supply response to income taxation to the analysis of the 

effects of income taxation on the entire level of income as a tax base (the taxable income). Moreover, 

he argued that the elasticity of taxable income is a sufficient statistic for the empirical study of the 

effects of income taxes. 

To correctly identify the above elasticity, he employs a DiD method and used a Treasury 

Department panel of more than 4,000 taxpayers to estimate the sensitivity of taxable income to 

changes in tax rates on the basis of a comparison of the tax returns of the same individual taxpayers 

before and after the Reagan’s 1986 tax reform. Therefore, in Feldstein’s paper one will find neither 

the equivalent of equation (1) of section 1.1 nor the test statistics recommended for parallel trend, 

anticipation effects, etc. 

To describe the results of the paper we follow Feldstein and define 

• TI = the Taxable Income (defined as an aggregate measure of income from various sources) 

• τ = proportional income tax rate 

Then, TI depends on tax rate τ and the Net of Tax Income NTI is 

𝑁𝑇𝐼 = (1 − 𝜏)𝑇𝐼 

When the tax rate changes the taxable income may change as a result of some behavioural 

reaction of the taxpayer. A measure of the reaction is the elasticity of the taxable income. We can 

calculate the elasticity of taxable income with respect to the net-of-tax rate (1−𝜏) by differentiating 

totally TI 

𝑑𝑇𝐼 =
𝜕𝑇𝐼

𝜕(1 − 𝜏)
𝑑𝜏 

The above rewrites as 

𝑑𝑇𝐼 = [
𝜕𝑇𝐼

𝜕(1 − 𝜏)

(1 − 𝜏)

𝑇𝐼
]

⏟            
𝜂𝑇𝐼,(1−𝜏)

𝑇𝐼
𝑑𝜏

(1 − 𝜏)
 

Then, the problem is how to identify the elasticity of Taxable Income 𝜂𝑇𝐼,(1−𝜏) since (the 

conventional view apparently is) that the tax rate is endogenous to choice of income (reverse 

causality) whereas for empirical purposes we need exogenous variation in tax rates to identify the 

elasticity. This is where DiD somehow enters the analysis. 

Feldstein goal was to estimate causal effect of (net-of-tax rate on taxable income. To identify the 

elasticity of taxable income he used the variation in marginal tax rates (MTRs) through generated in 

the USA by the TRA1986 reform of President Reagan. Then, since change in MTRs differs between 

taxpayers according to tax brackets (see the plot below taken from Feldstein 1995’s quoted paper), 

 
4 In a later paper (Feldstein, 1999) he also argues that traditional analyses of the income tax greatly 

underestimate deadweight losses by ignoring its effect on forms of compensation and patterns of 

consumption. He calculated the full deadweight loss using the compensated elasticity of taxable 

income to changes in tax rates because leisure, excludable income, and deductible consumption are 

assumed (by Feldstein) to be a Hicksian composite good. According to his estimations a deadweight 

loss of as much as 30% of revenue or more than ten times Harberger's classic 1964 estimate. The 

relative deadweight loss caused by increasing existing tax rates is substantially greater and, according 

to Feldstein’s results, may exceed $2 per $1 of revenue. Some enormous measure, one should say! 
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to account for initial differences in taxable income he compares the change in taxable income in 

one income group (say A) to the change in taxable income in another income group (say B). using the 

DiD approach to estimate the ATET generated by the tax reform 

𝑦 = 𝛽0 + 𝛽1𝑃ost + 𝛽2Treatment + (Post ×Treatment) + 𝜀 

where Post is the dummy variable for the reform period (1 if after-reform and 0 pre-reform), 

Treatment is the dummy identifying the treated income group (Treatment = 1) and the untreated 

group (Treatment = 0), Post ×Treatment is the DiD variable given by the interaction between the above 

two, 

𝛿 is the coefficient of interest which measures ATET, and 𝜀 is the classical error term. 

Yet, y is not a measure of labour supply but a percentage change of the tax return i.e. the 

Adjusted Gross Income (AGI) before and after the reform for various subsets of taxpayers. According 

to Feldstein (1995, p. 555): 

The use of tax return data rather than of a household survey permits analysing the response of 

taxable income as a whole and not just of labour force participation and working hours. A panel, 

in which each individual is observed both before and after the change in tax rates, permits a 

"differences-in-differences" form of estimator that identifies the tax effect in a way that is not 

available with a single year's cross section. 

