

Review

Not peer-reviewed version

---

# Exploring the Emerging Link Between Obesity-Induced Meta-Neuroinflammation and Osteoarthritis Pain Mechanisms

---

[Flaminia Coluzzi](#) \* , [Kevin Cornali](#) , Maria Sole Scerpa , [Annalisa Noce](#) \*

Posted Date: 1 August 2025

doi: [10.20944/preprints202508.0003.v1](https://doi.org/10.20944/preprints202508.0003.v1)

Keywords: obesity; chronic pain; meta-neuroinflammation; low back pain; osteoarthritis; oxidative stress; palmitoylethanolamide; gut microbiota; gut dysbiosis; cognitive impairment



Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

# Exploring the Emerging Link Between Obesity-Induced Meta-Neuroinflammation and Osteoarthritis Pain Mechanisms

Flaminia Coluzzi <sup>1,2,\*</sup>, Kevin Cornali <sup>3</sup>, Maria Sole Scerpa <sup>2</sup> and Annalisa Noce <sup>4,5,\*</sup>

<sup>1</sup> Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy

<sup>2</sup> Unit Anesthesia, Intensive Care and Pain Therapy, Sant' Andrea University Hospital, 00189 Rome, Italy

<sup>3</sup> Department of Experimental Medicine, PhD School in Biochemistry and Molecular Biology, University of Rome Tor Vergata, 00133 Rome, Italy

<sup>4</sup> Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy

<sup>5</sup> UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy

\* Correspondence: flaminia.coluzzi@uniroma1.it (F.C.); annalisa.noce@uniroma2.it (A.N.); Tel.: +39-0633771 (F.C.); +39-0620902194 (A.N.).

## Abstract

Obesity is a complex, heterogeneous, chronic and progressive disease, which correlates with an augmented risk to develop several comorbidities with an enhanced risk of death. In addition to metabolic and cardiovascular diseases, obesity is related to depressive disorders and neurodegenerative diseases, in which gut microbiota dysbiosis plays a central role in triggering the meta-neuroinflammation through the gut-brain axis. In obese patients, the release of inflammatory mediators by dysfunctional adipocytes and the oxidative stress induces meta-neuroinflammation, which have been identified as the main physio-pathological pathway underlying chronic pain syndromes, particularly osteoarthritis, low back pain, fibromyalgia, headache, and painful diabetic peripheral neuropathy. Both the peripheral and the central nervous system are involved in neuroinflammatory processes, leading to central sensitization and pain chronification. Meta-neuroinflammation is also a potential peripheral target of treatment in degenerative joint disease, in order to minimize the traditional pharmacological approaches use. The ultramicroinjected palmitoylethanolamide is able to control the body weight, to exert neuroprotective, anti-neuroinflammatory and analgesic actions, and to restore intestinal eubiosis, with beneficial effects on mental disorders via the gut-brain axis. Finally, adelmidrol, as a PEA congener, available for intra-articular injection associated with hyaluronic acid, has been shown to modulate meta-neuroinflammation in knee osteoarthritis.

**Keywords:** obesity; chronic pain; meta-neuroinflammation; low back pain; osteoarthritis; oxidative stress; palmitoylethanolamide; gut microbiota; gut dysbiosis; cognitive impairment

## 1. Epidemiology of Obesity and Chronic Pain Syndromes

### 1.1. Obesity and Its Comorbidities

Obesity is a complex, heterogeneous, chronic, and progressive disease, which substantially affects more than 890 million (13%) adults [1]. According to the World Health Organization (WHO), the diagnosis of overweight is made by measuring a Body Mass Index (BMI) greater than or equal to 25 kg/m<sup>2</sup> and obesity by a BMI greater than or equal to 30 kg/m<sup>2</sup>. Central obesity is defined by a waist circumference greater than 102 cm in men and 88 cm in women. In 2022, 2.5 billion adults worldwide were overweight and about 16% of population were obese [2].

Worldwide, obesity is a major public health problem associated with increased morbidity and mortality for all-causes [3]. Although obesity is recognized as a high-risk condition for the development of other chronic degenerative non-communicable diseases, this pathology has been declared as a disease *per se* that leads to a reduction in the quality and expectancy of life [4]. In obesity patients, the adipocyte hypertrophy, visceral and ectopic adiposity, increased production of adipokines with anorexigenic function, such as leptin, and of a plethora of pro-inflammatory cytokines, such as tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ), interleukin (IL) -6, IL-1 $\beta$ , and resistin, predisposes the organism to the adiposopathy (or "sick fat") [5]. The latter is defined as a "pathologic adipose tissue (AT) anatomic/functional disturbances induced by positive caloric balance in genetically susceptible individuals that results in adverse endocrine and immune responses that may cause or worsen metabolic dysfunction" [3]. This alteration is also sustained by dysfunctional adipocytes, resulting in an imbalance between the production of pro-inflammatory and anti-inflammatory cytokines, in favor of the first. This condition predisposes the body to the chronic low-grade inflammation or meta-inflammation, which is observed in all tissues involved in energy homeostasis [6]. The low-grade inflammation is also sustained by infiltration of bone marrow-derived immune cells that signal via the production of cytokines and chemokines. Despite its low-grade nature, meta-inflammation negatively impacts remote organ function, a phenomenon that is considered causative of the complications of obesity. The visceral and ectopic fat, either in the liver, muscle or heart, can increase the risk of developing insulin resistance, type 2 diabetes mellitus (DM), and cardiovascular diseases (CVDs) [7]. In fact, the obesity correlates with an augmented risk of several comorbidities that exponentially increase the risk of death. In this regard, the risk of all-cause mortality increases as the number of years lived with obesity increases, regardless of the current BMI [8]. Notably, two-thirds of obesity-related mortality is attributable to CVDs, including atherosclerotic disease, heart failure, thromboembolic disease, arrhythmias, and sudden cardiac death. In fact, for every additional 2 years lived with obesity, the risk of cardio-vascular mortality rises significantly by 7% [8]. CVDs are followed by type 2 DM, cancer (especially esophagus, colon, rectum and liver), and chronic kidney disease (CKD) [9,10]. Obesity contributes to the development of CKD among 15–30% of patients, though direct and indirect mechanisms [11]. Among the direct mechanisms, the altered secretion of adipokines and the lipotoxicity lead to the accumulation of perirenal AT and of fatty acids in the renal parenchyma. The result is a tubule-interstitial damage, that involves either the proximal tubular epithelial cells and endothelial cells [12]. The hemodynamic changes, such as glomerular hyperfiltration and microvascular stretching, and the hyperactivation of renin-angiotensin-aldosterone system are the other two direct mechanisms contributing to inflammation, oxidative stress and fibrosis [13,14]. This triad is exacerbated if the patient presents type 2 DM, arterial hypertension and atherosclerosis, namely comorbidities and indirect mechanisms of obesity itself, that are responsible for the development and progression of CKD [15].

Obesity is also related to structural and functional abnormalities that reduced patients quality of life (QoL). These include gastrointestinal reflux disease, gallbladder disease, osteoarthritis (OA), obstructive sleep apnea/obesity hypoventilation syndrome, psychological and eating behavior disorders, anxiety and depression and impairment of the physical performance [16]. In fact, obese patients often have impaired cognitive functioning and present a major depressive disorder, with negative effects on measures of processing speed and executive function, as evidenced by mood assessment questionnaires and neuropsychological tests [17]. Furthermore, obesity appears to be associated with greater emotional dysregulation, compared to normal-weight condition. In fact, obesity shares many psychological features with eating disorders, especially with binge eating disorder and alexithymia [18].

## 1.2. Obesity and Chronic Pain

Chronic pain is a widespread health issue, which affects over 20% of adult population [19]. In obese patients, chronic pain syndromes are among the most common observed comorbidities, with their relevant psychosocial consequences. These two phenomena are closely related, with each

condition adversely impacting the other, because of limited mobility, mood disorders, and common chemical mediators [20].

Numerous studies investigated the relationship between OA-related pain and obesity, which is the focus of this review. Among older people, long-term obesity has been identified as a significant predictor of pain, particularly with an increased risk of back, hip, and knee pain [21], which are the most common sites of OA. Among OA-related pain syndromes, low back pain (LBP) has the highest prevalence in general population, affecting over 600 million people globally. LBP is supposed to be a major determinant of age-standardized disability-adjusted life-years (DALYs) in the next 25 years, while improvement of BMI has been proposed as one of the strategies for improving life expectancy [22]. Overweight and obesity have been recognized as risk factors for LBP. Obesity increased the incidence of LBP, with an odd ratio of 1.36 and 1.4, respectively in men and women [23]. In a recent cohort study conducted in Norway, higher values of BMI have been associated with higher incidence of LBP, particularly among very obese women [24], however the exact magnitude of this phenomenon is still under investigation.

Advancing age and adiposity also contribute to musculoskeletal degenerative diseases, which lead to sarcopenic obesity (SO), a condition that links osteopenia/osteoporosis, muscle loss, and obesity [25]. SO is associated with reduced physical activity, loss of independence among older adults and is a determinant risk factor for frailty [26]. In postmenopausal women, SO had greater effect on knee OA compared to obesity without sarcopenia and to sarcopenia without obesity [27].

Obesity has been also associated also with other pain syndromes, such as painful diabetic peripheral neuropathy [28], headache [29], and fibromyalgia [30].

Diabetic neuropathy is the most common complication of DM, affecting about 50% of diabetes patients and about 70% of patients with diabetic neuropathies receive medications for neuropathic pain [31]. Visceral obesity is an independent risk factor for diabetic peripheral neuropathy [32].

Different studies investigated obesity as a risk factor for headache/migraine. Although migraine frequency was not associated with BMI, obese patients seem to have an higher prevalence of frequent and severe migraine headaches [33]. The exact relationship between these two comorbidities is not fully understood, however, there is evidence that obesity could be a consequence of migraine, through the effect of inflammatory mediators, adipokines, and alterations of gut microbiota [34].

Finally, 35% of adults with fibromyalgia are obese and obesity impacts most of the clinical features of fibromyalgia, such as tenderness and stiffness, fatigue, physical functioning, sleep, and cognitive function, leading to a reduced QoL [35]. Among women suffering from fibromyalgia, obese patients displayed higher levels of anxiety and depression, compared with the normal-weight subjects [36]. Even in this case, it is not possible to understand whether obesity is a cause or a consequence of fibromyalgia [30].

## 2. Mechanisms Underlying Obesity and Osteoarthritis: Role of Oxidative Stress and Meta-Neuroinflammation

### 2.1. Obesity and Neuroinflammation

AT is an endocrine organ distributed throughout the body and is characterized by high metabolic and dynamic activity [37]. AT regulates several physiological mechanisms through the secretion of adipocytokines (also called adipokines) into the bloodstream, creating a communication with other tissues and organs [38]. In adult mammals, AT is classified in two different types: white and beige. White AT (WAT) accounts for the largest percentage of AT in the human body and is localized around the viscera, subcutis, and perivascular. WAT stores excess energy in the form of triglycerides and secretes adipokines and vasoactive factors. Its phenotype changes in patients affected by obesity, becoming hyperplastic and hypertrophic, suffering the infiltration of the immune cells and secreting vasoconstrictor factors. Beige AT (BAT) mainly surrounds the thoracic aorta. It possesses anti-inflammatory and cardioprotective properties and is involved in the thermogenesis, dissipating energy as heat. For this reason, BAT has anti-obesogenic and anti-diabetic properties,

ensuring cardio-metabolic health [39]. Lean individuals with normo-metabolic function present an increased production of anti-inflammatory ILs (like IL-10, IL-5, IL-4, IL-13, IL-25, IL-33) and anti-inflammatory adipokines (such as adiponectin, omentin, apelin and secreted frizzled-related protein-Sfrp-5) [40]. Moreover, in a healthy AT, macrophages constitute 5-10% of the cells, of which only a small part is in a pro-inflammatory state (M1), because the remainder of the resident macrophages is in an anti-inflammatory state (M2) [41]. During chronic low-grade inflammation, which characterizes patients with obesity, AT is mainly characterized by hypertrophic adipocytes that accumulate lipid droplets, secrete pro-inflammatory adipokines (like leptin, resistin, and visfatin), and amplify the infiltration into AT itself of pro-inflammatory cells (such as M1 macrophages, T helper 1 cells, natural killer cells, CD8<sup>+</sup> T cells, neutrophils, and mast cells).

The dysbiosis of the gut microbiota also plays a central role in exacerbating AT inflammation, negatively impacting on distant organ function, such as the brain. In fact, despite its low-grade nature, chronic inflammation is the leitmotif that links obesity with neuroinflammation. The central nervous system (CNS) requires a highly controlled microenvironment to support its physiological functioning. This is possible thanks to the presence of three biological barrier at the blood-brain interface, that effectively separates the brain from the rest of the body [42]. These include the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier and the arachnoid barrier [43]. Brain microvascular endothelial cells display distinctive morphological, structural and functional characteristics that differentiate them from other vascular endothelia. In detail, these cells express: (i) the tight junctions (TJs), namely intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular pathways between adjacent endothelial cells, thus preventing the unregulated passage of polar molecules between the blood and the brain [44]; (ii) the absence of fenestrations [45]; (iii) the lack of pinocytic vesicles [46]; (iv) the active transport mechanisms, specifically expressed by the endothelial cells of the cerebral capillaries. These mechanisms ensure the transport of nutrients and essential amino acids into the CNS and the blockade of endogenous and xenobiotics molecules, that could be harmful to the ideal milieu for neural transmission [47]. For this reason, the BBB is an anatomo-functional structure that protects the CNS from systemic circulation, not allowing the pro-inflammatory factors, toxins, immune cells and pathogens to be translocated into the brain [48]. The integrity of the BBB is compromised in patients with obesity. Moreover, obese patients have as a comorbidity type 2 DM that downregulates the TJs proteins, leading to the destruction of claudin-5, zonula occludens-1 (ZO-1), occludin and caveolin [49]. The upregulation of the matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is observed in obese subjects, and it is associated with some obesity-related parameters, including BMI, waist circumference, blood pressure and endothelial-dependent response [50]. In addition, hyperglycemia leads to the amplification of oxidative respiration and the production of reactive oxygen species (ROS). ROS react with nitric oxide to produce peroxynitrite, which mediates MMPs activation and TIMPs inhibition, causing basement membrane (BM) degradation [51] (namely the second barrier of entry for the immune system) [52]. The BM regeneration is unable to compensate the protease activity of the MMPs. In fact, the increase in fibronectin, collagen IV and laminin compromises the attachment of cells to the BM and the downregulation of heparin-sulfated proteoglycans removes anionic protein binding sites, destabilizing the BM [53] and allowing the extravasation of leukocytes. Leukocytes express highly glycosylated molecules on their surface, namely the P-selectin glycoprotein ligand-1 (PSGL-1), consenting selectins adhesion receptors to bind them and triggering the neuroinflammation response through the microglia activation. The interaction between PSGL-1 and P-selectin and E-selectin mediate the initial capture and the rolling of leukocytes on the vascular endothelium in search of a point for extravasation, which can occur by paracellular and transcellular diapedesis. Most transmigration into the perivascular space occurs via a paracellular mechanism. The immune cells extend pseudopods and pass through the endothelium, thanks to the interaction with platelet endothelial cell adhesion molecule (PECAM) and junctional adhesion molecule-A (JAM-A). When leucocytes cannot find an endothelial junction, transcellular diapedesis occurs [54,55]. The leukocyte

extravasation into the brain parenchyma is also permitted by MMP-9, which remove away BM filaments [56]. The impaired BM also becomes thicker, leading to increased vascular permeability [57]. This process is favored by the activation of protein kinase C (PKC), advanced glycation end-products (AGEs), transforming growth factor - $\beta$  (TGF- $\beta$ ) and connective tissue growth factor [52]. AGEs act on AGE receptor (RAGE) to intensify nuclear factor kappa  $\beta$  activation (NF- $\kappa\beta$ ), increasing pro-inflammatory gene expression, including RAGE itself and pro-inflammatory cytokines, like TNF- $\alpha$  [58]. Astrocyte endfeet wrap around the entire CNS vascular tree and perform important functions in regulating the BBB, through the cerebral blood flow, nutrient uptake, and waste elimination [59]. During neuroinflammation, astrocytes produce and secrete a wide range of molecules and chemokines to attract circulating peripheral immune cells, including CD8 $^{+}$  T cells, B cells, NK cells, monocytes and macrophages into the CNS [60]. Conversely, astrocytes can boost effector functions of peripheral immune cells, including NK cells and CD8 $^{+}$  T cells, through the production of IL-15. TH 17 cells promote pathogenic activities of astrocytes by expressing receptor activator of nuclear factor-kappa  $\beta$  (RANK) ligand and granulocyte-macrophage colony-stimulating factor (GM-CSF). The RANK activation by TH 17 cell-expressed RANK ligand triggers the production of C-C motif chemokine ligand 20 - CCL20, triggering the recruitment of effector T cells in the CNS. In astrocytes, GM-CSF induces the expression of pro-inflammatory genes [61], creating a cytotoxic state mediated by the production of IL-1 $\beta$ , IL-6, TNF- $\alpha$ , prostaglandins and vascular endothelial growth factor (VEGF) that migrate into the perivascular space through the destroyed BM [52]. Chronic overexposure of VEGF also increases the expression of intercellular adhesion molecule-1 (ICAM-1) and major histocompatibility complex (MHC) class I and II expression, modulating immune responses in the CNS through opening of the BBB and allowing contacts between CNS antigens and blood-borne immune mediators [62]. Activated microglia migrates to the injured area and release proinflammatory cytokines, NO, ROS, prostaglandins, and chemokines, resulting in the additional chemoattraction of circulating leukocytes [63]. Moreover, leptin leads to the activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF-1) in the endothelial cells of the CNS, leading to VEGF production. VEGF activates PKC- $\beta$  and Rho-kinase (ROCK), exacerbating neuroinflammation. Activation of PKC- $\beta$  is also due to increased diacylglycerol concentrations, typically observed in hyperglycemic conditions [64,65]. This pathway increases the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, producing O<sub>2</sub><sup>•</sup>. O<sub>2</sub><sup>•</sup> mediates the phosphorylation of the inhibitor of kappa  $\beta$  kinase (IKK) and induces downstream degradation of I $\kappa\beta\alpha$ , leading to the nuclear localization and transcriptional activation of NF- $\kappa\beta$  [66]. The activation of NF- $\kappa\beta$  regulates the synthesis, the release and the recruitment of various inflammatory mediators capable of disrupting the BBB through the reorganization of the actin cytoskeleton in brain microvascular endothelial cells, the disruption of TJs formation, the inhibition of the proliferative and migratory capacity of endothelial cells and astrocytes, and the apoptosis [67]. On the other hand, ROCK-mediated cellular pathway inhibits the expression of endothelial nitric oxide synthase (eNOS), which reduces the availability of NO, inducing endothelial dysfunction [68]. This is due to increased endothelial Na<sup>2+</sup> channels (EnNaCs) activity, leading to polymerization of cortical actin fibers. Subsequently, it is possible to observe a reduction of eNOS activity and a decrease of nitric oxide (NO) production, resulting in increased vascular stiffness [39]. Mediators of obesity-induced endothelial dysfunction also include altered sirtuin 1 expression, oxidative stress, autophagy machinery and endoplasmic reticulum stress [68]. Inactivation of eNOS causes the activation of microglia, promoting a pro-inflammatory phenotype in the brain, downregulating the claudin-5 and occludin and increasing the BBB permeability caused by VEGF signaling from astrocytes [69]. Moreover, eNOS-deficient mice exhibit impaired cognitive performance, suggesting that loss of endothelial NO has a detrimental effect on the functions of neuronal cells [70]. At the same time, an increased NO production in the CNS is associated with the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and Alzheimer's disease (AD) [71]. In fact, the pathological manifestations of AD include not only the accumulation of amyloidbeta-protein (A $\beta$ ) and hyperphosphorylated tau (pTau) in the brain, but also microgliosis, astrogliosis, and

