Article

# The cancer aneuploidy paradox: In the light of evolution

Kristine Salmina <sup>1</sup>, Anda Huna <sup>2</sup>, Martins Kalejs <sup>3</sup>, Dace Pjanova <sup>1</sup>, Harry Scherthan <sup>4</sup>, Mark S Cragg <sup>5</sup> and Jekaterina Erenpreisa <sup>1,\*</sup>

- <sup>1</sup> Latvian Biomedical Research & Study Centre, Riga, Latvia; katrina@biomed.lu.lv
- <sup>2</sup> Centre de Recherche en Cancérologie de Lyon, France; anda.huna@gmail.com
- <sup>3</sup> Riga Stradins University, Latvia; m.kalejs@gmail.com
- <sup>4</sup> Bundeswehr Institute of Radiobiol affil. to the Univ. of Ulm, Munich, Germany; scherth@web.de
- <sup>5</sup> Centre for Cancer Immunology, University of Southampton, UK; m.s.cragg@soton.ac.uk
- \* Correspondence: katrina@biomed.lu.lv

Received: date; Accepted: date; Published: date

Abstract: Aneuploidy should compromise cellular proliferation but paradoxically favours tumour progression and poor prognosis. Here, we consider this paradox in terms of our most recent observations of chemo/radio-resistant cells undergoing reversible polyploidy. The latter perform segregation of two parental groups of end-to-end linked dyads by pseudo-mitosis creating tetraploid cells through a dysfunctional spindle. This is followed by autokaryogamy and homologous pairing preceding a bi-looped endo-prophase. The associated RAD51 and DMC1/γ-H2AX double-strand break repair foci are tandemly AURKB/REC8/kinetochore doublets along replicated chromosome loops, indicative of recombination events. MOS-associated REC8-positive peri-nucleolar centromere cluster organises a monopolar spindle. The process is completed by reduction divisions (bi-polar or with radial cytotomy including pedogamic exchanges) and release of secondary cells and/or formation of an embryoid. Together this process preserves genomic integrity and chromosome pairing, while tolerating aneuploidy by by-passing the mitotic spindle and meiotic SC checkpoints. Concurrently, it reduces the chromosome number and facilitates recombination that decreases the mutation load of aneuploidy and lethality in the chemo-resistant tumour cells. This cancer life-cycle has parallels both within the cycling polyploidy of the asexual life cycles of ancient unicellular protists and cleavage embryos of early multicellulars, supporting the atavistic theory of cancer.

Keywords: cancer; aneuploidy; meio-mitosis; disabled spindle; autokaryogamy; somatic pairing; recombination on kinetochores; reduction; chromothripsis; cleavage embryo

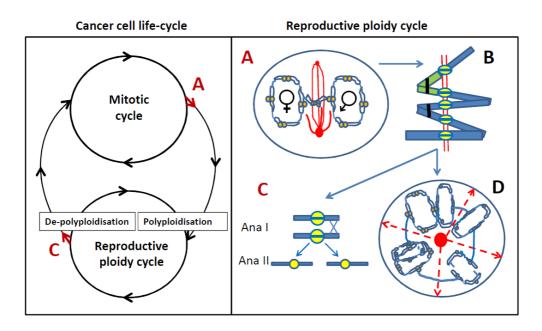



Figure 1. (Graphical Abstract). Left: Model of cancer cell life cycle that is composed of two reciprocal cycles: mitotic and reproductive ploidy cycle. Red arrows at A and C denote asymmetric cell fate decisions, indicating potential exit points for each of the two cycles. Right: The components of reproductive ploidy cycle: A – a cell enters pseudo-mitosis (PM) and likely segregates replicated parental genomes with end-to-end linked chromosomes and mitosis-uncoupled spindle, lying perpendicular to the axis of the two chromosome groups; B - scheme of the end-to-end linked inversely oriented bivalents (depicted as a green-blue stained pair) and representing a tandem chain of end-to-end linked genome dyads in an endoprophase, a positioning that can allow both zig-zag and co-parallel bi-valent orientation. Homologous bivalents are connected at subtelomeric regions (black clips); recombination is likely occurring between sister centromeres (yellow split rings). AURKB likely provides the microtubule attachment and prevents separation of cohesed centromeres at a monopolar spindle; C - linear de-polyploidisation by bipolar meiosis I-like reductional division (Anaphase I), followed by a second Anaphase II division (omitting S-phase), returning the cell into a mitotic cycle; D – alternative variant of de-polyploidisation, in which a cell has passed from A and B, through karyotomies using semi-spindles, bipolar and multipolar spindles with dicentric bridges, including possible re-asortings by pedogamic fusions of the neighbouring karyotomy products and subsequent release of cellularized sub-nuclei through radial cleavage furrows (dashed red arrows), originated from a fused centrosome-containing mid-body (red circle). The released cell(s) may again enter the reproductive cycle, or even mitotic cycle, may be through an intermediate sub-generation.

#### 1. Introduction

"Nothing in biology makes sense except in the light of evolution." (T. Dobzhansky, 1973)[1] Accumulating evidence shows that cancer is associated with genome doubling events that correlate with increasing chromosomal instability and aneuploidy. This process favours tumour progression, leading to poor prognosis [2–6]. However, chromosome instability and associated breakage-fusion-bridge cycles and aberrant mitoses resulting in aneuploidy should ultimately impair tumour proliferation, thus rendering the "aneuploidy paradox". Moreover, chromothripsis, whereby seemingly catastrophic breakage and re-assortment of the genome and its chromosomes occurs, has been observed in tumour genomes [7–9]. Chromothripsis with its shattering of partial genomes in one non-clonal event is considered a witness to the genomic chaos present in tumours before repair-mediated rescue [10,11]. Furthermore, the increasing gene mutation load observed in most tumours may also impede tumour development, even if "cancer is beyond speciation" [12]. How then can this paradox be resolved? As often, clues can be found in the distant past. A similar

3 of 22

predicament was present long ago during evolution for asexual protists. In the absence of sexual reproduction it is predicted that asexual protists should accumulate harmful mutations through "Muller's ratchet" [13,14] and become extinct as a species. However, numerous protists have persisted for aeons, indicating the presence of compensatory mechanisms that counteract the accumulation of deleterious gene mutations.

Early unicellular organisms of this type are an interesting comparator, because tumours also shift their genome expression towards the gene phylostrates of pro- and lower eukaryotes [15–17], particularly when it comes to chemoresistance, as seen by single cell transcriptome analysis [18]. Moreover, resistant metastatic human cells acquire phenotypes of single-cell eukaryotes with amoeboid features [19,20]. Our previous studies revealed that the cancer epigenome shifts towards enhanced expression of unicellular genes, which is associated with genome duplications and accompanied reprogramming [21–23]. In the absence of "Muller's ratchet" it is supposed that the polyploidy that lower protists exhibit allows them to utilize gene conversion for mutational correction [24]. In turn, we came to the conclusion that reversible polyploidy with its associated reprogramming reinstates the tumour germ line, operating as a reproductive cycle in a reciprocal relationship with conventional mitotic cycles. In the most general form this idea finds its parallels in the life-cycles of protozoa with cycling polyploidy [25,26] and has been formulated as a "cancer life cycle" (Fig.1, left; modified from [27,28]). Transient, reversible polyploidy was shown to utilize certain meiotic features and related aspects of endomitosis [29] (as defined by Geitler [30], which may have preceded the evolution of zygotic and gametic meiosis [31].

Transient, reversible polyploidy in cancer cells seems to depend on the expression of the meiotic kinase Mos [28,29,32–34]. Accordingly, the expression of meiotic genes have been noted in many tumour cells, both primary clinical material and cell lines [33–41] and found to be predictive of poor prognosis. In particular, the expression of Mos, REC8, SGO1,2, SPO11, DMC1, RAD51, SCP1, SCP3, STAG3, HORMA and many other, so-called cancer testes-associated antigens, has been observed. However, the relationship of canonical meiosis to a currently designated "meio-mitosis" in somatic cancer cells remains unresolved [42]. Moreover, the evolution of meiosis and sexual reproduction are still the subject of ongoing discussions [43–50]. Recently, protistologists paid attention to the similarity of amoebal life-cycles, including the polyploidy phase, with the "life-cycles" of resistant tumour cells [51–53]. However, the significance of meiotic gene expression in asexual amoebas themselves is currently not understood [53,54] and may need re-evaluation [55].