Indeed, 

   
   = = − − −
   
   

1986 1986 1986 1986Tax Reform

__ __ __ __

Post ,A Before ,A Post ,B Before ,Bˆ ATET TI TI TI TI

 
In the above equation the first difference controls for time invariant differences in the earnings 

potential of high-income and low-income groups, assumed to be A and B. Second difference controls 

for time effects that affect the two groups identically. The difference with respect to DiD of section 1 

is that there is no untreated control group in the model, but treatment and control groups differ in 

the intensity of treatment (poor taxpayers are a control for rich taxpayers, and vice versa)5. 

To satisfy the DiD identifying assumptions discussed in section 1, Feldstein had to assume that 

• The income growth rate is the same for all income earners (medium, high and highest tax 

brackets) absent the treatment (“parallel trend assumption”). 

• The taxpayers cannot adjust their income in 1985 (last year before reform) as to “choose” their 

change in tax rate through TRA1986 (“no selection into treatment” and no anticipation effect). 

 
5 The treatment incorporated in the Feldstein’s analysis was the 1986 US tax reform that lowered 

marginal tax rates, and simultaneously broadened tax bases. The two elements were designed to net 

out. Approximately no revenue and distributional effects absent behavioural responses means that 

approximately there are no income effects. Important as the aim is to estimate the compensated 

elasticity of taxable income. 
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• The comparison of taxpayers that vary in the intensity of treatment (instead of comparing taxed 

to untaxed taxpayers) is legitimate. Implicitly, he needs to assume that the elasticity of taxable 

income is constant in income, i.e., the same across all income groups. This last assumption will 

reappear in other papers. 

The main target of Feldstein’ paper was not the pure estimation of the ATET of the model but 

the use of the estimated coefficient to estimate the causal effect of (net-of) tax rate on taxable income. 

His general result is that the larger the increase in the net-of-tax rate (i.e., the decrease in marginal 

tax rate), the larger the increase in income declared for tax purposes. He reported the following 

elasticities (Feldstein, 1995 p. 565): 

 

Results show that: 

• Estimates of the elasticities are estimates high, ranging from 1 to 3. 

• The so-called Laffer rate i.e. the rate that maximises the tax revenue, changes with the elasticity 

and corresponds to 1/(1+𝜖) 

• The USA are on the wrong side of the Laffer curve (excessive levels of income tax rates)? 

We now consider how he employed DiD to compute the above elasticities. The difference in 

adjusted taxable income (ATI in column 2) is divided by the difference in net of tax rate (13.04) = 1.10. 

So on and so forth. However, more recent estimates at the layers state that these estimates are way 

too high. 

Feldstein’s analysis raises some questions. 

• No proper untreated control group is present in the study. Treatment and control groups differ 

in the intensity of treatment. 

• An equal elasticity of taxable income across the income distribution is assumed. Elasticity of 

taxable income is likely higher for high-income taxpayers (with more adjustment opportunities). 

• Small and unstratified sample: very few high-income taxpayers are included. 

• The presence of increasing earnings inequality in the US determined by for non-tax reasons 

should be considered. 

• Results may be affected by a regression-to-the-mean bias due to classification of treatment 

groups by pre-treatment income: Rich people in year t may tend to revert to the mean in year 

t+1. 

• Panel analysis introduces a downward bias in the estimated elasticity if marginal tax rate for 

rich people decreases. 

• It is unclear whether the common trend assumption really holds. Not even the simplest tests are 

conducted (parallel trends, anticipation effects, etc.). 

• Estimated elasticity overestimates welfare loss if behavioural response involves transfers 

between individuals. 
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• The study really provides some shaky indication about the effects of changes of MTR on the 

aggregate income tax yield, but it is silent about taxpayers behavioural reactions to income 

taxation in spite of the claim that “The Tax Reform Act of 1986 is a particularly useful natural 

experiment for studying the responsiveness of taxpayers to changes in marginal tax rates” 

(Feldstein, 1995 p. 552). The potential role that confounders (likely affected by the treatment) 

may play in this estimation is completely ignored. 

10.2. Top Income Taxation and the Migration Decisions of Rich Taxpayers (Kleven, Landais, and Saez, 2013) 

The paper reviewed in this section uses DiD to analyse possible income tax-induced migration 

across countries and tries to estimate the causal relationship between tax rates and migration. It uses 

a combination of graphical evidence and systematic multinominal regression (DiD with cofactors) 

and employs synthetic control6. 

Specifically, Kleven, Landais, and Saez (2013) analyse the effects of top tax rates on international 

migration of football players in 14 European countries since 1985. They also conduct country case 

studies and multinomial regressions and find evidence of strong mobility responses to tax rates, with 

an elasticity of the number of foreign (domestic) players to the net-of-tax rate around one (around 

0.15). The paper shows evidence of sorting effects (low taxes attract high- ability players who displace 

low-ability players) and displacement effects (low taxes on foreigners displace domestic players). 

