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Abstract: Biosensor technologies in medicine, as in many other areas, are replacing labor-intensive 

methods of monitoring human health. In this paper, the results of experimental studies of label-free 

sensors based on hollow-core microstructured optical waveguide (HC-MOW) for human blood 

serum analysis obtained. The HC-MOWs with a hollow core of 247,5 µm in diameter were 

manufactured and used in our work. These parameters make it possible to fill the hollow core with 

high-viscosity solutions due to the capillary properties of the fiber waveguide. Calculations of the 

spectral properties of HC-MOW fiber were carried out and experimentally confirmed. 21 blood 

serum samples from volunteers were examined using standard photometry (commercial kits) and an 

experimental biosensor. The obtained transmission spectra were processed by the principal 

component analysis method and conclusions were drawn about the possibility of using this biosensor 

in point-of-care medicine. A significant difference was shown between the blood serum of patients 

with normal and abnormal blood levels. Algorithms for spectra processing using the Origin program 

are presented. 

Keywords: hollow-core microstructured optical waveguides; HC-MOW; blood serum; biosensor; 

point-of-care diagnostics; principal component analysis 

 

1. Introduction 

Disease prevention is an important trend in the development of modern medicine. The life span 

of patients with some non-infectious diseases with high mortality can be significantly increased with 

timely diagnosis of these diseases and medical maintenance of the patient’s health. For instance, these 

are disorders such as various cardiovascular diseases, diabetes mellitus, kidney disease etc. [1-4]. 

For example, according to WHO, 17.9 million people die every year from cardiovascular diseases 

[5]. This number could be significantly reduced if pathological changes were detected as part of 

screening at any patient’s visit to a medical clinic. The reason for screening is that if the disease or its 

precursor is detected early (before symptoms appear), treatment can be started earlier, which in turn 

leads to a cure or improved quality of life or survival [6]. 

The physical, chemical, and biological properties of the blood are varied depending of the many 

factors, like sex, age, and also diseases. However, there are established standards for blood properties, 

difference from them indicates a disease [7, 8]. The most indicative for identifying pathological 

metabolic disorders during screening is the human blood serum. Devoid of formed elements and 

fibrinogen, this liquid component of blood contains many markers, reflects the state of health of the 
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body [9]. Along with the data of clinical laboratory and functional routine studies, hospitals are also 

widely using a clinical blood test to assess the condition of patients. There are a number of diseases 

that necessarily lead to changes in blood properties, often before the onset of symptoms. 

To identify deviations in blood parameters, various automatic and semi-automatic biochemical 

analyzers are used, as well as kits, based on methods such as affinity chromatography, photometry, 

colorimetry, turbidimetry, etc. These methods are labor-intensive, require qualified personnel, are 

not very accurate, have problems with sensitivity and specificity, are aimed at identifying only one 

analyzed parameter, and usually have an insufficiently accurate control system. In addition, the 

analysis for the desired parameter may not be carried out or being ignored [10]. 

Optical biosensors are modern analytical devices most of which employ light-guiding 

technologies as their transducer part. Microstructural and photonic-crystal waveguides with a hollow 

core make it possible to combine the methods of refractometry, spectroscopy and nephelometry [11, 

12]. 

Over the past 10 years, many articles devoted to the study of the properties of micro- and 

nanostructured glass fibers and the possibilities of their use for biomedical applications have been 

published [13]. Detection of such organic components of blood serum, like cholesterol [14], glucose 

[15], albumin [16], as well as identifying antibody/antigen interactions using microstructured glass 

fibers has been studied [17, 18]. For a comprehensive assessment of the state of the blood, it is 

necessary to study entire blood serum spectrum. 