neurodegeneration mediated by metabolic dysregulation and neuroinflammation [72]. A $\beta$  also increases ROCK-1 activity in neurons [73] and, in turn, ROCK-1 enhances cleavage of the amyloid precursor protein (APP), producing increased A $\beta$  formation [74]. Neuroinflammation is characterized by a dysfunction of the influx transporters that impedes the supply of glucose and nutrient molecules, leading to hypometabolism that is detrimental to neuronal activity. Downregulation or decreased activity of efflux transporters fails to eliminate neurotoxic molecules, particularly A $\beta$ , aggravating A $\beta$  deposition in the parenchyma and brain [75]. Moreover, the downregulation of P-glycoprotein, amino acids and leptin transporters is observed [52]. In individuals with obesity, decreased leptin signalling in the CNS is also caused by downregulation of the leptin receptor (LepR) and by deficiency of leptin signalling at the LepR [76]. Leptin resistance is characterized by reduced satiety, over-consumption of foods, and increased total fat mass [77]. The leptin plasma levels may be protective against the development or progression of AD. Lower leptin plasma levels have a significant association with higher A $\beta$  deposition in the brain, although there is not a significant association between leptin plasma levels and tau deposition [78]. High leptin levels were independently associated with a reduced risk of cognitive decline in elderly Italians [79]. In a cohort of older adults with mild cognitive impairment, plasma leptin levels were not associated with cognitive function, nor did they predict risk of dementia. Although leptin levels increase in obesity, leptin resistance prevents leptin to exert its functions [80]. N-acetylaspartate (NAA) is synthesized by neurons and is involved in neuronal metabolism and axonal myelination. The concentration of NAA has been associated with cognitive dysfunction in neurodegenerative and metabolic diseases. NAA levels depend on age, BMI, and glucose levels [81]. In the study conducted by Coplan et al., higher BMI ( $\geq 25$  kg/m $^2$ ) has been associated with decreased levels of neural integrity and with neuronal injury, expressed by reduced concentrations of NAA in the hippocampus [82]. Irisin is an adipo-myokine hormone produced during physical exercise, through the expression of the peroxisome proliferative activated receptor- $\gamma$  coactivator-1  $\alpha$  (PGC-1 $\alpha$ ). Expressed PGC-1 $\alpha$  causes the production of the fibronectin type III domain containing 5 (FNDC5) protein, which is cleaved in skeletal muscle fibers by proteases to produce irisin [83]. Irisin binds to its integrin  $\alpha$ V/ $\beta$ 5 receptor with these consequences i) WAT browning; ii) improving of insulin sensitivity and metabolic balance, by enhancing mitochondrial functions and by reducing oxidative stress; iii) promoting osteogenesis and mitigating the bone loss; iv) attenuating the cognitive dysfunction, by decreasing A $\beta$  toxicity, neuroinflammation, and oxidative stress and by improving brain-derived neurotrophic factor (BDNF) signaling, which rescues cognition and synaptic health; v) regulating dopamine pathways, alleviating neuropsychiatric symptoms like depression and apathy; and vi) mitigating cardiac injury [84,85]. The levels of irisin are significantly lower in patients with obesity, osteoporosis, sarcopenia, AD, and CVDs [85]. The dysfunctional phenotype caused by low levels of irisin is exacerbated in patients with SO. In fact, SO compromises mitochondrial oxidative capacity and lipid oxidation in skeletal muscle and suppresses sarcolipin-induced sarcoplasmic reticulum calcium ATPase (SERCA) activation, impairing the ability to switch between glucose and lipid metabolism in response to nutrients and physical exercise and resulting in reduced oxidative capacity, diminished energy expenditure, and increased adiposity [86]. SO patients display a smaller total gray matter volume [87] and show higher serum levels of IL-6, IL-18, TNF- $\alpha$ , TNF-like weak inducer of apoptosis (TWEAK) and leptin compared to non-sarcopenic patients; in contrast, the levels of insulin growth factor 1, insulin, and adiponectin are significantly lower [88]. For these reasons, Irisin may represent a therapeutic potential biomarker for metabolic diseases, osteoporosis, sarcopenia, and neurodegenerative diseases [84].

## 2.2. Obesity, Oxidative Stress and Osteoarthritis

In obese patients, many pro-inflammatory molecules and mediators are express during acute and chronic high-intensity loading [89], namely extracellular matrix (ECM) components and remodelers, joint cell- and AT cell-derived mediators (cytokines, adipokines), AGEs, and ROS [90]. Besides predisposing to OA for loading mio-mechanical reasons, obesity increases the risk of OA

development also in non-weight-bearing joints, such as hands, through the activity of systemic inflammatory mediators, such as adipokines, free fatty acids (FFAs), and ROS released by dysfunctional abdominal AT [91]. End-stage OA patients showed increased levels of ROS and decreased antioxidant capacity [92]. Many of these inflammatory mediators have been linked to cartilage matrix synthesis and degradation, and synovial tissue inflammation. For instance, leptin is a 16-kd polypeptide hormone secreted by adipocytes, regulating adipose mass and body weight. Impaired leptin signalling was related to protection against obesity-induced OA, even in absence of elevated body fat, thus corroborating the pro-inflammatory effects of leptin in OA [93]. Leptin secretion from the infrapatellar fat induces MMPs 1 and 13 gene expression in OA chondrocytes [94]. Recent literature supported the hypothesis that underlying mechanisms for OA go further than mechanical load and stress, since a correlation with CVDs, metabolic syndrome (MetS), and especially factors such as arterial hypertension, DM, dyslipidemia, has been observed [91], with a positive correlation with radiological OA severity [92]. In animal studies, omega-3 polyunsaturated fatty acids reduced the expression of inflammatory markers, cartilage degradation and oxidative stress in chondrocytes, while the opposite was true after omega-6 polyunsaturated fatty acid and saturated fatty acid administration, both in animals and in humans; hence, omega-3 polyunsaturated fatty acid supplementation may have a beneficial effect on pain and functionality through a reduction in structural damage [95].

### 2.3. Osteoarthritis

#### 2.3.1. Osteoarthritis and Neuroinflammation

Chronic painful conditions, including OA, are accompanied and sustained by inflammatory responses in peripheral tissues, e.g. joints, as well as in the peripheral and central nervous system: such phenomena are described as “neuroinflammation”, and they rely on a bidirectional signalling between nervous structures and cells and the peripheral damaged tissues. Animal models of OA showed that joint neurons, especially high-threshold C and A $\delta$  afferents, undergo plastic changes [96] and develop an important sensitization, hence mechanical stimuli are perceived as painful in behavioural tests [97,98]. For instance, after induction of knee OA via intra-articular monosodium iodoacetate (MIA) injection, destabilization of the medial meniscus (DMM), or partial meniscectomy, animals display mechanical hyperalgesia, with pain evoked by simple gentle pressure or by normal-range joint mobilization [99]. Nociceptors that are initially considered as responsive to other stimuli, namely cold, heat, or chemicals, and silent to mechanical stimuli, become mechanosensitive too, taking on a polymodal phenotype [100]. Such peripheral findings are correlated with a higher response to the same stimuli in dorsal root ganglia (DRG) neurons, where nociceptors are activated via paracrine mechanisms [101]. Many mediators derived from degradation of inflamed cartilage are implicated in the sensitization and excitation of DRG neurons [102]. Under physiological conditions, several cytotypes in the joints, namely chondrocytes, fibroblast-like synoviocytes (FLS), synovial macrophages, and mast cells (MCs) are represented in a quiet state, as “sentinels” against pathogens and possible injuries [103,104]. When joint inflammation occurs, the disruption of the ECM allows for the release of damage-associated molecular patterns to the joint cavity, and consequent activation of pattern recognition receptors, namely Toll-like receptors (TLRs), on such sentinel cells. These phenomena lead to the production and release of inflammatory molecules, catabolic factors, and the activation of the complement cascade [105]. Particularly, MCs secrete granules containing proinflammatory substances, such as histamine, proteinases (tryptases and chymases) [106], as well as chemokines and cytokines (TNF- $\alpha$ , IL-1 $\beta$ , IL-6, IL-8, CCL2, PG2, VEGF, and others), thus leading to vasodilatation, angiogenesis, as well as recruitment of other inflammatory cells from the bloodstream [107]. MCs also produce neurotrophin nerve growth factor (NGF) [108] which, after being secreted by MCs, binds to neurotrophin p75 and tropomyosin-related kinase (TRK)-A receptors on several inflammatory cells, including other MCs, promoting their degranulation. The increase of NGF has been correlated with sprouting of pain fibres in vitro [109], microglia activation

(e.g. “microgliosis”) in the dorsal horn [110], and other structural changes leading to neuroinflammation and pain chronicification [111]. In the wake of this, clinical trials with humanized neutralizing monoclonal antibodies against NGF are ongoing for OA patients, as they have already been reported to have analgesic effects in animal models, both as prophylaxis and in therapeutic protocols. Accordingly, TRK-A inhibition showed analgesic results in animals [112,113]. Other immune cells, including circulating macrophages, infiltrate the DRG in OA rodent models [114], especially after HFDs administration, possibly hinting at a correlation between the latter and chronic pain [115]. Macrophage infiltration in the DRG in OA animals was positively correlated with persistence of pain [116]. Most of recent preclinical research has focused on the role of glial cells, such as microglia, in the DRG and the dorsal horn, which are activated during neuroinflammatory processes [117,118]. Microglia is actually the resident macrophages of the CNS: its activation in the DRG occurs in animal models after OA induction, with different timing based on the OA inducer: for instance, microglia activation is detectable as soon as one week after MIA injection, while it takes DMM models 8 to 16 weeks to display such activation [110]. These findings may correlate with the difficulty of treating OA in late stages, where drugs targeting the CNS are often necessary, such as opioids, while others, namely nonsteroidal anti-inflammatory drugs, are insufficient for pain control [100]. Microglial cells produce cytokines, such as TNF $\alpha$ , IL-1, and NGF, and release other molecules, namely substance P, which may further activate receptors expressed by macrophages in a paracrine manner, and sustain a shift in their phenotype to a M1 proinflammatory one [119]. Microglia activation seems to be accompanied by overexpression of stress markers in the DRG, and with allodynia; the latter is reversible via glia inhibition through monocyte and fluorocitrate [120]. For example, NF- $\kappa$ B/p65 is overexpressed in astrocytes in the dorsal horn in rat MIA OA model, alongside cytokines like IL-1 $\beta$ , TNF- $\alpha$  and IL-33; moreover, astrocytes themselves are heightened in number and mechanical hyperalgesia is advisable, albeit reversible through spinal inhibition of NF- $\kappa$ B/p65 [121]. A predominant role for NF- $\kappa$ B was also confirmed recently by Sun et al., who showed that inhibition of bromodomain-containing protein 4 (Brd4), a bromodomain and extra-terminal epigenetic reader protein that usually promotes gene transcription, attenuated MIA-induced pain behaviours in rats with OA through a reduced activation of inflammatory genes. Brd4 inhibition also promoted antioxidant responses in the DRG and in the spinal cord [122]. Oxidative stress has been linked to various inflammatory and degenerative conditions of the CNS [123] and may be a contributing factor for arthritic pain: overexpression of anti-inflammatory molecules, namely sestrin2 (Sesn2) [124], and inhibition of pro-inflammatory ones, such as GSK-3 $\beta$  [125,126], reduced ROS and cytokines levels in the spinal cord in MIA- and complete Freund’s adjuvant (CFA)-induced OA, respectively, with analgesic effects on OA pain. Interestingly, OA symptom burden seems to be more severe in women than men in clinical practice [127,128], probably due to higher inflammatory responses in female than males [129,130], or, possibly, to differences in neuroimmune signalling. Kosek et al. showed that female subjects scheduled for total knee replacement displayed higher levels of IL-6 and IL-8 in synovial fluid (SF) and cartilage, correlated with more severe pain and higher pain sensitivity. Moreover, when considering the relative presence of different cytokines in the CSF, serum, SF, and cartilage, discrepancies between men and women were found, suggesting sex-related peculiarities in the cross-talk among peripheral damaged tissue and the CNS. Such communications rely, among other factors, on the presence of monocyte chemoattractant protein 1 (MCP1), which is responsible for increased BBB permeability, as well as spinal infiltration of monocytes and their eventual differentiation into activated microglial cells. Besides being produced by monocytes/macrophages, synovial fibroblasts, and chondrocytes, MCP1 is also detectable in nociceptive afferent fibers in peripheral tissues with possible implication in neuropathic manifestation, especially mechanical allodynia in animal models. Interestingly, higher concentrations of MCP1 and IL-8 in the CSF were correlated with lower pain levels, whereas their presence in joints led to higher pain sensitivity. Hence, presence of proinflammatory markers in the CNS may be part of a compensatory response against peripheral disease, such as OA [131]. This may be corroborated by the higher levels of both myo-inositol, a glial-derived neuroinflammation marker, and choline, a

cell membrane metabolism and cellular turnover marker, in patients with knee OA, with positive correlation with pain, stiffness, and disability scores. On the other hand, concentrations of NAA, a marker for neuronal integrity, were reduced compared to healthy controls, but returned to normal-range levels after total knee arthroplasty, thus suggesting that surgical treatment may have a role in counteracting the maladaptive mechanisms leading to pain sensitization and chronicification in subjects with OA. More specifically, since NAA is produced in oligodendrocytic and neuronal mitochondria, the restoration of its physiological levels after surgery may be the consequence of ameliorated mitochondrial function [132], further confirming the role of oxidative processes in neuroinflammation. Age, too, is correlated with higher levels of inflammatory markers in the DRG and the spinal cord, as well as peripherally, e.g. the sciatic nerve, in mice with MIA-induced OA: in particular, overexpression of CD68, CD11b, activating transcription factor 3, and TNF as neuroinflammatory markers were higher in old animals, and they were counteracted by subcutaneous morphine administration 7 days after OA induction [133]. Opioids are still pivotal in chronic pain management; however, they are burdened by important adverse effects, and tolerance may develop after long-term administration [134]. Research has focused on possible mechanisms and molecules involved in opioid tolerance, in order to counteract, or even prevent it. For instance, sigma-1 ( $\sigma 1$ ) receptors are expressed in CNS areas implicated in pain perception, namely DRG, dorsal horns, and periaqueductal grey: given their cross-talk with the opioid system, their antagonism allowed for prevention of both pain sensitization and opioid tolerance in MIA-induced OA mice, hinting at a possible role for  $\sigma 1$  receptors antagonists as analgesics [135].

A tight relationship between joint disease and CNS pathology is conveyed by the effect of collagen-derived AGEs on neuronal structure and functionality. AGEs derive from glycation of the ECM (ECMGC): this phenomenon is widely described in osteoarthritic joints, and recent data points out that it may hinder neuronal cell attachment and neurite formation, and elicit neuronal excitation, neuropeptide and neurotransmitters release, and eventually peripheral sensitization. Such effects are counteracted by morphine administration, thus suggesting that ECMGC may represent a new target for chronic pain treatment [136]. Moreover, a connection between peripheral damaged tissues and the CNS is suggested by the elevated levels of chemokines prokineticin (PK)-1 and PK-2, which act via interaction with two receptors, namely PK receptor (PKR)-1 and PKR2. This system was found to be upregulated in OA mice 28 days after MIA injection, with synovial fibroblasts and macrophages producing such chemokines, alongside elevated levels of several cytokines in the spinal cord. Concurrent development of allodynia, motor deficits, and fatigue was assessed, as well as mood disorders, particularly anxiety and depression. In fact, PK upregulation also occurred in brain areas that are typically related to mood control, such as the prefrontal cortex and the hippocampus. Administration of PK antagonist PC1 reverted such findings, possibly by both anti-inflammatory effects in damaged joints and in brain regions [137]. Similarly, heightened levels of proinflammatory cytokines and an anxi-depressive state were found in MIA-driven OA mice, with morphine administration contrasting both phenomena [138].

Preclinical research also pointed out that pain alters genetic expression [139], and genes expressed through early to chronic stages of pain are different [140]. A role may be played by long non-coding RNAs (lncRNAs), which act at transcriptional and post-transcriptional levels, via interaction with the DNA and regulation of mRNA translation into proteins, up to epigenetic modifications. lncRNAs play a role in neuronal functionality, immune responses, and inflammatory diseases, such as OA: in fact, different lncRNAs may be up- or downregulated, with modulating effects on inflammatory and apoptotic signalling pathways, and consequent impact on chondrocyte viability and functionality [141]. Among others, lncRNAs are responsible for the regulation and genetic expression of several inflammatory molecules, as is the case for member of the Krüppel-like transcription factors (KLFs) family, KLF4, which is implicated in inflammatory responses in various pathological condition, ranging from IBD, renal inflammation, pneumonia, neuroinflammatory conditions, and OA. In fact, KLF4 inhibits ECM-degrading enzymes in human chondrocytes,

synovial, and meniscus cells via an anti-inflammatory effect [142]. Hence, lncRNAs may represent a novel therapeutic target for OA management.

### 2.3.2. Osteoarthritis and Oxidative Stress

Besides being triggered and aggravated by biomechanical trauma, OA is known to be an inflammatory chronic condition, in which the oxidative stress probably plays a pivotal role in its pathogenesis and progression, as demonstrated by recent literature, both *in vitro* and *in vivo* [143]. Basically, an imbalance between the production of ROS and antioxidant defensive mechanisms occurs, with negative impact on joint structure and related pain [144]. Since OA pain is still largely undertreated, thus infecting functionality and QoL, the reduction of oxidative processes may be a new target for its treatment [145]. The role of inflammatory mediators, such as cytokines and chemokines, has been widely assessed in OA [146,147]. Such mediators may derive from lipid peroxidation processes, which are found to be enhanced in OA synovial cells compared to rheumatoid arthritis and healthy controls [148]. Many lipid peroxidation products, such as 8-isoprostan F2 $\alpha$  [149], malondialdehyde, 4-Hydroxy-2-nonenal [150], and so on, are in fact elevated in synovial biopsies from patients with OA compared to healthy subjects. The NO production by inducible nitric oxide synthase (NOS2) was also correlated with the pathogenesis of OA [151], and NO itself secreted by chondrocytes has been correlated with the induction of lipid peroxidation [152], as well as ECM degradation by MMPs [153] and inhibition of proteoglycans and collagen synthesis [154]. On the other hand, a growing body of evidence suggests a role for NO as an inhibitor of the NF- $\kappa$ B pathway [155] and a stimulator of collagen synthesis *in vitro* [156]. It is possible for NO to have pro-inflammatory effects only when in the form of redox derivative peroxynitrite, which is a known inducer of lipid peroxidation [157]. Mitochondria are key players in the oxidation pathways. Damaged mitochondria are continuously replaced by new ones, in order to preserve mitochondrial function: this process is known as mitochondrial biogenesis, and recent literature shows that it may be an indicator of OA [158]. Several transcription factors regulate mitochondrial renewal, namely PGC-1 $\alpha$  [159] and nuclear respiratory factor (Nrf)-1 and Nrf-2, the latter further upregulating the expression of other factors, such as mitochondrial transcription factor A and nuclear-encoded mitochondrial proteins [160]. PGC-1 $\alpha$  is deacetylated by NAD-dependent deacetylase sirtuin 1 (SIRT1), which is activated by AMP-activated protein kinase [161]. Nrf-2 was shown to positively modulate the expression of many endogenous antioxidants, namely NAD(P)H oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx) [162,163]. Nrf-2 was also shown to inhibit pro-inflammatory pathways, such as NF- $\kappa$ B [164], hence reducing levels of inflammatory cytokines, namely IL-1 $\beta$  and TNF- $\alpha$  [165]. Nrf-2 promotes macrophage differentiation to M2 [166], it modulates osteoclastogenesis [167], and it inhibits the activation of inflammatory synovial fibroblasts [168]. The latter are responsible for the production of metabolic degradation factors, such as MMPs and disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), resulting in synovial and ECM degradation [169,170]. Furthermore, mitochondrial dynamics imply their continuous mixing with each other and dividing into daughters [171], alongside with removal of damaged ones through autophagy [172]. When such mechanisms are impaired, a reduction in ATP generation occurs, as well as augmented ROS production, mtDNA mutations, and mitochondrial membrane dysfunction [173]: such phenomena are linked to a wide range of degenerative and inflammatory diseases, including OA [174]. Dysfunctional mitochondrial activity has been increasingly linked to OA onset and progression [175], as assessed in animal models [176] and human chondrocytes [158]. Nrf2 induction in models of surgically-induced OA prevented OA progression via inhibition of NLR family pyrin domain containing 3 (NLRP3) inflammasome [177], a complex playing a pivotal in triggering inflammatory responses in several pathological conditions [178]. The latter is upregulated in the synovial tissue of mice with collagen-induced arthritis [179], as well as in sensory neurons in the DRG in MIA-induced OA. Accordingly, inhibition of NLRP3 inflammasome prevented the transition from an acute to a chronic painful condition in such animal models [180]. GSH is a well-known antioxidant that plays a

key role against oxidative stress, with pleiotropic effects, including activation of Nrf2 [181]. Reduced GSH and its precursor molecule, N-acetylcysteine, have demonstrated a specific role in oxidative stress resistance [182], and efficacy in reducing inflammation markers and cartilage degradation, as well as significant amelioration in pain control and functionality [183]. One of the ways to increase GSH levels is through hydrogen sulfide [184]. Administration of slow-releasing hydrogen sulfide donors phenyl isothiocyanate [185], allyl isothiocyanate [186], diallyl disulfide [187] and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137) [188] alleviated the mechanical allodynia, the grip strength and memory deficits, as well as the depressive-like behaviors accompanying OA through inhibition of activated microglia, downregulation of NOS2, CD11b/c, phosphatidylinositol-3-kinase-PI3K, and phosphorylated Akt-*p*-Akt all while maintaining high levels of antioxidant/detoxificant molecules in central regions such as the hippocampus, the amygdala, periaqueductal gray matter, and infralimbic cortex, thus demonstrating the antinociceptive potential of NOS2 inhibition [189].