Then, the research question is: How do tax rates impact “labour” mobility of professional 

football players in Europe once the 3-players limitations was abolished by the Bosman Ruling of 1995? 

Kleven, Landais, Saez (2013) claim that to conduct their study the average tax rate (ATR) is 

appropriate tax rate for location decision and that taxpayer considers overall tax burden of location 

decision (an extensive margin decision)7. 

The paper aims at estimating 2 key elasticities: 

𝜀𝑛𝑓 =
𝑑𝑝𝑛𝑓

𝑑(1 − 𝜏𝑛𝑓)

1 − 𝜏𝑛𝑓

𝑝𝑛𝑓
𝜀𝑛𝑑 =

𝑑𝑝𝑛𝑑
𝑑(1 − 𝜏𝑛𝑑)

1 − 𝜏𝑛𝑑
𝑝𝑛𝑑

 

where 

• pnd = total of domestic players in country 𝑛 

• pnf = total of foreign players in country 𝑛 

The two elasticities represent of the percentage variation of the number of foreign (domestic) 

players in country 𝑛 with respect to the variation of the net-of-tax rate on foreign (domestic) players 

in country 𝑛. 

 
6 This Review does not discuss synthetic controls. One should see Abadie et al (2015). A synthetic 

control can be constructed as a weighted average of several units combined to recreate the trajectory 

that the response variable of a treated unit would have followed in the absence of the treatment. 

7 This is in contrast with the view that the appropriate tax rate for decisions on the intensive margin 

is the marginal tax rate (MTR = tax rate on the last euro earned). In the paper ATR is not exact but 

approximated (for a subsample of football players). Since these taxpayers earn very high salaries, 

authors approximate the ATR by the top marginal tax rate (MTR). An alternative, and possible more 

reliable procedure is followed by Moretti and Wilson (2017). By focusing on the locational outcomes 

of star scientists, defined as scientists with patent counts in the top 5 percent of the distribution, their 

paper quantifies how sensitive is migration by these stars to changes in personal and business tax 

differentials across states in the USA. The study uncovers large, stable, and precisely estimated effects 

of personal and corporate taxes on star scientists' migration patterns. The long-run elasticity of 

mobility relative to taxes is 1.8 for personal income taxes, 1.9 for state corporate income tax, and -1.7 

for the investment tax credit. 
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The following Figure (Kleven, Landais, Saez, 2013, p. 1904) provides cross-country evidence on 

the relationship between the top earnings tax rate and in-migration of foreign players (panel A), out-

migration of domes- tic players (panel B), and club performance (panel C). Each panel consists of two 

graphs, with the pre-Bosman era (1985-1995) on the left and the post-Bosman era (1996-2008) on the 

right. In each panel, authors depict the best linear fit using a univariate regression (with no country 

weights). They estimate corresponding elasticities by regressing the log y-axis outcome on the log of 

the net-of-tax rate (again with no country weights). of those weights. For country specific tax reform 

case study, Kleven, Landais, and Saez (2013, 1907) present elasticity estimates a DiD comparison of 

the treatment country and the synthetic control country before and after the reform. 

 

In the pre-Bosman period, the fraction of foreigners is generally very low and there is no 

correlation between the fraction of foreigners and tax rates. After the Bosman ruling, the fraction of 

foreigners is much higher in every country (between 5 percent and 25 percent), and there is a 

significant negative correlation with top earnings tax rate. The implied elasticity of the fraction of 

foreigners with respect to the net-of-tax rate is zero pre-Bosman era, but very large at 1 .22 (0.45) in 

the post-Bosman era. Panel B of Figure 1 plots the average fraction of players of a given nationality 

playing in their home league against the average top earnings tax rate on domestic residents. In the 

pre-Bosman era, the fraction of players playing at home is very in all countries (between 90 percent 

and 100 percent across the entire sample). After the Bosman ruling, the fraction playing at home 

drops in almost all countries, and negative correlation with tax rates becomes much stronger. The 

implied elasticity of the fraction playing at home respect to the net-of-tax rate was modest pre-

Bosman at 0.09 (0.04) and much post-Bosman at 0.29. 

The elasticities are always for foreign players and are obtained from a 2SLS regression of (see 

Notes to Table 1 at page 1906 of the original paper) 

log(𝑃𝑐𝑡) = 𝑒 × log(1 − 𝜏𝑐𝑡) + 𝛽 × 𝐼(𝑐 = 𝑇) + 𝛾𝐼(𝑡 ≥ 𝑡0) + 𝜀 
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instrumented with I(c = T) × I(t > t0), where c is country (the treatment country is T i.e. a synthetic 

control) and P is the number of foreign players, τ is the Top Marginal Tax Rate, t is the year, and t0 is 

the year of the reform. 