With respect to potential cellular mechanisms, in our previous studies we used a p53-deficient cancer model, in which lymphoma cells were exposed to a single 10 Gy dose of ionizing irradiation (IR) [56]. Subsequently, cells entered a prolonged G2/M arrest, and underwent increasing polyploidy that was accompanied by massive apoptotic crisis in >90% of the cells. 5-6 days post IR some of the surviving endopolyploidy cells underwent sub-nuclear sorting and depolyploidisation, which led to the recovery of a clonogenic mitotic fraction 2-3 weeks post-insult. FACS analysis and 24-h DNA pre-labelling with 3H-Thymidine showed that repopulation of the culture originated from the polyploid (>4C) fraction. This sequence of events also seen in doxorubicin-treated cells [56] was dependent on dysfunctional TP53. Re-irradiation of the recovered TP53-deficient clones (taken on day 40 post first IR) resulted in similar radioresistance curves and dynamics of polyploidy and apoptosis as the original cells, arguing against the selection of an existing resistant sub-clone. Notably, the recovered fraction in both cases was equally small (<0.01%). These data indicate the leading role of reversible polyploidy after genotoxic DNA damage for selecting albeit rare cells for survival. In this model, FISH analysis of centromeric labels of four chromosomes (#1, 3, 4, 9), revealed aneusomy or nullisomy in 30% of polyploid giant cell subnuclei [25].

In an attempt to reconcile the aneuploidy paradox and assimilate all of the data detailed above, here, we report on certain mechanisms of 'meio-mitosis' observed in various cancer cell radio/chemotherapy models, searching for similarities associated with the meiotic process (found in rare cells in each model). We aim to present a model incorporating elements of cycling polyploidy

4 of 22

and cancer cell life cycles, and recognizing the established relationship of treatment resistance with reversible genome doubling and reprogramming [6,34,56–65]. Using this assembled material we provide new evidence for the presence of a peculiar primitive sexual process operating through reversible polyploidy in cancer cells whose elements might have appeared during the evolution of eukaryotes, far before canonical gametic meiosis developed.

#### 2. Materials and Methods

# 2.1 Cell lines

The Burkitt's lymphoma (Ramos and Namalwa), ovarian teratocarcinoma (PA1) and HeLa cell lines were obtained from the ATCC and breast adenocarcinoma MDA-MB-231 cells from ECACC. The lymphoblastoma WIL2-NS was obtained from Dr P. Olive (Canada). Lymphoma cell lines (Namalwa, Ramos, WIL2-NS) were maintained in RPMI-1640 containing 10% foetal bovine serum (FBS; Sigma) at 37°C in a 5% CO<sub>2</sub> humidified incubator without antibiotics. PA-1 and MDA-MB-231 cells were cultured in Dulbecco's modified Eagle's media (DMEM) supplemented with 10% FBS, HeLa S3 cells in HAM-1 (Sigma) medium supplied with 10% FCS. For some experiments, HeLa and MDA-MB-231 were cultured on cover- or chamber-slides.

#### 2.2 Cell treatments

For experimental studies, cells were maintained in log phase of growth, and treated (lymphomas) with a single acute 10 Gy dose of gamma irradiation (1–2 Gy/min, Clinac 600 C, Varian Medical Systems or HeLa) using a Gulmay D3 225 X-ray source at a dose rate of 0.77Gy/min), ETO (etoposide; Sigma) – 8  $\mu$ M for 20 h, DOX (doxorubicin) 100nM for 24h or PXT (paclitaxel, Ebewe Pharma) – 30 or 100 nM for 20 h. After irradiation or drug removal cell cultures were maintained by replenishing culture medium every 2–3 days and sampled over a 2-3-week period post-treatment. To determine the capacity of cells to replicate DNA, BrdU was added at 5  $\mu$ M to the cell culture for 20 h prior to sample collection. In the experiments with REC8 detection, 10 $\mu$ M lactacystin was added to the culture medium for 2 h before cell harvest.

#### 2.3 Immunofluorescence

Cells were pelleted, suspended in warm FBS and cytospun onto glass slides or were grown on chamber slides. Cytospins were fixed in methanol for 7 min at -20°C, dipped 10 times in ice cold acetone and allowed to dry. Slides were then washed thrice in TBS 0.01% Tween 20 (TBST) for 5 min. Slides were subsequently blocked for 15 min in TBS, 0.05% Tween 20%, 1% BSA at room temperature. Samples were covered with TBS, 0.025% Tween 20%, 1% BSA containing primary antibody and incubated overnight at 4 °C in a humidified chamber. Samples were then washed thrice in TBST and covered with TBST containing the appropriate secondary antibodies (Goat antimouse IgG Alexa Fluor 488 (A31619, Invitrogen) or sheep anti-human-IgG-FITC and Goat anti-Rabbit-IgG Alexa Fluor 594 (A31631, Invitrogen) and incubated for 40 min at room temperature in the dark. Slides were washed thrice for 5 min with TBST and once for 2 min in PBS. Samples were then counterstained with 0.25 µg/ml DAPI for 2 min or with propidium iodide (5 mg/ml), and finally embedded in Prolong Gold (Invitrogen). When staining for tubulin, drying step was omitted, the fixation in methanol: acetone (1:1) performed and detergent was absent from all buffers; PF fixation was applied. For BrdU staining DNA denaturation was performed by 2 N HCl, 37 °C for 20 min before blocking. Primary antibodies and their source are listed in Table1. For microscopic observations a fluorescence light microscope (Leitz Ergolux L03-10) equipped with a colour video camera (Sony DXC 390P) was used. To capture fluorescent images, in addition to separate optical filters, a three-band BRG (blue, red, green) optical filter (Leica) was used. Confocal microscopy was carried out using confocal laser microscope Leica SP8 Confocal.

Table 1. Primary antibodies and their source

|                                            |                                                  |                                           | used          | Product nr and  |
|--------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------|-----------------|
|                                            | Description                                      | Specificity/immunogen                     | concentration | Manufacturer    |
| AURORA B                                   | ORA B Rabbit Peptide derived from within residue |                                           | 1:300         | ab2254, Abcam   |
|                                            | polyclonal                                       | 1 - 100 of Human Aurora B                 |               |                 |
| BrdU                                       | Mouse                                            | Reacts with 5-Bromo-2-deoxyuridine        | 1:200         | A21300,         |
|                                            | monoclonal                                       |                                           |               | Invitrogen      |
| Centromere                                 |                                                  | Derived from human CREST patient          | 1:50          | 15-234,         |
| Protein                                    | Human                                            | serum                                     |               | Antibodies Inc  |
| CHK2                                       |                                                  | Epitope around the phosphorylation        | 1:100         | ab38461, Abcam  |
| (phospho                                   | Rabbit                                           | site of Threonine 68 (VSTpQE) of          |               |                 |
| T68)                                       | polyclonal                                       | human Chk2                                |               |                 |
| CYCLIN B1                                  | Mouse                                            | Raised against a recombinant protein      | 1:100         | sc-245, Santa   |
|                                            | monoclonal                                       | corresponding to human cyclin B1          |               | Cruz            |
| DMC1                                       | Mouse                                            | Specific for DMC1 - does not cross-       | 1:100         | ab11054,        |
|                                            | monoclonal                                       | react with the related protein Rad51      |               | Abcam           |
| LAMIN B1                                   | LAMIN B1 Goat Peptide mapping at the C-terminu   |                                           | 1:200         | sc-6216 , Santa |
|                                            | polyclonal                                       | Lamin B1 of human origin                  |               | Cruz            |
| MOS (C237)                                 | Rabbit                                           | Epitope mapping at the C-terminus         | 1:50          | sc-86; Santa    |
|                                            | polyclonal                                       |                                           |               | Cruz            |
| NUMA                                       | Mouse                                            | N-terminus region of human NuMA           | 1:50          | Calbiochem      |
|                                            | monoclonal                                       |                                           |               | 107-7           |
| γ-H2AX                                     |                                                  | Recognizes mammalian, yeast,              | 1:200         | Trevigen; 4411- |
|                                            | Rabbit                                           | D. melanogaster, and X. laevis γ-         |               | PC-020          |
|                                            | polyclonal                                       | H2AX                                      |               |                 |
| REC8                                       | Polyclonal                                       | Peptide mapping near the N-terminus       | 1:50          | sc-15152 Santa  |
| (E-18)                                     | goat                                             | of Rec8 of human origin.                  |               | Cruz            |
| α-Tubulin                                  |                                                  | Epitope at the C-terminal end of the      | 1:1000        | T5168, Sigma    |
| Mouse $\alpha$ -tubulin isoform in a varie |                                                  | $\alpha$ -tubulin isoform in a variety of |               |                 |
|                                            | monoclonal                                       | organisms.                                |               |                 |

