Pre prints.org

Article Not peer-reviewed version

Towards Improving YARN performance
for Frugal Heterogeneous SBC-based
Edge Clusters

Basit Qureshi "
Posted Date: 3 May 2024
doi: 10.20944/preprints202404.0154.v2

Keywords: frugal hadoop clusters; dynamic analytical hierarchy process; locality aware data placement;
single board computers

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/564178

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2024 d0i:10.20944/preprints202404.0154.v2

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Towards Improving YARN Performance for Frugal

Heterogeneous SBC-Based Edge Clusters
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Prince Sultan University, Riyadh 11586, Saudi Arabia; qureshi@psu.edu.sa

Abstract: Efficient resource allocation is crucial in clusters with frugal Single-Board Computers (SBCs)
possessing limited computational resources. These clusters are increasingly being deployed in edge computing
environments in resource-constrained settings where energy efficiency and cost-effectiveness are paramount.
A major challenge in Hadoop YARN scheduling is load-balancing, as frugal nodes within the cluster can
become overwhelmed, resulting in degraded performance and frequent occurrences of out-of-memory errors,
ultimately leading to job failures. In this study, we introduce an Adaptive Multi-criteria Selection for Efficient
Resource Allocation (AMS-ERA) in Frugal Heterogeneous Hadoop Clusters. Our criterion considers CPU,
memory and disk requirements for jobs and aligns the requirements with available resources in the cluster for
optimal resource allocation. To validate our approach, we deploy a heterogeneous SBC-based cluster consisting
of 11 SBC nodes and conduct several experiments to evaluate the performance using Hadoop wordcount and
terasort benchmark for various workload settings. The results are compared to the Hadoop-Fair, FOG and
IDaPS scheduling strategies. Our results demonstrate a significant improvement in performance with the
proposed AMS-ERA, reducing execution time by 27.2%, 17.4% and 7.6% respectively using terasort and
wordcount benchmarks.

Keywords: frugal hadoop clusters; dynamic analytical hierarchy process; locality aware data
placement; single board computers

1. Introduction

Frugal computing refers to the practice of designing, building, and deploying computing
systems with a focus on cost-effectiveness, resource efficiency, and sustainability. The term “frugal”
implies simplicity, economy, and minimalism, where the goal is to meet computing needs with the
least number of resources, both in terms of hardware and energy [1]. Frugal clusters are an innovative
solution that intersects sustainability and digital transformation [2]. By leveraging energy-efficient
hardware components like Single-Board Computers (SBCs) [3], these clusters reduce energy
consumption, aligning with sustainability goals and minimizing environmental impact [4] thus
aligning with broader sustainability goals. Moreover, their cost-efficient nature makes them
accessible to organizations with limited budgets, democratizing access to big data processing
capabilities and fostering inclusivity in digital transformation initiatives [5]. Frugal clusters prioritize
resource optimization through adaptive resource allocation and workload-aware scheduling,
ensuring efficient resource utilization and maximizing performance.

Hadoop an open-source framework, facilitates the distributed processing of large datasets across
computer clusters using simple programming models. A key distinction of Hadoop is its integration
of both storage and computation within the same framework. Unlike traditional methods, Hadoop
allows for flexible movement of computation primarily MapReduce jobs, to the location of the data,
managed by Hadoop Distributed File System (HDFS). Consequently, efficient data placement within
compute nodes becomes essential for effective Big Data processing [6]. Hadoop’s default approach
to data locality relies heavily on the physical proximity of data to computation nodes, which may not
always guarantee optimal performance. However, this feature overlooks other important factors such
as network congestion, node availability, and load balancing, which can significantly impact data
access latency and overall job execution time [7]. Additionally, Hadoop’s default data locality
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mechanism does not take into account the heterogeneity of cluster nodes, including variations in
processing power, memory capacity, and disk I/O capabilities [8,9]. As a result, tasks may be assigned
tonodes that are ill-suited for processing them efficiently, leading to resource contention and reduced
performance. Furthermore, the default data locality mechanism may not dynamically adapt to
changing cluster conditions or workload patterns, resulting in suboptimal resource utilization and
wasted computational resources.

In recent times, researchers have addressed the optimal resource allocation for scheduling issues
in heterogeneous Hadoop clusters. Z. Guo and G. Fox. [10] introduced techniques like speculative
execution to mitigate the impact of slow nodes, optimizing resource utilization and job completion
times. The study emphasizes the importance of efficient resource management and scheduling
algorithms to improve overall performance in environments with varying computational capabilities.
Bae in [11], notes that in heterogeneous environments, Hadoop’s subpar performance was observed
due to equal block allocation across nodes in the cluster. They proposed a new data-placement
scheme aimed at improving Hadoop’s data locality while minimizing replicated data by selecting
and replicating only blocks with the highest likelihood of remote access. Bawankule K. in [12],
presents a historical data-based data placement (HDBDP) policy to balance the workload among
heterogeneous nodes. Their approach is based on the node’s computing capabilities to improve the
Map tasks data locality and to reduce the job turnaround time in the heterogeneous Hadoop
environment. Resource and Network-aware Data Placement Algorithm (RENDA) for resource and
network-aware data placement in Hadoop is presented in [13]. The RENDA reduces the time of the
data distribution and data processing stages by estimating the heterogeneous performance of the
nodes on a real-time basis. It carefully allocates data blocks in several installments to participating
nodes in the cluster.

The researchers in [14] discuss the development of a novel job scheduler, CLQLMRS, using
reinforcement learning to improve data and cache locality in MapReduce job scheduling,
highlighting the importance of reducing job execution time for enhancing Hadoop performance. In
[15], the authors propose a DQ-DCWS algorithm to balance data locality and delays in Hadoop while
considering five Quality of Service factors. The DQ-DCWS is based on dynamic programming in
calculating the length of the edge in the DAG and scheduling tasks along the optimal path. Postoaca
et al. in [16] presented a deadline-aware FOG-Scheduler for cloud edge applications. The job queue
is ordered for context based on deadlines. The nodes in the cluster are ordered using a similarity
index. The highest-ordered jobs are sorted are assigned to the appropriate clusters. The authors in
[17] propose an Improved Data Placement Strategy based on intra-dependency among data blocks to
enhance performance and reduce data transfer overheads. The proposed IDaPS uses the Markov
clustering algorithm to characterize MapReduce task execution based on intra-dependency and task
execution frequency.

This paper addresses the challenge of efficient resource allocation in frugal Hadoop clusters. We
propose an Adaptive Multi-criteria Selection for Efficient Resource Allocation (AMS-ERA) in Frugal
Heterogeneous Hadoop Clusters. Our criterion considers CPU, memory, and disk requirements for
jobs and aligns the requirements with available resources in the cluster for optimal resource
allocation. Resources available in the cluster are profiled and ranked based on similarity and
proximity using the Kmeans Clustering method. A dynamic Analytical Hierarchy Process (AHP)
determines the optimal placement of a job using a score-vector to determine the best possible node
for a job. The process involves refining the AHP model’s accuracy by integrating historical
information obtained through Hadoop APIs to assign weights to jobs based on their resource
requirements. Finally, the jobs are assigned to the most appropriate nodes ensuring load balancing
in the heterogeneous cluster. These strategies aim to optimize data layout in Hadoop by maximizing
parallelism while accommodating the resource constraints of frugal SBC nodes in the Hadoop cluster.
To validate the proposed AMS-ERA, we deploy a heterogeneous SBC-based cluster consisting of 11
physical nodes and execute the Hadoop benchmark tests to analyze the performance of the proposed
technique against Hadoop-Fair, FOG [16] and IDaPS [17] scheduling strategies. The results showcase
a notable enhancement in performance with our proposed approach. Our results demonstrate a
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significant improvement in performance with the proposed AMS-ERA, reducing execution time by

27.2%, 17.4% and 7.6% respectively using terasort and wordcount benchmarks. The contributions of

this work are in three folds

e  Weintroduce the AMS-ERA approach to optimize resource allocation in frugal Hadoop clusters
with Single-Board Computers (SBCs). By considering CPU, memory, and disk requirements for
jobs, and aligning these with available resources, AMS-ERA enhances resource allocation to
improve performance and efficiency.

e The proposed method involves profiling available resources in the cluster using K-means
clustering and dynamically placing jobs based on a refined Analytical Hierarchy Process (AHP).
This dynamic placement ensures optimal resource utilization and load balancing in
heterogeneous clusters.

e  We construct a heterogeneous 11 node Hadoop cluster using popular SBC devices to validate
our approach. The work demonstrates that AMS-ERA achieves significant performance
improvements compared to other scheduling strategies like Hadoop-Fair, FOG, and IDaPS using
various 1O intensive and CPU intensive Hadoop microbenchmark such as terasort and
wordcount.