Possible limitations are the following 

• In the graphical analysis, the elasticities of the Average Tax Rate are not presented for the pre-

Bosman period and the Danish case studies because of lack of individual earnings data before 

1996. Similarly, the average tax rate elasticity for Spain is based on the 1996-2003 versus 2004-

2008 comparison. It is therefore difficult to conduct a complete comparison study (not even 

graphical). 

• The sample used is limited to a very special category of privileged migrants (the well-paid 

football players whose behaviour is affected by several treatment-related confounding factors). 

Out of sample projections seems problematic. 

• Bosman ruling could have had differential impacts on low-tax and high-tax countries for nontax 

reasons. Tax rates may correlate with country size and thus league quality. Better leagues may 

have benefited more from Bosman ruling. 

• Football players contracts are generally signed in advance with respect of the year of the actual 

transfer and then anticipation effects of the Borman ruling might be present. 

• Other factors could have changed from the pre-Bosman to the post-Bosman era that impacted 

low-tax and high-tax countries differentially. 

10.3. Toxic Emission and the Environment (Zhou, Zhang, Song, and Wang, 2019; Dong, Li, Qin, Zhang, 

Chen, Zhao, and Wang, 2022) 

Emission trading (buying and selling permissions to pollute the environment by releasing CO2 

particles…) is supposed to be a market-driven mechanism able to reduce carbon intensity production 

processes. It has been widely used in western countries, and it has produced debatable results in 

terms of reduction of TONs of carbon emissions and emission price determination. In 2013 the 

Chinese government established pilot carbon emission trading programs in seven provinces. The 

papers discussed in this section conduct an empirical analysis, using a decomposition and DiD 

approach of the effects of the 2013 environmental policy. The main conclusions are as follows: (1) 

Overall, China's emission trading pilots have driven a significant decline in the carbon intensity, 

resulting in an average annual decline of approximately 0.026 tons/10,000 yuan in the pilot provinces. 

(2) In the sample period, emission trading pilots had a sustained and stable effect on carbon intensity 

with no time lag. (3) Emission trading pilots reduce the carbon intensity by adjusting the industrial 

structure. In contrast, energy structure and energy intensity channels have not yet been realized. 

Zhou, Zhang, Song, and Wang, (2019, 516) use a Propensity Score Matching (PSM) approach 

before the implementation of DiD to enhance the selection of the appropriate control group from the 

untreated provinces. According to the authors, this helped solve possible endogenous problems and 

ensure that the DiD estimation results were unbiased. 

After establishing the control group, the DiD approach was used by Zhou, Zhang, Song, and 

Wang, (2019, 517) to evaluate the overall effect of emission trading pilots on carbon intensity: 

𝐷𝑖𝑓_𝐶𝐼𝑖𝑡 = 𝛼0 + 𝛼1𝑌 + 𝛼2𝑅 + 𝛼3(𝑌 × 𝑅) + 𝛾𝑖 + 𝛾𝑡 + 𝑒𝑖𝑡  

Where i denotes provinces and t denotes years. Dif_CI denotes first-order differences in the carbon 

intensity (dependent variable); α is the coefficient of the independent variable with α3 corresponding 

to the ATET; γi and γt represent province-fixed and time-fixed effects, respectively; and e is the 

random error. Y correspond to years with the new regulation and R the regulated (pilot) 

provinces/units. 

In the following table (Table 3 in the original paper), column (1) reports the results of the fixed 

effect estimation based on matched data. The coefficient of the variable Y×R was significantly 

negative. This indicates that implementing the emission trading pilots resulted in an average annual 

decrease in the carbon intensity of 0.026 tons/10,000 yuan. In addition, column (2) reports the results 

based on panel data; the results are consistent with column (1), indicating robust estimation results. 
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Columns (3) and (4) show the DID estimation results using non-matched data. The pilots have no 

significant effect on the downward trend in carbon intensity. This may be because the control group, 

before matching, included provinces in the western regions. The western regions have experienced a 

rapid drop in carbon intensity, weakening the significance of pilot effects on reducing carbon 

intensity. Using the PSM approach to remove the unsuitable provinces from the control group can 

ensure the DID approach generates unbiased estimation results. They are reported below. 

 

Authors interpret their DiD results as an indication that the adoption of the emission trading 

reform has effectively reduces China's carbon intensity. 

