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Abstract: For the Remotely Piloted Aircraft Systems (RPAS) market to continue its current growth
rate, cost-effective "Detect and Avoid" systems that enable safe beyond visual line of sight (BVLOS)
operations are critical. We propose an audio-based "Detect and Avoid" system, composed of
microphones and an embedded computer, which performs real-time inferences using a sound event
detection (SED) deep learning model. Two state-of-the-art SED models, YAMNet and VGGish, are
fine-tuned using our dataset of aircraft sounds and their performances are compared for a wide range
of configurations. YAMNet, whose MobileNet architecture is designed for embedded applications,
outperformed VGGish both in terms of aircraft detection and computational performance. YAMNet’s
optimal configuration, with > 70% true positive rate and precision, results from combining data
augmentation and undersampling with the highest available inference frequency (i.e. 10 Hz). While
our proposed "Detect and Avoid" system already allows the detection of small aircraft from sound
in real time, additional testing using multiple aircraft types is required. Finally, a larger training
dataset, sensor fusion, or remote computations on cloud-based services could further improve system
performance.

Keywords: deep learning; sound event detection; convolutional neural networks; audio processing;
embedded systems

1. Introduction

1.1. Motivation

Over the last years, the market for Remotely Piloted Aircraft Systems (RPAS) has grown
exponentially. Given the increasing number of operators, the market for professional RPAS is estimated
to exceed ¤10 billion in Europe by 2035 and generate more than 100,000 jobs, according to the SESAR’s
European Drones Outlook Study [1].

One of the key points to reach this potential market is the transition from operations within visual
line of sight to beyond visual line of sight (BVLOS), which offer a much higher added value. In fact,
SESAR estimates that approximately 50% of the professional market will focus on BVLOS operations in
rural environments for applications such as linear infrastructure inspection and monitoring, precision
agriculture, and surveillance. In these kinds of applications, aerial platforms fly at a Very Low Level
(VLL), a term which implies flight below 150 meters.

When it comes to performing BVLOS flights in rural environments, the main roadblock is the
absence of cost-effective "Detect and Avoid" systems approved by the aeronautical authorities. These
systems must ensure the absence of other aircraft, especially those flying at high speeds at VLL and
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which are part of the so-called ’non-collaborative traffic’, i.e. any air vehicle that does not provide its
position and whose detection depends only on ground-based systems.

Therefore, the two key aspects which highlight the relevance of this study are the recent changes in
RPAS regulation [2] and the need to unblock their potential market in the short term with cost-effective
technological developments, for the successful integration of their operations into non-segregated
airspace.

One of the particularities of RPAS is the fact that the pilot is not on board the aircraft, losing
the ability to directly detect other manned aircraft or RPAS. Thus, the concept of a "Detect and
Avoid" system for RPAS is introduced, which refers to the integration of sensors that allow the RPAS
to recognize the environment and to navigate safely avoiding encounters and potential collisions.
This problem is divided into two parts: the detection of objects around the aerial vehicle, and the
management of the path followed by the RPAS so that collisions do not occur. This paper focuses on
the first part of such a problem.

1.2. Related Work

This "Detect and Avoid" concept has been the subject of research in recent years [3], but a
standardized system for light RPAS has not yet been achieved. Current approaches involve large
aerial vehicles which carry complex sensors and heavy computer systems, and which operate under
Visual Flight Rules or Instrumental Flight Rules [4]. However, the requirements for such approaches
differ considerably from those of RPAS in VLL operations. Other solutions that help increase the
pilot’s ability to detect other aircraft are based on existing surveillance technologies such as Automatic
Dependent Surveillance-Broadcast (ADS-B). ADS-B uses transponders to broadcast information to
other airspace users such as their identifier, route, position, speed, etc. The main disadvantages are the
security vulnerabilities and the need to mount an ADS-B transponder on the aircraft – which is not
mandatory for general aviation or sport aircraft – making it not 100% reliable as a "Detect and Avoid"
system in VLL flights [5].