AMS-ERA adapts to changing conditions, improving load balancing and data locality in a way
that traditional Hadoop resource allocation strategies, which tend to rely heavily on physical
proximity, often fail to achieve. By dynamically selecting the best-suited nodes for each job, AMS-
ERA reduces execution time and avoids resource contention. This innovative approach directly
addresses the challenges of frugal clusters, where energy efficiency and resource constraints are
paramount.

The rest of the paper is organized as follows. Section 2 presents relevant work and background.
Section 3 details the proposed strategies and algorithms. Section 4 presents extensive performance
evaluation of the SBC cluster followed by Section 5 concluding this work.

2. Related Works

2.1. SBC in Cloud, Edge Clusters

One major challenge is the significant variance in computational capabilities among frugal
nodes, which can lead to uneven workload distribution and resource contention. Frugal nodes
typically have limited CPU processing power, memory, and storage, which can constrain the types
and sizes of tasks they can effectively execute [18-20]. Moreover, these nodes may be deployed in
edge or remote locations with unreliable network connectivity, posing challenges for communication
and data transfer between nodes [21]. Additionally, frugal nodes are often deployed in resource-
constrained environments where power consumption and energy efficiency are critical
considerations. Balancing computational demands while minimizing energy consumption becomes
crucial in such scenarios.

Shwe et. al. [22] analyzed the efficacy of SBC based clusters in three application scenarios. This
work compares big data processing platforms across three computing paradigms—batch, stream,
and function processing—in resource-constrained environments such as edge and fog computing,
versus traditional cloud deployments. Using Apache Spark for batch processing, Apache Flink for
stream processing, and Apache OpenWhisk for function processing, results suggest that resource-
constrained environments can effectively handle big data workloads. The researchers provide
recommendations for practical deployments in edge and fog computing and explores future research
into training complex deep learning models in these environments.

Neto et al. in [23], outlines the development, testing, and monitoring of a low-cost big data
cluster using Raspberry Pi 4B devices running Apache Hadoop. The results demonstrate that
Raspberry Pi combined with Apache Hadoop can be a robust, cost-effective solution for a low-cost
big data cluster. A Raspberry Pi 3B+ is used as a monitoring server to collect real-time data, enabling
improved monitoring and visualization of cluster performance. Authors in [24], examines the use of
Apache Hadoop on a cluster of Raspberry Pi 4B SBCs to assess their potential as low-cost, energy-
efficient platforms for big data processing. Through a series of benchmarks and different storage
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configurations, the research demonstrates that Raspberry Pi clusters can effectively handle large
workloads, offering a viable alternative to traditional servers.

Lambropoulos et. al. in [25], explore the use of SBCs like Raspberry Pi 4B for edge computing,
demonstrating a successful transition from traditional x86 infrastructure to SBC-based clusters.
Despite higher CPU usage and storage latency, the SBC-based setup showed significant power
savings, consuming nine times less energy. The study discusses challenges with hardware
compatibility and storage performance, suggesting future work on dedicated storage solutions and
improved hardware customization to overcome limitations in edge environments. Sebbio et. al. in
[21], analyze the suitability of using a raspberry Pi 4 device for federated learning as an edge device.
The conduct a thorough power consumption analysis using the FedAvg algorithm for various
datasets. Mills et. al. [26], propose modifications to the Fed Avg algorithm to address communication
issues on an edge-computing-like testbed. The test-bed is constructed using Raspberry Pi 2 and 3
clients composed of 10 devices.

Krpic et. al. in [27], explores how SBC clusters handle compute-bound applications, using the
High Performance Linpack (HPL) benchmark to compare two 4-node clusters of different SBC
generations: Odroid U3 and Odroid MC1. Results indicate that SBC clusters can indeed serve as
small-scale high-performance computing (HPC) systems, capable of managing moderate compute
workloads at the edge. Authors in [28] propose a new Hadoop YARN architecture with two
scheduling policies namely master-driven and slave-driven. These are specifically designed for SBC
Hadoop Clusters for big data processing. The authors design a small Hadoop cluster composed of
Raspberry Pi 4 devices to validate the proposed policies. Authors in [29], construct a Raspberry Pi
based Hadoop cluster for image processing with various datasets of different sizes. They compare
the computation time of the SBC cluster against a PC and note that SBC cluster takes less time to
complete the tasks for smaller datasets.

The above-mentioned works highlight the proposition of deploying Hadoop clusters in edge
environments with SBCs like Raspberry Pi is a viable option [20-28], driven by cost-effectiveness,
energy efficiency, sustainability and flexibility. Although it may require addressing certain
challenges, the benefits in terms of reduced latency, scalability, and sustainability make it a
compelling choice for many edge and remote scenarios. While deploying Hadoop on SBC clusters
offers advantages, it also introduces challenges such as hardware compatibility, performance issues,
and software limitations. Addressing these issues may require customized hardware solutions,
improved storage controllers, and adaptations to existing algorithms.

2.2. Hadoop YARN Scheduling Challenges in Resource Constrained Clusters

Hadoop is an open-source framework designed for the distributed processing of large datasets
across clusters of computers. At its core, the Hadoop Distributed File System (HDES) serves as the
distributed storage system, facilitating the reliable and scalable storage of data across the cluster.
YARN (Yet Another Resource Negotiator) is a key component of the Hadoop ecosystem designed to
manage cluster resources and allocate them for processing tasks. Its architecture consists of three
main components: the Resource Manager (RM), Node Manager (NM), and Application Master (AM).
The RM acts as the central authority for resource management, overseeing job scheduling and
monitoring the overall cluster status. NM is responsible for managing resources on individual nodes
in the cluster, including monitoring resource usage and executing tasks. AM are specific to each
application and negotiates resources with the RM. YARN'’s flexibility and scalability enable it to
efficiently manage resources across large-scale distributed computing environments. The RM
consists of a Scheduler which is responsible for allocating resources to different applications running
on the cluster. The Application Manager oversees the lifecycle of applications submitted to the
cluster. It coordinates with NM to allocate resources, monitor application progress, and handle
application-specific requests. Lastly, the ResourceTracker communicates with NM to gather resource
status and availability information from individual nodes in the cluster. This information is relayed
to the Scheduler, facilitating efficient resource allocation.
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Resource-aware and data-locality aware scheduling in Hadoop is a critical factor in improving
performance, particularly in the context of big data processing. Efficient scheduling algorithms are
crucial to ensure optimized cluster resource utilization, throughput, and fairness. In default Hadoop
scheduling, several challenges concerning work distribution and balancing were reported by
researchers. Inefficient data placement results in increased data transfer overhead and longer job
execution times, impacting overall system efficiency. The scheduling mechanisms in Hadoop face
several challenges, particularly in heterogeneous environments [7,30-34]. One issue is the lack of
awareness of individual node capacities, including CPU processing power, memory availability, and
disk storage. Consequently, tasks may be assigned to nodes that are ill-equipped to handle them
efficiently, leading to suboptimal performance and resource utilization. Another challenge arises
from the dynamic and unpredictable nature of workloads in distributed environments. Traditional
scheduling policies may struggle to adapt to changing workload patterns, resulting in inefficient
resource allocation and potential bottlenecks [15]. Additionally, ensuring data locality, where
computation is performed near the data it operates on, can be challenging in large-scale clusters with
diverse hardware configurations. Inefficient data placement can lead to increased data transfer
overhead and longer job execution times [11,35]. Addressing these problems requires the
development of adaptive scheduling algorithms that can intelligently allocate resources based on
workload characteristics and cluster dynamics while optimizing data locality and resource
utilization.