The advantages of biosensors lie in their accuracy, speed and ease of use. Interest in these objects 

is also based on the possibility of introducing the studied materials into the internal channels of the 

fibers and thereby ensuring their interaction with the light propagating through the core along the 

entire length of the fiber [19]. The operating principle of the HC-MOW used in this study is based on 

the detection of shifts of the maxima and minima in the transmission spectrum of the HC-MOW and 

changes in their relative intensity, which are associated with changes in the refractive index and 

absorption coefficient of the bioanalyte and the presence of scattering particles in it [20]. Unlike 

conventional photometric systems, HC-MOW have greater sensitivity due to an increase in the 

optical path, which is formed due to multiple total internal reflection of the beam from the walls of 

the waveguide. The presence of 1-5 layers of capillaries surrounding the central hollow core ensures 

minimal signal loss on the way to the reading device, and an additional outer layer of capillaries 

ensures structural integrity during the drawing process. This design provides a higher sensitivity 

of the sensors compared to analogues and standard cuvettes [21]. 

Data obtained using HC - MOWs does not represent the result explicitly and requires 

mathematical and statistical processing. There are several methods for analyzing multidimensional 

data, differing from each other in the parameters of the input data and the nuances of the analysis 

performed. 

Principal factor analysis generates common factors that explain correlations between variables 

[22]. 

Correspondence analysis suitable for analyzing contingency tables (a large number of 

qualitative variables) [23]. 

Canonical correlation analysis - using for analyzing two blocks of variables and analyzing the 

correlation between them [24]. 

Redundancy analysis - predicts a linear combination of dependent variables from a combination 

of independent ones [25]. 

Independent component analysis another method of component analysis. It allows one to 

identify latent factors that explain observed data [26]. 

Principal component analysis is associated with a certain proportion of the total variance of the 

original data set. Dispersion, which is a measure of data variability, can reflect the level of their 

information content [27]. The principal component method has proven itself in many studies related 

to various spectroscopy methods as a method of “grouping data” according to various indicators. 

This statistical method was used specifically for processing spectral data in UV [28], in terahertz 
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spectrum [29] and in IR spectrum [30]. We considered this method the most suitable for processing 

our data. 

The goal of this study is to identify differences in the transmission spectra of blood serum of 

healthy volunteers and individuals with pathological blood parameters using specifically 

manufactured HC-MOWs and processing obtained data with Principal component analysis. 

Devices created on the base of the proposed biosensor could be used not only in medical 

laboratories, but also for point–of–care health monitoring in hospitals. They would make it possible 

to quickly and accurately determine the state of human health. 

2. Materials and Methods 

2.1. Blood Samples 

Investigated blood serum samples were taken from 21 female volunteers of 35 to 45 year old. 

Samples 1-11 of «healthy group» were taken from healthy women who were prepared to an in vitro 

fertilization (IVF) procedure and had no diagnosed cardiovascular diseases. Samples 12-21 of «sick 

group» were taken from recruited volunteers with a number of chronic diseases – patients of a 

cardiology clinic. To preserve anonymity, each sample was assigned a number. 

Venous whole blood samples were collected after 8–13 hours of fasting. Separated by standart 

protocol blood serum was examined using certified kits produced by ABRIS+, Ltd., Russia, for 

albumin, cholesterol, glucose, iron, magnesium etc. in accordance with the instructions for the kits. 

Optical density was registered on the wavelength 400-1000 nm using a Spectrophotometer Evolution 

One, Thermo FS, USA. To measure transmission spectra of blood serum in the HC-MOW, it was 

diluted 1:20 with saline solution and incubated at room temperature (22°C) for 15 minutes. The 

analysis requires no more than 30 µl of diluted serum. 

2.2. Optical Instrumentation 

HC-MOW were manufactured using stack-and-draw technique by SPE LLC «Nanostructured 

Glass Technology», Saratov, Russia. HC-MOW had one concentric circle of capillaries that surround 

a hollow core. Length of all samples was 6 cm, other parameters of the waveguide are on the picture 

(Figure 1). 

 

Figure 1. Cross-sectional photo of a one-row chirped HC-MOW. 

The scheme of the experimental setup is presented in Figure 2 
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Figure 2. Scheme of the experimental setup for studying the transmission spectra of blood serum: 1 - lamp 

Avalight-HAL-S-MINI2; 2,3/5,6– collimator and microobjective on adjusting platforms, 4 - HC-MOW integrated 

into the cuvette; 7 - spectrum analyzer AvaSpec-ULS4096CL-EVO; 8 - personal computer for data processing. 