# 2.4 Toluidine blue DNA staining and image cytometry

Cytospins were prepared and fixed in ethanol: acetone (1:1) for > 30 min at 4°C and air-dried. Slides were then hydrolysed with 5N HCl for 20 min at room temperature, washed in distilled water (5 × 1 min) and stained for 10 min with 0.05% toluidine blue in 50% citrate-phosphate McIlvain buffer pH 4. Slides were rinsed with distilled water, blotted dry and dehydrated by incubating twice in butanol for 3 min each at 37°C. Samples were then incubated twice in xylene for 3 min each at room temperature before being embedded in DPX. Digital images were collected using a Sony DXC 390P colour video camera calibrated in the green channel. DNA content was measured as the integral optical density (IOD), using Image-Pro Plus 4.1 software (Media Cybernetics). The stoichiometry of DNA staining was verified using the values obtained for metaphases compared with anaphases and telophases (ratio 2.0); arbitrary diploid (2C) DNA values were averaged from measuring anaphases in non-treated tumour cells; the sum method error was estimated to be less than 10%. For morphological purpose, we used the same reaction only shortening hydrolysis with 5N HCl to 1 min.

# 2.5 Fluorescence in situ hybridization (FISH)

Cells were harvested, washed with warm PBS, treated with 75 mM KCl at room temperature for 10 – 30 min and fixed with five changes of fresh methanol/glacial acetic acid (3:1). The suspension was dropped (or in some experiments cytocentrifuged) onto slides and allowed to dry. FISH for X and Y (XCE X/Y, D-0825-050-OG, Meta Systems) and chromosome 18 (mFISH paint, MetaSystems) was carried out using pepsin pretreatment [66], denaturation step for 5 min at 75 °C

6 of 22

and hybridisation at 37 °C overnight. Denaturation and hybridization steps were performed on ThermoBrite programmable temperature controlled slide processing system. Slides were mounted in antifade solution (Vector Laboratories; or in Prolong Gold with DAPI (Invitrogen).

# 2.6 Electron microscopy

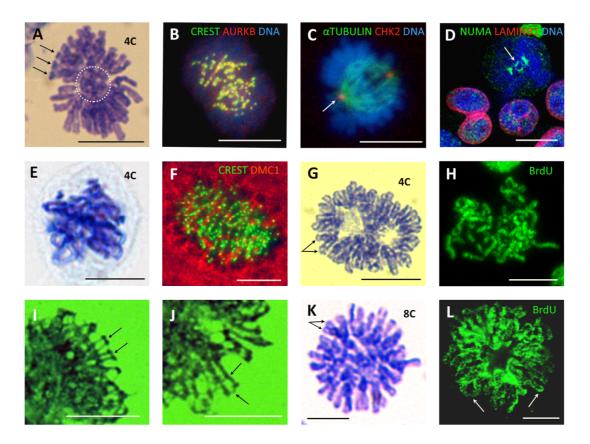
For electron microscopy (EM), cells were fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, containing 1 mM CaCl<sub>2</sub>, washed in this buffer with 0.23 M sucrose, postfixed in 2% osmium tetroxide in cacodylate buffer and 2% uranyl acetate in distilled water, dehydrated and embedded in Spurr resin. Ultrathin sections were contrasted with lead citrate.

#### 3. Results

3.1 Paired-group chromosome segregation by pseudo-mitosis in genotoxically challenged tumour cells

The wt TP53 ovarian cancer cell line PA1, which possesses a diploid karyotype and the expression profile and phenotype of embryonal carcinoma [21,67], can be considered a model of a cancer stem cell. Therefore, we examined this model in chemoresistance studies. Non-treated PA1 cells perform two types of divisions – conventional mitoses (CM) with a bipolar spindle segregating sister chromatids and, in about 12% of cells, pseudo-mitosis (PM) involving metaphase-like figures separating two groups of bi-nemic chromosomes which remain interlaced or "buttoned" together (Fig.2 A). Both types of mitoses contain the same amount of DNA (4C as measured by DNA cytometry; n=50).

The centromere doublets of the CM are colocalised with AURKB in a centromeric ring at metaphase and monocentric chromatids segregate during anaphase, while AURKB transits onto the central spindle, enabling karyokinesis (not shown). Contrary to this, the doubled centromeres of PM are both colocalised and tandemly arrayed by AURKB in two, largely discrete, semi-circles (Fig.2B), with AURKB not transiting to the spindle microtubules. In PM, the spindle is oriented perpendicularly to the axis of the pair-grouped chromosome segregation, and is defective; often asymmetrically stronger at one pole (Fig.2 C, arrowed).


Next, we stained CM and PM for NUMA expression. NUMA is the nuclear matrix material which first accumulates centrally during CM before its separation to the anaphase poles In PM, the central DNA 'button" is encircled by NUMA remnants, connecting the two chromosome groups (Fig.2D). PMs in PA1 cells consistently displayed connected sister telomere ends (Fig.2A). These PM features – connected sister telomeres, aberrant axis orientation of the mitotically inactive spindle (disabling amphitelic kinetochore attachment and karyokinesis), as well as remnant NUMA not releasing the two chromosome groups, impairs both mitotic spindle function and the separation of sister chromatids in PM. Instead, there are faulty bi-kinetochore-labelled centromeres in the two mitotically inactive chromosome groups per tetraploid cell.

While in normal PA1 cells CM segregates the diploid genetic material into two 2C, 2n daughters, PM forms a tetraploid bi-nuclear or bi-lobed 4C, 2n nucleus. We also studied the chemoresistance of PA1 cells in experiments with Etoposide (ETO) [67,68]. In general, during recovery of the self-renewing stemline (sampled on days 7-14) the proportion of CM and PM approximated the control levels but in one experiment during the 3rd week post-IR, we observed highly stringent cell divisions with a 3-fold increase in A+T/M ratio in CM, where the proportion between CM and PM was shifted in favour of the doubled number of PM (Table 2). These observations suggest that both division types are involved in the recovery of cancer stem cells from genotoxic insults.

| <b>Table 2.</b> The enumerations of CM and PM mitoses in ETO-treated PA1 cells over 19 days. |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| PA1     | mitotic cells<br>counted | Normal<br>metaphases<br>(CM) % | PM metaphases<br>(PM) % of CM | Anaphase+<br>telophase<br>% (CM) | M/A+T<br>(CM) |
|---------|--------------------------|--------------------------------|-------------------------------|----------------------------------|---------------|
| ctrl    | 50                       | 82                             | 12                            | 18                               | 5             |
| ETO d7  | 53                       | 85                             | 11                            | 15                               | 6             |
| ETO d19 | 55                       | 67                             | 24                            | 33                               | 2             |

PM with similar morphologic characteristics were also found in irradiated HeLa cells (Fig.2E), lymphoma cell lines (not shown) and in MDA MB 231 breast cancer cells, both in control untreated populations (1%) and more prevalently in doxorubicin-treated cells (up to 10%) (Fig.2 F).