Although sensors for "Detect and Avoid" systems are commonly placed on board the aerial
platform (e.g. radar, visual cameras, ultrasonic, or laser), there are also systems which rely on
ground-based infrastructure. These systems limit the operational area of the RPAS, but they have the
advantage of reducing the aerial platform payload and the computational requirements on board and
are especially suitable for VLL operations. Regarding ground-based technology, one development
uses a Passive Secondary Surveillance Radar for aircraft surveillance [6], but their high cost limits their
adoption in most use cases. Another ground-based approach proposes combining Kalman filtering
and sensor fusion applied to video and acoustic vector sensor data for propeller aircraft detection and
tracking [7]. Although this system achieves state-of-the-art detection accuracy (Q1 = 66%, Q2 = 77%,
Q3 = 92%), it does so at distances < 300 meters and the author states an upper-detection limit of 1000
meters. More recently, a drone detection system using LIDAR technology has been proposed, although
its range is limited to a few hundred meters [8].

The current work is part of a larger project whose aim is to overcome the aforementioned
limitations through the development of a ground-based "Detect and Avoid" system. Its main goal
is the early detection of manned aircraft within a two-kilometer radius, by combining images and
audio acquired using low-cost sensors (cameras and microphones, respectively), advanced processing
capabilities, and deep learning methods to preserve safety in BVLOS operations of RPAS.

Regarding the detection from images, the main challenges are the angle of view and the image
resolution provided by low-cost cameras [9,10], since aircraft appear within just a few pixels for
distances greater than two kilometers, as shown in Figure 1.

Regarding the detection from audio, the two-kilometer range is also an important aspect. However,
the main challenges are the real-time detection of aircraft sounds and the avoidance of false positives
from surrounding and closer sounds, such as those produced by ground vehicles.
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Figure 1. Images from our dataset, captured from the ground-based system, showing a small aircraft
(SOCATA TB9) flying at a distance of two kilometers. Image resolution: 5472x3648 (20 MP); angle of
view: 32.9◦ (horizontal) and 24.8◦ (vertical). Long-range detection poses a challenge to both image and
audio-based strategies.

The task of determining the source of a sound is known as Sound Event Detection (SED). Although
conventional machine learning algorithms have been used for SED in the past, current state-of-the-art
approaches are based on deep learning models [11,12]. Over the last years, deep learning algorithms
have consistently outperformed conventional machine learning ones in the annual Detection and
Classification of Acoustic Scenes and Events (DCASE) challenge [11]. In fact, most DCASE 2020
competitors used deep learning models based on convolutional neural networks (CNN), recurrent
neural networks (RNN), or a combination of both, with the top performer achieving an F-score of 50%
for SED in domestic environments [13].

Hershey et al. [14] compared the performance of several CNN architectures using the AudioSet
dataset [15], which contains 5.24 million hours of labeled sounds (extracted from YouTube videos)
corresponding to 632 different sound classes. The compared models were AlexNet [16], VGG
(configuration E) [17], Inceptionv3 [18] and ResNet-50 [19]. Although they were originally designed
for image classification, their SED performance was similarly outstanding, with ResNet-50 achieving
an Area Under the Curve (AUC) value of 0.926. Alternative approaches have achieved state-of-the-art
performance using either RNNs [20], a combination of CNN and RNN architectures [21], or
Transformers [22]. Consequently, SED using deep learning has a number of current and potential
applications, including road surveillance [23], human activity monitoring [24], music genre recognition
[25], smart wearables and hearables, health care, and autonomous navigation [12].

Both approaches within this project – detection via image and audio – use supervised deep
learning techniques to ensure the robustness of the aircraft detection system. Subsequently, sensor
fusion techniques combining audio- and image-based predictions are applied with the aim of further
increasing the robustness of the system to meet future requirements of "Detect and Avoid" systems
demanded by the authorities.

The aim of this paper is the development of an audio-based "Detect and Avoid" system for small
aircraft using CNN models trained on our dataset of aircraft sounds. Our contributions to the field of
SED are the design and implementation of an embedded real-time aircraft detection system, and a
comparison between state-of-the-art deep learning models for SED.

The remainder of the paper is organized as follows. In Section 2 we describe the proposed
detection system, the dataset of aircraft sounds, and the SED models. In Section 3 we compare
the performance and computational requirements of each model and discuss the implications of
such results. Finally, in Section 4 we present the main conclusions of the study and make some
recommendations for future research.
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2. Materials and Methods

2.1. Aircraft detection system

The aircraft detection system, whose task is to detect small aircraft within a two-kilometer radius,
must run on a single self-contained, portable, embedded computer with a GPU that is powerful enough
to run real-time inferences using deep learning models.