Ullah et al. [34] introduced the Least Slack Time-Based Preemptive Deadline Constraint
Scheduler (LSTPD) to enhance response and completion times for heterogeneous MapReduce jobs.
They propose an efficient preemptive deadline constraint scheduler based on the least slack time and
data locality. It first analyzes the task scheduling logs of the Hadoop platform; next it considers the
remaining execution time of the job being executed in deciding preemption for scheduling.
Javanmardi et al. [33] presented a unit-based, cost-efficient scheduler for heterogeneous Hadoop
systems, focusing on running jobs in parallel on diverse clusters. The proposed algorithm distributes
data based on the performance of the nodes and then schedules the jobs according to their cost of
execution and decreases the cost of executing the jobs. The presented algorithm offers better
performance in terms of execution time, cost, and locality compared to YARN native FIFO and Fair
schedulers.

Yao et al. [32] proposed new scheduling algorithms for Hadoop YARN clusters to improve
performance and resource utilization, leveraging fine-grained resource management schemes to
reduce the total execution time of MapReduce jobs. This is achieved through leveraging insights
derived from requested resources, resource capacities, and task dependencies. Fu et. al. [31] in
propose a dynamic feedback load balancing scheduling method for fair task scheduling in Hadoop.
An improved task scheduling strategy based on a genetic algorithm is proposed to allocate and
execute application tasks to reduce task completion time. They also propose a delay capacity
scheduling algorithm to ensure that most tasks can achieve localization and speed up job completion
time. The researchers in [14] developed a novel job scheduler, CLQLMRS, using reinforcement
learning to improve data and cache locality in MapReduce job scheduling, highlighting the
importance of reducing job execution time for enhancing Hadoop performance. The limitations of
the study include the need to train the scheduling policy, which may be challenging in environments
with rapid changes, potentially hindering timely retraining.

In [15], the authors propose a DQ-DCWS algorithm to balance data locality and delays in
Hadoop while considering five Quality of Service factors. The DQ-DCWS is based on dynamic
programming in calculating the length of the edge in the DAG and scheduling tasks along the optimal
path. It aims to optimize workflow scheduling in data-intensive scientific applications on
heterogeneous cloud resources. The authors evaluate their work using Montage workflow and
deployed Hadoop cluster over Amazon Elastic Compute Cloud (EC2). Resource and Network-aware
Data Placement Algorithm (RENDA) in Hadoop is presented in [13]. The RENDA reduces the time
of the data distribution and data processing stages by estimating the heterogeneous performance of
the nodes on a real-time basis. It carefully allocates data blocks in several installments to participating
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nodes in the cluster. Experimental results show RENDA outperforms recent alternatives in reducing
data transfer overhead, average job completion time, and providing average speedup. RENDA'’s
performance is largely dependent on the estimation of the remaining time of the nodes and
subsequent data block distribution.

Postoaca et al. [16] presented a deadline-aware FOG-Scheduler for cloud edge applications. The
job queue is ordered for context based on deadlines. The nodes in the cluster are ordered using a
similarity index. The highest-ordered jobs are sorted are assigned to the appropriate clusters. The
proposed algorithm is tested in Apache Spark. Vengadeswaran et. al. in [17] propose an Improved
Data Placement Strategy based on intra-dependency (IDaPS) among data blocks to enhance
performance and reduce data transfer overheads. The proposed IDaPS uses the Markov clustering
algorithm to characterize MapReduce task execution based on intra-dependency and task execution
frequency. Next, the scheduling algorithm uses the task execution frequency to determine a utility
index. To achieve maximum parallelism, the jobs with the maximum utility index are assigned for
execution.

Zhou et.al in [36] presented an adaptive energy-aware framework called AFED-EF for VM
deployment in Cloud Data Centers. This framework aimed to address energy efficiency and SLA
violations for IoT applications by considering variable loads. The proposed algorithm classifies the
servers in the data-center into various clusters using a K-means algorithm. Using this classification
the proposed algorith determines the suitable server for load balancing. The study utilized real
workload data from the CoMon project to evaluate the performance of the proposed algorithm.
Results show that the proposed algorithm effectively balances energy consumption and SLA
violations in data centers.

Authors in [37] address the issue of high energy consumption in Cloud datacenters while
minimizing Service Level Agreement (SLA) violations. To achieve this, the study proposed two
adaptive energy-aware algorithms aimed at maximizing energy efficiency and reducing SLA
violation rates. The proposed algorithms considered application types, CPU, and memory resources
during VM deployment. Banerjee et.al. in [38], present a Dynamic Heuristic Johnson Sequencing
technique (DH]JS) for job scheduling in Hadoop. They apply the proposed technique to Hadoop
default scehduling algorithms to determine the best order of jobs on each server therefore minimizing
the makespan. The experimental results presented shows the performance improvement, however
the results are based on testing using only three servers with limited scope.

Table 1 summarizes the contributions of recent studies, providing an overview of various
heterogeneous cluster scheduling techniques. Each work is categorized based on its research focus,
whether it uses resource-aware scheduling techniques that consider CPU, memory, disk, or network
resources in decision-making, and the type of test-bed deployment, whether it involves servers or
Single-Board Computer (SBC) clusters. The table also indicates the evaluation criteria, noting whether
Hadoop micro-benchmarks or custom datasets were used for performance assessment.

Overall, scheduling tasks in heterogenous clusters composed of frugal nodes require specialized
optimization techniques and adaptive scheduling algorithms tailored to the unique characteristics
and constraints of these devices. In this work, we propose AMS-ERA for resource aware scheduling
in Frugal Heterogeneous Hadoop Clusters. Our criterion considers CPU, memory, and disk
requirements for jobs and aligns the requirements with available resources in the cluster for optimal
resource allocation. We construct a 11-node SBC-cluster to test and validate the proposed approach
using Hadoop benchmark for CPU-intensive and IO-intensive workloads. The next section presents
details for the proposed AMS-ERA.

Table 1. Overview of heterogeneous cluster scheduling techniques.

Category Representative works Resource Testbed/evaluation
awareness criteria
Task [10]: Task scheduling based on network heterogeneity net X
placement [13]: RENDA - Estimation of node performance for task placement cpu, mem Servers/ Benchmarks
[38]: Dynamic Heuristic Johnson Sequencing technique for task X Simulation

placement disk Simulation
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[39]: DQ-DCWS - Optimization of workflow using dynamic cpu, mem Servers/ Benchmarks
programming
[32]: HASTE: Resource management for improved task placement
Data locality [11]: Varying Block size for improved data locality disk Servers/ Benchmarks
[28]: Resource aware task placement in heterogeneous SBC clusters cpu, mem, disk SBC
[40]: CLQLMRS - Reinforcement learning improves data locality disk, mem cluster/Benchmarks
Servers/ Benchmarks
Load balancing[12]: Historical data-based task placement in heterogeneous cpu, mem Servers/ Benchmarks
clusters X Servers/custom-dataset
[16]: Deadline aware task scheduling based on available resources X Servers/ Benchmarks
[31]: Dynamic feedback fair scheduling with load balancing
Improved [17]: Markov clustering-based job scoring for improved task disk Servers/ Benchmarks
parallelism allocation disk Simulation
[33]: Optimizing DAG workflows for cost of task execution X Servers/ Benchmarks
[34]: LSTPD - Deadline constrained response times for Mapreduce
jobs
Improved task [41]: Task selection using K means clustering technique X X
selection  [42]: H-Fair; improved Fair scheduler for heavy workloads in X Simulation
Hadoop X Servers/custom-dataset
[43]: Improved MapReduce workflow using K means clustering
Energy  [35]: Efficient online placement in cloud containers X Simulation
efficiency  [36]: AFED-EF - Classification of resources based on energy cpu, mem,disk, Server/real-workload
efficiency net Servers/custom-dataset
[37]: Energy Efficient scheduling based on resource constraints. cpu

3. Adaptive Multi-Criteria Selection for Efficient Resource Allocation

3.1. Motivation

The native Hadoop framework lacks a built-in mechanism to distinguish the specific capacities
of individual nodes, including CPU processing power and available physical memory and storage
availability. Such characteristics are crucial in edge clusters composed of resource-frugal devices, as
they significantly influence the performance of concurrently executing MapReduce tasks.