### 3. Therapeutic Perspectives

#### 3.1. Palmitoylethanolamide

Palmitoylethanolamide (PEA, N-hexadecanoylethanolamide) is a N-acylethanolamine (NAE), and it was first discovered in the late 1950's in soybean, peanut oil, and egg yolk [190]; later on, it was also identified in mammalian tissues [191]. PEA is a highly lipophilic molecule, which may hinder its absorption: in fact, the micronization was found to be useful, since this process makes the original compound smaller [192,193]. After absorption, PEA is hydrolysed to ethanolamine and palmitic acid by fatty acid amide hydrolase (FAAH), which is a membrane-bound enzyme with a heterodimeric structure. It is located in the endoplasmic reticulum and it acts on multiple substrates, including N-acylaminides, NAEs, and N-acyltaurines [194]. PEA is also metabolized by FAAH-2, which is localised in lipid droplets [195], and by lysosomal enzyme NAE acid amidase [196]. Such enzymes act on either endogenous [197–199] or exogenous [200,201] PEA, and are found in different tissues and cytotypes, ranging from the gastrointestinal tract [199] [202], to joints [203], to the brain [204–206]. Various attempts to bypass its presystemic metabolism were made, either using prodrugs [207,208] or PEA analogues [209–212] however, such compounds need further investigation and regulation. Since it is almost insoluble in water, the bioavailability of PEA *per se* is poor [213]. Data on its distribution is overall quite scarce. Nonetheless, given its lipophilic nature, the volume of distribution for PEA is high [214], and way greater than its plasma volume [214]. As shown by early studies in rats, after intraperitoneal administration PEA tends to distribute in several organs and tissues, according to the following order: adrenal > diaphragm > spleen > kidney > testis > lung > liver > heart > brain > plasma > erythrocytes [215]. When orally administrated, PEA is able to cross the BBB, albeit in small amounts [216]. PEA is now recognized as a lipid mediator, with anti-inflammatory properties [217] via interaction with several receptors and mediators. Among the latter, peroxisome proliferator-activated receptor (PPAR) is a nuclear transcription factor, with several ligands [218], including arachidonic acid and fibrates, the latter being used to treat dyslipidaemias [219]. In fact, PPAR activation leads to the transcription of genes involved in lipid metabolism [220], as well as inflammatory responses [221], with consequent enhanced expression of pro-inflammatory molecules, such as NF- $\kappa$ B. In fact, highly bioavailable formulations of PEA, e.g. micronized (m-PEA) and ultramicronized (um-PEA), were found to promote white-to-beige AT conversion [222], reducing fat mass; and counteracting lipid and glucose dysmetabolism [223]. Recently, comicronized PEA with rutin (m-PEA–rutin), a plant-derived polyphenol compound, well-known for its antioxidant and anti-inflammatory properties, have been investigated in a murine model of obesity-induced metabolic alterations, supporting their effect in counteracting glucose and lipid dysmetabolism associated with diabesity [223]. Clinical results against adiposopathy have been found when m-PEA–rutin and hydroxytyrosol (HTyr), a phenolic compound found in olive leaves, fruits and extra-virgin olive oil, have been added to the Mediterranean diet as a potential conservative treatment for patients

with MetS. HTyr has been shown to reduce oxidative stress, and modulate inflammatory pathways [224].

### 3.1.1. Palmitoylethanolamide and Osteoarthritis

PEA is present in high concentrations in healthy joints and acts as a MCs modulator [225]. Physiologically, MCs, alongside macrophages, represent about 3% of resident cellular cell population and act as sentinels for possible pathogens and injuries. In arthritic joints, the number of MCs increases via maturation and proliferation of resident cells, as well as recruitment of progenitors from the blood stream, via paracrine mechanisms [107]. PEA reduces the degranulation of MCs *in vitro* [226] and *in vivo* [227].

### 3.1.2. Palmitoylethanolamide and Neuroinflammation

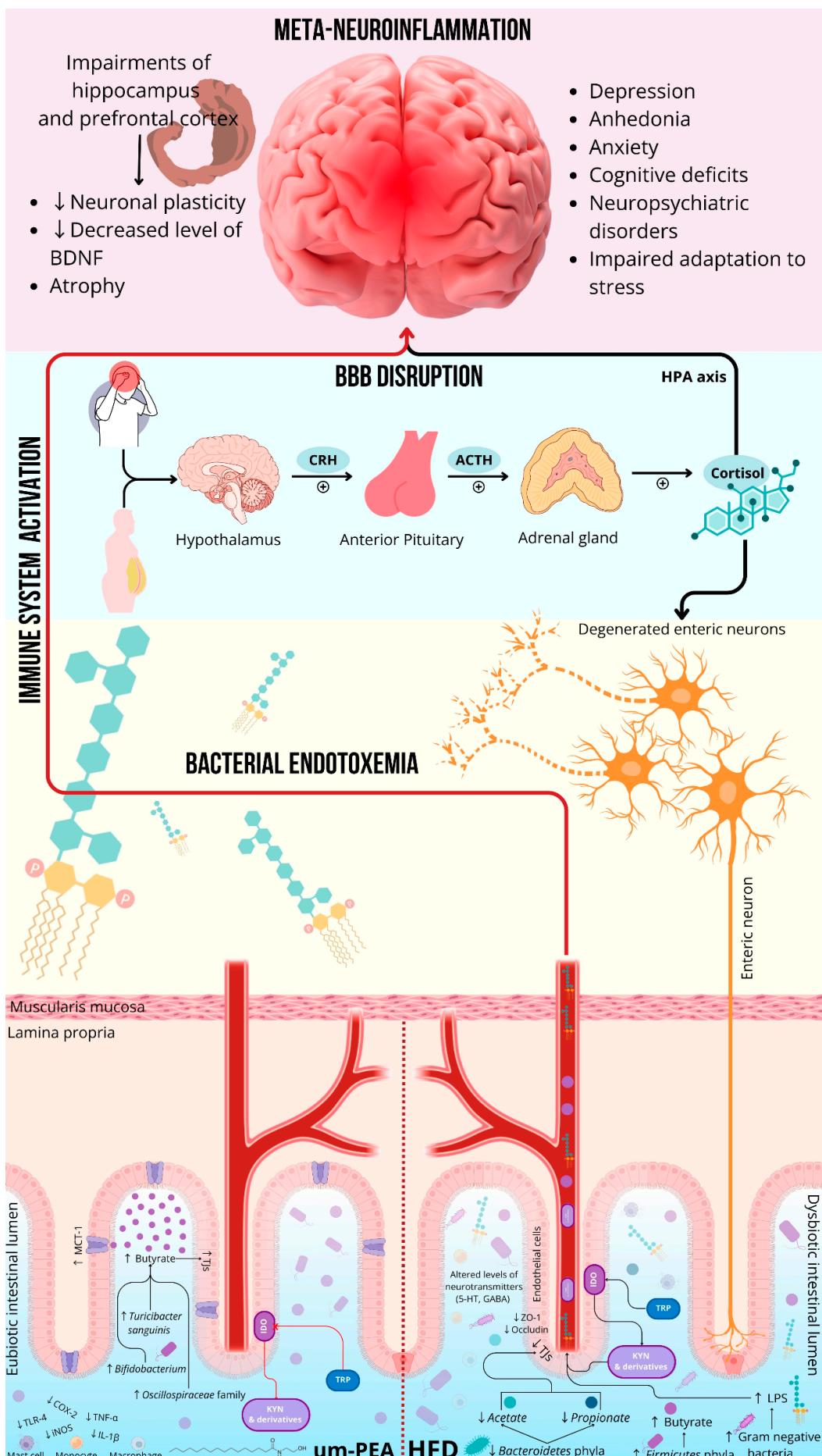
PEA is also among the many substances produced, released, and hydrolyzed by microglia [228]. The involvement of PEA in neuroinflammatory processes was thoroughly studied, and it may be mediated by its direct and indirect interaction with various receptors, namely PPAR [229], cannabinoid receptors (CB)-1 and CB2 [230], as well as non-CB1 and non-CB2 [231], with paracrine effects on microglia itself, furtherly boosting neuroinflammation [232], even more so considering that recent literature has highlighted the existing link between MCs and glial activation [225]. Neuroinflammatory responses may be driven by the effects of PEA on TRPV1 channels [233], which are knowingly implicated in such processes [234], possible via modulation of cannabinoid pathways [235]. Such cross-communications between these systems may give reason to the possible role for PEA in modulating intestinal inflammatory conditions [236,237]. PEA levels increase in several animal models of neurological disorders, and in human models, e.g. of migraine [238]. Administration of exogenous PEA was found to be efficacious in experimental models of mast cell-mediated acute and neurogenic inflammation [239].

Moreover, it showed promising results in reverting amyloid  $\beta$ -peptide-induced astrogliosis [240,241] and consequent learning and memory impairment in mice [242], hinting at a possible role for PEA as adjuvant and add-on therapy for human neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases [243–245].

PEA was found to reverse histopathological changes, reduce joint swelling, and reduce serum levels of NO, IL-1 $\beta$ , leukotriene B4, TNF- $\alpha$ , and prostaglandin E2, as well as cartilage-degrading MMPs in MIA-induced knee OA rats, hence preserving cartilage structure [246]. PEA administration decreased neuropathic pain, especially mechanical hyperalgesia, in Sprague-Dawley rats that were injured via L5 and L6 spinal nerves transection: interestingly, intrarticular injection of PEA was effective at lower doses compared to intraperitoneal PEA [247]. PEA administration had beneficial effects in dogs with chronic OA and lameness, with the latter having significant improvement, alongside better functioning and pain control [248].

### 3.1.3. Palmitoylethanolamide and Low Back Pain

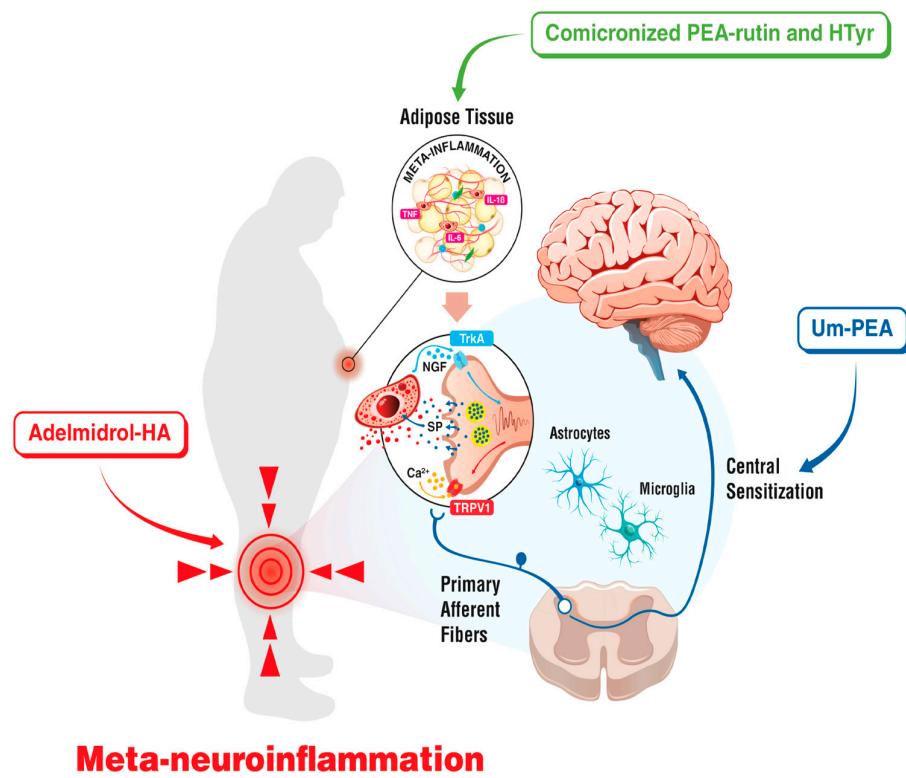
m-PEA administration was found to be useful for pain control in patients with LBP, with efficacy against neuropathic features. Although m-PEA may not have a role on functional improvement when administrated alone at low doses (600 mg/die) [249], um-PEA showed promising results when administrated at higher dosage (600 mg twice a day), at least in an early stage, as a support therapy during rehabilitation, with improvement in mental and physical components of QoL, as well as disability scores [250]. Moreover, add-on therapy with um-PEA was correlated with reduced intake of opioids in patients with chronic LBP, with a significant reduction in pain perception and neuropathic manifestations, overall maintaining a good tolerability and safety profile [251,252], which makes um-PEA a good option even in older patients [253]. In addition, um-PEA was found to ameliorate pain control in patients with failed back surgery syndrome as an add-on therapy, together with dual opioid tapentadol and anticonvulsant pregabalin [254]. The modulatory properties of PEA


on neuropathic pain are potentially driven by both its effects on CB1, Transient Receptor Potential Vanilloid 1- TRPV1, and PPAR- $\gamma$ , and a reduction of proinflammatory cytokines, namely NGF and TNF- $\alpha$  [255].

### 3.1.4. Palmitoylethanolamide and Gut Dysbiosis

Gut microbiota exerts a significant influence on both human physical and mental health [256]. The bidirectional communication between the gastrointestinal tract and the CNS, defined as "gut microbiota-brain axis", occurs through the neuroendocrine system, the activation of immune system and the production of bacterial metabolites by the gut microbiota (Figure 1) [257]. In detail, the neuroendocrine system refers to the hypothalamus-pituitary-adrenal- HPA axis, while the immune system to microbial- and pathogen-associated molecular patterns (such as lipopolysaccharide-LPS pathway), and finally the bacterial metabolites to the production of short-chain fatty acids (SCFAs), neurotransmitters (dopamine, norepinephrine, serotonin- 5-HT, histamine and gamma-aminobutyric acid- GABA) and tryptophan (Trp) [257]. The communication between the gut microbiota and the HPA axis is closely interconnected with the immune system, microbial metabolites, gut hormones, BBB, and sensory and autonomic nervous system [258]. Gut dysbiosis is defined as an alteration in the gut microbiota composition, detected by an increase in the number of pathobionts and a decrease in symbionts [259], a consequence of high-fat diets (HFDs) and Western diet [260], drugs, immune system dysfunction, stress conditions [261] and diseases (including those inflammatory, autoimmune, metabolic, neoplastic, neurodegenerative and CKD) [262–267]. In chronic pain patients, gut microbiota may be affected by opioid administration [268] and drugs used for managing opioid induced constipation [269]. The HPA axis is part of the limbic system and is the main regulator of the stress response [270]. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the HPA axis. The signals influence the gut microbiota through the enteric nervous system (ENS), located in the submucosa and myenteric plexus of the gut wall [271]. However, the relationship between the gut dysbiosis and the HPA axis is bidirectional [272]. In fact, stress conditions can alter the gut microbiota composition [273]. Gut microbiota dysbiosis, in turn, influence HPA axis activity, resulting in excess circulating cortisol production through the synthesis of corticotropin-releasing hormone (CRH) by the hypothalamus [274]. CRH stimulates the anterior pituitary gland to produce adrenocorticotropic hormone- ACTH, resulting in the release of an excess cortisol by the adrenal cortex [275]. Cortisol overproduction is implicated in neuroinflammation and impairments of the hippocampus and prefrontal cortex, namely brain regions involved in emotional regulation and memory [276]. While cortisol is necessary for an adaptive stress response, its chronic and excessive production can have neurotoxic effects [277], manifesting with depressive symptoms, cognitive deficits, neuropsychiatric disorders and impaired adaptation to stress, and exacerbating gut dysbiosis [278]. In fact, impairment of the hippocampus and prefrontal cortex, in response to cortisol overproduction, damages the CNS, inducing a reduced neuronal plasticity, a decreased level of BDNF, and atrophy of hippocampus and prefrontal cortex [279]. The overactivity of the HPA axis contributes to the alteration of the composition of the gut microbiota, with an increase in the abundance of *Firmicutes* phyla and a decrease in *Bacteroidetes* one [280]. Both phyla are responsible for the production of SCFAs (acetate, propionate and butyrate). The latter are metabolites produced by bacterial fermentation from indigestible carbohydrates (dietary fibre) in the gastrointestinal tract [281]. They perform beneficial functions for the gut microbiota, regulating positively its composition, increasing the amount of TJs proteins and improving the function of intestinal epithelial barrier. SCFAs produced adhere to FFA receptors on the surface of intestinal epithelial cells and interact with neurons or enter the bloodstream [271]. SCFAs modulate TJs protein expression also in the BBB. Indeed, fecal transfer of gut microbiota to germ-free mice decreases BBB permeability and regulates the expression of claudin-5 and ZO-1 in the CNS, reducing BBB permeability [282]. The reduction of SCFAs is closely associated with the onset and development of metabolic and inflammatory diseases (such as type 2 DM, obesity, CKD, arterial hypertension, inflammatory bowel disease-IBD and colorectal cancer) [283]. *Firmicutes*

are responsible for the production of butyrate, while *Bacteroidetes* of acetate and propionate. However, decreased *Bacteroidetes* abundance results in reduced acetate and propionate production. Rats treated with HFD are associated with increased *Firmicutes* phyla and decreased *Bacteroidetes* phyla abundance. This leads to a change in SCFAs production, with an increase in butyrate levels and a decrease in propionate levels. The globally decrease in SCFAs production induces to a loss of enteric neurons and thus a weakening of the ENS [271]. Gut dysbiosis is also associated with increased Gram-negative bacteria, which activate the immune system and neuroendocrine system via LPS [257,260], the major component of the outer membrane of Gram-negative bacteria [284]. The increase of Gram-negative bacteria in the gastrointestinal tract allows LPS to act locally and systemically, after crossing the impaired gut barrier and entering in the systemic circulation. In fact, the LPS can enter in the bloodstream thanks to increased gut permeability, as pointed out by decreased levels of TJs proteins, zonulin-1 and occluding [285]. High concentrations of circulating LPS are defined as metabolic endotoxemia, which is responsible for triggering chronic-metabolic diseases [286]. Therefore, once LPS has crossed the intestinal barrier to enter in the systemic circulation, it binds to TLR4 and leads to systemic inflammation by stimulating the production of pro-inflammatory cytokines and activating the innate immune system response [287]. Pro-inflammatory cytokines, such as IL-6 and TNF- $\alpha$ , further activate HPA axis, stimulating the release of cortisol [288], exacerbating depression and contributing to symptoms such as apathy, demotivation, and fatigue [274]. Restoring the eubiosis of gut microbiota could be beneficial to nervous peripheral and central disorders related to gut dysbiosis [289]. Over the years, the role of PEA on the gut microbiota has been studied in the literature. For the first time, Couch and co-Authors have investigated the effects of PEA on the permeability of the human gastrointestinal tract in vitro, ex vivo and in vivo. In *vitro* and ex vivo studies, PEA prevented inflammation-induced permeability of dextran. In the in *vivo* study, the aspirin-induced increase in intestinal permeability, detected by an increase in urinary lactulose-to-mannitol ratio, was rescued by PEA administration at the dose of 600 mg. These data suggest how PEA is able to reduce the permeability in the human colon [290]. The effects of um-PEA on the gut microbiota have been better elucidated by Pirozzi and co-Authors on HFD-fed mice. The Authors showed, in this animal model, that um-PEA, administered at the dose of 30 mg/kg/die per os for 7 weeks, has been able to reduce the inflammatory response in the gut, restore Trp metabolism and remodel the gut microbiota of mice. The reduction of the inflammatory response is supported by the immunomodulatory effects exerted by um-PEA. Indeed, its administration was able to limit immune cell recruitment and activation of intestinal MCs and macrophages, leading to a reduction in the expression of intestinal pro-inflammatory factors, namely IL-1 $\beta$ , TNF- $\alpha$ , cyclooxygenase-2, and NOS2. The effects on Trp metabolism were evidenced by the ability of the um-PEA to restore 5-HT/kynurenone (KYN) levels in the mice colon, rescuing altered 5-HT turnover, decreasing gastrointestinal indoleamine-2,3-dioxygenase (IDO) expression and resulting in reduced Trp oxidation in KYN [291]. Trp metabolism connects the gut to the CNS, as the enzyme IDO oxidizes Trp in KYN, decreasing circulating levels of 5-HT. KYN reaches the systemic circulation, crosses the BBB and acts at the CNS level, causing depression, anhedonia, anxiety, and metabolic dysfunction related to obesity and insulin resistance [292]. The same Authors pointed out that the administration of um-PEA in HFD-fed mice was able to reduce the *Firmicutes/Bacteroidetes* ratio and to increase the *Bifidobacterium* genera and the *Oscillospiraceae* family, both butyrate producers. Confirming this, the Authors have highlighted an increased expression of monocarboxylate transporters-1- MCT-1, a gene related to butyrate activity that mediates its transport in the colon mucosa, and of G-protein-coupled receptors-43- GPR43, which is involved in the control of the gut inflammation. Finally, the increase of SCFAs-producing bacterial species, such as the genera *Turicibacter sanguinis*, has been highlighted in the gut [291]. To date, only a randomized, placebo controlled, double-blind study conducted by Batacan and co-Authors has investigated the role of PEA on the gut microbiome of overweight adults (BMI 30-40 kg/m<sup>2</sup>), at the dose of 700 mg/day for 12 weeks. At the end of the study, the Authors demonstrated the ability of PEA in reducing triglycerides and IL-2 levels. The in *vivo* effects of PEA remain unclear. In fact, no significant


differences in overall microbiota composition were found after PEA administration. Moreover, the microbiota richness and diversity remained constant for both groups [293]. In light of this, further studies are needed to better determine the action of PEA on gut dysbiosis.