The radiation from the halogen lamp Avalight-HAL-S-MINI 2, (“Avantes”, the Netherlands) (1) 

enters the collimator (2) through a fiber optical cable, the output end of which is fixed on the adjusting 

slide, then, the radiation enters the microobjective (3) used to focus radiation and create a focal spot 

of a small diameter HC-MOW placed in a special plastic cuvette (4). The radiation beam is introduced 

precisely into the hollow core of the waveguide and collected by the second microobjective (5) and 

enters the collimator (6) and fed to the AvaSpec-ULS4096CL-EVO spectrum analyzer (Avantes, 

Netherlands) (7), which is directly connected to a personal computer (8). 

2.3. Data processing 

Standard MS Office and Origin Pro 2021 were used for data processing, plotting and statistical 

analysis. 

The measured optical spectra were processed in two ways for spectral analysis and for Principal 

component analysis. 

Data processing for spectral analysis: 

1. For processing, a section of the transmission spectrum was selected in the wavelength range of 

350-1050 nm. 

2. The spectra were smoothed using a Savitzky–Golay filter (second order, window width 29). 

3. The spectra were normalized to the maximum value. 

Data processing for Principal component analysis: 

1. For processing, a section of the transmission spectrum was selected in the wavelength range of 

350 - 1050 nm. 

2. The spectra were smoothed using a Savitzky–Golay filter (second order, window width 29). 

3. All data of transmission spectra were divided to the corresponding integration times. 

4. Transmission spectra of HC-MOWs, filled with blood serum or solvent were divided by the 

spectrum of the lamp. 

5. All spectra were converted to optical density. 

6. The transmission spectrum of the solvent (saline) were subtracted from the transmission 

spectrum of the diluted serum. 

7. The spectra were Smoothed once again using a Savitzky–Golay filter (second order, window 

width - 29). 

8. Origin Pro 2021 function Principal component analysis (PCA) used to separate serum 

transmittance spectra into groups in the vectron view. 

3. Results 

3.1. Study of the Properties of the HC-MOW 

The structural shell of the HC-MOW is made of periodically stacked glass capillaries. The main 

geometric parameter that affects the spectral characteristics of the waveguide is the thickness of the 

capillary walls of the structural shell. The transmission spectrum of the HC-MOW contains, usually 

one or several maxima. The wavelengths of the maxima in the spectrum can be calculated using two 
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HC-MOW parameters: the thickness of the shell capillary walls and the refractive index of the 

material the waveguide was made [31]: 

 

where d is the wall thickness of the shell capillaries, µm; n1 is the refractive index of the medium 

filling the waveguide structure (in this case, air, i.e., n1 = 1); n2 is the refractive index of glass (1.473). 

In the middle between two maxima there is a spectral minimum. 

Тhe experimentally obtained average values of the minima and maxima of the transmission 

spectrum were compared with the theoretically calculated ones (Table 1). The measurements were 

carried out for all waveguides used in the experiment. Statistical processing of measurement data 

showed that the agreement of the calculated parameters with the experimentally obtained values of 

the wavelengths of the resonant-comb with the smallest standart deviation (SD) values was recorded 

in the middle part of the spectrum in the wavelength range 576 – 701 nm. Figure 3(а) shows the 

transmission spectrum of the empty HC-MOW and filled with water 3(b), saline solution 3(c), diluted 

serum 3(d). 

Table 1. Comparison of calculated and experimentally obtained maxima and minima of empty HC-MOWs. 

λmax, nm 

Calculated 

λmin, nm 

Calculated 

λmax, nm 

Experimental  

λmin, nm 

Experimental 

SD 

λmax 

SD 

λmin 

      

865 837 861 834 2,08 1,53 

811 786 809 784 1,04 1,4 

763 741 762 739 0,76 1,22 

721 701 721 699 1,73 1,1 

683 665 683 665 0,75 1,15 

648 633 648 631 0,64 1,13 

618 603 618 601 0,6 1,08 

589 576 590 575 1,26 0,7 

564 552 564 552 1,0 0,75 

540 529 541 531 0,5 1,15 

 

a) 

 

b)

 

𝜆𝑚𝑎𝑥 =
2𝑑

2𝑗 + 1
  𝑛2

2 − 𝑛1
2 , 
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c)

 

d)  

Figure 3. Transmission spectrum of the empty HC-MOW (RI 1,000293 )(a), filled with water (RI 1,333) (b), filled 

with saline (RI 1,3345) (c), filled with serum 14 (RI 1,3349) (d). 