Consider a scenario in which a cluster consisting of N nodes must process M MapReduce tasks
across D data blocks. According to the default configuration of Hadoop’s InputSplit, the number of
MapReduce tasks corresponds to the number of data blocks, meaning each task operates on one data
block per node. However, this default approach overlooks the available utilization of resources
within the cluster leading to sub-optimal allocation of resources. Typically, a node can have multiple
CPU cores available, a optimal resource allocation strategy can leverage the available resources to
allow simultaneous execution of multiple Map Reduce jobs to improve the parallelism in the cluster,
therefore improving the overall efficiency of the cluster.

Single-board computers (SBCs), exemplified by the Raspberry Pi computers, typically feature
quad-core processors, with more advanced models boasting hexa or octa-core processors. Leveraging
these resources effectively for optimal resource allocation is crucial. Additionally, SBCs have limited
onboard memory and disk capacity. In many instances, the default Hadoop input split may not
allocate data blocks optimally on these SBC-based nodes resulting in various out-of-memory errors
[23,24]. Consequently, the MapReduce jobs fail and need to restart which can be expensive. In Table
2, we present a matrix listing the various features of popular SBCs.

Table 2. A comparison of popular Single Board Computers.

SBC device CPU Memory Storage with read Price (USD) incl.
MB/s storage
Raspberry Pi3 1.4GHz 64-bit quad-core ARM 1GB 32 GB SDCard 38
Cortex-A53 LPDDR3-SDRAM 120 MB/s
Odroid Xu4 Exynos5 Octa ARM Cortex-A15 2GB 32 GB SDCard 56
Quad 2Ghz and Cortex-A7 Quad DDR3 120 MB/s

1.3GHz
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RockPro64 1.8GHz Hexa Rockchip RK3399 ARM 4GB 64 GB SDCard 84

Cortex A72 and 1.4 GHz Quad LPDDR4-SDRAM 140 MB/s
Cortex-A53

Raspberry Pi4x4 1.8 GHz Quad core ARM Cortex-A72 4GB 64 GB SDCard 59
LPDDR4-SDRAM 140 MB/s

Raspberry Pi4x8 1.8 GHz Quad core ARM Cortex-A72 8GB 128 GB SDCard 84
LPDDR4-SDRAM 190 MB/s

Raspberry Pi5 2.4 GHz Quad-core 64-bit ARM 8GB 128 GB SDCard 98
Cortex A76 LPDDR4X-SDRAM 190 MB/s

Moreover, the positioning of data blocks on nodes where MapReduce tasks are executed is
crucial for efficient processing, aiming to minimize latency in data transfers between different nodes
within the cluster. Given the limited available resources on the frugal SBC-based Hadoop clusters, it
is essential to develop optimal resource allocation strategies tailored to frugal Hadoop clusters,
considering the unique resource constraints of SBCs. Table 3 lists the main symbol notations and their
meanings, used in this paper.

Table 3. Symbols used and their meanings.

Symbol Description
J= {jl, wer ] k} Set J of Jobs consisting of k number of jobs
C = {nl, ) nx} Cluster C consisting of x number of nodes
id; Unique identifier for a job J;
CPU; cpu requirement for job j;
disk,; disk requirement for job j;
mem,; memory requirement for job J;
U (cpui) cpu utilization of ith node
U (memi) memory utilization of ith node
U (diSki) disk utilization of ith node
resource;s; A data-structure detailing the available resources in the cluster
k. Optimal value for centroids in K-means algorithm
optimal
U Centroid in K-means clustering algorithm
C]‘i Pairwise decision criteria matrix
CI Consistency Index
Am ax Maximal eigen value
wei ghti Weight of cpu, mem and disk matrices
mg; Normalized scores
Score; Score for job J;

L

Workload i

3.2. Problem Definition

We define a few terms to quantify the proposed research. We assume that a set of k number of
jobs J = {ji, ..., ji} is submitted to a heterogeneous Hadoop cluster consisting of x number of nodes
C ={ny ..,ny}.

As each job may have unique CPU, memory, disk and I/O requirements, we model a vector
consisting of these parameters for a job jj,

Ji = {id;, cpuyy, disk,;, mem,;} (1)
where cpu,; is the CPU, disk,; is the disk, and mem,; is the memory requirement for job j; with a
unique id;.

To define the utilization U = {U(CPU), U(mem), U(disk)} of resources available in a node i in

Cluster C at time £, we give
_ {100—(% of idle time)}

UCepu) = @)

where U(cpuy;) is the CPU utilization of the ith node. The memory utilization U(mem;) of a node ni
is given as

U(mem;) = —=1Mk_ (3

mem(total)
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where ) mem, is the sum of memory usage of all jobs running in node n: where mem(total) is the
total memory available on the node. The disk utilization U(disk;) of the ith node is given as:

. __ disk(used)
U(dlSki) - disk(total) ( )

where disk(used) is the used capacity, and disk(total) is the total disk capacity of the ith node. The
values of utilization are within range [0, 1].

In the Hadoop YARN cluster architecture, the NMs within the Cluster C regularly transmit
status updates as heartbeat messages to the RM. These messages convey crucial information
regarding resource availability, including CPU utilization, memory usage, and disk I/O activity for a
data node managed by the corresponding NM.

The Hadoop cluster’s execution traces can be obtained using the Starfish Hadoop log analysis
tool [44], serving as crucial input for refining data placement decisions. Throughout the execution of
each job within the cluster, essential details such as Job ID and job timestamp are captured and stored
as job status files. These execution traces are typically located in the configuration directory of the
name node. The location of this file is available in Hadoop namenode job history folder.

The proposed AMS-ERA leverages machine learning techniques such as K-means clustering to
cluster similar data by grouping nodes into clusters based on their similarity or proximity to each
other. We use these techniques to classify nodes in the cluster based on the similarity of utilized
resource (cpu, mem, disk) initializing a resource;;; which is subsequently used by the dynamic
Analytical Hierarchy Process (dAAHP). A schematic diagram of various steps in the AMS-ERA process
can be seen in Figure 1.

Hadoop Job
configuration file

Extract information
Starfish hadoop log analyzer

A4

. e K means CPU Pairwise mem Pairwise disk Pairwise
- resourcey; .. ; L -
RM llstmg list decision matrix decision matrix decision matrix

Clustering

{id;, U(cpwy), U(mem;), U(disk;)}

Compute Job score

Update
Assign

[ ; T
RM /Scheduler [« 0 ccheduling | job-priority-listing

Figure 1. Workflow of the proposed AMS-ERA process for optimal job scheduling.

3.3. K Means with Elbow Clustering

K-means clustering is a popular unsupervised machine learning algorithm used in various
domains. It is used to analyze, optimize, and manage resources, among other applications [41]. K-
means partitions a dataset into k clusters based on their features. It selects k centroids, and each data
point is assigned to the closest centroid. The elbow method [45] is used to determine the optimal
number of clusters kg, q - It involves plotting the within-cluster sum of squares (WCSS) for different
values of k and identifying the “elbow” point where increasing the number of clusters doesn’t
significantly reduce the WCSS, indicating the optimal k value.