**Figure 1.** Meta-neuroinflammation and gut-brain axis. The communication between central nervous system and gut occurs through the hypothalamus-pituitary-adrenal axis, the activation of immune system that involved the lipopolysaccharide (LPS) pathway, and through the production of bacterial metabolites by the gut microbiota, such as short-chain fatty acids (SCFAs) and neurotransmitters. The hyperactivation of HPA axis, as consequence of stress conditions and metabolic diseases leads to an overproduction of cortisol, influencing the gut microbiota composition by the enteric nervous system, located in the submucosa and in the myenteric plexus of the gut wall. This HPA axis hyperactivation is implicated in neuroinflammation, impairments of the hippocampus and prefrontal cortex and gut eubiosis. In the dysbiotic gut microbiota, the lower production of SCFAs, contributes to increase the permeability of the intestinal barrier, as shown by a reduction in zonula occludens-1 and occludin. Moreover, the translocation of LPS in the bloodstream is responsible of bacterial endotoxemia, that dysregulates the immune system. The ultramicronized-palmitoylethanolamine (um-PEA) can restore the eubiosis of the gut microbiota, through the SCFAs-producing bacterial species, such as *Turicibacter sanguinis*, *Bifidobacterium*, *Oscillspiraceae* family. In fact, the enhancement release of butyrate increases the production of tight junctions and the expression of monocarboxylate transporters-1. Finally, um-PEA is able to limit immune cells recruitment and activation of intestinal mast cells and macrophages and to restore serotonin/kynurenone levels. Abbreviations: ACTH, adrenocorticotrophic hormone; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; COX-2, cyclooxygenase-2; CRH, corticotropin-releasing hormone; GABA, gamma-aminobutyric acid; HFD, high-fat diet; HPA, hypothalamus-pituitary-adrenal axis; IDO, indoleamine-2,3-dioxygenase; IL-1 $\beta$ , Interleukin-1 $\beta$ ; iNOS, inducible nitric oxide synthase; KYN, kynurenone; LPS, lipopolysaccharide; MCT-1, monocarboxylate transporters-1; TJs, tight junctions; TLR-4, toll-like receptors-4; TNF- $\alpha$ , tumor necrosis factor- $\alpha$ ; TRP, tryptophan; um-PEA, ultramicronized palmitoylethanolamide; ZO-1, zonula occludens-1; 5-HT, serotonin.

### 3.2. Adelmidrol

Adelmidrol (ADM) is a synthetic derivate of azelaic acid and a member of the Autacoid Local Injury Antagonist Amides (ALIAmides) family, with both amphipathic and amphiphilic properties, which make it particularly suitable for topical and intra-articular administration [294]. A gel combining 2% ADM with 0.1% hyaluronic acid (HA) showed antioxidant effects in the inflamed gut in a mouse model of colitis after intrarectal administration, with protective effects on the epithelial barrier [295]. Moreover, aerosol administration of 2% ADM reduced inflammatory damage in a LPS-induced mice model of acute lung injury, particularly through a reduction in MC activation [296]. Topical ADM (mucoadhesive gel) showed anti-inflammatory effects in small animals with inflammatory pathologies [297–299]. A combination of 2% ADM with 1% high molecular weight HA has been approved for intra-articular injections in knee OA, with a significant improvement in analgesia and functionality [300]. In OA joints, ADM acts as a PEA enhancer, leading to higher PEA levels [301]. Moreover, ADM leads to a reduction in inflammatory cytokines and cartilage degradation, through its effects on MCs [211]. Activated MCs release lytic enzymes that accelerate degradation of HA in the joints. Therefore, ADM, by normalizing MCs activity, increase the bioavailability of HA. Moreover, it supports the phenotypical switch of MCs, from an hyperactivated to a physiological state, with consequent restoration of their function of heparin secretion. Since heparin is a precursor of HA, ADM displayed a visco-inductive effect in OA joints in preclinical models [300]. The maintenance of results at follow-up after intra-articular administration of ADM-HA 2%/1% were affected mainly by the BMI of patients and dysmetabolic disorders [300]. Finally, a clinical investigation comparing ADM-HA 2%/1% versus HA alone, showed that at 2-years follow-up, ADM improved all components of the WOMAC scale in the treatment of knee OA [302]. These data suggest a possible combined used of Adelmidrol-HA in obese patients, together with other systemic strategies for targeting meta-neuroinflammations, such as um-PEA and the association m-PEA– rutin and HTyr, with the aim of optimizing body mass index, reducing inflammation biomarkers, and preventing pain chronification (Figure 2).



**Figure 2.** Mechanisms of meta-neuroinflammation underlying OA. Possible targets of treatment for managing meta-neuroinflammation in obese patients suffering from OA-related chronic pain include: the pro-inflammatory state sustained by the adipose tissue, the microglial activation in the CNS, and peripheral hyperactivation of mast cells in the peripheral joints. The association m-PEA– rutin and HTyr has been shown to restore the eubiosis of the gut microbiota and to reduce body weight, body mass index, fat mass, and inflammation biomarkers. Um-PEA is proven to restore physiological role of microglia and to prevent central sensitization, which is a critical factor for pain chronification. Adelmidrol, a PEA congener, facilitates the switch of mast cells from the hyperactivated to the physiological state, therefore it reduces the degranulation of lytic enzymes and prevent HA degradation. Moreover, by normalizing mast cells production of heparin, it further increases the bioavailability of HA, supporting a visco-induction in the overloaded joints of obese patients. Abbreviations: HA, hyaluronic acid; HTyr, hydroxytyrosol; IL-1 $\beta$ , interleukin-1 $\beta$ ; IL-6, interleukin-6; SP, substance P; TGF, transforming growth factor; TNF- $\alpha$ , tumor necrosis factor- $\alpha$ ; TrkA, tropomyosin receptor kinase A; TRPV-1, transient receptor potential vanilloid; um-PEA, ultramircronized palmitoylethanolamide.

#### 4. Conclusions

Globally, obesity is a serious public health problem associated with increased morbidity and mortality from all causes, leading to a reduction in patients' quality of life and life expectancy. Suffering from obesity, the adipocyte hypertrophy, visceral and ectopic adiposity predispose the organism to the meta-inflammation. The dysbiosis of the gut microbiota is typically of obesity, contributing to the meta-neuroinflammation. In fact, the gut microbiota and the CNS are in close communication, defining the gut microbiota-brain axis. Moreover, the integrity of the BBB is compromised in obesity. In light of this innovative point of view, the um-PEA and the m-PEA– rutin and HTyr seem to be able to restore the eubiosis of the gut microbiota and to reduce body weight, body mass index, fat mass, and inflammation biomarkers, to such an extent that they are considered a new adjuvant therapy against adiposopathy. This evidence supports a modern and innovative approach to many comorbidities associated with obesity, particularly for chronic pain syndromes. Osteoarthritis is the most commonly observed painful disease in obese patients and targeting meta-

neuroinflammation is the challenge of the next future. Clinicians should be aware that a modern approach to OA in obese patients require the ability to "think outside the box", by focusing not only on the single organ or disease, but on the close interconnection between systems, sustained by meta-neuroinflammation. Nowadays, in clinical practice, both central and peripheral mechanisms of neuroinflammation can be managed by using natural bioactive compounds with antioxidant and anti-neuroinflammatory properties. In particular, clinical evidence is available for um-PEA, through systemic administration, and for adelmidrol, as intra-articular injections for knee OA. Further studies are warranted to support these data and open new perspectives for the future of obese patients suffering from chronic pain in OA.

**Author Contributions:** Conceptualization, F.C. and A.N.; writing—original draft preparation, K.C and M.S.S. ; writing—review and editing, F.C. and A.N.; visualization, F.C., K.C., M.S.S., A.N.; supervision, F.C. and A.N. All authors have read and agreed to the published version of the manuscript.

**Funding:** The APC was funded by Epitech Group SpA, Via Leonardo da Vinci, 3 35030 Saccolongo (PD) Italy.

**Conflicts of Interest:** This paper was supported by Epitech Group S.p.A, which co-funded the PhD Program of Dr. Kevin Cornali. The Professor Flaminia Coluzzi and the Professor Annalisa Noce served as speakers and consultants for Epitech Group S.p.A.

## Abbreviations

The following abbreviations are used in this manuscript:

|           |                                                              |
|-----------|--------------------------------------------------------------|
| AD        | Alzheimer's disease                                          |
| ADAMTS    | Disintegrin and Metalloproteinase with Thrombospondin Motifs |
| ADM       | Adelmidrol                                                   |
| AGEs      | Advanced glycation end-products                              |
| APP       | Amyloid Precursor Protein                                    |
| AT        | Adipose tissue                                               |
| A $\beta$ | Amyloidbeta-protein                                          |
| BAT       | Beige adipose tissue                                         |
| BBB       | Blood-brain barrier                                          |
| BDNF      | Brain-Derived Neurotrophic Factor                            |
| BM        | Basement membrane                                            |
| BMI       | Body Mass Index                                              |
| Brd4      | Bromodomain-containing protein 4                             |
| CB        | Cannabinoid Receptors                                        |
| CFA       | Complete Freund's Adjuvant                                   |
| CKD       | Chronic kidney disease                                       |
| CNS       | Central nervous system                                       |
| CRH       | Corticotropin-Releasing Hormone                              |
| CVDs      | Cardiovascular diseases                                      |
| DALYs     | Disability-Adjusted Life-Years                               |
| DM        | Diabetes mellitus                                            |
| DMM       | Medial meniscus                                              |
| DRG       | Dorsal root ganglia                                          |
| ECM       | Extracellular matrix                                         |
| ECMGC     | Glycation of the extracellular matrix                        |
| EnNaCs    | Endothelial Na <sup>+</sup> Channels                         |
| eNOS      | Endothelial Nitric Oxide Synthase                            |
| ENS       | Enteric nervous system                                       |
| FAAH      | Fatty Acid Amide Hydrolase                                   |
| FFAs      | Free fatty acids                                             |
| FLS       | Fibroblast-Like Synoviocytes                                 |
| FNDC5     | Fibronectin type III domain containing 5                     |
| GM-CSF    | Granulocyte-Macrophage Colony-Stimulating Factor             |
| GPx       | Glutathione Peroxidase                                       |

|                   |                                                                              |
|-------------------|------------------------------------------------------------------------------|
| GSH               | Glutathione                                                                  |
| HA                | Hyaluronic acid                                                              |
| HFDs              | High-fat diets                                                               |
| HIF-1             | Hypoxia-Inducible Factor 1                                                   |
| HO-1              | Heme Oxygenase-1                                                             |
| HTyr              | Hydroxytyrosol                                                               |
| ICAM-1            | Intercellular Adhesion Molecule-1                                            |
| IDO               | Indoleamine-2,3-Dioxygenase                                                  |
| IKK               | Inhibitor of Kappa $\beta$ Kinase                                            |
| IL                | Interleukin                                                                  |
| JAM-A             | Junctional Adhesion Molecule-A                                               |
| KLFs              | Krüppel-Like Transcription Factors                                           |
| KYN               | Kynurenine                                                                   |
| LBP               | low back pain                                                                |
| LepR              | Leptin receptor                                                              |
| lncRNAs           | Long non-coding RNAs                                                         |
| LPS               | Lipopolysaccharide                                                           |
| m-PEA             | Micronized palmitoylethanolamide                                             |
| M1                | Pro-inflammatory macrophages                                                 |
| M2                | Anti-inflammatory macrophages                                                |
| MCP1              | Monocyte Chemoattractant Protein 1                                           |
| MCs               | Mast cells                                                                   |
| MetS              | Metabolic syndrome                                                           |
| MHC               | Major Histocompatibility Complex                                             |
| MIA               | Monosodium iodoacetate                                                       |
| MMPs              | Matrix metalloproteinases                                                    |
| m-PEA- rutin      | Comicronized palmitoylethanolamide with rutin                                |
| mTOR              | Mechanistic Target of Rapamycin                                              |
| NAA               | N-acetylaspartate                                                            |
| NADPH             | Nicotinamide Adenine Dinucleotide Phosphate                                  |
| NAE               | N-acylethanolamine                                                           |
| NF- $\kappa\beta$ | Nuclear Factor kappa $\beta$                                                 |
| NGF               | Neurotrophin Nerve Growth Factor                                             |
| NLRP3             | NLR Family Pyrin Domain Containing 3                                         |
| NO                | Nitric oxide                                                                 |
| NOS2              | Inducible nitric oxide synthase                                              |
| NQO1              | NAD(P)H Oxidoreductase 1                                                     |
| Nrf               | Nuclear Respiratory Factor                                                   |
| OA                | Osteoarthritis                                                               |
| PEA               | Palmitoylethanolamide                                                        |
| PECAM             | Platelet Endothelial Cell Adhesion Molecule                                  |
| PGC-1 $\alpha$    | Peroxisome Proliferative Activated Receptor- $\gamma$ Coactivator-1 $\alpha$ |
| PK                | Prokineticin                                                                 |
| PKC               | Protein Kinase C                                                             |
| PKR               | Prokineticin receptor                                                        |
| PPAR              | Peroxisome Proliferator-Activated Receptor                                   |
| PSGL-1            | P-selectin glycoprotein ligand-1                                             |
| pTau              | Hyperphosphorylated Tau                                                      |
| QoL               | Quality of Life                                                              |
| RAGE              | Advanced glycation end-products receptor                                     |
| RANK              | Receptor Activator of Nuclear Factor-kappa $\beta$                           |
| ROCK              | Rho-kinase                                                                   |
| ROS               | Reactive Oxygen Species                                                      |
| SCFAs             | Short-Chain Fatty Acids                                                      |
| SERCA             | Sarcoplasmic Reticulum Calcium ATPase                                        |
| Sesn2             | Sestrin2                                                                     |
| SF                | Synovial fluid                                                               |
| SIRT1             | NAD-Dependent Deacetylase Sirtuin 1                                          |
| SO                | Sarcopenic obesity                                                           |

|               |                                                       |
|---------------|-------------------------------------------------------|
| SOD           | Superoxide Dismutase                                  |
| TGF- $\beta$  | Transforming Growth Factor- $\beta$                   |
| TIMPs         | Tissue Inhibitor of Metalloproteinases                |
| TJs           | Tight junctions                                       |
| TLRs          | Toll-Like Receptors                                   |
| TNF- $\alpha$ | Tumor Necrosis Factor- $\alpha$                       |
| TRK           | Tropomyosin-Related Kinase                            |
| Trp           | Tryptophan                                            |
| TWEAK         | Tumour Necrosis Factor-Like Weak Inducer of Apoptosis |
| um-PEA        | Ultramicronized palmitoylethanolamide                 |
| VEGF          | Vascular Endothelial Growth Factor                    |
| WAT           | White adipose tissue                                  |
| WHO           | World Health Organization                             |
| ZO-1          | Zonula occludens-1                                    |
| $\sigma$ 1    | Sigma-1                                               |

## References

1. Lingvay, I.; Cohen, R.V.; Roux, C.W.L.; Sumithran, P. Obesity in adults. *Lancet* **2024**, *404*, 972-987, doi:10.1016/S0140-6736(24)01210-8.
2. Islam, A.; Sultana, H.; Nazmul Hassan Refat, M.; Farhana, Z.; Abdulbasah Kamil, A.; Meshbahur Rahman, M. The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: A meta-analysis. *Prev Med Rep* **2024**, *46*, 102882, doi:10.1016/j.pmedr.2024.102882.
3. De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why primary obesity is a disease? *J Transl Med* **2019**, *17*, 169, doi:10.1186/s12967-019-1919-y.
4. Koskinas, K.C.; Van Craenenbroeck, E.M.; Antoniades, C.; Bluher, M.; Gorter, T.M.; Hanssen, H.; Marx, N.; McDonagh, T.A.; Mingrone, G.; Rosengren, A.; et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. *Eur Heart J* **2024**, *45*, 4063-4098, doi:10.1093/eurheartj/ehae508.
5. Elagizi, A.; Kachur, S.; Carbone, S.; Lavie, C.J.; Blair, S.N. A Review of Obesity, Physical Activity, and Cardiovascular Disease. *Curr Obes Rep* **2020**, *9*, 571-581, doi:10.1007/s13679-020-00403-z.
6. Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. *Front Immunol* **2021**, *12*, 746151, doi:10.3389/fimmu.2021.746151.
7. Favaretto, F.; Bettini, S.; Busetto, L.; Milan, G.; Vettor, R. Adipogenic progenitors in different organs: Pathophysiological implications. *Rev Endocr Metab Disord* **2022**, *23*, 71-85, doi:10.1007/s11154-021-09686-6.
8. Abdullah, A.; Wolfe, R.; Stoelwinder, J.U.; de Courten, M.; Stevenson, C.; Walls, H.L.; Peeters, A. The number of years lived with obesity and the risk of all-cause and cause-specific mortality. *Int J Epidemiol* **2011**, *40*, 985-996, doi:10.1093/ije/dyr018.
9. Kloock, S.; Ziegler, C.G.; Dischinger, U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? *Pharmacol Ther* **2023**, *251*, 108549, doi:10.1016/j.pharmthera.2023.108549.
10. Basilicata, M.; Pieri, M.; Marrone, G.; Nicolai, E.; Di Lauro, M.; Paolino, V.; Tomassetti, F.; Vivarini, I.; Bollero, P.; Bernardini, S.; et al. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. *Metabolites* **2023**, *13*, doi:10.3390/metabo13080889.
11. Rhee, C.M.; Ahmadi, S.F.; Kalantar-Zadeh, K. The dual roles of obesity in chronic kidney disease: a review of the current literature. *Curr Opin Nephrol Hypertens* **2016**, *25*, 208-216, doi:10.1097/MNH.0000000000000212.
12. Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, L.; Malgorzewicz, S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. *Nutrients* **2022**, *14*, doi:10.3390/nu14071457.
13. Martin-Taboada, M.; Vila-Bedmar, R.; Medina-Gomez, G. From Obesity to Chronic Kidney Disease: How Can Adipose Tissue Affect Renal Function? *Nephron* **2021**, *145*, 609-613, doi:10.1159/000515418.
14. Wang, M.; Wang, Z.; Chen, Y.; Dong, Y. Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. *Int J Mol Sci* **2022**, *23*, doi:10.3390/ijms23020747.