3.2. Biochemical Analysis of Blood Serum 

At the first stage of the research, biochemical analysis of serum was performed using standard 

kits, as described in subsection 2.1. Table 2 presents the blood serum parameters of volunteers 

without deviation from norm, while Table 3 presents parameters for which at least one volunteer had 

an abnormal value (all abnormal values are highlighted in bold and gray for clarity). 

Table 2. The set of biochemical parameters of blood serum of all volunteers without deviations from norm. 

Serum № 

High density 

lipoproteins, 

mmol /l 

Triglycerides, 

mmol /l 

Albumin, 

g /l 

Magnesium, 

mmol/l 

Iron, 

µmol/l 

1 1,01±0,09 1,20±0,07 44,01±0,84 0,8±0,04 20,9±1,15 

2 1,35±0,1 0,96±0,03 49,22±0,76 0,79±0,03 16,1±1,01 

3 1,78±0,12 1,93±0,08 43,36±0,89 0,79±0,05 15,2±0,9 

4 1,54±0,08 1,32±0,04 42,02±0,9 0,79±0,05 15,8±1,19 

5 2,03±0,07 2,01±0,1 51,30±0,63 0,77±0,03 17,4±1,16 

6 1,85±0,03 1,37±0,02 41,26±0,59 0,79±0,04 19,1±1,50 

7 2,05±0,09 1,52±0,1 53,03±0,69 0,77±0,02 14,7±1,02 

8 1,12±0,10 1,43±0,07 41,02±0,74 0,78±0,01 15,2±1,30 

9 2,07±0,08 0,96±0,03 50,56±0,89 0,81±0,06 15,6±0,56 

10 1,07±0,04 1,15±0,04 46,23±0,6 0,78±0,02 20,7±0,63 

11 1,59±0,05 1,54±0,05 45,36±0,55 0,79±0,03 18,6±0,89 

12 1,11±0,03 1,98±0,03 43,95±0,45 0,90±0,03 8,91±1,16 

13 2,03±0,12 0,71±0,01 42,96±0,98 0,84±0,06 10,1±1,03 

14 1,28±0,09 1,23±0,02 40,46±0,66 0,86±0,08 11,7±0,64 

15 1,09±0,02 2,17±0,09 40,71±0,076 1,00±0,02 13,6±0,75 

16 1,18±0,03 1,73±0,03 42,69±0,58 0,83±0,09 5,74±0,56 

17 1,12±0,02 0,64±0,04 50,36±0,35 0,98±0,03 5,71±0,43 

18 1,52±0,05 1,27±0,02 48,21±0,45 0,84±0,04 15,21±0,95 

19 1,53±0,02 0,71±0,03 46,62±0,63 0,85±0,03 17,19±1,23 

20 2,01±0,15 0,58±0,05 42,43±0,79 0,84±0,02 12,21±1,34 

21 1,11±0,03 0,99±0,04 46,35±0,58 0,83±0,01 17,22±1,57 

Norm values 0,9-2,10 1-2,3 32-46 0,66-1,07 9,0-30,4 
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Table 3. The set of biochemical parameters of blood serum of all volunteers with deviations for 11 of 

volunteers. 

Seru

m № 

Glucose 

mmol/l 

Cholestero

l 

mmol/l 

Low 

density 

lipoprotein

s 

mmol /l 

Сreatinine 

µmol/l 

Alaninetransferas

e 

units/l 

 