The system is composed of microphones, cameras, and an embedded computer, as shown in
Figure 2 (a). The main sensors are two 20 megapixel RGB cameras (Basler acA5472-17uc with 25
mm Fujinon CF25ZA-1S lens) for image capture, and two directional microphones (Audio-Technica
AT875R) connected to a two-channel audio card (Focusrite Scarlett 2i2) for audio capture. The addition
of a servo motor allows a 360-degree rotation around the horizontal plane, which enables the cameras
and microphones to cover the entire area around the "Detect and Avoid" system. The embedded
computer where both image and audio data are acquired and analyzed is an NVIDIA Jetson TX2, and
the real-time inferences are sent to a ground control station via a 4G connection provided by a USB
network card. The current study focuses on the audio-based detection aspects of the system, which
includes recording audio through the microphones and performing real-time inferences within the
embedded computer to determine the presence or absence of nearby aircraft. A detailed description of
the NVIDIA Jetson TX2 configuration and model implementations is provided in Appendix A.

Figure 2 shows a summary of the audio-based "Detect and Avoid" processing pipeline. First,
audio signals are captured in real-time through the microphones (a). Then, the audio waveform is
transformed into log-scaled Mel spectrograms (b), which are in turn fed into the pre-trained CNN
model for feature extraction (c). Finally, a fully connected classifier determines if the sound belongs to
an aircraft or not (d).
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Figure 2. Proposed "Detect and Avoid" system which goes from capturing a sound to detecting an
aircraft. CNN and classifier schematics generated using NN-SVG [26].

2.2. Dataset: small aircraft sounds

The large amounts of data required to train deep learning models has motivated the creation
of a number of datasets containing sounds from urban [27–29], domestic [30], industrial [31,32], and
generic [15,33–35] environments. Nevertheless, sounds for our application are scarce and difficult to
produce, given the particular focus of our "Detect and Avoid" system: small aircraft flying at VLL and
within two kilometers of the microphones.

In order to fine-tune existing SED models, we have curated a dataset of small aircraft sounds
(’Small Aircraft’ dataset) representing the ’aircraft’ class. These audios were initially collected from
free online audio databases, directly accessible through their websites [36–38]. However, since the
available external data was not enough to successfully train our models, a data acquisition campaign
was performed at ATLAS (Air Traffic Laboratory for Advanced Unmanned Systems) [39]. ATLAS is
a test flight center located in Villacarrillo (Jaén, Spain) which is ideally suited for the development
of experimental flights with unmanned aerial vehicles. The data acquisition campaign, consisting
of a flight plan simulating a realistic scenario according to the objectives of the "Detect and Avoid"
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system, took place in September 2019. A SOCATA TB9 aircraft executed a circular trajectory around
the airfield runway, flying at an altitude between 90 and 230 meters, and at a distance between 1000
and 2250 meters from the aircraft detection system. With excellent weather conditions (i.e. light wind,
few clouds, and high illumination) the aircraft was able to complete 11 laps.

Given that the human ear can detect air variations between 20 and 20,000 Hz [40], that most
aircraft sounds are located in the range from 10 Hz to 250 Hz [41], and that the selected neural network
is limited to frequencies lower than 7.5 kHz, labeling was performed by a human operator. The
exclusion criteria were the lack of clear aircraft sounds, the presence of excessive noise, the presence of
multiple sounds together with aircraft sounds, and the type of aircraft sound (i.e. jet or large aircraft
sounds were excluded). After manual labeling, the combined duration of aircraft sounds from free
online sources (used for training) and from ATLAS (used for testing) was 0.6 hours.

Additionally, the ’UrbanSound8K’ dataset [27], which contains more than 8000 urban sounds (< 4
s) originally divided into 10 sound classes, has been used to represent the ’not aircraft’ class, with a
total duration of 8.75 hours. We choose this dataset since it contains a number of sounds (i.e. ’drilling’,
’engine idling’, ’jackhammer’ and ’air conditioner’) which are likely to produce false aircraft detections
in rural environments.