15. Taccone-Gallucci, M.; Noce, A.; Bertucci, P.; Fabbri, C.; Manca-di-Villahermosa, S.; Della-Rovere, F.R.; De Francesco, M.; Lonzi, M.; Federici, G.; Scaccia, F.; et al. Chronic treatment with statins increases the availability of selenium in the antioxidant defence systems of hemodialysis patients. *J Trace Elem Med Biol* **2010**, *24*, 27-30, doi:10.1016/j.jtemb.2009.06.005.
16. Jastreboff, A.M.; Kotz, C.M.; Kahan, S.; Kelly, A.S.; Heymsfield, S.B. Obesity as a Disease: The Obesity Society 2018 Position Statement. *Obesity (Silver Spring)* **2019**, *27*, 7-9, doi:10.1002/oby.22378.
17. Restivo, M.R.; McKinnon, M.C.; Frey, B.N.; Hall, G.B.; Syed, W.; Taylor, V.H. The impact of obesity on neuropsychological functioning in adults with and without major depressive disorder. *PLoS One* **2017**, *12*, e0176898, doi:10.1371/journal.pone.0176898.
18. Amianto, F.; Martini, M.; Olandese, F.; Davico, C.; Abbate-Daga, G.; Fassino, S.; Vitiello, B. Affectionless control: A parenting style associated with obesity and binge eating disorder in adulthood. *Eur Eat Disord Rev* **2021**, *29*, 178-192, doi:10.1002/erv.2809.
19. Zimmer, Z.; Fraser, K.; Grol-Prokopczyk, H.; Zajacova, A. A global study of pain prevalence across 52 countries: examining the role of country-level contextual factors. *Pain* **2022**, *163*, 1740-1750, doi:10.1097/j.pain.0000000000002557.
20. Okifuji, A.; Hare, B.D. The association between chronic pain and obesity. *J Pain Res* **2015**, *8*, 399-408, doi:10.2147/JPR.S55598.
21. Chen, S.; Min, M.; Du, L.; Gao, Y.; Xie, L.; Gao, J.; Li, L.; Zhong, Z. Trajectories of obesity indices and their association with pain in community-dwelling older adults: Findings from the English longitudinal study of ageing. *Arch Gerontol Geriatr* **2025**, *129*, 105690, doi:10.1016/j.archger.2024.105690.
22. Disease, G.U.B.o.; Forecasting, C. Burden of disease scenarios by state in the USA, 2022-50: a forecasting analysis for the Global Burden of Disease Study 2021. *Lancet* **2024**, *404*, 2341-2370, doi:10.1016/S0140-6736(24)02246-3.
23. Zhang, T.T.; Liu, Z.; Liu, Y.L.; Zhao, J.J.; Liu, D.W.; Tian, Q.B. Obesity as a Risk Factor for Low Back Pain: A Meta-Analysis. *Clin Spine Surg* **2018**, *31*, 22-27, doi:10.1097/BSD.0000000000000468.
24. Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. Overweight and obesity as risk factors for chronic low back pain: a new follow-up in the HUNT Study. *BMC Public Health* **2024**, *24*, 2618, doi:10.1186/s12889-024-20011-z.
25. Vincent, H.K.; Raiser, S.N.; Vincent, K.R. The aging musculoskeletal system and obesity-related considerations with exercise. *Ageing Res Rev* **2012**, *11*, 361-373, doi:10.1016/j.arr.2012.03.002.
26. Liu, Y.; Hao, Q.; Zhou, J.; Wu, J. A comprehensive meta-analysis of risk factors associated with osteosarcopenic obesity: a closer look at gender, lifestyle and comorbidities. *Osteoporos Int* **2024**, *35*, 759-773, doi:10.1007/s00198-023-07007-y.
27. Kim, H.I.; Ahn, S.H.; Kim, Y.; Lee, J.E.; Choi, E.; Seo, S.K. Effects of sarcopenia and sarcopenic obesity on joint pain and degenerative osteoarthritis in postmenopausal women. *Sci Rep* **2022**, *12*, 13543, doi:10.1038/s41598-022-17451-1.
28. Lawal, Y.; Mshelia-Reng, R.; Omonua, S.O.; Odumodu, K.; Shuaibu, R.; Itanyi, U.D.; Abubakar, A.I.; Kolade-Yunusa, H.O.; David, Z.S.; Ogunlana, B.; et al. Predictors of Peripheral Neuropathy Among Persons with Diabetes Mellitus: A Multicenter Cross-Sectional Study. *J Am Podiatr Med Assoc* **2025**, *115*, doi:10.7547/l22-053.
29. Chai, N.C.; Scher, A.I.; Moghekar, A.; Bond, D.S.; Peterlin, B.L. Obesity and headache: part I—a systematic review of the epidemiology of obesity and headache. *Headache* **2014**, *54*, 219-234, doi:10.1111/head.12296.
30. Ursini, F.; Naty, S.; Grembiale, R.D. Fibromyalgia and obesity: the hidden link. *Rheumatol Int* **2011**, *31*, 1403-1408, doi:10.1007/s00296-011-1885-z.
31. Zhang, E.X.; Yazdi, C.; Islam, R.K.; Anwar, A.I.; Alvares-Amado, A.; Townsend, H.; Allen, K.E.; Plakotaris, E.; Hirsch, J.D.; Rieger, R.G.; et al. Diabetic Neuropathy: A Guide to Pain Management. *Curr Pain Headache Rep* **2024**, *28*, 1067-1072, doi:10.1007/s11916-024-01293-9.
32. Wu, R.L.; Chen, N.; Chen, Y.; Wu, X.; Ko, C.Y.; Chen, X.Y. Visceral Adiposity as an Independent Risk Factor for Diabetic Peripheral Neuropathy in Type 2 Diabetes Mellitus: A Retrospective Study. *J Diabetes Res* **2024**, *2024*, 9912907, doi:10.1155/2024/9912907.



33. Bigal, M.E.; Liberman, J.N.; Lipton, R.B. Obesity and migraine: a population study. *Neurology* **2006**, *66*, 545-550, doi:10.1212/01.wnl.0000197218.05284.82.
34. Jahromi, S.R.; Martami, F.; Morad Soltani, K.; Togha, M. Migraine and obesity: what is the real direction of their association? *Expert Rev Neurother* **2023**, *23*, 75-84, doi:10.1080/14737175.2023.2173575.
35. D'Onghia, M.; Ciaffi, J.; Lisi, L.; Mancarella, L.; Ricci, S.; Stefanelli, N.; Meliconi, R.; Ursini, F. Fibromyalgia and obesity: A comprehensive systematic review and meta-analysis. *Semin Arthritis Rheum* **2021**, *51*, 409-424, doi:10.1016/j.semarthrit.2021.02.007.
36. Aparicio, V.A.; Ortega, F.B.; Carbonell-Baeza, A.; Camiletti, D.; Ruiz, J.R.; Delgado-Fernandez, M. Relationship of weight status with mental and physical health in female fibromyalgia patients. *Obes Facts* **2011**, *4*, 443-448, doi:10.1159/000335293.
37. Fruhbeck, G.; Gomez-Ambrosi, J.; Muruzabal, F.J.; Burrell, M.A. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. *Am J Physiol Endocrinol Metab* **2001**, *280*, E827-847, doi:10.1152/ajpendo.2001.280.6.E827.
38. Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. *J Mol Cell Biol* **2016**, *8*, 93-100, doi:10.1093/jmcb/mjw011.
39. Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. *Circ Res* **2021**, *128*, 951-968, doi:10.1161/CIRCRESAHA.121.318093.
40. Nuszkiewicz, J.; Kukulska-Pawluczuk, B.; Piec, K.; Jarek, D.J.; Motolko, K.; Szewczyk-Golec, K.; Wozniak, A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. *J Clin Med* **2024**, *13*, doi:10.3390/jcm13144258.
41. Xu, S.; Lu, F.; Gao, J.; Yuan, Y. Inflammation-mediated metabolic regulation in adipose tissue. *Obes Rev* **2024**, *25*, e13724, doi:10.1111/obr.13724.
42. Liebner, S.; Czupalla, C.J.; Wolburg, H. Current concepts of blood-brain barrier development. *Int J Dev Biol* **2011**, *55*, 467-476, doi:10.1387/ijdb.103224sl.
43. Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. *Neurobiol Dis* **2010**, *37*, 13-25, doi:10.1016/j.nbd.2009.07.030.
44. Nehme, Z.; Roehlen, N.; Dhawan, P.; Baumert, T.F. Tight Junction Protein Signaling and Cancer Biology. *Cells* **2023**, *12*, doi:10.3390/cells12020243.
45. Anthony, D.P.; Hegde, M.; Shetty, S.S.; Rafic, T.; Mutualik, S.; Rao, B.S.S. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. *Life Sci* **2021**, *274*, 119326, doi:10.1016/j.lfs.2021.119326.
46. Thiel, V.E.; Audus, K.L. Nitric oxide and blood-brain barrier integrity. *Antioxid Redox Signal* **2001**, *3*, 273-278, doi:10.1089/152308601300185223.
47. Engelhardt, B.; Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. *Semin Immunopathol* **2009**, *31*, 497-511, doi:10.1007/s00281-009-0177-0.
48. Mou, Y.; Du, Y.; Zhou, L.; Yue, J.; Hu, X.; Liu, Y.; Chen, S.; Lin, X.; Zhang, G.; Xiao, H.; et al. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. *Front Immunol* **2022**, *13*, 796288, doi:10.3389/fimmu.2022.796288.
49. Sheikh, M.H.; Errede, M.; d'Amati, A.; Khan, N.Q.; Fanti, S.; Loiola, R.A.; McArthur, S.; Purvis, G.S.D.; O'Riordan, C.E.; Ferorelli, D.; et al. Impact of metabolic disorders on the structural, functional, and immunological integrity of the blood-brain barrier: Therapeutic avenues. *FASEB J* **2022**, *36*, e22107, doi:10.1096/fj.202101297R.
50. Boumiza, S.; Chahed, K.; Tabka, Z.; Jacob, M.P.; Norel, X.; Ozen, G. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. *Sci Rep* **2021**, *11*, 20052, doi:10.1038/s41598-021-99577-2.
51. Chen, H.; Guan, B.; Chen, S.; Yang, D.; Shen, J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. *Free Radic Biol Med* **2021**, *165*, 171-183, doi:10.1016/j.freeradbiomed.2021.01.030.
52. Van Dyken, P.; Lacoste, B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. *Front Neurosci* **2018**, *12*, 930, doi:10.3389/fnins.2018.00930.



53. Turksen, K.; Aubin, J.E.; Sodek, J.; Kalnins, V.I. Localization of laminin, type IV collagen, fibronectin, and heparan sulfate proteoglycan in chick retinal pigment epithelium basement membrane during embryonic development. *J Histochem Cytochem* **1985**, *33*, 665-671, doi:10.1177/33.7.3159787.
54. Angiari, S.; Constantin, G. Selectins and their ligands as potential immunotherapeutic targets in neurological diseases. *Immunotherapy* **2013**, *5*, 1207-1220, doi:10.2217/imt.13.122.
55. Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. *Front Cell Neurosci* **2021**, *15*, 661838, doi:10.3389/fncel.2021.661838.
56. Song, J.; Wu, C.; Korpos, E.; Zhang, X.; Agrawal, S.M.; Wang, Y.; Faber, C.; Schafers, M.; Korner, H.; Opdenakker, G.; et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. *Cell Rep* **2015**, *10*, 1040-1054, doi:10.1016/j.celrep.2015.01.037.
57. Junker, U.; Jaggi, C.; Bestetti, G.; Rossi, G.L. Basement membrane of hypothalamus and cortex capillaries from normotensive and spontaneously hypertensive rats with streptozotocin-induced diabetes. *Acta Neuropathol* **1985**, *65*, 202-208, doi:10.1007/BF00686999.
58. Cross, K.; Vetter, S.W.; Alam, Y.; Hasan, M.Z.; Nath, A.D.; Leclerc, E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. *Biomolecules* **2024**, *14*, doi:10.3390/biom14121550.
59. Diaz-Castro, B.; Robel, S.; Mishra, A. Astrocyte Endfeet in Brain Function and Pathology: Open Questions. *Annu Rev Neurosci* **2023**, *46*, 101-121, doi:10.1146/annurev-neuro-091922-031205.
60. Lee, H.G.; Lee, J.H.; Flausino, L.E.; Quintana, F.J. Neuroinflammation: An astrocyte perspective. *Sci Transl Med* **2023**, *15*, eadi7828, doi:10.1126/scitranslmed.adl7828.
61. Sanmarco, L.M.; Wheeler, M.A.; Gutierrez-Vazquez, C.; Polonio, C.M.; Linnerbauer, M.; Pinho-Ribeiro, F.A.; Li, Z.; Giovannoni, F.; Batterman, K.V.; Scalisi, G.; et al. Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. *Nature* **2021**, *590*, 473-479, doi:10.1038/s41586-020-03116-4.
62. Proescholdt, M.A.; Heiss, J.D.; Walbridge, S.; Muhlhauser, J.; Capogrossi, M.C.; Oldfield, E.H.; Merrill, M.J. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. *J Neuropathol Exp Neurol* **1999**, *58*, 613-627, doi:10.1097/00005072-199906000-00006.
63. Candelario-Jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. *Stroke* **2022**, *53*, 1473-1486, doi:10.1161/STROKEAHA.122.036946.
64. Avignon, A.; Sultan, A. PKC-B inhibition: a new therapeutic approach for diabetic complications? *Diabetes Metab* **2006**, *32*, 205-213, doi:10.1016/s1262-3636(07)70270-7.
65. Goto, K.; Kondo, H. Diacylglycerol kinase in the central nervous system--molecular heterogeneity and gene expression. *Chem Phys Lipids* **1999**, *98*, 109-117, doi:10.1016/s0009-3084(99)00023-7.
66. Yee, Y.H.; Chong, S.J.F.; Kong, L.R.; Goh, B.C.; Pervaiz, S. Sustained IKKbeta phosphorylation and NF-kappaB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56gamma3 and PP2A inactivation. *Redox Biol* **2021**, *41*, 101834, doi:10.1016/j.redox.2020.101834.
67. Kadir, R.R.A.; Alwjwaj, M.; McCarthy, Z.; Bayraktutan, U. Therapeutic hypothermia augments the restorative effects of PKC-beta and Nox2 inhibition on an in vitro model of human blood-brain barrier. *Metab Brain Dis* **2021**, *36*, 1817-1832, doi:10.1007/s11011-021-00810-8.
68. Ait-Aissa, K.; Nguyen, Q.M.; Gabani, M.; Kassan, A.; Kumar, S.; Choi, S.K.; Gonzalez, A.A.; Khataei, T.; Sahyoun, A.M.; Chen, C.; et al. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. *Cardiovasc Diabetol* **2020**, *19*, 136, doi:10.1186/s12933-020-01107-3.
69. Argaw, A.T.; Asp, L.; Zhang, J.; Navrazhina, K.; Pham, T.; Mariani, J.N.; Mahase, S.; Dutta, D.J.; Seto, J.; Kramer, E.G.; et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. *J Clin Invest* **2012**, *122*, 2454-2468, doi:10.1172/JCI60842.
70. Katusic, Z.S.; Austin, S.A. Endothelial nitric oxide: protector of a healthy mind. *Eur Heart J* **2014**, *35*, 888-894, doi:10.1093/eurheartj/eht544.

71. Iova, O.M.; Marin, G.E.; Lazar, I.; Stanescu, I.; Dogaru, G.; Nicula, C.A.; Bulboaca, A.E. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. *Antioxidants (Basel)* **2023**, *12*, doi:10.3390/antiox12030753.
72. Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Abeta and Tau in the Pathogenesis of Alzheimer's Disease. *Int J Biol Sci* **2021**, *17*, 2181-2192, doi:10.7150/ijbs.57078.
73. Henderson, B.W.; Gentry, E.G.; Rush, T.; Troncoso, J.C.; Thambisetty, M.; Montine, T.J.; Herskowitz, J.H. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-beta levels in brain. *J Neurochem* **2016**, *138*, 525-531, doi:10.1111/jnc.13688.
74. Hu, Y.B.; Ren, R.J.; Zhang, Y.F.; Huang, Y.; Cui, H.L.; Ma, C.; Qiu, W.Y.; Wang, H.; Cui, P.J.; Chen, H.Z.; et al. Rho-associated coiled-coil kinase 1 activation mediates amyloid precursor protein site-specific Ser655 phosphorylation and triggers amyloid pathology. *Aging Cell* **2019**, *18*, e13001, doi:10.1111/acel.13001.
75. Yue, Q.; Leng, X.; Xie, N.; Zhang, Z.; Yang, D.; Hoi, M.P.M. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. *CNS Neurosci Ther* **2024**, *30*, e70079, doi:10.1111/cnsts.70079.
76. Dragano, N.R.; Haddad-Tovoli, R.; Velloso, L.A. Leptin, Neuroinflammation and Obesity. *Front Horm Res* **2017**, *48*, 84-96, doi:10.1159/000452908.
77. Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. *Front Endocrinol (Lausanne)* **2021**, *12*, 585887, doi:10.3389/fendo.2021.585887.
78. Lee, S.; Byun, M.S.; Yi, D.; Ahn, H.; Jung, G.; Jung, J.H.; Chang, Y.Y.; Kim, K.; Choi, H.; Choi, J.; et al. Plasma Leptin and Alzheimer Protein Pathologies Among Older Adults. *JAMA Netw Open* **2024**, *7*, e249539, doi:10.1001/jamanetworkopen.2024.9539.
79. Littlejohns, T.J.; Kos, K.; Henley, W.E.; Cherubini, A.; Ferrucci, L.; Lang, I.A.; Langa, K.M.; Melzer, D.; Llewellyn, D.J. Serum leptin and risk of cognitive decline in elderly Italians. *J Alzheimers Dis* **2015**, *44*, 1231-1239, doi:10.3233/JAD-141836.
80. Tezapsidis, N.; Johnston, J.M.; Smith, M.A.; Ashford, J.W.; Casadesus, G.; Robakis, N.K.; Wolozin, B.; Perry, G.; Zhu, X.; Greco, S.J.; et al. Leptin: a novel therapeutic strategy for Alzheimer's disease. *J Alzheimers Dis* **2009**, *16*, 731-740, doi:10.3233/JAD-2009-1021.
81. Daniele, G.; Campi, B.; Saba, A.; Codini, S.; Ciccarone, A.; Giusti, L.; Del Prato, S.; Esterline, R.L.; Ferrannini, E. Plasma N-Acetylaspartate Is Related to Age, Obesity, and Glucose Metabolism: Effects of Antidiabetic Treatment and Bariatric Surgery. *Front Endocrinol (Lausanne)* **2020**, *11*, 216, doi:10.3389/fendo.2020.00216.
82. Coplan, J.D.; Fathy, H.M.; Abdallah, C.G.; Ragab, S.A.; Kral, J.G.; Mao, X.; Shungu, D.C.; Mathew, S.J. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight. *Neuroimage Clin* **2014**, *4*, 326-335, doi:10.1016/j.nic.2013.12.014.
83. De Sousa, R.A.L. Exercise-produced irisin effects on brain-related pathological conditions. *Metab Brain Dis* **2024**, *39*, 1679-1687, doi:10.1007/s11011-024-01412-w.
84. Paolletti, I.; Coccurello, R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. *Int J Mol Sci* **2024**, *25*, doi:10.3390/ijms252413480.
85. Liu, S.; Cui, F.; Ning, K.; Wang, Z.; Fu, P.; Wang, D.; Xu, H. Role of irisin in physiology and pathology. *Front Endocrinol (Lausanne)* **2022**, *13*, 962968, doi:10.3389/fendo.2022.962968.
86. Della Guardia, L.; Shin, A.C. Obesity-induced tissue alterations resist weight loss: A mechanistic review. *Diabetes Obes Metab* **2024**, *26*, 3045-3057, doi:10.1111/dom.15637.
87. Vints, W.A.J.; Kuslekiene, S.; Sheoran, S.; Valatkeviciene, K.; Gleizniene, R.; Himmelreich, U.; Paasuke, M.; Cesnaitiene, V.J.; Levin, O.; Verbunt, J.; et al. Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults. *Neurobiol Aging* **2023**, *127*, 1-11, doi:10.1016/j.neurobiolaging.2023.02.011.
88. Li, C.W.; Yu, K.; Shyh-Chang, N.; Li, G.X.; Jiang, L.J.; Yu, S.L.; Xu, L.Y.; Liu, R.J.; Guo, Z.J.; Xie, H.Y.; et al. Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention. *J Cachexia Sarcopenia Muscle* **2019**, *10*, 586-600, doi:10.1002/jcsm.12417.