Аspartate  

Transferas

e 

units/l 

Creatinekinas

e 

units/l 

1 2,81±0,19 4,74±0,18 0,91±0,09 57,30±0,96 18,02±0,73 20,31±1,24 33,36±1,98 

2 3,63±0,20 5,00±0,20 1,37±0,12 68,20±0,88 10,31±0,56 12,54±0,91 53,72±2,35 

3 2,82±0,17 4,16±0,15 1,92±0,13 
112,32±1,2

3 
35,26±1,21 30,43±1,25 63,39±2,14 

4 3,43±0,25 5,88±0,19 1,78±0,18 78,82±0,92 32,49±1,46 31,54±2,13 67,52±3,25 

5 3,62±0,18 4,57±0,17 2,79±0,21 89,02±0,12 29,13±1,25 25,82±2,26 106,36±3,71 

6 3,16±0,17 5,63±0,16 2,63±0,23 95,52±0,45 15,42±1,49 17,29±1,12 152,24±2,23 

7 2,94±0,19 4,94±0,15 2,01±0,19 
117,43±1,2

6 
23,28±1,73 23,53±1,93 37,21±0,24 

8 2,99±0,21 4,71±0,18 1,99±0,20 47,57±1,58 37,32±4,79 39,62±1,52 63,82±1,24 

9 3,23±0,22 4,82±0,19 1,34±0,12 55,73±1,52 23,41±1,22 21,74±1,41 76,28±1,29 

10 2,61±0,24 5,58±0,20 1,78±0,16 
115,02±2,3

1 
39,62±1,58 35,28±1,23 54,34±1,42 

11 2,82±0,15 4,14±0,16 3,25±0,18 44,89±1,25 30,28±1,48 32,17±1,52 78,15±2,29 

12 
10,91±0,4

3 
4,12±0,15 2,84±0,16 122,2±1,21 18,53±1,34 18,38±1,13 100,43±2,41 

13 4,93±0,32 4,00±0,34 1,56±0,15 76,72±0,88 46,15±2,46 51,29±2,41 95,34±1,69 

14 3,75±0,19 4,78±0,28 2,59±0,17 112,13±0,96 23,43±1,48 35,45±2,19 84,51±1,98 

15 6,83±0,21 4,61±0,25 2,86±0,18 94,92±0,87 39,93±1,26 36,97±1,49 300,01±2,75 

16 
12,51±0,3

5 
3,82±0,23 1,80±0,9 142,21±0,65 18,74±1,42 15,68±0,81 125,23±2,15 

17 5,53±0,19 5,65±0,23 3,45±0,23 90,24±1,56 19,19±1,52 20,62±0,96 77,26±1,72 

18 6,42±0,23 6,04±0,31 3,97±0,25 113,41±2,31 45,26±2,46 75,35±2,65 254,19±2,47 

19 4,55±0,16 5,53±0,22 3,65±0,31 86,32±1,13 17,52±1,34 11,92±0,49 89,45±2,56 

20 5,57±0,24 4,94±0,28 2,68±0,32 97,49±1,54 21,39±1,57 16,42±0,95 136,26±3,12 

21 5,82±0,32 5,99±0,24 3,94±0,36 112,25±2,21 20,19±1,96 23,35±2,15 160,17±2,49 

Norm 

values 
3,9-6,1  3,3-5,0  <3.5 44-124 5-40  5-40  26 – 174 

Thus, conditionally healthy women had slight excesses of cholesterol levels within the range of 

0.88, the rest of the studied parameters were normal. Among the group of patients, only samples 14 

and 20 showed no deviations of the studied parameters. However, these patients cannot be 

considered healthy, because they received compensatory treatment in accordance with their disease. 

3.3. Spectral Analysis of Human Serum 

Figure 4 a and b shows the transmission spectra of blood serum samples from volunteers in a 

waveguide and in the photometric cell. It is impossible to explicitly divide the samples to healthy and 

sick groups based on the spectra in the photometric cuvette. However, the transmission spectra of 

the sera in the waveguide are clearly divided into two groups, which corresponds to their actual 

division into «healthy» and «sick». 
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a)  

b)  

Figure 4. Investigation of diluted blood serum in the visible range of the spectrum a) In HC- MOW; b) 

photometry in cuvette. 

As noted earlier, the position of transmission peaks, their absolute intensity, and the intensity of 

individual peaks relative to neighboring peaks are determined by the optical parameters of the 

medium filling the waveguides. Blood serum is a complex multicomponent medium. The influence 

of blood serum components on its transmission spectrum varies over the entire wavelength range. 