However, due to the large difference in total duration between both datasets, we face the problem
of class imbalance, where the minority class (i.e. ’aircraft’) contains a much lower number of samples
(i.e. feature vectors) than the majority class (i.e. ’not aircraft’), as seen in Table 1. To overcome this
problem, we follow four different strategies for the training data. Firstly, we undersample the ’not
aircraft’ class by randomly eliminating samples so that the size of both classes matches. We refer
to the resulting dataset as the ’Undersampling’ dataset. Secondly, we apply augmentation to the
’aircraft’ class to match the size of the ’not aircraft’ class. Our data augmentation strategies consist of
randomly applying the following modifications to the audio waveform: time stretching or compressing;
resampling; volume change; and addition of random noise with a uniform distribution [42]. The value
ranges for each augmentation are presented in Table 2. This is called the ’Data augmentation’ dataset.
Thirdly, we apply data augmentation to both classes, approximately doubling the number of samples
of the ’Data augmentation’ dataset, and refer to this as the ’Data augmentation*2’ dataset. Fourthly, we
undersample the ’not aircraft’ class by 50% and augment the ’aircraft’ class so that the size of both
classes matches and refer to this as the ’Hybrid’ dataset.

Table 1. Sample size for the ’aircraft’ and ’not aircraft’ classes, defined as the number of feature vectors
extracted from the audio waveforms for each dataset.

Dataset Aircraft sample size Not Aircraft sample size

Small Aircraft 21,398 244,750
Undersampling 21,398 40,247
Data augmentation 215,746 244,750
Data augmentation*2 427,916 446,765
Hybrid 135,910 154,759

Table 2. Range of values for different data augmentation strategies.

Augmentation Time stretch, % Resampling, % Volume change, % Random noise, %

Value range 75–150 90–110 65–120 ±1

2.3. Models: fine-tuning SED models

There are a number of deep learning-based SED models in the literature, but their large amount
of parameters makes training them from scratch unfeasible in most cases. Additionally, these models
already perform the task of extracting the distinct audio features which allow us to differentiate

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 November 2020                   doi:10.20944/preprints202010.0343.v2

https://doi.org/10.20944/preprints202010.0343.v2


6 of 14

between sounds. For these reasons, we decided to fine-tune state-of-the-art SED models using the
’Small Aircraft’ and ’UrbanSound8K’ datasets.

The process of fine-tuning, which includes transforming the audio signal into images (Section
2.3.1), extracting audio features using pre-trained CNN models (Section 2.3.2), and classifying such
features into ’aircraft’ or ’not aircraft’ (Section 2.3.3), is described next.

2.3.1. Audio post-processing: from sound to images

Figure 3 shows a detailed description of the feature extraction process using pre-trained CNN
models. Firstly, the original audio waveform (a) is converted to a magnitude spectrogram with 257
frequency bins (b) using a short-time Fourier transform (STFT) with a 25 ms window size, a 10 ms
window hop, and a periodic Hann window. These values, used in the official implementations of
YAMNet [43] and VGGish [44], were chosen based on the work on large-scale audio classification
by Hershey et al. [14]. The magnitude spectrogram is then converted to a Mel spectrogram with 64
Mel bins. The log-scaled Mel spectrogram (c) is calculated as the natural logarithm of the offset Mel
spectrogram. This offset is added to avoid the calculation of the logarithm of 0. The log-scaled Mel
spectrogram is framed into 90% overlapping image frames of 0.96 s with a 0.096 s frame hop (d). These
frames are then passed as individual inputs to the pre-trained CNN models (e). Finally, the CNN
models produce a feature vector (f) for each corresponding image frame.
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Figure 3. Audio post-processing and feature extraction applied to one of the audio waveforms from
the ’Small Aircraft’ dataset.

2.3.2. Feature extraction using pre-trained CNN models

State-of-the-art CNN models have been identified in the SED literature and selected according to
their reported performance in the main SED conferences and challenges [14,16–22]. However, since the
"Detect and Avoid" system must run on an NVIDIA Jetson TX2, the limited computational resources
allocated to the SED task conditions the choice of deep learning models. We have chosen the official
implementations of the VGGish [44] and YAMNet [43] architectures as they provide a good trade-off
between SED performance and computational cost.