Algorithm 1 presents the proposed K-means with elbow optimization algorithm. It starts by
obtaining the RM listing for n nodes. Next, we use Min-Max normalization [46] to rescale numerical
data from the Hadoop RM, to a fixed range. This normalization method preserves the relative
relationships between data points while ensuring that all features have the same scale. We define the
dataset D = {xy,x, ... x,}, where each x; is a datapoint. We verify the status of all the nodes to
remove any nodes that have a failed state. In the node identification phase, based on the acquired
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parameters (U(cpu), U(mem), U(disk)), the proposed approach organizes nodes into clusters
characterized by similar performance attributes.

Next, we determine the ko wWhere k is initially given in a range of 1 to k,,,,. First, we select
k initial centroids given by u, u, ... u, by random selection. Next Assign each data point x; to the
nearest centroid p,. Define C; as the set of data points assigned to the jth cluster:

Ci = {x; | llx; —uj||2 < Ix; —,u,,”z forallp =12,..,k} ®)
where ||lx; —u j||2 represents the squared Euclidean distance. Next, we recalculate each centroid ;
as the mean of the data points in its cluster as given as:
Ly, (6)
|C]| x€Cj

We repeat steps in equation (5) and (6) until the centroids no longer change significantly or a

predetermined number of iterations is reached. The WCSS for the clustering with k clusters is given

as:
k (7)
z : z : 2
WCSS = [lx; — ,uj”

J=1x€C;j
Next, we plot the WCSS against k and identify the “elbow” point, where the reduction in WCSS
starts to plateau. This elbow point suggests the optimal number of clusters k;nq for the dataset D.

Hj

Once the kpipq is determined, we use the K-means clustering algorithm to cluster the nodes
based on resource utilization. Each data point is assigned to the nearest centroid f,. Next, we

calculate the Euclidean distance of datapoint x; to each centroid u,. The datapoint xi is assigned to
the nearest centroid based on the closest distance to the selected centroid. After all data points have
been assigned, recalculate each centroid as the mean (average) of all data points assigned to that
cluster. The process for recalculation of centroids is repeated ke times. Once the node similarity
clusters are established, our strategy organizes the groups based on the three selection attributes cpu,
mem and disk, with higher-performing nodes belonging to higher-ranked clusters. The resulting data
is written to resourcey for further processing. The runtime for algorithm 1 can be given as
0(k X x) where x is the number of servers/nodes in the cluster C; k is the number of clusters.

Algorithm 1: K means clustering with elbow

1 Start: Obtain RM listing for n nodes.

2 apply Min-Max normalization to rescale dataset

3 initialize resourcey,; < {id;, U(cpw;), U(mem,;), U(disk;)}

4 Let D = {x;,x; ... x,} be the dataset, where x; is a datapoint
5: determine kg,¢imq for kmeans using equations (5), (6) and (7)
6
7
8

foreach kin {1, 2, ... koptimar)
calculate distance of each datapoint x; to each centroid u,
assign the each datapoint x; to the closest centroid
recalculate each centroid as in eq (6)

9: end for
11: return resourcej;y;
12: end

3.4. Dynamic AHP Based Job Scoring

In this section, we detail the dynamic AHP (dAHP) based scoring mechanism for optimal
resource allocation to jobs. We develop an algorithm based on the AHP [47] where the goal is to find
the optimal placement of a job using a score-vector to determine the best possible node. The process
involves refining the AHP model’s accuracy by integrating historical information obtained through
Hadoop APIs to assign weights to jobs based on their resource requirements including CPU, memory,
and disk requirements.
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We define criteria considering the CPU, memory and disk requirements of a job. We also define
alternate-criteria for selecting the best possible node in the frugal cluster. The criteria are pairwise

compared based on the importance of criteria. The alternatives are compared against each of the
criteria. Figure 2 shows the selection framework of the dAHP for an example of n heterogeneous

nodes, where n = 6.
Select optimal
node

| cpu | | mem | | disk |

GOAL —level 1
Criteria — level 2

Alternate Criteria — level 3

Lom Jm JLm Jm JL o [

Figure 2. dAHP 3-level criteria for node selection.

To select the optimal node for job allocation, we look at the job requirements. Assuming that a
job requires a large amount of processing power and memory to complete; however, the storage
requirement is not equally important. Based on this requirement we develop the pairwise comparison
matrix Cji for this job. The criteria are prioritized based on their importance. We assume that the CPU
and memory requirements are equally important for a job. They are moderately important than the
disk requirement. Based on these criteria, the Cji is given in Table 4.

Table 4. Pairwise decision criteria matrix Cji.

Gji cpu mem disk
cpu 1 1 2
mem 1 1 2
disk 1/2 1/2 1

Next, the alternate criteria are considered based on the node utilization requirements. For
instance, if a job requires a faster node, it should be assigned n,. If it requires more memory, it can
be assigned n,. Similiarly, if more disk space is required, it can be assigned n, based on the node
capabilities. The weights are determined by the magnitude of the difference in node properties. For
instance, n, and ns; have a faster/larger number of cores compared to n,, they are assigned weight
4. This allows us to have three matrices presenting a pairwise comparison of CPU, MEM and DISK
requirements. The CPU, MEM, and DISK matrices are given in Table 5, 6, and 7 respectively.

Table 5. Pairwise cpu alternate-criteria decision matrix CPU.

CPU n, n, ns ny ns Ng
n, 1 0.25 0.33 0.33 0.25 0.25
n, 4 1 3 2 2 1
n; 3 0.33 1 1 1 0.5
ny 3 0.5 1 1 1 0.5
nsg 4 0.5 1 1 1 0.5
ng 4 1 2 2 2 1

Table 6. Pairwise mem alternate-criteria decision matrix MEM.

MEM ny n,; ng n, ns Ng
n, 1 0.5 0.33 0.33 0.25 0.25
n, 2 1 0.5 0.5 0.33 0.33
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ns 3 2 1 1 0.5 0.5
n, 3 2 1 1 0.5 0.5
ns 4 3 2 2 1 0.5
ng 4 3 2 2 1

Table 7. Pairwise disk alternate-criteria decision matrix DISK.

DISK ng n; n3 ny ns Ng
ny 1 1 0.5 0.5 0.33 0.33
n, 1 1 0.5 0.5 0.33 0.33
ns 2 2 1 1 0.5 0.5
n, 2 2 1 1 0.5 0.5
ng 3 3 2 2 1
ng 3 3 2 2 1 1

To ensure consistency and accuracy, the pairwise comparison matrices are normalized to
determine the Consistency Index (CI). A matrix is considered to be consistent if the transitivity rule
is valid for all pairwise comparisons [43]. The CI is determined by
/1max —-n (8)

n—1
where A,,,, is the maximal eigenvalue obtained by the summation of products between each

Cl =

element of the eigenvector and the sum of columns of the matrix; n is the number of nodes. In this
case, since the size of the matrix is 6x6 where n=6, the CI value for each of the CPU, MEM and DISK
is 0.1477, 0.0178 and 0.0022 respectively. Using the Random Index (RI) = 6, the Consistency Ratio (CR)
for each of these matrices is 0.0119, 0.0143 and 0.0017 respectively. For reliable results, the CR values
must be less than 0.1, ensuring that the matrices are consistent. The score vector Score; is determined
for the job j; using the M matrix which consolidates the CPU, MEM and DISK matrices, as given in
equation 6.
S ©)
Score; = maxz weight; . m;;
j=1

where weight; is the weight of cpu, mem, and disk obtained from corresponding matrices for the
defined criteria. m;; is the normalized score for each value in the matrix. The score vector Score;
computed in equation 6, is given in Table 8. In this particular case, ns has the highest score = 0.280
indicating that it is the most suitable for the given requirements of job ji.

Table 8. The score vector determined from the M matrix for every alternative.