Similar results are provided by Dong, Li, Qin, Zhang, Chen, Zhao, and Wang (2022, 12) who also 

estimate the effects of the infrastructure transformation and Greenhouse gas emission performance 

improvement. Their DiD results show that information infrastructure exerts significant emission 

reduction compression in cities with large size, advanced digital economy, and leading economic 

status, while its impact on Greenhouse gas emission performance drops in other cities. 

10.4. Regulation, Privatization, Management (Galiani, Gertler, and Schargrodsky, 2005; Gertler et al. 2016) 

Galiani, Gertler, and Schargrodsky (2005) and Gertler et al. (2016) study the impact of privatizing 

water services on child mortality in Argentina. Using a decade of mortality data and comparing areas 

with privatized (treatment) and non-privatized water companies (control), they observe similar pre-

reform (pre-1995) trends that support the parallel trends assumption of their DiD work (plot a of the 

figure reproduced below). 

 

The authors go on to find a statistically significant reduction in child mortality in areas with 

privatized water services. 

Panel (b) of the figure provides another example, with data on a health variable before (and 

after) the 2006 Massachusetts reform, as illustrated by Courtemanche and Zapata (2014). A more 

formal approach to provide support for the parallel trends assumption was followed by conducting 

a placebo regression, which apply the DiD method to the pre-reform data itself. There should then 

be no significant “treatment effect”. When running such placebo regressions, one option is to exclude 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.1089.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1089.v1
http://creativecommons.org/licenses/by/4.0/


 47 of 51 

 

all post-treatment observations and analyse the pre-reform periods only (if there is enough data 

available). 

A line of investigation similar to the one quoted above is provided by Schnabl (2012). He studies 

the effects of the 1998 Russian financial crisis on bank lending, uses two years of pre-crisis data for a 

placebo test whereas an alternative is to use all data and add to the regression specification interaction 

terms between each pre-treatment period and the treatment group indicator(s). The latter method is 

used by Courtemanche and Zapata (2014), studying the above Massachusetts health reform. A further 

robustness test of the DiD method is to add specific time trend-terms for the treatment and control 

groups, respectively, in equations like our equation (1) of section 1.1, and then check that the 

difference in trends is not significant (see, Wing et al., 2018, p. 459). A general review of the above 

papers is Fredriksson and Magalhães de Oliveira (2019). 

Author Contributions: Conceptualization, B. B. and P.M.; methodology, B. B. and P. M.; software, P.M.; 

investigation, B.B.; resources, B.B. and P.M.; writing—original draft preparation, B.B. and P.M.; writing—review 

and editing, B.B.; supervision, P.M. Both authors have read and agreed to the published version of the 

manuscript. 

Funding: This research work was partially funded by the University of Milan-Bicocca (FAR research funds). 

Data Availability Statement: All the data used in the examples are included in the Appendix of the paper. 

Acknowledgments: This research work was partially supported by the University of Milan-Bicocca. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this 

paper. The research was conducted independently, and no financial, personal, or professional relationships 

could be construed as influencing the findings or interpretations presented in this study. Additionally, there are 

no competing interests related to the funding, data collection, or analysis that could affect the integrity of the 

research. 

Appendix A An Example with an Easy Visualization of the Data Set 

Assume there are 3 randomly selected groups of consumers A, B, and C whose consumption is 

recorded from 2000 until 2006. For simplicity, each group is composed by 5 people. At the beginning 

of 2003 a treatment (a commodity tax reduction) is introduced by the local governments where A and 

B live, and it is maintained till 2006 included. Therefore, we are dealing with 2 period model: the first 

period/phase (3 years) without any treatment and the second period/phase (4 years) with the 

treatment affecting some unites. There are barriers that do not permit consumers C to move to locality 

with lower taxes. 

To conduct a simple DiD study, data should be arranged as shown in Table 2 reproduced in the 

Appendix. The first column shows Years; the second shows the response variable (the first pedis 

refers to the individual; the second to her/his group; the third to the year); the rest of the columns 

show the two dummies and their product. 

Table 2 is a basic example of data stuck in panel data form. Groups A and B received the 

treatment (tax reduction) all in the same year and group C was never treated. The other assumption 

implicit in Table 1 is that, once introduced, the treatment was permanent. Hence, in the example we 

have purposely avoided the complication represented by the differential treatment timing, where 

different units or groups affected by the treatment start or end their treatment at different times. A 

special case is when the treatment groups remain permanently affected by treatments that start in 

different periods. The case is called staggered treatment (different time of a permanent treatment 

introduction for different groups/units) and will be discussed later in section 7. The case of Table 2 

(same treatment periods for each treated units) is called treatment effect homogeneity. 
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