For example, there is almost no absorption in the wavelength range from 600 nm to 800 nm (optical 

density spectra for samples in the cell are shown in Figure 5). One of the transmission maxima is 

located in this wavelength range. Figure 6 shows the values of the position of this transmission peak 

and the refractive index of the samples. 
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Figure 5. Optical density of the samples, measured in cuvette. 

 

Figure 6. The position of the transmission maximum and corresponding refractive index.  - Refractive index 

for «healthy» volunteers. █ - Transmission maximum for «healthy» volunteers.  - Refractive index for «sick» 

volunteers. ▲ - Transmission maximum for «sick» volunteers. 

The blood serum is characterized by the presence of absorption bands in the wavelength up to 

600 nm. Potentially this is associated with the presence of residual hemoglobin. Its various forms 

have a high absorption capacity at many wavelengths (oxyhemoglobin 415, 542 and 577, 

deoxyhemoglobin 431 and 556 nm, glycated hemoglobin 545 and 579 nm, methemoglobin 500 nm 

[32]. However, there are no explicit transmission minima in the spectra in the cuvette at the 

corresponding wavelengths, because of the low concentration of blood and the short length of the 

interaction path between radiation and the solution. The design features of the waveguides provide 

a significant increase in the length of the radiation-substance interaction path (due to the larger actual 

size compared to the thickness of the cuvette and the multiple re-reflection of radiation in the core), 
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as a result, the influence of absorbing substances on the transmission spectrum in the waveguide is 

enhanced, as can be seen from the transmission spectra in Figure 4a. The radiation intensity at the 

corresponding wavelengths for the samples is shown in Figure 7. The presented data demonstrate a 

significant difference in the degree of absorption at these wavelengths for groups of «healthy» and 

«sick» volunteers. 

 

Figure 7. Intensity of four maxima in the transmission spectra of waveguides filled with the diluted blood 

serum. 

3.3. Principal Component Analysis 

For creation the initial data set for applying the principal component method, we selected the 

region of interest in the spectrum where we intend to look for the difference in the measured blood 

serum samples. 

The transmission spectra of blood serum samples are presented in Figure 4a. 

Next, the processing described in the subsection 2.3 of Materials and Methods was carried out; 

it was required to reduce noise and remove external factors that influence the spectrum (Figure 8). 

 

Figure 8. Transmission spectra of blood serum after conversion. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 March 2025 doi:10.20944/preprints202503.0324.v1

https://doi.org/10.20944/preprints202503.0324.v1


 11 of 18 

 

For clarity, the transmission spectra of the samples with normal blood serum properties 

(“healthy group”) and with some deviations (“sick group”) were averaged separately. Figure 9 shows 

the differences in the intensities of these averaged transmission spectra. 

 

Figure 9. The average transmission spectra of blood serum sample taken from volunteers of “healthy group” 

(black) and “sick group” (red). 

Figure 10 shows that the principal component method has found significant differences between 

the samples between the first three components (eigenvectors). 

 

Figure 10. Explained variance of the data matrix from the number of principal components for blood serum 

samples. 

From the fourth principal component onwards, the presence of meaningful information seems 

unlikely. Therefore, significant information in a spectral data matrix of dimensions 21*2099 can be 

described by a maximum of three components, where in the matrix, 21 is the number of samples, 

2099 is the number of features (intensities at wavelengths). The Figure 11 (a, b, c) shows graphs of 

scores in a two-dimensional space of 3 principal components. 
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(a) 

 
(b) 

 
(c) 

Figure 11. Graph of counts of blood serum samples in the space of the first and second principal components 

(a), space of the second and third principal components (b), and space of the first and third principal components 

(c). 

In Figure 11a and 11b, samples division into two clusters is observed clearly. The numbers of 

samples in each cluster are presented in Table 4. 

Table 4. Separation of samples into clusters after using the PCA method. 

Cluster # Sample # 

1 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11 

  

2 13, 14, 15, 17, 18, 19, 20 
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Dropped samples 12, 16, 21 

4. Discussion 

Some diseases, such as cancer, cardiovascular, etc., lead to changes in the composition of blood 

serum, which is reflected in the parameters of light scattering. The study of diluted samples of blood 

serum and plasma, as well as their models, led to the development of diagnostic methods of 

oncological, cardiovascular and other diseases [33, 34. Сharacteristics of particle Studies(size, 

molecular weight, concentration, etc.) in human biological fluids using light scattering methods are 

in great interest, because the results have practical importance for medicine [35]. 