M weight ny n; nz ny ns ng
cpu 0.4 0.051 0.278 0.130 0.138 0.146 0.258
mem 0.4 0.056 0.088 0.152 0.152 0.244 0.307
disk 0.2 0.082 0.082 0.149 0.149 0.270 0.270
score - 0.059 0.163 0.143 0.146 0.210 0.280

Similar to this example, each job’s Score is determined using these criteria. After computing
scores for all jobs, the system selects the job with the highest score, indicating the greatest resource
demand. The resulting job priority-list sorted in descending order (ordered by Score) is forwarded to
the RM for resource allocation.

3.5. Efficient Resource Allocation

The resource allocation takes place in the RM once the job-priority-listing is available. By
integrating the job-listing information obtained from the previous phase, the RM ensures the optimal
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match between job demand and available resources. The jobs with the highest resource requirements
are arranged in descending order. These high-resource-demanding jobs are prioritized to utilize the
most powerful nodes with the maximum available resources. This load-balancing strategy ensures
that less resource-intensive jobs do not hinder the utilization of the high-resource nodes.

Algorithm 2 presents the AMS-ERA resource allocation process. The RM maintains a
resource;,; of current resource utilization in the cluster for each node i
{id;, U(cpu;), U(mem;), U(disk;)} as determined in equations 2, 3, and 4. To assign a job to a node,
considering the jobs score vector {cpu, mem, disk} obtained in Table 8, the most under-utilized node is
sought. Once a job is assigned to a node, the utilization values in the resource;, for the
corresponding node are updated. This ensures a well-balancing strategy that maximizes the
utilization of resources across the cluster while considering the heterogenous Hadoop clusters node
capabilities. This enables our system to prevent resource-intensive jobs from being allocated to lower-
performing nodes in the cluster. Once the mapping is complete, the jobs are sent for execution in
newly allocated containers by YARN.

To give the runtime for the algorithm, we look at the three computation intensive operations.
The step 5 in the algorithm requires computation of pairwise decision matrices for each job as detailed

in tables 5, 6 and 7. Assuming that there are m jobs in a cluster of size n nodes, the cost of forming

n(n-1)
2

complexity of 0(n?). In step 6, we determine the values of equation (8) and (9) for the normalization

and consistency check, these require a runtime of 0(n). Steps 10 and 11, compute the M matrix and
the Score vector. The total number of pairwise comparisons required to compute the matrix M and
the Score vector would be given by 0(m X n?) where the size of the matrix is n X n. Finally, the
best values are written to the resource);s. Overall, the complexity of both algorithms can be given as
o(m xn?).

pairwise comparison matrices for the three-selection criterion cpu, mem and disk is giving a

Algorithm 2: AMS-ERA resource allocation

1 Start: Obtain RM listing for n nodes

2 obtain resourcej;y

3 obtain RM listing for m jobs; initialize JObpriorityyigiing
4 foreach m € jobs

5: determine pairwise decision matrices CPU, MEM, DISK for m
6 determine consistency CI = '1":%_”

7 if CR = % < 0.1 then continue

8 else re-compute

9 end if

10: determine M matrix

11: Compute Score,, — jobpn-ority”stmg

12: end for

13: foreach i € jobpn-ority”stmg

14: assign best (j;, cpu, mem, disk) — resource;s;

15: update resourcey;

16: end for

4. Experimental Evaluation

In this section, we present the experimental setup and conduct various experiments to compare
and analyze the performance for the proposed AMS-ERA against Hadoop-Fair, FOG, and IDaPS
Schedulers.
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4.1. Experiment Setup

For experimentation, we construct a SBC based heterogeneous Hadoop cluster with 11 SBC
nodes configured in two racks with five SBCs in each rack using Gigabit Ethernet. Ten of these SBCs
would run the Hadoop worker nodes where as one serves as the master node. As the master node
runs the RM requiring a large amount of memory, a Raspberry Pi5 device would be dedicated to
running the master node. On each device we install a compatible version of Linux Debian; with
armbian 23.1 Jammy Gnome on RockPro, Debian Bullseye 11 on Odroid XU4 and RaspberryPi OS
Lite 11 on all Raspberry Pi devices. Each device has Java ARM64 version 8 and Hadoop version 3.3.6.
Each SBC is equipped with a bootable SD Card, to better observe the placement of jobs with different
disk requirements, we varied the capacity of the SD Card for the different SBCs. A 4GB swap space
was reserved on each SD Card, this would be essential for virtual memory management in SBCs with
low RAM availability.

To simulate a small cluster, we created two racks each consisting of 5 SBC nodes. Each rack has
a Gigabit Ethernet switch connecting all the SBCs with a router. The master node running on a RPi5
connects to the router. The schematic diagram of the experimental setup is available in Figure 3. Table
9, shows the configuration of the worker nodes in the cluster. We used Hadoop YARN 3.3.6 to run
our experiments. The HDFS block size was set to 128 MB, with block replication set to 2, and the
inputSplit size is set to 128MB. To avoid out-of-memory errors on Hadoop runs, we modified the
mapred-site.xml and YARN-site.xml files. The details are provided in Table 10.

Internet

Rack 1: Worker nodes Master

Rack 2: Worker nodes

Figure 3. Cluster configuration with 10 worker nodes placed in two racks with a master node.

Table 9. Worker node configuration in the Hadoop cluster.

Worker Rack SBC device CPU cores Memory Storage with read Operating System
Node MB/s
W1 1  RaspberryPi3 4 (1.4 GHz) 1GB 32 GB SDCard 120  RaspberryPi OS Lite 11
MB/s
w2 RockPro64 6 (2x1.8 GHz) (4x1.4 4GB 64 GB SDCard 140 armbian 23.1 Jammy
GHz) MB/s Gnome
W3 RaspberryPi4 4 (1.8 GHz) 4GB 64 GB SDCard 140  RaspberryPi OS Lite 11
MB/s
W4 RockPro64 6 (2x1.8 GHz) (4x1.4 4GB 32 GB SDCard 120 armbian 23.1 Jammy
GHz) MB/s Gnome
W5 Odroid Xu4 8 (4x2.0 GHz) (4x 1.3 2GB 64 GB SDCard 140 Debian Bullseye 11
GHz) MB/s
We RaspberryPi5 4 (24 GHz) 8GB 128 GB SDCard 190 ~ RaspberryPi OS Lite 11
MB/s
W7 Odroid Xu4 8 (4x 2.0 GHz) (4x 1.3 2GB 32 GB SDCard 120 Debian Bullseye 11
GHz) MB/s
W8 RaspberryPi3 4 (1.4 GHz) 1GB 64 GB SDCard 140  RaspberryPi OS Lite 11
MB/s
W9 RaspberryPi5 4 (24 GHz) 8GB 64 GB SDCard 140  RaspberryPi OS Lite 11
MB/s
W10 RaspberryPi4 4 (1.8 GHz) 4GB 128 GB SDCard 190 ~ RaspberryPi OS Lite 11

MB/s
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Table 10. Hadoop YARN configuration properties.

Mapred-site.xml Value
yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 2
mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852
mapreduce.reduce.memory.mb 852
YARN-site.xml Value
yarn.nodemanager.resource.memory-mb 1024
yarn.nodemanager.resource.cpu-veores 1
yarn.scheduler.maximum-allocation-mb 1024
yarn.scheduler.maximum-allocation-vcores 8
yarn.nodemanager.vmem-pmem-ratio 2.1

4.2. Generating Job Workloads for Validation

Taking inspiration from previous benchmark studies [11,13,17,19,28,31,32,42], we select
wordcount and terasort workloads for evaluation of AMS-ERA.

e  The Hadoop wordcount benchmark is a CPU-intensive task because it involves processing large
volumes of text data to count the occurrences of each word. This process requires significant
computational resources, particularly for tasks like tokenization, sorting, and aggregation,
which are essential steps in the word counting process. As a result, the benchmark primarily
stresses the CPU’s processing capabilities rather than other system resources such as memory or
disk I/O. These 10 jobs are posted to the cluster simultaneously.

e The Hadoop Terasort benchmark is an IO-intensive task because it involves sorting a large
volume of data. This process requires substantial input/output (I0) operations as it reads and
writes data to and from storage extensively during the sorting process. The benchmark stresses
the system’s IO subsystem, including disk read and write speeds, as well as network bandwidth
if the data is distributed across multiple nodes in a cluster.