89. Senol, O.; Gundogdu, G.; Gundogdu, K.; Miloglu, F.D. Investigation of the relationships between knee osteoarthritis and obesity via untargeted metabolomics analysis. *Clin Rheumatol* **2019**, *38*, 1351-1360, doi:10.1007/s10067-019-04428-1.
90. Bonet, M.L.; Granados, N.; Palou, A. Molecular players at the intersection of obesity and osteoarthritis. *Curr Drug Targets* **2011**, *12*, 2103-2128, doi:10.2174/13894501179829393.
91. Courties, A.; Gualillo, O.; Berenbaum, F.; Sellam, J. Metabolic stress-induced joint inflammation and osteoarthritis. *Osteoarthritis Cartilage* **2015**, *23*, 1955-1965, doi:10.1016/j.joca.2015.05.016.
92. Tootsi, K.; Martson, A.; Kals, J.; Paapstel, K.; Zilmer, M. Metabolic factors and oxidative stress in osteoarthritis: a case-control study. *Scand J Clin Lab Invest* **2017**, *77*, 520-526, doi:10.1080/00365513.2017.1354255.
93. Liu, Z.; Xie, W.; Li, H.; Liu, X.; Lu, Y.; Lu, B.; Deng, Z.; Li, Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. *Genes Dis* **2024**, *11*, 101159, doi:10.1016/j.gendis.2023.101159.
94. Hui, W.; Litherland, G.J.; Elias, M.S.; Kitson, G.I.; Cawston, T.E.; Rowan, A.D.; Young, D.A. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. *Ann Rheum Dis* **2012**, *71*, 455-462, doi:10.1136/annrheumdis-2011-200372.
95. Loef, M.; Schoones, J.W.; Kloppenburg, M.; Ioan-Facsinay, A. Fatty acids and osteoarthritis: different types, different effects. *Joint Bone Spine* **2019**, *86*, 451-458, doi:10.1016/j.jbspin.2018.07.005.
96. Obeidat, A.M.; Miller, R.E.; Miller, R.J.; Malfait, A.M. The nociceptive innervation of the normal and osteoarthritic mouse knee. *Osteoarthritis Cartilage* **2019**, *27*, 1669-1679, doi:10.1016/j.joca.2019.07.012.
97. Zhang, L.; Li, M.; Li, X.; Liao, T.; Ma, Z.; Zhang, L.; Xing, R.; Wang, P.; Mao, J. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia. *J Adv Res* **2022**, *35*, 141-151, doi:10.1016/j.jare.2021.06.007.
98. Shin, Y.; Cho, D.; Kim, S.K.; Chun, J.S. STING mediates experimental osteoarthritis and mechanical allodynia in mouse. *Arthritis Res Ther* **2023**, *25*, 90, doi:10.1186/s13075-023-03075-x.
99. Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. *J Orthop Surg Res* **2016**, *11*, 19, doi:10.1186/s13018-016-0346-5.
100. Miller, R.E.; Malfait, A.M. Osteoarthritis pain: What are we learning from animal models? *Best Pract Res Clin Rheumatol* **2017**, *31*, 676-687, doi:10.1016/j.beprh.2018.03.003.
101. Miller, R.E.; Tran, P.B.; Ishihara, S.; Syx, D.; Ren, D.; Miller, R.J.; Valdes, A.M.; Malfait, A.M. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. *Osteoarthritis Cartilage* **2020**, *28*, 581-592, doi:10.1016/j.joca.2020.01.008.
102. Tonello, R.; Silveira Prudente, A.; Hoon Lee, S.; Faith Cohen, C.; Xie, W.; Paranjpe, A.; Roh, J.; Park, C.K.; Chung, G.; Strong, J.A.; et al. Single-cell analysis of dorsal root ganglia reveals metalloproteinase signaling in satellite glial cells and pain. *Brain Behav Immun* **2023**, *113*, 401-414, doi:10.1016/j.bbi.2023.08.005.
103. Nigrovic, P.A.; Lee, D.M. Mast cells in inflammatory arthritis. *Arthritis Res Ther* **2005**, *7*, 1-11, doi:10.1186/ar1446.
104. Magarinos, N.J.; Bryant, K.J.; Fosang, A.J.; Adachi, R.; Stevens, R.L.; McNeil, H.P. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. *J Immunol* **2013**, *191*, 1404-1412, doi:10.4049/jimmunol.1300856.
105. Lambert, C.; Zappia, J.; Sanchez, C.; Florin, A.; Dubuc, J.E.; Henrotin, Y. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature. *Front Med (Lausanne)* **2020**, *7*, 607186, doi:10.3389/fmed.2020.607186.
106. Giannetti, A.; Filice, E.; Caffarelli, C.; Ricci, G.; Pession, A. Mast Cell Activation Disorders. *Medicina (Kaunas)* **2021**, *57*, doi:10.3390/medicina57020124.
107. Loucks, A.; Maerz, T.; Hankenson, K.; Moeser, A.; Colbath, A. The multifaceted role of mast cells in joint inflammation and arthritis. *Osteoarthritis Cartilage* **2023**, *31*, 567-575, doi:10.1016/j.joca.2023.01.005.
108. Sousa-Valente, J.; Calvo, L.; Vacca, V.; Simeoli, R.; Arevalo, J.C.; Malcangio, M. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. *Osteoarthritis Cartilage* **2018**, *26*, 84-94, doi:10.1016/j.joca.2017.08.006.
109. Barker, P.A.; Mantyh, P.; Arendt-Nielsen, L.; Viktrup, L.; Tive, L. Nerve Growth Factor Signaling and Its Contribution to Pain. *J Pain Res* **2020**, *13*, 1223-1241, doi:10.2147/JPR.S247472.

110. Tran, P.B.; Miller, R.E.; Ishihara, S.; Miller, R.J.; Malfait, A.M. Spinal microglial activation in a murine surgical model of knee osteoarthritis. *Osteoarthritis Cartilage* **2017**, *25*, 718-726, doi:10.1016/j.joca.2016.09.007.
111. Ohashi, Y.; Uchida, K.; Fukushima, K.; Satoh, M.; Koyama, T.; Tsuchiya, M.; Saito, H.; Takahira, N.; Inoue, G.; Takaso, M. NGF Expression and Elevation in Hip Osteoarthritis Patients with Pain and Central Sensitization. *Biomed Res Int* **2021**, *2021*, 9212585, doi:10.1155/2021/9212585.
112. Obeidat, A.M.; Donner, A.; Miller, R.E. An update on targets for treating osteoarthritis pain: NGF and TRPV1. *Curr Treatm Opt Rheumatol* **2020**, *6*, 129-145, doi:10.1007/s40674-020-00146-x.
113. Li, O.S.; Kc, R.; Singh, G.; Das, V.; Ma, K.; Li, X.; Mwale, F.; Votta-Velis, G.; Bruce, B.; Natarajan Anbazhagan, A.; et al. Sensory Neuron-Specific Deletion of Tropomyosin Receptor Kinase A (TrkA) in Mice Abolishes Osteoarthritis (OA) Pain via NGF/TrkA Intervention of Peripheral Sensitization. *Int J Mol Sci* **2022**, *23*, doi:10.3390/ijms232012076.
114. Raoof, R.; Martin Gil, C.; Lafeber, F.; de Visser, H.; Prado, J.; Versteeg, S.; Pascha, M.N.; Heinemans, A.L.P.; Adolfs, Y.; Pasterkamp, J.; et al. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. *J Neurosci* **2021**, *41*, 8249-8261, doi:10.1523/JNEUROSCI.1787-20.2021.
115. Song, Z.; Xie, W.; Chen, S.; Strong, J.A.; Print, M.S.; Wang, J.I.; Shareef, A.F.; Ulrich-Lai, Y.M.; Zhang, J.M. High-fat diet increases pain behaviors in rats with or without obesity. *Sci Rep* **2017**, *7*, 10350, doi:10.1038/s41598-017-10458-z.
116. Geraghty, T.; Winter, D.R.; Miller, R.J.; Miller, R.E.; Malfait, A.M. Neuroimmune interactions and osteoarthritis pain: focus on macrophages. *Pain Rep* **2021**, *6*, e892, doi:10.1097/PR9.0000000000000892.
117. Adaes, S.; Almeida, L.; Potes, C.S.; Ferreira, A.R.; Castro-Lopes, J.M.; Ferreira-Gomes, J.; Neto, F.L. Glial activation in the collagenase model of nociception associated with osteoarthritis. *Mol Pain* **2017**, *13*, 1744806916688219, doi:10.1177/1744806916688219.
118. Ogbonna, A.C.; Clark, A.K.; Malcangio, M. Development of monosodium acetate-induced osteoarthritis and inflammatory pain in ageing mice. *Age (Dordr)* **2015**, *37*, 9792, doi:10.1007/s11357-015-9792-y.
119. Martin Gil, C.; Raoof, R.; Versteeg, S.; Willemen, H.; Lafeber, F.; Mastbergen, S.C.; Eijkelkamp, N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. *Brain Behav Immun* **2024**, *116*, 203-215, doi:10.1016/j.bbi.2023.12.004.
120. Bourassa, V.; Deamond, H.; Yousefpour, N.; Fitzcharles, M.A.; Ribeiro-da-Silva, A. Pain-related behavior is associated with increased joint innervation, ipsilateral dorsal horn gliosis, and dorsal root ganglia activating transcription factor 3 expression in a rat ankle joint model of osteoarthritis. *Pain Rep* **2020**, *5*, e846, doi:10.1097/PR9.0000000000000846.
121. Li, Y.; Yang, Y.; Guo, J.; Guo, X.; Feng, Z.; Zhao, X. Spinal NF- $\kappa$ B upregulation contributes to hyperalgesia in a rat model of advanced osteoarthritis. *Mol Pain* **2020**, *16*, 1744806920905691, doi:10.1177/1744806920905691.
122. Sun, J.; Wang, X.H.; Song, F.H.; Li, D.Y.; Gao, S.J.; Zhang, L.Q.; Wu, J.Y.; Liu, D.Q.; Wang, L.W.; Zhou, Y.Q.; et al. Inhibition of Brd4 alleviates osteoarthritis pain via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. *Br J Pharmacol* **2023**, *180*, 3194-3214, doi:10.1111/bph.16195.
123. Teleanu, D.M.; Niculescu, A.G.; Lungu, II; Radu, C.I.; Vladacenco, O.; Roza, E.; Costachescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. *Int J Mol Sci* **2022**, *23*, doi:10.3390/ijms23115938.
124. Sun, J.; Song, F.H.; Wu, J.Y.; Zhang, L.Q.; Li, D.Y.; Gao, S.J.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1alpha-mediated mitochondrial biogenesis and suppression of neuroinflammation. *Brain Behav Immun* **2022**, *102*, 53-70, doi:10.1016/j.bbi.2022.02.015.
125. Hu, Y.D.; Yue, Y.F.; Chen, T.; Wang, Z.D.; Ding, J.Q.; Xie, M.; Li, D.; Zhu, H.L.; Cheng, M.L. Alleviating effect of lycorine on CFA-induced arthritic pain via inhibition of spinal inflammation and oxidative stress. *Exp Ther Med* **2023**, *25*, 241, doi:10.3892/etm.2023.11940.
126. Yang, H.Y.; Sun, X.; Zhen, S.Q.; Yu, L.Z.; Ding, J.Q.; Liu, L.; Xie, M.; Zhu, H.L. GSK-3beta inhibition alleviates arthritis pain via reducing spinal mitochondrial reactive oxygen species level and inflammation. *PLoS One* **2023**, *18*, e0284332, doi:10.1371/journal.pone.0284332.

127. Laitner, M.H.; Erickson, L.C.; Ortman, E. Understanding the Impact of Sex and Gender in Osteoarthritis: Assessing Research Gaps and Unmet Needs. *J Womens Health (Larchmt)* **2021**, *30*, 634-641, doi:10.1089/jwh.2020.8828.
128. Tschon, M.; Contartese, D.; Pagani, S.; Borsari, V.; Fini, M. Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data. *J Clin Med* **2021**, *10*, doi:10.3390/jcm10143178.
129. Mun, C.J.; Letzen, J.E.; Nance, S.; Smith, M.T.; Khanuja, H.S.; Sterling, R.S.; Bicket, M.C.; Haythornthwaite, J.A.; Jamison, R.N.; Edwards, R.R.; et al. Sex Differences in Interleukin-6 Responses Over Time Following Laboratory Pain Testing Among Patients With Knee Osteoarthritis. *J Pain* **2020**, *21*, 731-741, doi:10.1016/j.jpain.2019.11.003.
130. Perruccio, A.V.; Badley, E.M.; Power, J.D.; Canizares, M.; Kapoor, M.; Rockel, J.; Chandran, V.; Gandhi, R.; Mahomed, N.M.; Davey, J.R.; et al. Sex differences in the relationship between individual systemic markers of inflammation and pain in knee osteoarthritis. *Osteoarthr Cartil Open* **2019**, *1*, 100004, doi:10.1016/j.ocarto.2019.100004.
131. Kosek, E.; Finn, A.; Ulterius, C.; Hugo, A.; Svensson, C.; Ahmed, A.S. Differences in neuroimmune signalling between male and female patients suffering from knee osteoarthritis. *J Neuroimmunol* **2018**, *321*, 49-60, doi:10.1016/j.jneuroim.2018.05.009.
132. Weerasekera, A.; Morrissey, E.; Kim, M.; Saha, A.; Lin, Y.; Alshelh, Z.; Torrado-Carvajal, A.; Albrecht, D.; Akeju, O.; Kwon, Y.M.; et al. Thalamic neurometabolite alterations in patients with knee osteoarthritis before and after total knee replacement. *Pain* **2021**, *162*, 2014-2023, doi:10.1097/j.pain.0000000000002198.
133. Amodeo, G.; Franchi, S.; Galimberti, G.; Comi, L.; D'Agnelli, S.; Baciarello, M.; Bignami, E.G.; Sacerdote, P. Osteoarthritis Pain in Old Mice Aggravates Neuroinflammation and Frailty: The Positive Effect of Morphine Treatment. *Biomedicines* **2022**, *10*, doi:10.3390/biomedicines10112847.
134. Muchhal, K.H.; Jacob, J.C.; Dewey, W.L.; Akbarali, H.I. Role of beta-arrestin-2 in short- and long-term opioid tolerance in the dorsal root ganglia. *Eur J Pharmacol* **2021**, *899*, 174007, doi:10.1016/j.ejphar.2021.174007.
135. Carcole, M.; Kummer, S.; Goncalves, L.; Zamanillo, D.; Merlos, M.; Dickenson, A.H.; Fernandez-Pastor, B.; Cabanero, D.; Maldonado, R. Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain. *Br J Pharmacol* **2019**, *176*, 3939-3955, doi:10.1111/bph.14794.
136. Bufalo, M.C.; Almeida, M.E.S.; Jensen, J.R.; DeOcesano-Pereira, C.; Lichtenstein, F.; Picolo, G.; Chudzinski-Tavassi, A.M.; Sampaio, S.C.; Cury, Y.; Zambelli, V.O. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. *Cells* **2022**, *11*, doi:10.3390/cells11020247.
137. Galimberti, G.; Amodeo, G.; Magni, G.; Riboldi, B.; Balboni, G.; Onnis, V.; Ceruti, S.; Sacerdote, P.; Franchi, S. Prokineticin System Is a Pharmacological Target to Counteract Pain and Its Comorbid Mood Alterations in an Osteoarthritis Murine Model. *Cells* **2023**, *12*, doi:10.3390/cells12182255.
138. Amodeo, G.; Franchi, S.; D'Agnelli, S.; Galimberti, G.; Baciarello, M.; Bignami, E.G.; Sacerdote, P. Supraspinal neuroinflammation and anxiolytic-like behaviors in young- and older-adult mice with osteoarthritis pain: the effect of morphine. *Psychopharmacology (Berl)* **2023**, *240*, 2131-2146, doi:10.1007/s00213-023-06436-1.
139. Wistrom, E.; Chase, R.; Smith, P.R.; Campbell, Z.T. A compendium of validated pain genes. *WIREs Mech Dis* **2022**, *14*, e1570, doi:10.1002/wsbm.1570.
140. Schumacher, M.A. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. *Curr Neuropharmacol* **2024**, *22*, 6-14, doi:10.2174/1570159X21666230808111908.
141. Feng, F.; Jiao, P.; Wang, J.; Li, Y.; Bao, B.; Luoren, Z.; Wang, X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. *Cells* **2022**, *11*, doi:10.3390/cells11223642.
142. Liang, Y.; Zhao, J.; Dai, T.; Li, X.; Chen, L.; He, Z.; Guo, M.; Zhao, J.; Xu, L. A review of KLF4 and inflammatory disease: Current status and future perspective. *Pharmacol Res* **2024**, *207*, 107345, doi:10.1016/j.phrs.2024.107345.



143. Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. *Biomed Pharmacother* **2020**, *129*, 110452, doi:10.1016/j.biopha.2020.110452.
144. Bolduc, J.A.; Collins, J.A.; Loeser, R.F. Reactive oxygen species, aging and articular cartilage homeostasis. *Free Radic Biol Med* **2019**, *132*, 73-82, doi:10.1016/j.freeradbiomed.2018.08.038.
145. Lepetsos, P.; Papavassiliou, A.G. ROS/oxidative stress signaling in osteoarthritis. *Biochim Biophys Acta* **2016**, *1862*, 576-591, doi:10.1016/j.bbadi.2016.01.003.
146. Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. *Nat Rev Rheumatol* **2011**, *7*, 33-42, doi:10.1038/nrrheum.2010.196.
147. Molnar, V.; Maticic, V.; Kodvanj, I.; Bjelica, R.; Jelec, Z.; Hudetz, D.; Rod, E.; Cukelj, F.; Vrdoljak, T.; Vidovic, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. *Int J Mol Sci* **2021**, *22*, doi:10.3390/ijms22179208.
148. Grigolo, B.; Roseti, L.; Fiorini, M.; Facchini, A. Enhanced lipid peroxidation in synoviocytes from patients with osteoarthritis. *J Rheumatol* **2003**, *30*, 345-347.
149. Franz, A.; Joseph, L.; Mayer, C.; Harmsen, J.F.; Schrumpf, H.; Frobel, J.; Ostapczuk, M.S.; Krauspe, R.; Zilkens, C. The role of oxidative and nitrosative stress in the pathology of osteoarthritis: Novel candidate biomarkers for quantification of degenerative changes in the knee joint. *Orthop Rev (Pavia)* **2018**, *10*, 7460, doi:10.4081/or.2018.7460.
150. Zhang, X.; Hou, L.; Guo, Z.; Wang, G.; Xu, J.; Zheng, Z.; Sun, K.; Guo, F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. *Cell Death Discov* **2023**, *9*, 320, doi:10.1038/s41420-023-01613-9.
151. Jiang, H.; Ji, P.; Shang, X.; Zhou, Y. Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. *Molecules* **2023**, *28*, doi:10.3390/molecules28041683.
152. Bentz, M.; Zaouter, C.; Shi, Q.; Fahmi, H.; Moldovan, F.; Fernandes, J.C.; Benderdour, M. Inhibition of inducible nitric oxide synthase prevents lipid peroxidation in osteoarthritic chondrocytes. *J Cell Biochem* **2012**, *113*, 2256-2267, doi:10.1002/jcb.24096.
153. Akool el, S.; Kleinert, H.; Hamada, F.M.; Abdelwahab, M.H.; Forstermann, U.; Pfeilschifter, J.; Eberhardt, W. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. *Mol Cell Biol* **2003**, *23*, 4901-4916, doi:10.1128/MCB.23.14.4901-4916.2003.
154. Mastbergen, S.C.; Bijlsma, J.W.; Lafeber, F.P. Synthesis and release of human cartilage matrix proteoglycans are differently regulated by nitric oxide and prostaglandin-E2. *Ann Rheum Dis* **2008**, *67*, 52-58, doi:10.1136/ard.2006.065946.
155. Katsuyama, K.; Shichiri, M.; Marumo, F.; Hirata, Y. NO inhibits cytokine-induced iNOS expression and NF-kappaB activation by interfering with phosphorylation and degradation of IkappaB-alpha. *Arterioscler Thromb Vasc Biol* **1998**, *18*, 1796-1802, doi:10.1161/01.atv.18.11.1796.
156. Xia, W.; Szomor, Z.; Wang, Y.; Murrell, G.A. Nitric oxide enhances collagen synthesis in cultured human tendon cells. *J Orthop Res* **2006**, *24*, 159-172, doi:10.1002/jor.20060.
157. Rubbo, H. Nitric oxide and peroxynitrite in lipid peroxidation. *Medicina (B Aires)* **1998**, *58*, 361-366.
158. Wang, Y.; Zhao, X.; Lotz, M.; Terkeltaub, R.; Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha. *Arthritis Rheumatol* **2015**, *67*, 2141-2153, doi:10.1002/art.39182.
159. Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1alpha Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. *Antioxidants (Basel)* **2023**, *12*, doi:10.3390/antiox12051075.
160. Esteras, N.; Abramov, A.Y. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. *Free Radic Biol Med* **2022**, *189*, 136-153, doi:10.1016/j.freeradbiomed.2022.07.013.
161. Canto, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. *Curr Opin Lipidol* **2009**, *20*, 98-105, doi:10.1097/MOL.0b013e328328d0a4.
162. Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. *Antioxidants (Basel)* **2022**, *11*, doi:10.3390/antiox11122345.
163. Noce, A.; Ferrannini, M.; Fabrini, R.; Bocedi, A.; Dessi, M.; Galli, F.; Federici, G.; Palumbo, R.; Di Daniele, N.; Ricci, G. Erythrocyte glutathione transferase: a new biomarker for hemodialysis adequacy, overcoming the Kt/V(urea) dogma? *Cell Death Dis* **2012**, *3*, e377, doi:10.1038/cddis.2012.112.