Being inside a microstructured hollow-core waveguide, the diluted serum affects the wave comb 

of the waveguide and changes its configuration. [36, 37, 11]. Experiments with whole and diluted 

serums have proven that dilution of blood serum does not affect the determination of the 

concentrations of substances in these solutions, since all parameters of the particle content in serums 

change proportionally. [35]. HC-MOWs, due to their structure, provide multiple reflections and a 

long path length for the interaction of radiation with the analyte with a minimum volume, which 

makes it possible to record even the slightest fluctuations in the transmission spectrum of blood 

serum depending on changes in the component composition of the solution.[11, 12]. The use of a non-

coherent radiation source makes it possible to work in a wide range of wavelengths and obtain 

multispectral data with each measurement. Absorption has little effect on the measurement of the 

spectrum in the investigated system, and two parameters play a major role in the formation of the 

serum spectrum: the refractive index and scattering of the medium [36]. 

Blood serum contains particles of various nature, size and shape. These are glucose, low-density 

lipoproteins, high-density lipoproteins, triglycerides, albumin (has different sizes, since it is a carrier 

protein and can change depending on the molecules attached to it), cholesterol. According to the 

literature, the sizes of scattering particles in blood serum are divided into the following ranges: I – 1-

10 nm, which corresponds to low-molecular albumin monomers and free glycolipid complexes; II – 

11-30 nm – globulins and lipoprotein complexes with low molecular weight; III – 31-70 nm – 

fibrinogen and its complexes, as well as low-molecular immune complexes; IV – 71-150 nm – 

medium-molecular immune complexes; V – greater than 150 nm – high-molecular immune 

complexes arising as a result of activation of allergic or autoimmune processes. Fibrin aggregates 

(~125 nm) may also be present in blood serum. [34]. The largest particles are chylomicrons (70–1000 

nm), which are potentially responsible for sample turbidity and can be visually detected if the 

triglyceride concentration exceeds 3.4 mmol/L. [38, 39]. Turbidity and lipemia can be explained by 

the presence of lipid particles that scatter light and lead to obvious absorption in a wide range of 

UV/visible spectrum (from 400 nm to 800+ nm). The color of the serum is due to residual bilirubin 

(icterus) and hemoglobin. These components provide absorption in the range of 415 - 579 nm and 

due to their proximity the peaks of hemoglobin and bilirubin partially overlap with each other. 

Enzymes are present in the blood in insignificant quantities compared to other components, and 

metal ions are too small to influence the transmission spectra in this system. [40, 36]. 

Previous studies have shown that the glucose content in solutions studied using MOWs shifts 

the waveguide comb to the left towards shorter wavelengths, since glucose has a higher refractive 

index than other components [41]. The study of liquids with different refractive indices in 

waveguides, carried out in this work, shows that with an increase in the refractive index of the liquid, 

the waveguide comb shifts towards shorter wavelengths. This is also consistent with the data of the 

article obtained using a waveguide with a smaller hollow core diameter, but with similar waveguide 

properties, where the authors compared the comb spectra obtained as a result of filling the 

waveguides with water and ethanol of different concentrations, that is, the principle of the comb shift 

is preserved depending on the refractive index, and regardless of the class of the dissolved substance 

[19]. 

Thus, much is known from previous studies about the behavior patterns of solutions of different 

compositions when introduced into the HC-MOW structure, but the data on the absorption maxima 
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are not applicable when we work with microstructured waveguides filled with such a complex 

solution as blood serum. When comparing the transmission spectra obtained using microstructured 

waveguides and the transmission spectra data in a photometric cuvette, as well as when comparing 

with refractometry data, no obvious differences were found between “sick” and “healthy”, so 

additional statistical processing and visual presentation of the results were required. 

At this stage of the research, we came to the conclusion that the assessment of the state of blood 

serum can be carried out only by the transmission spectrum of the serum as a whole, without taking 

into account individual peaks. In this case, as an additional tool, it is necessary to use computer 

programs and methods that allow analyzing multiparametric systems. PCA has successfully proven 

itself as such a tool. 