VGGish – based on the VGG architecture [17] (configuration A) – has an input size of 96x64,
drops the last block of convolutional and maxpool layers, and uses two 4096-wide fully connected
layers followed by a 128-wide fully connected layer. Thus, VGGish outputs a feature vector of size
128. YAMNet uses the MobileNet_v1 architecture [45], composed of depthwise separable convolutions
which drastically reduce computational cost and model size. YAMNet’s implementation consists of
one convolutional layer and 13 depthwise-pointwise layer pairs with batch normalization and ReLU,
followed by average pooling and a 1000-wide fully connected classifier. For the purpose of fine-tuning,
the classifier is removed, making YAMNet’s new output a feature vector of size 1024.

2.3.3. Aircraft sound classification

The classifier, which is trained using the feature vectors extracted from the ’Small Aircraft’ and
’UrbanSound8K’ datasets, consists of an input layer whose size matches that of the feature vectors (128

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 November 2020                   doi:10.20944/preprints202010.0343.v2

https://doi.org/10.20944/preprints202010.0343.v2


7 of 14

for VGGish and 1024 for YAMNet, respectively), a fully connected layer of size 1024, an output layer
with a softmax activation function and two outputs which correspond to the ’aircraft’ and ’not aircraft’
classes, respectively.

During training, the classifier optimizes the validation cross-entropy loss via mini-batch stochastic
gradient descent with Nesterov momentum, a constant learning rate of 0.001, a decay of 1e-6, and a
momentum of 0.9. The classifier trains for 1000 epochs with a variable train/test split which depends
on the choice of dataset. Each mini-batch consists of 256 randomly selected unique feature vectors
which are seen exactly once for every epoch. The classifier, together with the pre-trained CNN models,
is implemented in Python using TensorFlow 1.15.0 and Keras 2.2.4.

3. Results and Discussion

We test the performance of VGGish and YAMNet for each dataset described in Section 2.2 and for
four different inference frequencies: 1, 2, 4, and 10 Hz. The inference frequency determines how often
a new inference is computed. Since the computational cost of a single inference is constant, the higher
the inference frequency the higher the overall computational cost. Furthermore, for high inference
frequencies, inferences may overlap and require to be computed in parallel.

3.1. Performance metrics

The performance metrics chosen to compare SED models and datasets are described next. The
true positive rate (TPR), also called sensitivity, recall, or hit rate is calculated as TPR = TP

TP+FN , where
TP and FN represent the number of true positives and false negatives, respectively. The false positive
rate (FPR), also called fall-out, is calculated as FPR = FP

FP+TN , where FP and TN represent the number
of false positives and true negatives, respectively. On the one hand, the TPR indicates what proportion
of aircraft is correctly detected by the proposed "Detect and Avoid" system. On the other hand, the
FPR describes the likelihood of sending false detection alarms.

If these metrics are collected while varying the confidence threshold, a so-called Precision-Recall
(P-R) curve can be obtained where the x-axis represents the recall (TPR) and the y-axis the precision
(PRE), calculated as PRE = TP

TP+FP [46]. P-R curves are a useful technique for visualizing the
performance of binary classifiers for imbalanced datasets. The points laying on the horizontal line
y = TP+FN

TP+FN+FP+TN corresponds to a random classifier. The ideal performance is located at (1, 1) where
PRE and TPR are both 100%.

3.2. Dataset and inference frequency comparison

Each model is tested for each possible combination of datasets and inference frequencies, as
shown in Table 3. For each inference frequency, the best TPR and FPR values are highlighted in bold.
Furthermore, for each model, the best overall TPR and FPR are highlighted in red. For both models,
the ’Data augmentation*2’ and ’Hybrid’ datasets show the best performance in terms of FPR and TPR,
respectively, across all inference frequencies. The best overall performance for YAMNet and VGGish
corresponds to an inference frequency of 10 and 1 Hz, respectively. However, while VGGish’s best
FPR (5.03%) is 1% lower than YAMNet’s (6.11%), YAMNet’s best TPR (74.90%) is 11% higher than
VGGish’s (63.91%). Furthermore, the performances of each model’s best configuration are compared
using Precision-Recall curves in Figure 4. Here, YAMNet also performs better than VGGish, but this
time in terms of precision.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 November 2020                   doi:10.20944/preprints202010.0343.v2

https://doi.org/10.20944/preprints202010.0343.v2


8 of 14

Table 3. YAMNet and VGGish performance according to TPR and FPR, expressed as a percentage, for
four datasets and four inference frequencies.