In order to observe the effectiveness of the proposed AMS-ERA scheduling for clustering the
jobs based on the cpu, mem and disk criteria, we generate five job workloads {l;, [, I3, l4, Is}, each with
varying resource requirements, resulting in highly heterogeneous container sizes for the map and
reduce tasks across different jobs. Each workload is given a different dataset whose sizes are 2, 4, §,
15.1, and 19.5 GB respectively. The datasets are generated from textfiles available at project
Gutenberg. These dataset sizes represent a range of small to large workloads, allowing us to evaluate
the scheduling algorithm’s performance across different job scenarios. By including a range of dataset
sizes, we could determine how the proposed AMS-ERA scheduling algorithm handles different
resource requirements.

The default InputSplit size of 128MB is used to distribute the datafiles across the HDFS. The
Replication factor of 2 is used. Based on the dataset size and the InputSplit size, we define the number
of maps and reduces to be <map, reduce> given as <16, 1>, <32, 2>, <64, 4>, <128, 4>, and <160, 8>
respectively.

We execute wordcount and terasort on these workloads with these parameters and observe job
placement, resource utilization and the overall job execution time in the cluster. To ensure the
reliability and robustness of our experimental study, we conducted multiple experimental runs for
each benchmark and workload. Specifically, for each of the workloads (I; through I5), we performed
at least three experimental repetitions to gather consistent data. This repetition allowed us to account
for any variability in cluster performance and ensure that our conclusions were statistically valid.
Each experiment was run under the same conditions to maintain consistency, providing a strong
basis for comparison across different configurations.
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4.3. Node Clustering Based on Intra-Node Similarity Metrics

The AMS-ERA profiles the nodes available in the cluster based on available resources. We
visually determined the elbow point for three experimental runs for workload [l; using wordcount
and terasort. Workload I3, with a dataset size of 8 GB, served as a suitable test case for determining
the optimal value for k. This dataset is large enough to offer significant insight into node resource
clustering while not being so large as to skew results due to extreme data processing demands.
Moreover, by establishing ke for this workload, the same methodology can be applied to
smaller workloads (I; and [,) or larger workloads (I, and [5), ensuring that the clustering approach
can be scaled effectively based on the size and complexity of the data being processed. Based on these
3.

Figure 4(a) reveals the result of AMS-ERA node grouping based on available resources during
execution of the wordcount benchmark using the workload 3. A high-performance group of nodes
highlighted in green, consisting of nodes w6, and w9.; a medium-performance group of nodes
represented in yellow, comprising w2, w3, w4, w5, w7 and w10. The nodes labeled low-performance
are indicated in orange, including nodes w1 and w8.

experiments, we determine the value of k¢ nq=
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Figure 4. The worker nodes profiling based on their cpu, mem and disk resource utilization for
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workload I3. Intra-node similarity reveals the performance of nodes clustered in high, medium and
low performance nodes for wordcount jobs. Size of the bubble reveals the percentage of disk
utilization. (a) wordcount (b) terasort.
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Similarly, Figure 4(b) reveals the results for TeraSort job run for workload I3, comparatively
Terasort requires large disk IO. The proposed clustering algorithm successfully groups the nodes
based on the utilization of cpu, mem and disk resources for Terasort jobs with different requirements.
Worker nodes wl, w4 and w7 are installed with relatively smaller 32GB and slower disk 10
read/write speed SD Cards. As the terasort progresses, more of their onboard available storage is
consumed. Consequently, nodes w6, w9 and w10 give identical disk IO which is comparatively
slower due to the user of faster hardware. The effect of larger disk IO can be seen in Figure 4(b) where
larger bubble area reveals increased disk IO.

4.4. Workload Execution Time

Hadoop Fair Scheduler (Fair), a default scheduler in Hadoop, lacks data locality
implementation. It allocates resources to jobs, ensuring each job receives an equal share of resources
over time. The scheduler organizes jobs into pools and distributes resources equitably among these
pools.

The FOG-scheduler presented in [16] considers ordering the scheduling queue based on
deadlines. The nodes in the cluster are ordered using a similarity index. The highest ordered jobs are
sorted are assigned to the appropriate clusters.

The IDaPS presented in [17] uses the Markov clustering algorithm to characterize MapReduce
task execution based on intra-dependency and task execution frequency. The scheduling algorithm
orders the tasks based on execution frequency to achieve maximum parallelism. In this section, we
compare these recent works against the proposed AMS-ERA for various workloads of wordCount
and teraSort.

Figure 5(a) shows the comparison of the execution time of the five wordcount workloads using
hadoop default fair scheduler, FOG, IDaPs and the proposed AMS-ERA. For smaller workloads [;
and [,, a total of 16 and 32 map jobs are created, with this workload, the execution runtimes for the
proposed AMS-ERA are 27.2%, 17.4%, 7.6%; and 24.5%, 14.1%, 8.1% faster compared to Fair, FOG
and IDaPs respectively.

For workloads I3 and 1, a total of 64 and 128 map jobs were created; the execution times for
AMS-ERA were 16.2%, 12.7% and 6.8%; and 14%, 8%, 2% faster. For the larger workload l; AMS-
ERA was 11.5%, 4.5% and 0.2% faster. For larger workloads, both AMS-ERA and IDaPs exhibit similar
performance.

Execution time for wordCount on workloads 1-5
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Execution time for teraSort on workloads 1-5
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Figure 5. (a) A comparison of the execution times in seconds for wordcount jobs with workloads
{11, 15, 13,14, 5} between Hadoop-Fair, FOG, IDaPS and AMS-ERA. (b) depicts the execution times for
terasort with the same workloads.

We note that as the workload increases, the comparative performance of AMS-ERA against the
compared schedulers for execution runtime also decreases. It can be asserted that this is due to the
large number of disk IO reads and writes required by the wordcount algorithm. As the frugal cluster
consists of SDCards with slower read/write speeds, it is imperative that the runtime is affected by the
available hardware speeds.

Our observation is confirmed when we compare the wordcount workload execution runtimes
with the tersort execution runtimes. As mentioned earlier, terasort requires much less IO intensive
read/write operations to the disk, therefore the expected runtime would be lower. For smaller
workloads [l; and [, the execution runtimes of terasort for the proposed AMS-ERA are 38.4%, 25.9%,
20.5%; and 34.9%, 20.7%, 17.8% faster compared to Fair, FOG and IDaPs respectively.

For workloads I3 and [,, with a total of 64 and 128 map jobs; the execution times for AMS-ERA
were 31%, 18% and 13%; and 26%, 14.4%, 11% faster. For the larger workload I AMS-ERA was
18.7%, 12.1% and 7.8% faster.

Figure 5(b) shows the comparison of the execution time of the five terasort workloads. As
terasort is a comparatively less disk 1O intesive application, the AMS-ERA compares well with Fair,
FOG and IDaPs for all range of workloads.

From these results, we observe that in the worst case scenario for workload Is where the entire
dataset is required for execution (approx 20 GB), both AMS-ERA and IDaPS exhibit similar
performance. For smaller datasets and workloads, the proposed AMS-ERA performs significantly
better. Figure 6(a) and (b) show the comparison of AMS-ERA performance percentage against the
compared schedulers for the various workflows using wordcount and terasort benchmarks.
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Figure 6. (a) A comparison of the performance percentage of AMS-ERA execution times against

Hadoop-Fair, FOG, IDaPS for wordcount jobs with workloads {l3,1,,13,14,l5} (b) Performance
percentage of AMS-ERA against Hadoop-Fair, FOG, IDaPS for terasort.