**Figure 2.** The non-conventional cell division patterns creating polyploidy: 4C PM segregating two 'buttoned' groups of dyads and 8C "bi-looped metaphases" (BLM), observed in untreated germ-cell cancers and various somatic tumour cell lines and enhanced after genotoxic or spindle insults. (A-D) PM in the non-treated ovarian embryonal carcinoma PA1: (A) Two separated groups of bi-nemic chromosomes with connected telomere ends (arrowheads) and a central chromosome "button" (dashed circle) in a cell with 4C DNA content (determined cytometrically, for details, see the Methods); (B) Two groups of dyads in a PM showing centromere doublets (green CREST stain for kinetochores) colocalizing with AURBK (yellow); (C) A misoriented spindle (with an

8 of 22

asymmetrically stronger left pole) aligned perpendicularly to the axis of two closely opposed chromosome groups; (D) In PM, NUMA encircles the central DNA 'button" (arrow) connecting the two opposed chromosome groups; (E) Tetraploid PM (confirmed cytometrically) composed of two laced, not fully separated groups of end-to-end linked chromosomes with closely cohesed chromatids (HeLa cell, 19 h after 10 Gy IR); (F) A large metaphase-like breast cancer MDA MB 231 cell on day 7 after Doxorubicin (DOX) treatment, with a characteristic composition of tandem sets of centromeres (kinetochores, green), interspersed and partly colocalized with DMC1 (red); (G-J) Mimic of PM by inactivation of spindle with Paclitaxel (PXT) treatment of WIL2-NS lymphoblastoma cells. (G) Two binemic chromosome groups with closed telomeres are seen forming two rings in a 4C cell 44h after PXT (30 nM) treatment; (H) BrdU-labelled (20 h) PM cell showing two groups of laced chromosomes with both chromatids labelled, indicating missed mitosis; (I and J) two enlarged details of a similar polyploid metaphase-like figure after 72 h of PXT (100 nM) treatment showing fine DNA bridges between sister telomeres and between sister and other arms indicative of recombinogenic DNA repair; (K and L) Bi-looped metaphase-like figures in WIL2-NS cells 5 days after 10 Gy: (K) (DNA measured) and (L) incubated with BrdU for 20 h and sampled on day 8. Bars equal 10 µM.

To mimic PM, we undertook a series of experiments with the male para-diploid lymphoblastoma cell line WIL2-NS treated with low doses of paclitaxel (PXT), which inactivates the mitotic spindle and induced typical 4C PM (Fig.2G). Rarely, hypotonic spreading revealed chromosomal twin rings with approximately haploid (~23) chromosome numbers in each of the two binemic groups, in contrast to the doubled number of uninemic chromosomes that would be expected in a mitotic division. Testing them for BrdU inclusion we obtained bi-chromatid labelling (Fig.2H) indicating omission of cell division in tetraploid cells. Furthermore, replicated chromosomes were linked end-to end in the two separated groups of tetraploid PMs (Fig.2H), akin to what was seen in the PM of irradiated tumour cells (Fig. 2E). Interestingly, the telomere ends were closely associated or fused and remained so even 48 h or longer after PXT-treatment. In some metaphase-like figures at 72 h, we detected fine DNA bridges between sister telomeres and between sister arms (Fig.2, I, J) indicative of recombinogenic DNA repair. These observations suggest that PM with a mitotically dysfunctional spindle is likely a feature of a slowly cycling subpopulation of cancer stem cells, whose frequency is enhanced by genotoxic treatments and may contribute towards the genotoxic resistance of tumour cells.

#### 3.2 Double-looped metaphase-like (DLM) cells display features of the meiotic endo-prophase

On days 5-8 post IR in lymphoma WIL2NS and Namalwa cell lines rare double-looped metaphase-like (DLM) figures appeared, which were 8C by DNA content (Fig 2 K). 20 h long incubation with BrdU disclosed fully-labelled radially-extending single and loosely interlaced double loops indicating a second round of DNA endo-replication (Fig.2 L) (however conventional one-chromatid BrdU labelling with open chromatid ends was also encountered in the mitoses of the same samples). By virtue of their closed chromosome ends and their inclusion of BrdU in both chromatids the 8C DLM cells were similar to 4C PM (Fig.2 A, E, G, H) and could have derived from the former. These DLM appeared mono-polar. The irradiated cells, with the DNA loops emanating from one polar centre, contain tandem DMC1/ γH2AX foci indicating that meiotic type homologous recombination is occurring in them (Fig.3A) and could be classified as a stage of meiotic prophase. In turn, the colocalization of the kinetochore tandem doublets with the doublets of REC8 of the long DNA threads has been described earlier in the polyploid "interphase" cells, indicative of meiotic type recombination in these foci (Fig.3, B). To this end, the dense centromere/kinetochore tandem arrays partly colocalized with the meiotic recombinase DMC1 were also found in the polyploid PMs of DOX-treated MDA MB 231 cells (Fig.2F). Collectively, these findings suggest that the centromere/kinetochore doublets persisting from 4C PM to 8C DLM-like figures are directly engaged through REC8/DMC1/DNA double-strand breaks (DSB) in the meiotic-type recombination

9 of 22

DNA repair (tandem arrays of RAD51/ yH2AX in these cells were also found previously [39]. It follows that both unusual figures, PM and DLM, are components of this modified meiotic process. Further remodelling of DLM was found associated with the meiotic kinase, MOS. Together with CYCLIN B1 MOS appeared in the centre of the DLM and less abundantly around the DNA loops (Fig.3C). In the nuclei of these IR WIL2-NS cells, the contracting chromosome loops forming the polar centromere cluster contain the meiotic cohesin REC8 (Fig.3 D and E). It appears that this contracting centromere cluster is spatially related to the nucleolar rim and molecularly to the increasing concentration of CYCLIN B1/MOS (Fig.3 F and G), as well as with the emerged centrosome astral activity (Fig.3 H). These observations on centromere clustering around the nucleolus may be related to the structure described as a "karyosphere" characteristic of oocyte maturation before GV breakdown [69,70], where an extreme microtubule nucleation activity is found essential for the formation of the first meiotic spindle before the start of metaphase I [71]. Finally, figures of very late diakinetic monopolar prophase were observed through  $\alpha$ -TUBULIN and DAPI staining with the radial rows of AURKB doublet tandems on the semi-condensed, mostly co-parallel, sets of bivalents preparing for metaphase I (Fig.3, I). These oogenesis-like cells were documented both in irradiated male and female lymphomas and in DOX-treated breast cancer MDA MB 231 cells (all TP53-mutant). In these models, MOS expression enhanced by DOX was confirmed by qRT-PCR ([32] and not shown). In summary, our observations of 3 TP53-mutant cell lines, suggest that after DNA damage they undergo a modified polyploid meiotic prophase, including PM and DLM, with recombination likely occurring between centromere doublets (as synaptonemal complexes and telomere clusters are not observed). The monopolar spindle of DLM retains the AURKB attachment and thus centromere pairwise cohesion (where only the poleward partner is attached to the MT as reported [72]), thus enabling further reduction division in Met I).