164. Sheng, W.; Yue, Y.; Qi, T.; Qin, H.; Liu, P.; Wang, D.; Zeng, H.; Yu, F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. *J Inflamm Res* **2024**, *17*, 6619-6633, doi:10.2147/JIR.S479186.
165. Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. *Molecules* **2020**, *25*, doi:10.3390/molecules25225474.
166. Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. *Front Immunol* **2022**, *13*, 967193, doi:10.3389/fimmu.2022.967193.
167. Wang, L.; Liang, Y.; Zhou, X.; Tian, Y.; Miao, Z.; Ko, C.C.; Hu, X. Nrf2 differentially regulates osteoclast and osteoblast differentiation for bone homeostasis. *Biochem Biophys Res Commun* **2023**, *674*, 19-26, doi:10.1016/j.bbrc.2023.06.080.
168. Jie, P.; Wu, Y.; Song, C.; Cheng, Y.; Liu, Y.; Chen, K. Mechanism of Nrf2/miR338-3p/TRAP-1 pathway involved in hyperactivation of synovial fibroblasts in patients with osteoarthritis. *Helion* **2023**, *9*, e21412, doi:10.1016/j.heliyon.2023.e21412.
169. Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. *Immunol Rev* **2010**, *233*, 233-255, doi:10.1111/j.0105-2896.2009.00859.x.
170. Zhang, L.; Xing, R.; Huang, Z.; Ding, L.; Zhang, L.; Li, M.; Li, X.; Wang, P.; Mao, J. Synovial Fibrosis Involvement in Osteoarthritis. *Front Med (Lausanne)* **2021**, *8*, 684389, doi:10.3389/fmed.2021.684389.
171. Green, A.; Hossain, T.; Eckmann, D.M. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. *Front Cell Dev Biol* **2022**, *10*, 1010232, doi:10.3389/fcell.2022.1010232.
172. Wang, K.; Klionsky, D.J. Mitochondria removal by autophagy. *Autophagy* **2011**, *7*, 297-300, doi:10.4161/auto.7.3.14502.
173. Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Osko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczynska, K. Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. *Int J Mol Sci* **2021**, *22*, doi:10.3390/ijms222413384.
174. Qi, Z.; Zhu, J.; Cai, W.; Lou, C.; Li, Z. The role and intervention of mitochondrial metabolism in osteoarthritis. *Mol Cell Biochem* **2024**, *479*, 1513-1524, doi:10.1007/s11010-023-04818-9.
175. Cheung, C.; Tu, S.; Feng, Y.; Wan, C.; Ai, H.; Chen, Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. *Arch Gerontol Geriatr* **2024**, *125*, 105522, doi:10.1016/j.archger.2024.105522.
176. Shen, K.; Zhou, H.; Zuo, Q.; Gu, Y.; Cheng, J.; Yan, K.; Zhang, H.; Song, H.; Liang, W.; Zhou, J.; et al. GATD3A-deficiency-induced mitochondrial dysfunction facilitates senescence of fibroblast-like synoviocytes and osteoarthritis progression. *Nat Commun* **2024**, *15*, 10923, doi:10.1038/s41467-024-55335-2.
177. Yan, Z.; Qi, W.; Zhan, J.; Lin, Z.; Lin, J.; Xue, X.; Pan, X.; Zhou, Y. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. *J Cell Mol Med* **2020**, *24*, 13046-13057, doi:10.1111/jcmm.15905.
178. Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. *Oxid Med Cell Longev* **2020**, *2020*, 4063562, doi:10.1155/2020/4063562.
179. Zhang, Y.; Zheng, Y.; Li, H. NLRP3 Inflammasome Plays an Important Role in the Pathogenesis of Collagen-Induced Arthritis. *Mediators Inflamm* **2016**, *2016*, 9656270, doi:10.1155/2016/9656270.
180. Silva Santos Ribeiro, P.; Willemen, H.; Versteeg, S.; Martin Gil, C.; Eijkelpamp, N. NLRP3 inflammasome activation in sensory neurons promotes chronic inflammatory and osteoarthritis pain. *Immunother Adv* **2023**, *3*, ltad022, doi:10.1093/immadv/ltad022.
181. Kwon, D.H.; Cha, H.J.; Lee, H.; Hong, S.H.; Park, C.; Park, S.H.; Kim, G.Y.; Kim, S.; Kim, H.S.; Hwang, H.J.; et al. Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. *Antioxidants (Basel)* **2019**, *8*, doi:10.3390/antiox8040082.
182. Zhu, S.; Makosa, D.; Miller, B.; Griffin, T.M. Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis. *Connect Tissue Res* **2020**, *61*, 34-47, doi:10.1080/03008207.2019.1665035.
183. Setti, T.; Arab, M.G.L.; Santos, G.S.; Alkass, N.; Andrade, M.A.P.; Lana, J. The protective role of glutathione in osteoarthritis. *J Clin Orthop Trauma* **2021**, *15*, 145-151, doi:10.1016/j.jcot.2020.09.006.

184. Kimura, Y.; Goto, Y.; Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. *Antioxid Redox Signal* **2010**, *12*, 1-13, doi:10.1089/ars.2008.2282.
185. Lucarini, E.; Micheli, L.; Martelli, A.; Testai, L.; Calderone, V.; Ghelardini, C.; Di Cesare Mannelli, L. Efficacy of isothiocyanate-based compounds on different forms of persistent pain. *J Pain Res* **2018**, *11*, 2905-2913, doi:10.2147/JPR.S161882.
186. Che, H.; Shao, Z.; Ding, J.; Gao, H.; Liu, X.; Chen, H.; Cai, S.; Ge, J.; Wang, C.; Wu, J.; et al. The effect of allyl isothiocyanate on chondrocyte phenotype is matrix stiffness-dependent: Possible involvement of TRPA1 activation. *Front Mol Biosci* **2023**, *10*, 1112653, doi:10.3389/fmolb.2023.1112653.
187. Chen, Y.; Xue, R.; Jin, X.; Tan, X. Antiarthritic Activity of Diallyl Disulfide against Freund's Adjuvant-Induced Arthritic Rat Model. *J Environ Pathol Toxicol Oncol* **2018**, *37*, 291-303, doi:10.1615/JEnvironPatholToxicolOncol.2018027078.
188. Ma, J.; Yang, P.; Zhou, Z.; Song, T.; Jia, L.; Ye, X.; Yan, W.; Sun, J.; Ye, T.; Zhu, L. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development. *J Adv Res* **2025**, *71*, 173-188, doi:10.1016/j.jare.2024.05.033.
189. Bataille, G.; Cabarga, L.; Pol, O. The Inhibitory Effects of Slow-Releasing Hydrogen Sulfide Donors in the Mechanical Allodynia, Grip Strength Deficits, and Depressive-Like Behaviors Associated with Chronic Osteoarthritis Pain. *Antioxidants (Basel)* **2019**, *9*, doi:10.3390/antiox9010031.
190. Keppel Hesselink, J.M.; de Boer, T.; Witkamp, R.F. Palmitoylethanolamide: A Natural Body-Own Anti-Inflammatory Agent, Effective and Safe against Influenza and Common Cold. *Int J Inflam* **2013**, *2013*, 151028, doi:10.1155/2013/151028.
191. Bachur, N.R.; Masek, K.; Melmon, K.L.; Udenfriend, S. Fatty Acid Amides of Ethanolamine in Mammalian Tissues. *J Biol Chem* **1965**, *240*, 1019-1024.
192. Siracusa, R.; Fusco, R.; Cordaro, M.; Peritore, A.F.; D'Amico, R.; Gugliandolo, E.; Crupi, R.; Genovese, T.; Evangelista, M.; Di Paola, R.; et al. The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. *Int J Mol Sci* **2020**, *21*, doi:10.3390/ijms21207700.
193. Petrosino, S.; Cordaro, M.; Verde, R.; Schiano Moriello, A.; Marcolongo, G.; Schievano, C.; Siracusa, R.; Piscitelli, F.; Peritore, A.F.; Crupi, R.; et al. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. *Front Pharmacol* **2018**, *9*, 249, doi:10.3389/fphar.2018.00249.
194. Fowler, C.J.; Jonsson, K.O.; Tiger, G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. *Biochem Pharmacol* **2001**, *62*, 517-526, doi:10.1016/s0006-2952(01)00712-2.
195. Kaczocha, M.; Glaser, S.T.; Chae, J.; Brown, D.A.; Deutsch, D.G. Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2. *J Biol Chem* **2010**, *285*, 2796-2806, doi:10.1074/jbc.M109.058461.
196. Piomelli, D.; Scalvini, L.; Fotio, Y.; Lodola, A.; Spadoni, G.; Tarzia, G.; Mor, M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. *J Med Chem* **2020**, *63*, 7475-7490, doi:10.1021/acs.jmedchem.0c00191.
197. Congiu, M.; Micheli, L.; Santoni, M.; Sagheddu, C.; Muntoni, A.L.; Makriyannis, A.; Malamas, M.S.; Ghelardini, C.; Di Cesare Mannelli, L.; Pistis, M. N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance. *Neurotherapeutics* **2021**, *18*, 2722-2736, doi:10.1007/s13311-021-01116-4.
198. Takizawa, M.; Hatta, T.; Iitsuka, H.; Katashima, M.; Sato, Y.; Kuroishi, K.; Nagashima, H. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652, a Reversible Fatty Acid Amide Hydrolase Inhibitor, in Healthy, Nonelderly, Japanese Men and Elderly, Japanese Men and Women: A Randomized, Double-blind, Placebo-controlled, Single and Multiple Oral Dose, Phase I Study. *Clin Ther* **2020**, *42*, 906-923, doi:10.1016/j.clinthera.2020.03.021.

199. Alhouayek, M.; Bottemanne, P.; Subramanian, K.V.; Lambert, D.M.; Makriyannis, A.; Cani, P.D.; Muccioli, G.G. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis. *FASEB J* **2015**, *29*, 650-661, doi:10.1096/fj.14-255208.
200. Bonezzi, F.T.; Sasso, O.; Pontis, S.; Realini, N.; Romeo, E.; Ponzano, S.; Nuzzi, A.; Fiasella, A.; Bertozzi, F.; Piomelli, D. An Important Role for N-Acylethanolamine Acid Amidase in the Complete Freund's Adjuvant Rat Model of Arthritis. *J Pharmacol Exp Ther* **2016**, *356*, 656-663, doi:10.1124/jpet.115.230516.
201. Alhouayek, M.; Bottemanne, P.; Makriyannis, A.; Muccioli, G.G. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation. *Biochim Biophys Acta Mol Cell Biol Lipids* **2017**, *1862*, 474-484, doi:10.1016/j.bbalip.2017.01.001.
202. Larauche, M.; Mulak, A.; Ha, C.; Million, M.; Arnett, S.; Germano, P.; Pearson, J.P.; Currie, M.G.; Tache, Y. FAAH inhibitor URB597 shows anti-hyperalgesic action and increases brain and intestinal tissues fatty acid amides in a model of CRF(1) agonist mediated visceral hypersensitivity in male rats. *Neurogastroenterol Motil* **2024**, *36*, e14927, doi:10.1111/nmo.14927.
203. Zhou, P.; Xiang, L.; Yang, Y.; Wu, Y.; Hu, T.; Liu, X.; Lin, F.; Xiu, Y.; Wu, K.; Lu, C.; et al. N-Acylethanolamine acid amidase (NAAA) inhibitor F215 as a novel therapeutic agent for osteoarthritis. *Pharmacol Res* **2019**, *145*, 104264, doi:10.1016/j.phrs.2019.104264.
204. Sagheddu, C.; Scherma, M.; Congiu, M.; Fadda, P.; Carta, G.; Banni, S.; Wood, J.T.; Makriyannis, A.; Malamas, M.S.; Pistis, M. Inhibition of N-acylethanolamine acid amidase reduces nicotine-induced dopamine activation and reward. *Neuropharmacology* **2019**, *144*, 327-336, doi:10.1016/j.neuropharm.2018.11.013.
205. Bottemanne, P.; Guillemot-Legris, O.; Paquot, A.; Masquelier, J.; Malamas, M.; Makriyannis, A.; Alhouayek, M.; Muccioli, G.G. N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibition, but Not Fatty Acid Amide Hydrolase Inhibition, Prevents the Development of Experimental Autoimmune Encephalomyelitis in Mice. *Neurotherapeutics* **2021**, *18*, 1815-1833, doi:10.1007/s13311-021-01074-x.
206. Greco, R.; Demartini, C.; Zanaboni, A.; Casini, I.; De Icco, R.; Reggiani, A.; Misto, A.; Piomelli, D.; Tassorelli, C. Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. *Neurobiol Dis* **2021**, *147*, 105157, doi:10.1016/j.nbd.2020.105157.
207. Vacondio, F.; Bassi, M.; Silva, C.; Castelli, R.; Carmi, C.; Scalvini, L.; Lodola, A.; Vivo, V.; Flammini, L.; Barocelli, E.; et al. Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, In Vitro Metabolism and In Vivo Plasma Profile in Rats. *PLoS One* **2015**, *10*, e0128699, doi:10.1371/journal.pone.0128699.
208. Manzo, E.; Schiano Moriello, A.; Tinto, F.; Verde, R.; Allara, M.; De Petrocellis, L.; Pagano, E.; Izzo, A.A.; Di Marzo, V.; Petrosino, S. A Glucuronic Acid-Palmitoylethanolamide Conjugate (GLUPEA) Is an Innovative Drug Delivery System and a Potential Bioregulator. *Cells* **2021**, *10*, doi:10.3390/cells10020450.
209. Gugliandolo, E.; Peritore, A.F.; Piras, C.; Cuzzocrea, S.; Crupi, R. Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing. *Vet Sci* **2020**, *7*, doi:10.3390/vetsci7020078.
210. Roa-Coria, J.E.; Navarrete-Vazquez, G.; Fowler, C.J.; Flores-Murrieta, F.J.; Deciga-Campos, M.; Granados-Soto, V. N-(4-Methoxy-2-nitrophenyl)hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception. *Life Sci* **2012**, *91*, 1288-1294, doi:10.1016/j.lfs.2012.09.024.
211. Impellizzeri, D.; Di Paola, R.; Cordaro, M.; Gugliandolo, E.; Casili, G.; Morittu, V.M.; Britti, D.; Esposito, E.; Cuzzocrea, S. Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation. *Biochem Pharmacol* **2016**, *119*, 27-41, doi:10.1016/j.bcp.2016.09.001.
212. Wallace, V.C.; Segerdahl, A.R.; Lambert, D.M.; Vandevoorde, S.; Blackbeard, J.; Pheby, T.; Hasnie, F.; Rice, A.S. The effect of the palmitoylethanolamide analogue, palmitoylethanolamide (L-29) on pain behaviour in rodent models of neuropathy. *Br J Pharmacol* **2007**, *151*, 1117-1128, doi:10.1038/sj.bjp.0707326.
213. Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. *Int J Mol Sci* **2021**, *22*, doi:10.3390/ijms22105305.

214. Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. *Br J Clin Pharmacol* **2016**, *82*, 932-942, doi:10.1111/bcp.13020.
215. Zhukov, O.D. [Distribution of N-([1-14C]-palmitoyl)ethanolamine in rat tissues]. *Ukr Biokhim Zh* (1999) **1999**, *71*, 124-125.
216. Artamonov, M.; Zhukov, O.; Shuba, I.; Storozhuk, L.; Khmel, T.; Klimashevsky, V.; Mikosha, A.; Gula, N. Incorporation of labelled N-acylethanolamine (NAE) into rat brain regions in vivo and adaptive properties of saturated NAE under x-ray irradiation. *Ukr Biokhim Zh* (1999) **2005**, *77*, 51-62.
217. di Marzo, V.; Skaper, S.D. Palmitoylethanolamide: biochemistry, pharmacology and therapeutic use of a pleiotropic anti-inflammatory lipid mediator. *CNS Neurol Disord Drug Targets* **2013**, *12*, 4-6, doi:10.2174/1871527311312010004.
218. Takada, I.; Makishima, M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). *Expert Opin Ther Pat* **2020**, *30*, 1-13, doi:10.1080/13543776.2020.1703952.
219. Katsiki, N.; Nikolic, D.; Montaldo, G.; Banach, M.; Mikhailidis, D.P.; Rizzo, M. The role of fibrate treatment in dyslipidemia: an overview. *Curr Pharm Des* **2013**, *19*, 3124-3131, doi:10.2174/1381612811319170020.
220. Keller, H.; Mahfoudi, A.; Dreyer, C.; Hihi, A.K.; Medin, J.; Ozato, K.; Wahli, W. Peroxisome proliferator-activated receptors and lipid metabolism. *Ann N Y Acad Sci* **1993**, *684*, 157-173, doi:10.1111/j.1749-6632.1993.tb32279.x.
221. Youssef, J.; Badr, M. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. *J Biomed Biotechnol* **2004**, *2004*, 156-166, doi:10.1155/S1110724304308065.
222. Annunziata, C.; Pirozzi, C.; Lama, A.; Senzacqua, M.; Comella, F.; Bordin, A.; Monnolo, A.; Pelagalli, A.; Ferrante, M.C.; Mollica, M.P.; et al. Palmitoylethanolamide Promotes White-to-Beige Conversion and Metabolic Reprogramming of Adipocytes: Contribution of PPAR-alpha. *Pharmaceutics* **2022**, *14*, doi:10.3390/pharmaceutics14020338.
223. Melini, S.; Pirozzi, C.; Lama, A.; Comella, F.; Opallo, N.; Del Piano, F.; Di Napoli, E.; Mollica, M.P.; Paciello, O.; Ferrante, M.C.; et al. Co-Micronized Palmitoylethanolamide and Rutin Associated With Hydroxytyrosol Recover Diabesity-Induced Hepatic Dysfunction in Mice: In Vitro Insights Into the Synergistic Effect. *Phytother Res* **2024**, *38*, 6035-6047, doi:10.1002/ptr.8361.
224. Cornali, K.; Di Lauro, M.; Marrone, G.; Masci, C.; Montaldo, G.; Giovannelli, A.; Schievano, C.; Tesauro, M.; Pieri, M.; Bernardini, S.; et al. The Effects of a Food Supplement, Based on Co-Micronized Palmitoylethanolamide (PEA)-Rutin and Hydroxytyrosol, in Metabolic Syndrome Patients: Preliminary Results. *Nutrients* **2025**, *17*, doi:10.3390/nu17030413.
225. Skaper, S.D.; Facci, L. Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. *Philos Trans R Soc Lond B Biol Sci* **2012**, *367*, 3312-3325, doi:10.1098/rstb.2011.0391.
226. Petrosino, S.; Schiano Moriello, A.; Verde, R.; Allara, M.; Imperatore, R.; Ligresti, A.; Mahmoud, A.M.; Peritore, A.F.; Iannotti, F.A.; Di Marzo, V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. *J Neuroinflammation* **2019**, *16*, 274, doi:10.1186/s12974-019-1671-5.
227. De Filippis, D.; Luongo, L.; Cipriano, M.; Palazzo, E.; Cinelli, M.P.; de Novellis, V.; Maione, S.; Iuvone, T. Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. *Mol Pain* **2011**, *7*, 3, doi:10.1186/1744-8069-7-3.
228. Muccioli, G.G.; Stella, N. Microglia produce and hydrolyze palmitoylethanolamide. *Neuropharmacology* **2008**, *54*, 16-22, doi:10.1016/j.neuropharm.2007.05.015.
229. Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.; Calignano, A.; Piomelli, D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. *Mol Pharmacol* **2005**, *67*, 15-19, doi:10.1124/mol.104.006353.
230. Aghaei, I.; Rostampour, M.; Shabani, M.; Naderi, N.; Motamed, F.; Babaei, P.; Khakpour-Taleghani, B. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. *Epilepsy Res* **2015**, *117*, 23-28, doi:10.1016/j.epilepsyres.2015.08.010.
231. Im, D.S. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. *Int J Mol Sci* **2021**, *22*, doi:10.3390/ijms22031034.



232. Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. *Sci Rep* **2017**, *7*, 375, doi:10.1038/s41598-017-00342-1.
233. Ambrosino, P.; Soldovieri, M.V.; Russo, C.; Taglialatela, M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARalpha agonist palmitoylethanolamide. *Br J Pharmacol* **2013**, *168*, 1430-1444, doi:10.1111/bph.12029.
234. Coluzzi, F.; Scerpa, M.S.; Alessandri, E.; Romualdi, P.; Rocco, M. Role of TRP Channels in Cancer-Induced Bone Pain. *Int J Mol Sci* **2025**, *26*, doi:10.3390/ijms26031229.
235. Petrosino, S.; Schiano Moriello, A.; Cerrato, S.; Fusco, M.; Puigdemont, A.; De Petrocellis, L.; Di Marzo, V. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. *Br J Pharmacol* **2016**, *173*, 1154-1162, doi:10.1111/bph.13084.
236. Capasso, R.; Orlando, P.; Pagano, E.; Aveta, T.; Buono, L.; Borrelli, F.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB(1) receptors and TRPV1 channels. *Br J Pharmacol* **2014**, *171*, 4026-4037, doi:10.1111/bph.12759.
237. Karwad, M.A.; Macpherson, T.; Wang, B.; Theophilidou, E.; Sarmad, S.; Barrett, D.A.; Larvin, M.; Wright, K.L.; Lund, J.N.; O'Sullivan, S.E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARalpha. *FASEB J* **2017**, *31*, 469-481, doi:10.1096/fj.201500132.
238. De Icco, R.; Greco, R.; Demartini, C.; Vergobbi, P.; Zanaboni, A.; Tumelero, E.; Reggiani, A.; Realini, N.; Sances, G.; Grillo, V.; et al. Spinal nociceptive sensitization and plasma palmitoylethanolamide levels during experimentally induced migraine attacks. *Pain* **2021**, *162*, 2376-2385, doi:10.1097/j.pain.0000000000002223.
239. Skaper, S.D.; Facci, L.; Giusti, P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. *Mol Neurobiol* **2013**, *48*, 340-352, doi:10.1007/s12035-013-8487-6.
240. Scuderi, C.; Esposito, G.; Blasio, A.; Valenza, M.; Arietti, P.; Steardo, L., Jr.; Carnuccio, R.; De Filippis, D.; Petrosino, S.; Iuvone, T.; et al. Palmitoylethanolamide counteracts reactive astrogliosis induced by beta-amyloid peptide. *J Cell Mol Med* **2011**, *15*, 2664-2674, doi:10.1111/j.1582-4934.2011.01267.x.
241. Beggiato, S.; Borelli, A.C.; Ferraro, L.; Tanganelli, S.; Antonelli, T.; Tomasini, M.C. Palmitoylethanolamide Blunts Amyloid-beta42-Induced Astrocyte Activation and Improves Neuronal Survival in Primary Mouse Cortical Astrocyte-Neuron Co-Cultures. *J Alzheimers Dis* **2018**, *61*, 389-399, doi:10.3233/JAD-170699.
242. D'Agostino, G.; Russo, R.; Avagliano, C.; Cristiano, C.; Meli, R.; Calignano, A. Palmitoylethanolamide protects against the amyloid-beta25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. *Neuropsychopharmacology* **2012**, *37*, 1784-1792, doi:10.1038/npp.2012.25.
243. Kiani, A.K.; Miggiano, G.A.D.; Aquilanti, B.; Velluti, V.; Matera, G.; Gagliardi, L.; Bertelli, M. Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. *Acta Biomed* **2020**, *91*, e2020007, doi:10.23750/abm.v91i13-S.10582.
244. Facchinetto, R.; Valenza, M.; Bronzuoli, M.R.; Menegoni, G.; Ratano, P.; Steardo, L.; Campolongo, P.; Scuderi, C. Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. *Int J Mol Sci* **2020**, *21*, doi:10.3390/ijms21113802.
245. Brotini, S.; Schievano, C.; Guidi, L. Ultra-micronized Palmitoylethanolamide: An Efficacious Adjuvant Therapy for Parkinson's Disease. *CNS Neurol Disord Drug Targets* **2017**, *16*, 705-713, doi:10.2174/187152731666170321124949.
246. Jung, J.I.; Lee, H.S.; Jeon, Y.E.; Kim, S.M.; Hong, S.H.; Moon, J.M.; Lim, C.Y.; Kim, Y.H.; Kim, E.J. Anti-inflammatory activity of palmitoylethanolamide ameliorates osteoarthritis induced by monosodium iodoacetate in Sprague-Dawley rats. *Inflammopharmacology* **2021**, *29*, 1475-1486, doi:10.1007/s10787-021-00870-3.

247. Seol, T.K.; Lee, W.; Park, S.; Kim, K.N.; Kim, T.Y.; Oh, Y.N.; Jun, J.H. Effect of palmitoylethanolamide on inflammatory and neuropathic pain in rats. *Korean J Anesthesiol* **2017**, *70*, 561-566, doi:10.4097/kjae.2017.70.5.561.
248. Della Rocca, G.; Re, G. Palmitoylethanolamide and Related ALIAmides for Small Animal Health: State of the Art. *Biomolecules* **2022**, *12*, doi:10.3390/biom12091186.
249. Cruccu, G.; Stefano, G.D.; Marchettini, P.; Truini, A. Micronized Palmitoylethanolamide: A Post Hoc Analysis of a Controlled Study in Patients with Low Back Pain - Sciatica. *CNS Neurol Disord Drug Targets* **2019**, *18*, 491-495, doi:10.2174/1871527318666190703110036.
250. Scaturro, D.; Asaro, C.; Lauricella, L.; Tomasello, S.; Varrassi, G.; Letizia Mauro, G. Combination of Rehabilitative Therapy with Ultramicronized Palmitoylethanolamide for Chronic Low Back Pain: An Observational Study. *Pain Ther* **2020**, *9*, 319-326, doi:10.1007/s40122-019-00140-9.
251. Passavanti, M.B.; Fiore, M.; Sansone, P.; Aurilio, C.; Pota, V.; Barbarisi, M.; Fierro, D.; Pace, M.C. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to Tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. *BMC Anesthesiol* **2017**, *17*, 171, doi:10.1186/s12871-017-0461-9.
252. Chirchiglia, D.; Paventi, S.; Seminara, P.; Cione, E.; Gallelli, L. N-Palmitoyl Ethanol Amide Pharmacological Treatment in Patients With Nonsurgical Lumbar Radiculopathy. *J Clin Pharmacol* **2018**, *58*, 733-739, doi:10.1002/jcph.1070.
253. Germini, F.; Coerezza, A.; Andreinetti, L.; Nobili, A.; Rossi, P.D.; Mari, D.; Guyatt, G.; Marcucci, M. N-of-1 Randomized Trials of Ultra-Micronized Palmitoylethanolamide in Older Patients with Chronic Pain. *Drugs Aging* **2017**, *34*, 941-952, doi:10.1007/s40266-017-0506-2.
254. Paladini, A.; Varrassi, G.; Bentivegna, G.; Carletti, S.; Piroli, A.; Coaccioli, S. Palmitoylethanolamide in the Treatment of Failed Back Surgery Syndrome. *Pain Res Treat* **2017**, *2017*, 1486010, doi:10.1155/2017/1486010.
255. Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. *Pain* **2008**, *139*, 541-550, doi:10.1016/j.pain.2008.06.003.
256. Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. *Cell Mol Life Sci* **2019**, *76*, 473-493, doi:10.1007/s00018-018-2943-4.
257. Asadi, A.; Shadab Mehr, N.; Mohamadi, M.H.; Shokri, F.; Heidary, M.; Sadeghifard, N.; Khoshnood, S. Obesity and gut-microbiota-brain axis: A narrative review. *J Clin Lab Anal* **2022**, *36*, e24420, doi:10.1002/jcla.24420.
258. Farzi, A.; Frohlich, E.E.; Holzer, P. Gut Microbiota and the Neuroendocrine System. *Neurotherapeutics* **2018**, *15*, 5-22, doi:10.1007/s13311-017-0600-5.
259. Chidambaram, S.B.; Essa, M.M.; Rathipriya, A.G.; Bishir, M.; Ray, B.; Mahalakshmi, A.M.; Tousif, A.H.; Sakharkar, M.K.; Kashyap, R.S.; Friedland, R.P.; et al. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. *Pharmacol Ther* **2022**, *231*, 107988, doi:10.1016/j.pharmthera.2021.107988.
260. Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Madry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. *Cells* **2021**, *10*, doi:10.3390/cells10113164.
261. Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. *Cell Mol Life Sci* **2017**, *74*, 2959-2977, doi:10.1007/s00018-017-2509-x.
262. Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. *Nat Rev Immunol* **2017**, *17*, 219-232, doi:10.1038/nri.2017.7.
263. Di Lauro, M.; Guerriero, C.; Cornali, K.; Albanese, M.; Costacurta, M.; Mercuri, N.B.; Di Daniele, N.; Noce, A. Linking Migraine to Gut Dysbiosis and Chronic Non-Communicable Diseases. *Nutrients* **2023**, *15*, doi:10.3390/nu15204327.
264. Di Renzo, L.; Gualtieri, P.; Romano, L.; Marrone, G.; Noce, A.; Pujia, A.; Perrone, M.A.; Aiello, V.; Colica, C.; De Lorenzo, A. Role of Personalized Nutrition in Chronic-Degenerative Diseases. *Nutrients* **2019**, *11*, doi:10.3390/nu11081707.

265. Noce, A.; Marrone, G.; Di Daniele, F.; Ottaviani, E.; Wilson Jones, G.; Bernini, R.; Romani, A.; Rovella, V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. *Nutrients* **2019**, *11*, doi:10.3390/nu11051073.
266. Noce, A.; Marchetti, M.; Marrone, G.; Di Renzo, L.; Di Lauro, M.; Di Daniele, F.; Albanese, M.; Di Daniele, N.; De Lorenzo, A. Link between gut microbiota dysbiosis and chronic kidney disease. *Eur Rev Med Pharmacol Sci* **2022**, *26*, 2057-2074, doi:10.26355/eurrev\_202203\_28354.
267. Canale, M.P.; Noce, A.; Di Lauro, M.; Marrone, G.; Cantelmo, M.; Cardillo, C.; Federici, M.; Di Daniele, N.; Tesauro, M. Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review. *Nutrients* **2021**, *13*, doi:10.3390/nu13041162.
268. Coluzzi, F.; Scerpa, M.S.; Loffredo, C.; Borro, M.; Pergolizzi, J.V.; LeQuang, J.A.; Alessandri, E.; Simmaco, M.; Rocco, M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. *Int J Mol Sci* **2024**, *25*, doi:10.3390/ijms25147999.
269. Alvaro, D.; Caraceni, A.T.; Coluzzi, F.; Gianni, W.; Lugoboni, F.; Marinangeli, F.; Massazza, G.; Pinto, C.; Varrassi, G. What to Do and What Not to Do in the Management of Opioid-Induced Constipation: A Choosing Wisely Report. *Pain Ther* **2020**, *9*, 657-667, doi:10.1007/s40122-020-00195-z.
270. Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. *Compr Physiol* **2016**, *6*, 603-621, doi:10.1002/cphy.c150015.
271. Dicks, L.M.T. Gut Bacteria and Neurotransmitters. *Microorganisms* **2022**, *10*, doi:10.3390/microorganisms10091838.
272. Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. *Front Endocrinol (Lausanne)* **2023**, *14*, 1130689, doi:10.3389/fendo.2023.1130689.
273. Geng, S.; Yang, L.; Cheng, F.; Zhang, Z.; Li, J.; Liu, W.; Li, Y.; Chen, Y.; Bao, Y.; Chen, L.; et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defects in Intestinal and Blood-Brain Barriers. *Front Microbiol* **2019**, *10*, 3067, doi:10.3389/fmicb.2019.03067.
274. Bertollo, A.G.; Santos, C.F.; Bagatini, M.D.; Ignacio, Z.M. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. *Front Neurosci* **2025**, *19*, 1541075, doi:10.3389/fnins.2025.1541075.
275. Suda, T. Adrenocorticotrophic hormone (ACTH). *Jpn J Med* **1989**, *28*, 789-791, doi:10.2169/internalmedicine1962.28.789.
276. McEwen, B.S.; Nasca, C.; Gray, J.D. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. *Neuropharmacology* **2016**, *41*, 3-23, doi:10.1038/npp.2015.171.
277. P, S.; Vellapandian, C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer's Disease and Depression. *Cureus* **2024**, *16*, e67595, doi:10.7759/cureus.67595.
278. Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. *Cells* **2022**, *12*, doi:10.3390/cells12010054.
279. Numakawa, T.; Kajihara, R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. *Front Mol Neurosci* **2023**, *16*, 1247422, doi:10.3389/fnmol.2023.1247422.
280. Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. *Biomedicines* **2022**, *10*, doi:10.3390/biomedicines10020436.
281. Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-chain fatty acids in diseases. *Cell Commun Signal* **2023**, *21*, 212, doi:10.1186/s12964-023-01219-9.
282. Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Toth, M.; Korecka, A.; Bakoczevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood-brain barrier permeability in mice. *Sci Transl Med* **2014**, *6*, 263ra158, doi:10.1126/scitranslmed.3009759.
283. Chakraborty, P.; Gamage, H.; Laird, A.S. Butyrate as a potential therapeutic agent for neurodegenerative disorders. *Neurochem Int* **2024**, *176*, 105745, doi:10.1016/j.neuint.2024.105745.
284. Maldonado, R.F.; Sa-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. *FEMS Microbiol Rev* **2016**, *40*, 480-493, doi:10.1093/femsre/fuw007.

285. Basnet, T.B.; Gc, S.; Basnet, R.; Fatima, S.; Safdar, M.; Sehar, B.; Alsubaie, A.S.R.; Zeb, F. Interaction between gut microbiota metabolites and dietary components in lipid metabolism and metabolic diseases. *Access Microbiol* **2023**, *5*, acmi000403, doi:10.1099/acmi.0.000403.
286. Mohr, A.E.; Crawford, M.; Jasbi, P.; Fessler, S.; Sweazea, K.L. Lipopolysaccharide and the gut microbiota: considering structural variation. *FEBS Lett* **2022**, *596*, 849-875, doi:10.1002/1873-3468.14328.
287. Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. *Front Immunol* **2020**, *11*, 594150, doi:10.3389/fimmu.2020.594150.
288. Lu, S.; Zhao, Q.; Guan, Y.; Sun, Z.; Li, W.; Guo, S.; Zhang, A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. *Biomed Pharmacother* **2024**, *178*, 117207, doi:10.1016/j.bioph.2024.117207.
289. Russo, R.; Cristiano, C.; Avagliano, C.; De Caro, C.; La Rana, G.; Raso, G.M.; Canani, R.B.; Meli, R.; Calignano, A. Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. *Curr Med Chem* **2018**, *25*, 3930-3952, doi:10.2174/092986732466170216113756.
290. Couch, D.G.; Cook, H.; Ortori, C.; Barrett, D.; Lund, J.N.; O'Sullivan, S.E. Palmitoylethanolamide and Cannabidiol Prevent Inflammation-induced Hyperpermeability of the Human Gut In Vitro and In Vivo-A Randomized, Placebo-controlled, Double-blind Controlled Trial. *Inflamm Bowel Dis* **2019**, *25*, 1006-1018, doi:10.1093/ibd/izz017.
291. Pirozzi, C.; Coretti, L.; Opallo, N.; Bove, M.; Annunziata, C.; Comella, F.; Turco, L.; Lama, A.; Trabace, L.; Meli, R.; et al. Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism. *Front Nutr* **2023**, *10*, 1143004, doi:10.3389/fnut.2023.1143004.
292. Correia, A.S.; Vale, N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. *Int J Mol Sci* **2022**, *23*, doi:10.3390/ijms23158493.
293. Batacan, R., Jr.; Briskey, D.; Bajagai, Y.S.; Smith, C.; Stanley, D.; Rao, A. Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study. *Biomedicines* **2024**, *12*, doi:10.3390/biomedicines12071620.
294. De Filippis, D.; D'Amico, A.; Cinelli, M.P.; Esposito, G.; Di Marzo, V.; Iuvone, T. Adelmidrol, a palmitoylethanolamide analogue, reduces chronic inflammation in a carrageenin-granuloma model in rats. *J Cell Mol Med* **2009**, *13*, 1086-1095, doi:10.1111/j.1582-4934.2008.00353.x.
295. Palenca, I.; Seguella, L.; Zilli, A.; Basili Franzin, S.; Del Re, A.; Pepi, F.; Troiani, A.; Pesce, M.; Rurgo, S.; De Palma, F.D.E.; et al. Intrarectal Administration of Adelmidrol plus Hyaluronic Acid Gel Ameliorates Experimental Colitis in Mice and Inhibits Pro-Inflammatory Response in Ex Vivo Cultured Biopsies Derived from Ulcerative Colitis-Affected Patients. *Int J Mol Sci* **2023**, *25*, doi:10.3390/ijms25010165.
296. Interdonato, L.; D'Amico, R.; Cordaro, M.; Siracusa, R.; Fusco, R.; Peritone, A.F.; Gugliandolo, E.; Crupi, R.; Coaccioli, S.; Genovese, T.; et al. Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. *Biomolecules* **2022**, *12*, doi:10.3390/biom12091308.
297. Cerrato, S.; Brazis, P.; Della Valle, M.F.; Miolo, A.; Puigdemont, A. Inhibitory effect of topical adelmidrol on antigen-induced skin wheal and mast cell behavior in a canine model of allergic dermatitis. *BMC Vet Res* **2012**, *8*, 230, doi:10.1186/1746-6148-8-230.
298. Bonello, D.; Squarzoni, P. Effect of a mucoadhesive gel and dental scaling on gingivitis in dogs. *J Vet Dent* **2008**, *25*, 28-32, doi:10.1177/089875640802500108.
299. Abramo, F.; Salluzzi, D.; Leotta, R.; Auxilia, S.; Noli, C.; Miolo, A.; Mantis, P.; Lloyd, D.H. Mast cell morphometry and densitometry in experimental skin wounds treated with a gel containing adelmidrol: a placebo controlled study. *Wounds* **2008**, *20*, 149-157.
300. Guida, F.; Rocco, M.; Luongo, L.; Persiani, P.; Vulpiani, M.C.; Nusca, S.M.; Maione, S.; Coluzzi, F. Targeting Neuroinflammation in Osteoarthritis with Intra-Articular Adelmidrol. *Biomolecules* **2022**, *12*, doi:10.3390/biom12101453.
301. Del Re, A.; Palenca, I.; Seguella, L.; Pesce, M.; Corpetti, C.; Steardo, L.; Rurgo, S.; Sarnelli, G.; Esposito, G. Oral Adelmidrol Administration Up-Regulates Palmitoylethanolamide Production in Mice Colon and

- Duodenum through a PPAR-gamma Independent Action. *Metabolites* **2022**, *12*, doi:10.3390/metabo12050457.
302. Vulpiani MC, Nusca SM, Latini E, Santoboni F, Musa F, Trischitta D, Coluzzi F, Lardo D, Ippolito E. Hyaluronic acid alone versus hyaluronic acid associated with adelmidrol for Intra-articular treatment of knee osteoarthritis: A long-term follow-up. *International Journal of Physiotherapy and Research* **2023**, *Vol 11(1):4453-60, 4453-4460*, doi:<https://dx.doi.org/10.16965/ijpr.2022.192>.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.