PCA is one of the main ways to reduce the dimensionality of data while losing the least amount 

of information. The main task of the principal component method is to replace the original data with 

certain aggregated values in a new space, while solving two problems - the first of which is to 

combine the most important (from the point of view of minimizing the mean square error) values 

into a smaller number of parameters, but more informative (reducing the dimension of the data 

space), and the second is to reduce noise in the data [42]. PCA is based on transforming the original 

variables into new variables called principal components. PCA allows to transform correlated 

variables into a smaller number of uncorrelated variables, which explain the largest share of variance 

in the original data. 

PCA works by identifying the direction in a multidimensional data space that has the greatest 

variance. This direction is called the first principal component. Then the second direction with the 

greatest dispersion, but which is orthogonal to the first principal component, is found - this is the 

second principal component. The process continues until all the main components are identified. In 

our investigation there are 3 main components. 

The application of the principal component method helped to distribute the serum samples into 

“sick” and “healthy”, but we got several outliers. For example, samples 12, 16 and 21 stand apart 

from the groups. Analyzing the data obtained, it can be noted that samples 12 and 16, falling out of 

the clusters when using the PCA, combined overestimated glucose and creatinine values. 122.2 

µmol/l for sample 12 is an indicator at the upper limit of the norm, and 142 µmol/l for sample 16 is 

18 µmol/l higher than the norm, which is a significant excess. In addition, both of these volunteers 

had almost twofold increase of glucose level in their blood. 

Sample 21 had normal glucose level however, the level of creatinine was also quite high and 

reached the upper limit of the norm. Also, in sample 21, cholesterol is slightly exceeded, which, as 

for the “healthy” samples 4, 6, 10, did not affect the location of the point on the diagram. However, 

sample 21 has an excess of the value for the parameter low density lipoproteins, these are large 

molecules that have a significant effect on the spectrum, which obviously affected its loss from the 

general mass. Also, it is possible that the list of biochemical parameters we monitored did not include 

the one that affected such a sample location on the diagram, which indicates broader capabilities of 

this express diagnostic method than a biochemical study, which may not take into account some 

blood parameters. Despite the fact that we did not study all known biochemical parameters, and for 

some samples (14 and 20) we cannot reliably explain the reason why they were classified as “sick”, 

we initially selected patients of the cardiology clinic with a history of deviation in the cardiovascular 

system and blood parameters may have normal values due to the drug treatment. This can explain 

their distribution using the principal component method to the “sick” group.Thus, using the PCA 

method, cluster analysis of HC-MOW spectra of blood serum samples made it possible to divide 

volunteers into “sick” and “healthy” with 100% accuracy. The analysis showed that some blood 

parameters, such as creatinine and glucose, have a greater impact on the blood serum spectrum, than 

others. 

Likewise, the study of blood sera using HC-MOWs with a hollow core requires additional 

research and collection of statistical data, but today we can recognize the fact that the system 

accurately determines even minor deviations of indicators between volunteers and from the norm. 
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5. Conclusions 

Interesting data of the relationship of the optical properties of a liquid medium (diluted blood 

serum) and health of volunteers were obtained. It has been experimentally established that data of 

transmission spectra, received in HC-MOWs, and then processed with Principal Component 

Analysis makes it possible to determine deviations in the parameters of blood serum of volunteers. 

Applied approach opens up the prospect of creating an easy-to-use and accurate label-free 

sensor for identifying abnormalities in human health, which can be used in mass screening of the 

population for certain diseases. The method does not require special reagents, complex equipment 

or highly qualified personnel. One analysis takes no more than 3 minutes. 

The use of artificial intelligence to analyze transmission spectra and its training will make it 

possible to identify even minor changes in blood parameters and compare them over time to 

accurately determine changes in the composition of the blood.Collection of databases of patients and 

blood spectra will make it possible to track global changes in the health of the population caused, 

caused, for example, by environmental changes or in the context of global pandemics. This approach 

can also be applied to global planning of healthcare and pharmaceutical company strategies. 
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