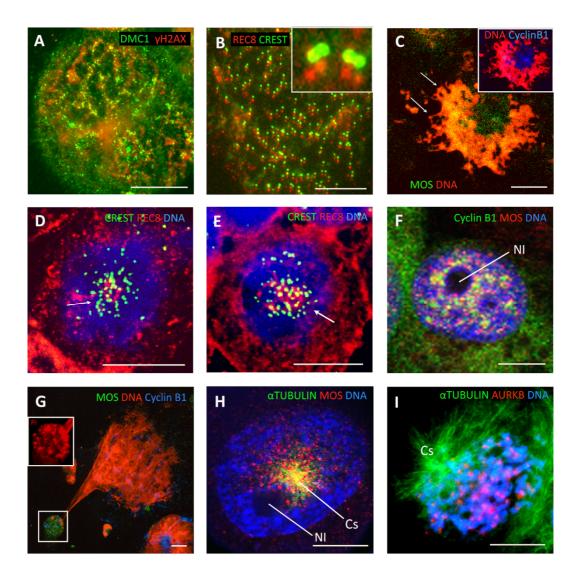



Figure 3. Features of monopolar meiotic endo-prophase in treated tumour cells. (A) WIL2-NS cell day 6 post 10Gy, showing a looped pattern of DNA strands (inferred from chains of tandemly situated foci of DMC1 (red) and γ-H2AX (green) indicating homologous recombination repair of DNA DSB; (B) Detail of a WIL2-NS cell nucleus, on day 5 post 10 Gy displaying tandem arrays of kinetochore doublets (green) colocalized with REC8 (red). Boxed and enlarged insert is a typical pattern of kinetochore doublets and REC8 signals. The red and green foci are offset to better demonstrate their colocalization (reproduced with permission [39]); (C) Confocal section of a Namalwa lymphoma cell (day 6 post 10 Gy), showing a central location of MOS (green) and CYCLIN B1 (blue). DNA is stained red by Propidium iodide; (D, E) Confocal sections of WIL2-NS cells (day 5 after 10Gy) showing a single cluster of centromeres (arrow) colocalized with REC8; (F) Association of MOS (red) and CYCLIN B1 (green) with the perinucleolar rim (Nl: nucleolus) and their radial strands in a MDA MB 231 cell (day 2 after DOX treatment); (G) The polar cluster of heterochromatin (boxed; DNA (red) stained with 7-AAD) colocalized with MOS (green) CYCLINB (blue) in a late endo-prophase; (H, I) Monopolar spindle in a late endo-prophase in MDA MB 231 DOX-treated cells. (H) Centrosomal monoastral MTs (green) with granular MOS signals (red) on microtubules radiating from near the nucleolus (Nl), (day 4 post DOX-treatment); (I) A monopolar (MTs green) diakinetic endo-prophase revealing largely tandem radial arrays of AURKB (red) positive kinetochore doublets on chromosome pairs (DNA blue) in a 3D-preserved sample. Bars equal 10µM.

11 of 22

However, observation of the bi-looped monopolar DLM operated by the proteins of meiotic recombination, raises the question of homologue positioning in these polyploid tumour cells.

3.3 Parental group segregation, fusion and homologue pairing in the PXT model of PM

To verify the possibility of segregation of parental sets of dyads during PM, two-colour centromeric FISH for #X and Y centromeres was performed in the diploid male WIL2-NS PTX model. While in the untreated control sample the majority of mitoses showed chromatid separation at anaphase (Fig.4A), at 17-19 h post PXT treatment there was a clear tendency in the PM for each FISH signal doublet (indicating replicated chromatids) to be separated into each chromosome group in about 50% of cells (Fig.4B). As such, this bi-nemic parental segregation was apparently non-random for the sex chromosomes, but at least in the WIL2-NS PXT model it seemed either unstable or more likely, a subsequent event had already started in some of the cells. Indeed, after the next round of DNA replication (sampled after 44-48 h of PXT treatment) some interphase nuclei displayed an 8C DNA content with 4 labels for each sex chromosome, often polarly arranged in an antiparallel fashion (Fig.4C). However, in most cells the centromeric FISH showed an opposite tendency, with a juxtaposition or even colocalization of the #X and #Y labels and their centromerically cohesed dyads (Fig. 4D). Enumeration revealed the juxta-position of sex chromosomes both in 14 - 18% of control and PXT-treated cells after 17-19 h. This fraction nearly doubled (32%) after 48 h post PXT treatment. At this latter time point there was also a release of univalent sex chromosomes in small nuclear buds indicative of instability and ongoing micronucleation (not shown).

Thus, in the PXT model of PM the pseudo-mitotic cells spatially separate the replicated parental genomes (or parts thereof) in the first G2-phase post treatment and keep this rearrangement in the ensuing PM without a mitotically functional spindle. This retains both chromosome groups in the same cell that subsequently becomes tetraploid (graphically represented in Fig.1, right panel, A). After the next replication round a fusion of parental genomes seems to occur. Thus, the separation of parental genomes followed by their fusion with the signs of homologue pairing should be identified as autokaryogamy, the earliest step in sexual evolution as classified by Raikov [73].

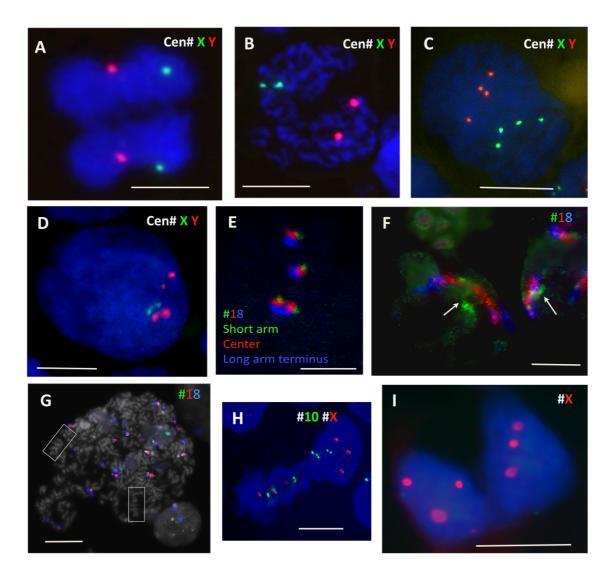



Figure 4. FISH studies of chromosome positions during polyploidisation and depolyploidisation in genotoxically treated tumour cells. (A-D) PXT treatment of male diploid WIL2NS cells reveal: (A) Separation of both #X (green) and #Y (red) specific centromere labels in anaphase; (B) Two X, Y centromere signals each in two connected chromosome groups 19h after inactivation of the spindle with PXT; (C) Four centromeric signals of each sex chromosome opposing each other in an octoploid cell, 44h after PXT treatment; (D) Replicated #X and #Y centromere signals cohesed as dyads, characteristic for day 2 after PXT treatment; (E-G) Position of homologues and multiple #18 labels revealed by 3-colour (p, green; centre red; terminus q, blue) painting probe in 10Gy treated Namalwa lymphoma cells; (E) control metaphase chromosome #18 after triple labelling; (F) Extended territories of #18, touching at green p-ends (arrows) in polygenomic nuclei on day 6 post 10Gy; (G) Large endomitotic polyploid metaphase cell displaying co-parallel orientation of condensed chromosomes (boxed) with sixteen territories of condensed chromosomes #18 (7 days post-IR); (H and I) Bipolar division of polyploidized (normally paratriploid) HeLa cells showing on (H) the meiosis I-like reduction segregation of three pairs of binemic chromatids for #10 (green) and #X (red); (I) Segregation of uni-nemic chromatids as indicated by centromeric signals for #X in HeLa cells (10 Gy, day 2). Bars equal 10μM.

13 of 22

#### 3.4 End-to-end joined inverted homologues

To test for homologue positioning we performed 3-colour FISH painting of chromosome #18 territory labelling with #18 chromosomes labelled green, red and blue to allow for orientation studies. This analysis performed on Namalwa diploid lymphoma cells sampled on untreated control (Fig.4E) and on day 6 and 7 post 10Gy IR revealed end-to-end or head-to-head linking of extended homologue pairs (Fig.4F), which correspond to the bi-looped endo-prophase undergoing meiotic-type recombination (Fig.3 A, B). The head-to-head linked orientation of homologue pairs is compatible with zigzag and co-parallel tandem chromosome orientation, which was observed in some endomitotic cells with condensed chromosomes (Fig.3, I; 4 G) and is graphically presented in Fig.1, right panel, B.

# 3.5 Linear bipolar reduction divisions segregate bichromatids and then chromatids

Reduction divisions starting with diplochromosomes (not shown) and metaphase I-like segregation of REC8-cohesed centromeric dyads in a bipolar division presented here on HeLa cells (Fig.4H) has also been observed in IR treated tetraploid lymphoma cells [39] and by other researchers [74–76]. The next division, omitting S-phase (as earlier described [39]) separating chromatids in an amphitelic manner (like typical mitosis) brings cells to para-diploidy or para-triploidy as in the case presented in Fig.4I, on HeLa (HeLa is normally para-triploid). Such a scenario (graphically presented in Fig.1, right panel, C) may follow co-parallel orientation of sister chromatids and homologues in endo-metaphase if the DNA DSB-induced chiasmata between sisters become released. Usually such cells do not polyploidize over 8C.