Inference frequency

1 Hz 2 Hz 4 Hz 10 Hz

Models Datasets TPR, % FPR, % TPR, % FPR, % TPR, % FPR, % TPR, % FPR, %

YAMNet

Undersampling 66.44 8.92 66.20 8.64 65.67 8.73 65.83 8.35
Data augmentation 71.26 7.17 70.18 6.98 69.37 6.88 69.86 6.64
Data augmentation*2 68.05 6.27 67.49 6.25 67.08 6.34 67.45 6.11
Hybrid 74.48 8.65 74.74 8.25 74.54 8.07 74.90 7.77

VGGish

Undersampling 62.76 6.84 62.69 7.00 61.61 7.31 62.00 7.61
Data augmentation 56.78 5.60 56.26 5.66 56.91 5.95 57.06 6.20
Data augmentation*2 53.56 5.03 54.04 5.14 54.79 5.26 54.34 5.73
Hybrid 63.91 6.24 63.74 6.35 63.32 6.36 62.81 6.68
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Figure 4. Precision-Recall curves comparing YAMNet and VGGish’s best-performing configurations.

Given YAMNet’s superior performance across all datasets and inference frequencies, a more
detailed analysis is performed next. Figure 5 shows the P-R curves corresponding to each inference
frequency for all datasets. The largest differences in performance are observed across different datasets.
For all inference frequencies, the ’Undersampling’ dataset shows the worst performance since it
suffers from the removal of 83% of ’not aircraft’ samples without any data augmentation benefits.
The ’Data augmentation’ and ’Data augmentation*2’ datasets benefit from the data augmentation
strategies. Their performance is very similar – as evidenced by the PR curves – which indicates that,
although it is beneficial to apply data augmentation to the aircraft class, further data augmentation
applied to both classes has negligible effects. The ’Hybrid’ dataset benefited both from augmenting
the minority ’aircraft’ class, and from undersampling the majority ’not aircraft’ class to ensure class
balance. Regardless of the choice of inference frequency, and excluding the ’Undersampling’ dataset,
the results for the remaining datasets are very similar for Recall > 0.7. This suggests that, in the absence
of enough data representative of the minority class, a data augmentation strategy can provide a boost
in prediction performance.
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Figure 5. YAMNet Precision-Recall curves comparing each dataset for different inference frequencies.

Figure 6 shows the Precision-Recall (P-R) curves corresponding to each dataset for all inference
frequencies. As the inference frequency is increased from 1 to 10 Hz, performance improves for all
datasets. Although it has a lower impact on performance than the choice of the dataset, there is also a
clear benefit to using higher values of inference frequency.
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Figure 6. YAMNet Precision-Recall curves comparing each inference frequency for different datasets.

3.3. Computational performance assessment

To assess the computational performance of both models, Table 4 shows inference times – defined
as the time that the computer takes to read an audio waveform, extract a feature vector and make a
prediction – for four inference frequencies. These tests are performed on an NVIDIA Jetson TX2 for
the task of audio-based detection alone. YAMNet’s latency is one order of magnitude smaller than
that of VGGish, with an average inference time of 0.154 s for an inference frequency of 10 Hz. These
differences in inference times may be explained by model parameter size (4 M for YAMNet [45] vs
133 M for VGGish [17]) and model complexity thanks to the use of depthwise-separable convolutions
(which reduce the number of multiply-accumulate operations). Furthermore, RAM consumption
was one order of magnitude smaller for YAMNet (35 MB) than for VGGish (360 MB) for all inference
frequencies. Finally, CPU and GPU usage for both models is similar, regardless of the choice of
inference frequency.

For both models, depending on the value of the inference frequency, a new inference may start
before the previous one has finished, meaning that two or more inferences will be computed in parallel.
In the case of VGGish, high inference frequencies result in the parallel computation of dozens of
inferences.

Table 4. YAMNet and VGGish inference times (mean ± standard deviation) [s] for four inference
frequencies.