4.5. Local Job Placement and Resource Utilization

The default Hadoop Fair scheduling scheme distributes data without considering the computing
capacity of nodes or network delay, resulting in poor performance. This lack of optimization leads to
a higher percentage of non-local task executions and data transfer overhead compared to alternative
schemes. Moreover, it overlooks the heterogeneity of the available nodes in the cluster. Consequently,
the failure to account for these differences results in suboptimal placement of map tasks in the cluster,
thereby leading to poor performance.

The proposed AMS-ERA assigns resource-intensive jobs to high-performance nodes within each
group, sorting nodes in descending order based on their capacity range, including cpu, mem, disk.
Additionally, with higher cluster utilization, more jobs complete their execution quickly, enabling
YARN to release resources sooner. Less demanding jobs are allocated to nodes that best match their
resource requirements. Consequently, the system minimizes resource wastage and improves load
balancing both between and within groups of heterogeneous nodes.

Figure 7(a) shows the percentage of locally assigned map tasks. All three schedulers outperform
the Hadoop fair scheduler. For the wordcount workloads, as the number of map tasks increases, the
utilization of resources for the proposed AMS-ERA also improves. For smaller workloads I; AMS-
ERA outperforms the comparison with 52% local placement compared to 20% for IDaPS and 14% for
FOG. With larger workloads I5 the locality improves up to 79% for AMS-ERA compared to 76% for
IDaPS and 61% for FOG. We observe a similar task placement rate (percentage) for terasort workloads
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as can be seen in fig 7(b). This shows that the AMS-ERA optimizes task locality based on resource
availability in the cluster.

Figure 8(a) shows a comparison of the percentage of resource utilization for wordcount
workload l;. The AMS-ERA utilizes the highest resources effectively to complete the workload at the
earliest. This shows the AMS-ERA job placement in the cluster effectively outperforms the Hadoop
fair, FOG and IDaPS. Figure 8 (b) shows similar results for a tera-sort workload. As tera-sort is not
disk intensive, we can see that AMS-ERA has the highest average cpu and memory utilization,
however, the disk utilization is slightly lower. Given these results, we can assume that AMS-ERA
successfully considered the availability of resources in the cluster when placing the jobs. As a
consequence of lower disk utilization, the map tasks for terasort were placed in high performing
nodes such as w6 and w9, which resulted in faster execution times.

%age of Local map tasks for wordCount

100
90
80
70
60
50
40
30
20
10

=®=—F3ir e=O==FOG <==®==|DaPs ==@==AMS-ERA

Local tasks rate (%age)

—
w
—
| \
—
w

Workloads

(a)

%age of Local map tasks for teraSort

100
90
80
70
60
50

el i [ e FOG el |[DaPS  emleme AMS-ERA

40
30

20 L —

10 G

Local tasks rate (%age)

Workloads
(b)

Figure 7. A comparison local task allocation rate (percentage) for AMS-ERA, Hadoop-Fair, FOG,
IDaPS for (a) wordcount jobs with workloads {13, l,, I3, 14, Is} (b) for terasort jobs.
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workload I3 (b) a terasort workload.

4.6. Cost of Frugal Hadoop Cluster Setup

Building a Hadoop cluster with a diverse range of SBC models, each offering varying CPU,
memory, and storage resources, allowed for diversification. This approach facilitates cost
optimization by selecting models based on their price-performance ratio and the specific demands of
the workload. The cost of our cluster setup was USD 822 for the 11 SBC devices along with
networking essentials (cables, 2xGigabit Switches, a router) and SD Card storage media.

During our experimental investigations, we observed a notable performance gap between the
previous generation RPi 3B nodes and traditional PC setups, with the former exhibiting suboptimal
performance levels. However, with the introduction of AMS-ERA, which accounts for the
heterogeneous nature of resources within the cluster, we observed significant improvements in
execution times. Looking forward, we anticipate even greater performance enhancements with the
latest RPi 5 nodes, which boast improved onboard resources compared to their predecessors.

This evolution in hardware capabilities underscores the potential for frugal SBC-based edge
devices to not only enhance performance but also contribute to sustainability and cost-effectiveness
in data processing applications. With the anticipated decrease in the cost of RPi 5 devices and their
promising performance metrics, they present a compelling option for achieving both sustainability
and cost-effectiveness in edge computing environments.

5. Conclusions and Future Work

In this work we proposed Adaptive Multi-criteria Selection for Efficient Resource Allocation
(AMS-ERA) in Frugal Heterogeneous Hadoop Clusters addressing the critical challenge of resource
allocation in clusters with frugal Single-Board Computers (SBCs). By considering CPU, memory, and
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disk requirements for jobs and aligning them with available resources in the cluster, AMS-ERA
optimizes resource allocation for optimal performance. Through K-means clustering, available
resources are profiled and ranked based on similarity and proximity, enabling dynamic job
placement. A dynamic Analytical Hierarchy Process (AHP) refines the selection process by
integrating historical data through Hadoop APIs. Jobs are then assigned to the most suitable nodes,
ensuring load balancing in the heterogeneous cluster. Compared to Hadoop-Fair, FOG, and IDaPS
scheduling strategies, AMS-ERA demonstrates superior performance, reducing execution time by
27.2%, 17.4%, and 7.6% respectively in terasort and wordcount benchmarks. The results show that
the AMS-ERA is robust and performs consistently well across the diversified Map Reduce based
applications with various workload sizes. Furthermore, these also demonstrate that AMS-ERA
ensures reduced execution time and improved data locality compared to Hadoop Fair, FOG and
IDaPS. This study underscores the effectiveness of AMS-ERA in optimizing data layout, maximizing
parallelism, and accommodating resource constraints in frugal SBC-based Hadoop clusters, paving
the way for enhanced big data processing performance in resource-constrained environments.

AMS-ERA introduces a dynamic and adaptive approach to resource allocation, which could
revolutionize how operational tasks are managed in Hadoop clusters. By profiling and ranking
available resources and then aligning them with the job requirements, operational practices would
become more efficient and responsive to workload demands. The capability to profile resources using
K-means clustering and assign jobs based on a dynamic Analytical Hierarchy Process (AHP) provides
a flexible mechanism for job scheduling. This flexibility can lead to a more balanced workload,
reducing bottlenecks, and potentially allowing operations teams to focus on other critical aspects of
cluster management.

Since AMS-ERA is designed for frugal clusters with SBCs, its adaptive resource allocation
mechanism could significantly impact edge computing. It could allow edge devices to participate in
larger Hadoop clusters more effectively, opening new possibilities for data processing closer to the
data source. The AMS-ERA framework could facilitate the deployment of Hadoop clusters in more
constrained environments, like IoT applications or remote sites with limited infrastructure. By
optimizing resource allocation and reducing execution time, AMS-ERA can indirectly lead to reduced
energy consumption and operational costs. This is particularly relevant in SBC-based clusters, where
energy efficiency is crucial.

At the moment, AMS-ERA is limited to CPU, memory and disk utilization when considering job
placement in the cluster. This scope of criteria might not cover all aspects of resource allocation
efficiency, such as network bandwidth or I/O throughput. While the current version of AMS-ERA
does not explicitly incorporate these factors, they are indirectly addressed through load balancing
and job placement. AMS-ERA uses a dynamic Analytical Hierarchy Process (AHP) to adapt to
changes, there could be limitations in handling extreme fluctuations or sudden spikes in demand.
This may lead to suboptimal resource utilization or load balancing in some scenarios. In the future,
we intend to extend it to consider network localization, network capacities and node/rack-based job
placement. Furthermore, we intend to test AMS-ERA integrating real-time workflow datasets,
enabling more robust and efficient performance evaluations. This could enhance its application in
environments where real-time data processing is critical, such as stream processing or online
analytics.
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