#### 3.6 Radial reduction divisions can segregate whole genomes

De-polyploidisation leading to the separation of whole genomes was frequently observed in heavily radio-chemotherapy-treated lymphoma and HeLa cells (albeit only leading to ≤0.1% of [25,56,77,78], with the multiple genomes likely unable to linearize and separate chromatids (Fig. 5A). Such multi-genomic polyploid cells (those few that survive) undergo depolyploidisation by segregating not the chromosomes but the whole genomes, through an incomplete multipolar mitosis, which is sometimes referred to as endomitosis. Indeed, several semispindles and often a few bipolar or multipolar spindles simultaneously appear, bridging the products of these untidy karyotomies, which is followed by radial cytotomy as previously described [25,77,79] and graphically presented in Fig.1, right panel, D. The mechanics likely include pulling together the mid-bodies of individual bipolar spindles between the bridged products of karyotomy (unable to undergo abscission) to the centrally localized centrosome (Fig.5 B, C). The products of neighbour karyotomies can pedogamically fuse before cytotomy after PXT treatment (Fig. 5B, encircled) but also after IR (MS in preparation). From the side this polyploid endotelophase may look like a bouquet (Fig.5D), where its origin from the bi-looped endo-prophase can be seen (arrow). The multi-genomic endo-telophase is again endowed by a terminal "DNA button" of the converged chromosome bridges (Fig.5E). This button is then dynamically removed by an autophagic vacuole releasing free sub-nuclei (Fig.5, F) (detailed in [78,80]). This radial genome segregation often also includes the sequestration and extrusion of separate degraded genomes [25,78]. The process is completed by cellularization of the subnuclei sequestering individual cytoplasm with organised cytoskeleton and releasing sub-cells (Fig. 5, F) [19,25,78]. The resulting daughter cells will be either clonogenic (and often immediately start mitotic divisions) or die, but may attempt another round of meio-mitosis. Moreover, occasionally we found a very high frequency of meiosis-like bouquets in the secondary small cells liberated from polyploid Hela cells after IR (Fig.5 G), while repeated peaks of REC8 transcription (days 5, 10, and 25) were registered [33] in this model. Alternatively, a blastula-like body is formed from this multinuclear cell, with up-

regulated nuclear OCT4A and Nanog in the radially arranged sub-nuclei testifying to their embryonal nature [78,80]).

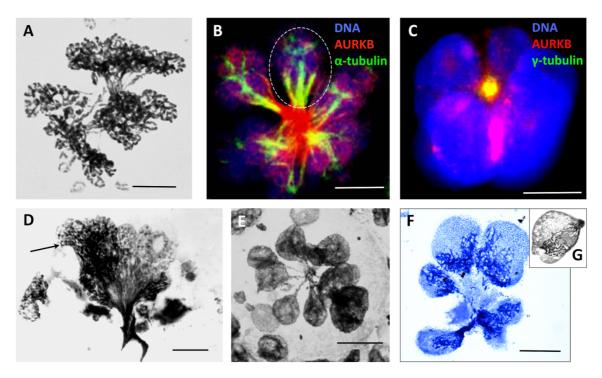



Figure 5. Multipolar metaphase-anaphase cells undergoing radial de-polyploidisation and pedogamic fusions of karyotomy products: (A) Multipolar mitosis figure displaying unequal partitioning of bridged sub-nuclei with connected chromosome ends separating circular chromosomes in a HeLa cell (10 Gy, day 3); (B) Multipolar ana-telophase stained for AURKB (red) and a-tubulin (green). The fusion of the division mid-bodies towards one centre and by a-tubulin three (encircled) or one of the spindle 'twigs" suggesting the pedogamic fusion of the karyotomy products in WIL2-NS (PXT, day 5); (C) A restituted radial telophase converging mid-bodies to the composed centrosome, stained for  $\gamma$ -tubulin and AURKB (colocalized as a yellow spot) in Namalwa cells (day 6 post 10 Gy); (D) Low resolution EM of a giant cell which has failed radial depolyploidisation leading to a bouquet appearance of spindle trapped genomes partly forming subnuclei (on the right) and remaining looped (arrowed, on the left) (Ramos lymphoma cell, day 14 post 10 Gy). (reproduced with permission from [25]): (E) Multilobed telophase cell after multipolar radial reductional segregation (HeLa cells day 5 post 10Gy). (reproduced with permission from [77]); (F) Radial cytotomy with unequal segregation of the genomic material in cellularised subcells. HeLa cells 10Gy, day 5; (reproduced with permission from [77]); (G) Secondary sub-cell with the meiosis-like 'bouquet" arrangement of chromosomes. HeLa cell, day 15 post 10 Gy. (E-G) Toluidine blue staining. Bars equal 10µM.

#### 4. Discussion

In the last decade, cancer genome sequencing has brought us the crushing realisation that cancer is much more complex than previously thought and has highlighted the limitations of the somatic mutation theory of cancer [81,82]. In addition, massive chromothriptic DNA repair cascades associated with polyploidy [8,11] have been revealed in cancer progression adding more intricacy to the cancer aneuploidy paradox.

Experiments detailing the escape of cancer cells from genotoxic challenge indicate two opposite but complementary strategies. Firstly, there seems to be a very small proportion of cancer cells (<0.1%) that escape death from chemo-radiotherapy [34,56,60,61,83,84]. They represent rare single cells undergoing reprogramming and complex multi-step, reversible ploidy cycles, which are

15 of 22

experimentally observed over a period of weeks. Although these rare "statistical outliers" present serious methodical difficulties for following and fate-mapping, making studies of their nature and genesis complex, they are apparently the major mediators of anti-cancer therapy resistance responsible for relapse [85].

How do such rare cells achieve their improbable feat, overcoming massive genotoxic damage? This process can likely only be explained through the non-linear thermodynamics of unstable systems [86], in which adaptation through chaotic regulations of multi-dimensional transcriptional attractors can occur, exhibited as epigenetic heterogeneity, to adapt such improbable events. The predetermined chaos is a key property of stem cells and cancer cells for cell fate change [87–90] which are implemented through the clonal and also non-clonal [91] selection of survivors. Therefore, genome instability, general mutability, and heterogeneity seem a "condition sine qua non" for the treatment escape of heavily damaged cancer stem cells. Adaptive genome instability and epigenetic variability may be achieved through the initial genome doublings and polyploidy that occurs after DNA damage in many cancer cells. This same instrument is evident during the prolonged evolution of prokaryotes and unicellular eukaryotes, providing them with the capacity to adapt and survive seemingly catastrophic events [23,92]. The accompanying inevitable cost of genome dysregulation, frequently observed as aneuploidy and cancer is a tribute to adaptive evolution.

In this study we assessed how numerous untreated and DNA-damaged tumour cells polyploidize and segregate their genomes, looking for common themes. We saw that PM commonly occurs with a mitotically disabled spindle and closed telomeres, thereby evading practically all of the checkpoints of the mitotic cell cycle. Parental genome segregations with spindle un-coupling has been suggested by Walen in normal human senescing fibroblast cultures and in those treated with spindle poisons, and extrapolated to stem cell biology highlighting haploidy as an operating unit of genome segregations [93-95]. Such "exploded metaphases" [96] and segregation of haploid genomes [97] were reported previously. PM paves the way for tumour cells to tolerate otherwise fatal amounts of DNA damage thereby escaping immediate cell death. At the same time, end-toend linkage of replicated chromosomes segregated as two parental genomes in the same cell, leads to the establishment of tetraploidy (very likely after mutagenic translesional DNA synthesis allowing them to tolerate the DNA damage [98]. Nevertheless, the resulting genomic chaos of aneuploidy and mutagenesis ultimately require compensation for the sake of reproductive fidelity. Segregation by PM of parental genome sets, by-passing the spindle checkpoint, is the first step towards this objective: its anti-parallel fashion likely pre-determines the conjugation of homologues that follows. The process of the primitive life-cycle is thus initiated, perhaps shedding light on the evolutionary origin of sex, which doubles the amount of DNA, and meiosis which halves it. Somatic tumours are naturally expected to undergo asexual ploidy cycles. The mathematical studies of Kondrashov showed that asexual ploidy cycles and recombination between sisters decreases the mutational load of aneuploidy, moreover these cycles should have preceded and "facilitated the origin of sex, by providing a means of orderly genetic reduction, available immediately after the origin of syngamy" [99]. We have observed these processes in various human cancer cell models (lymphomas, ovarian germline cancer, breast and cervical cancer), particularly provoked by genotoxic stress (ionising irradiation, etoposide, doxorubicin) and mimicked by PXT through spindle inactivation, where segregation of parental genomes as chromosome dyads within the same cell results in tetraploidy. However, this tetraploidy is unusual and the way it is achieved in cancer stem cells (by separation followed by fusion and conjugation of parental genomes) is peculiar and heralds the initiation of a life-cycle.