Inference frequency

Models 1 Hz 2 Hz 4 Hz 10 Hz

YAMNet 0.140 ± 0.022 0.144 ± 0.026 0.138 ± 0.026 0.154 ± 0.018
VGGish 1.637 ± 0.073 1.632 ± 0.052 1.618 ± 0.061 1.637 ± 0.086
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4. Conclusions

We have developed a real-time, audio-based aircraft detection system using deep learning models
fine-tuned with our ’Small Aircraft’ dataset. We have identified YAMNet – fine-tuned using our
’Hybrid’ dataset – with an inference frequency of 10 Hz as the optimal configuration in terms of TPR
and PRE. Despite the project constraints on the available computational resources, this model is able to
provide accurate detection results in real-time. This study has also highlighted how data augmentation
strategies can significantly improve model performance for imbalanced audio datasets. Although the
aircraft type used for testing (SOCATA TB9) was different from those used for training (Edge 540,
Cessna 172E, Cessna 152, and a number of historical aircraft and aircraft engines), further testing using
different aircraft types will be performed in the future to strengthen our current conclusions.

4.1. Future work

On the one hand, given the limited sample size of the ’aircraft’ class, one immediate direction for
future work is increasing the size of the ’Small Aircraft’ dataset during additional flight campaigns
using different aircraft types. On the other hand, optimizing YAMNet’s implementation to reduce
feature extraction and inference computational cost would allow an even higher inference frequency
and consequently a higher detection accuracy. Investigating the potential superiority of the wavelet
transform over the STFT for audio post-processing [47] could also result in detection accuracy gains.
Additionally, combining multiple aircraft detection systems located within a certain distance of
each other and taking advantage of the microphones’ high directionality would allow us to localize
the aircraft, thus increasing the utility of the current design. After some adaptation, the detection
system could be integrated within a fixed-wing UAV to reduce the effect of ground sounds, while the
microphones’ high directionality could also be used to minimize the effect of rotor noise. Finally, an
alternative to performing inferences on the embedded computer would be to stream the audio feed via
a remote connection to a cloud server. With the advent of 5G networks, this application is likely to
exploit the lower latency, higher capacity and increased bandwidth that they provide. This remote
server, not being as limited by computational resources as the embedded computer onsite, would be
able to use more complex SED models in real time with even higher accuracy than YAMNet.
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ADS-B Automatic Dependent Surveillance-Broadcast
ATLAS Air Traffic Laboratory for Advanced Unmanned Systems
BVLOS Beyond Visual Line of Sight
CNN Convolutional Neural Network
DCASE Detection and Classification of Acoustic Scenes and Events
FN False Negatives
FP False Positives
FPR False Positive Rate
P-R Precision-Recall
PRE Precision
RNN Recurrent Neural Network
RPAS Remotely Piloted Aircraft Systems
SED Sound Event Detection
STFT Short-Time Fourier Transform
TN True Negatives
TP True Positives
TPR True Positive Rate
VLL Very Low Level

Appendix A. NVIDIA Jetson TX2 configuration and implementation

The audio-based detection system is implemented on a Rudi Embedded System with an NVIDIA
Jetson TX2 embedded computer. Firstly, the NVIDIA SDK manager (https://developer.nvidia.com/
nvsdk-manager) and the Linux4Tegra Board Support Package (https://connecttech.com/resource-
center/l4t-board-support-packages/) are downloaded. Secondly, the instructions to install the NVIDIA
JetPack SDK, required for artificial intelligence applications, and the Linux4Tegra Board Support
Package (https://connecttech.com/resource-center/kdb375/) are followed. The detection system uses
Jetpack 4.3 with TensorFlow 1.15.0 and Keras 2.2.4 installed using virtualenv 16.7. The instructions to
install TensorFlow 1.15 and all other required dependencies are provided here: https://docs.nvidia.
com/deeplearning/frameworks/install-tf-jetson-platform/index.html. The technical specification of
the Rudi Embedded System is:

• GPU: 256-core NVIDIA Pascal architecture
• CPU: Dual-Core NVIDIA Denver 1.5 64-Bit and Quad-Core ARM Cortex-A57 MPCore processor
• RAM: 8 GB 128-bit LPDDR4
• Storage: 32 GB eMMC 5.1

Both YAMNet and VGGish are implemented on the embedded computer using a Python3 script
which loads the required libraries and the CNN feature extractor and classifier models, handles audio
acquisition and processing, performs inferences at the given inference frequency (i.e. 1, 2, 4 or 10 Hz)
and provides the corresponding predictions.
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