Subsequently, persisting DNA DSB facilitate extended (bi-looped) endo-replicated chromosomes in a peculiar endo-prophase arrangement with clear meiotic features. The peculiarity of this meiotic endo-prophase is the absence of the telomere cluster and SCs, the hallmarks of conventional meiosis. To our knowledge, despite the abundance of SCP3 in the cytoplasm, SCP3-positive SCs have not been found in tumour cells [40,100]. Nevertheless, the features testifying to

16 of 22

the meiosis-like recombination events are evident. It seems that while in the G2, preceding PM, recombination is occurring at the telomere ends and between sister and nonsister arms, at the next stage of the looped endo-prophase, it may be preferentially occurring on kinetochore proteins between centromere doublets. This can currently only be deduced from our observations of rare cells where centromere/ kinetochore tandems are found colocalised and intermittent with DMC1 and RAD51/yH2AX as reported previously [39]. In turn, centromere doublets are colocalized with REC8, and in turn, the foci of DMC1 colocalised to DNA DSBs marked by γH2AX are tandemly located along the looped mono-polar REC8/MOS organized endo-prophase. It can be suggested that MOS, which is capable of phosphorylating the microtubules of spindles [101] is participating in the regulation of this process. Moreover, in polyploid tumour cells we found structures resembling karyospheres (karyosomes) of maturing oocytes acting in cooperation with REC8 and MOS in the formation of the centromere cluster around and then beside the nucleolus. Interestingly, this structure nucleates (through MOS) a monopolar aster, described as an initial step in setting the first meiotic spindle [71]. It also can be logically hypothesised that the DNA 'button" between segregated paternal sets in mitotically disabled PM (depicted on Fig.1, right panel, A) is composed of the nucleolar-organising acentric chromosomes and represents a nucleating centre of the future monopolar spindle and karyosphere of late meiotic oogenic prophase. Following recombination DNA repair and reduction, the meiosis-like process can return cells to the mitotic cycle after a formerly fatal DNA damage insult, thus locking together the two reciprocal parts of the cancer cell life cycle (Fig. 1, left panel). As such, p53 as the guardian of the genome has the role of preventing this error-prone process (although germline cancer cells such as PA1, reflective of cancer stem cells, may be the exception).

It is no surprise that our studies of the ploidy cycles of genotoxically stressed somatic tumours have drawn upon the early evolutionary forms of meiosis and syngamy [46,47,49,50]. In particular, in the absence of SCs, DNA recombination repair can start between the satellite DNA of the two cohesed centromeres. This kind of meiotic recombination is thought to have evolved earlier than that mediated through SCs. What is actually synapsed and recombined, sisters and/or also homologues remains to be clarified. SCs evolved as part of conventional meiosis in early eukaryotes 3 billion years later than the mechanism of recombination DNA repair in bacteria. It is possible that tumour cells, whose gene expression profile reverts towards the earlier eukaryotic phylogenetic strata [16,17,23] use the recombination variant of synapsis between homologs on very short SCs between kinetochores or recombines on satellites of sister chromatids. In species lacking SCs, the cohesin complexes themselves were suggested to assemble the recombination machinery. In these cases, Maguire suggested the presence of rudimentary small SCs located between cohesed centromeres and pointed out that REC8 conserved through evolution since the proto-eukaryotes [46,102] may be involved, which we consistently found in tumours at these same sites. In particular, it is possible because the mitotic G2 DNA damage checkpoint and recombination checkpoint of meiotic prophase have similar molecular regulators [103] allowing DNA damaged tumour cells to glide from mitotic G2 arrest into meiotic prophase [60]. In turn, the observed monopolar spindle of DLM, preserving the attachment of kinetochores to centromere doublets in this endo-prophase, apparently takes care both for recombination and reduction division. Some authors [104,105] using SC-null mice revealed that the meiotic chromosomal core consisting of the cohesin complex recruits DNA recombination proteins and promotes synapsis in the absence of axial elements in mammalian meiotic cells. The longitudinal pairing of inverted homologues is known for 'reverted meiosis" of some species [106], while end-to end joining of dyads – also for meiosis of autopolyploids [107]. Our data are premature for discussion of these specific issues here. Irrespective of how recombination occurs, the DNA damage can be repaired and some gene conversion (reversing mutation) is thus fulfilled.

From a mechanistic point of view, the observed genome segregation through end-to-end linked dyads (first described by. Grell [108] in *Aulacantha scolimantha*) seems the only plausible means of genome preservation (by-passing the spindle checkpoint), while the end-to-end

17 of 22

connection of dyads by inverted homologs allowing for flexible co-parallel orientation, provides the most convenient way for pairing, recombination, and then reduction division, keeping sister centromeres together throughout (see Fig.1A, B, C, right).

The other tactic employed by damaged tumour cells is the cellularization and segregation of whole genomes/sub-cells by radial cytotomy. This process recorded by video-cinematography was termed "neosis" [57] and compared to sporogenesis [61]. This mechanism of radial depolyploidization is agnostic towards aneuploidy, and can partition different numbers of genomic complements into cellularised sub-nuclei. As such, the radial de-polyploidization performed through chromosome bridges also neglects the spindle checkpoint and issues associated with aneuploidy. Together with the accompanied pedogamic genome re-assortment, this kind of depolyploidisation may be one of the main causes of chromothripsis in human cancer cells. However, the stage depicted in Fig.1D, (right) may have in fact another biological 'purpose'. Radial cytotomy perpendicular to karyotomic axes (again perpendicular), leaving cytoplasmic bridges between subcells is a characteristic feature of the early embryo cleavage stages. Creating an ordered architecture of a blastula for further diversification for ecto-and endoderm, has been well described in Volvox [109].

The literature data indicate that a mature multinuclear tumour cell (day 6-7 post-damage) can convert into a blastula-like embryo, particularly if it is grown in serum-free spherogenic medium and that a single multi-nuclear tumour cell can propagate a tumour in vivo [83,110]. These data are fully in accord with the more than a century-old embryological theory of cancer [80,100,110]. It seems that different stages of tumour growth and response to therapy, not only involve reciprocal parts of a cancer life-cycle (joined by asymmetric division (Fig. 1A and C, left) but that those also cycle on their own, with a different frequency according to environmental conditions and genotoxic stress.

#### 5. Conclusions

We propose the presented mechanisms, albeit incomplete, as an evolutionary primitive (a)-sexual process adapting to environmental challenge, which can explain key observations underlying the therapeutic resistance of cancer cells and the aneuploidy paradox.

# **Author Contributions:**

KS: planned and carried out most of the experiments, carried out their analysis, participated in the concept and writing the original manuscript draft. AH: Carried out experiments, analysis of results, discussed and edited the MS. MK: Carried out some experiments associated with FISH and WB, carried out literature analysis, discussed the MS draft. DP: Carried out confocal microscopy, analysis of results, discussed the concept and edited the article. HS: Carried out FISH experiments, analysed and discussed results, participated in the concept, article draft and editing. MC: Carried out experiments, participated in the analysis and concept, article editing. JE: Planned and supervised experiments, carried out microcopy, literature analysis, created the concept, drafted the manuscript.

**Funding:** Funding for this work was received from the Royal Society of London, the Latvian Scientific Council (LZP 341/2012 and 4 other in 2001-2009), the Latvian State program on anti-cancer drug screening (2010-2014), ESF 2013/0023/1DP/1.1.1.2.0/13/APIA/VIAA/037, the BMBF German-Latvian Project, and the BDHK German-Latvian Project (2015) and partial funding from ERAF\_006\_EJ (2018-2022).

**Acknowledgments:** We are thankful to Mr. Roger Alston for help in confocal microscopy in Southampton experiments and to Mr. Bodo Liebe for help in some FISH experiments. Mr. Jekabs Krigerts is acknowledged for help in cell culturing.

Conflicts of Interest: The authors ddeclare no cononfl flict of interesest.

- 1. Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. *Am. Biol. Teach.* **1973**, *35*, 125–129.
- 2. Dewhurst, S.M.; McGranahan, N.; Burrell, R.A.; Rowan, A.J.; Grönroos, E.; Endesfelder, D.; Joshi, T.; Mouradov, D.; Gibbs, P.; Ward, R.L.; et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. *Cancer Discov.* **2014**, *4*, 175–185.
- 3. Gerashchenko, B.I.; Salmina, K.; Eglitis, J.; Huna, A.; Grjunberga, V.; Erenpreisa, J. Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy. *Histochem. Cell Biol.* **2016**, 145, 497–508.
- 4. Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. *N. Engl. J. Med.* **2017**, 376, 2109–2121.
- 5. Beach, R.R.; Ricci-Tam, C.; Brennan, C.M.; Moomau, C.A.; Hsu, P.-H.; Hua, B.; Silberman, R.E.; Springer, M.; Amon, A. Aneuploidy Causes Non-genetic Individuality. *Cell* **2017**, *169*, 229–242.e21.
- 6. Chen, J.; Niu, N.; Zhang, J.; Qi, L.; Shen, W.; Donkena, K.V.; Feng, Z.; Liu, J. Polyploid Giant Cancer Cells (PGCCs): The Evil Roots of Cancer. *Curr. Cancer Drug Targets* **2018**.
- 7. Crasta, K.; Ganem, N.J.; Dagher, R.; Lantermann, A.B.; Ivanova, E.V.; Pan, Y.; Nezi, L.; Protopopov, A.; Chowdhury, D.; Pellman, D. DNA breaks and chromosome pulverization from errors in mitosis. *Nature* **2012**, *482*, 53–58.
- 8. Leibowitz, M.L.; Zhang, C.-Z.; Pellman, D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. *Annu. Rev. Genet.* **2015**, 49, 183–211.
- 9. Ly, P.; Cleveland, D.W. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. *Trends Cell Biol.* **2017**, 27, 917–930.
- 10. Liu, G.; Stevens, J.B.; Horne, S.D.; Abdallah, B.Y.; Ye, K.J.; Bremer, S.W.; Ye, C.J.; Chen, D.J.; Heng, H.H. Genome chaos: survival strategy during crisis. *Cell Cycle* **2014**, *13*, 528–537.
- 11. Ye, C.J.; Regan, S.; Liu, G.; Alemara, S.; Heng, H.H. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. *Mol. Cytogenet.* **2018**, *11*, 31
- 12. Vincent, M.D. Cancer: beyond speciation. Adv. Cancer Res. 2011, 112, 283–350.
- 13. Muller, H.J. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. *Mutat. Res.* **1964**, 106, 2–9.
- 14. Bengtsson, B.O. Genetic variation in organisms with sexual and asexual reproduction. *J. Evol. Biol.* **2003**, *16*, 189–199.
- 15. Vinogradov, A.E. Human transcriptome nexuses: basic-eukaryotic and metazoan. *Genomics* **2010**, *95*, 345–354.
- 16. Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. *Proceedings of the National Academy of Sciences* **2017**, *114*, 6406–6411.
- 17. Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. How the evolution of multicellularity set the stage for cancer. *Br. J. Cancer* **2018**, *118*, 145–152.
- 18. Wu, A.; Zhang, Q.; Lambert, G.; Khin, Z.; Gatenby, R.A.; Kim, H.J.; Pourmand, N.; Bussey, K.; Davies, P.C.W.; Sturm, J.C.; et al. Ancient hot and cold genes and chemotherapy resistance emergence. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, 10467–10472.
- 19. Erenpreisa, J.; Cragg, M.S. Life-Cycle Features of Tumour Cells. In *Evolutionary Biology from Concept to Application*; 2008; pp. 61–71.
- 20. Fais, S.; Overholtzer, M. Cell-in-cell phenomena in cancer. Nat. Rev. Cancer 2018, 18, 758–766.
- 21. Salmina, K.; Jankevics, E.; Huna, A.; Perminov, D.; Radovica, I.; Klymenko, T.; Ivanov, A.; Jascenko, E.; Scherthan, H.; Cragg, M.; et al. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. *Exp. Cell Res.* **2010**, *316*, 2099–2112.
- 22. Vazquez-Martin, A.; Anatskaya, O.V.; Giuliani, A.; Erenpreisa, J.; Huang, S.; Salmina, K.; Inashkina, I.; Huna, A.; Nikolsky, N.N.; Vinogradov, A.E. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature. *Oncotarget* **2016**, *7*, 75235–75260.
- 23. Erenpreisa, J.; Giuliani, A.; Vinogradov, A.E.; Anatskaya, O.V.; Vazquez-Martin, A.; Salmina, K.; Cragg, M.S. Stress-induced polyploidy shifts somatic cells towards a pro-tumourogenic unicellular gene transcription network. *Cancer Hypotheses* **2018**, 1–20.

- 24. Maciver, S.K. Asexual Amoebae Escape Muller's Ratchet through Polyploidy. *Trends Parasitol.* **2016**, 32, 855–862.
- 25. Jekaterina A. Erenpreisa, Mark S. Cragg, Birgitta Fringes, Igor Sharakhov, Timothy M. Illidge RELEASE OF MITOTIC DESCENDANTS BY GIANT CELLS FROM IRRADIATED BURKITT'S LYMPHOMA CELL LINES. *Cell Biol. Int.* **2000**, 24, 635–648.
- 26. Erenpreisa, J.E.; Ivanov, A.; Dekena, G.; Vitina, A.; Krampe, R.; Freivalds, T.; Selivanova, G.; Roach, H.I. Arrest in metaphase and anatomy of mitotic catastrophe: mild heat shock in two human osteosarcoma cell lines. *Cell Biol. Int.* **2000**, 24, 61–70.
- 27. Erenpreisa, J.; Cragg, M.S. Cancer: a matter of life cycle? Cell Biol. Int. 2007, 31, 1507–1510.
- 28. Erenpreisa, J.; Cragg, M.S. MOS, aneuploidy and the ploidy cycle of cancer cells. *Oncogene* **2010**, 29, 5447–5451
- 29. Erenpreisa, J.; Kalejs, M.; Cragg, M.S. Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. *Cell Biol. Int.* **2005**, *29*, 1012–1018.
- 30. Geitler, L. Die Analyse des Kernbaus und der Kernteilung der Wasserloufer Gerris lateralis und Gerris lacustris (Hemiptera heteroptera) und die Somadifferenzierung. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 1937, 26, 641–672.
- 31. Cleveland, L.R. The Origin and Evolution of Meiosis. Science 1947, 105, 287–289.
- 32. Kalejs, M.; Ivanov, A.; Plakhins, G.; Cragg, M.S.; Emzinsh, D.; Illidge, T.M.; Erenpreisa, J. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe. *BMC Cancer* **2006**, *6*.
- 33. Ianzini, F.; Kosmacek, E.A.; Nelson, E.S.; Napoli, E.; Erenpreisa, J.; Kalejs, M.; Mackey, M.A. Activation of Meiosis-Specific Genes Is Associated with Depolyploidization of Human Tumor Cells following Radiation-Induced Mitotic Catastrophe. *Cancer Res.* **2009**, *69*, 2296–2304.
- 34. Vitale, I.; Senovilla, L.; Jemaà, M.; Michaud, M.; Galluzzi, L.; Kepp, O.; Nanty, L.; Criollo, A.; Rello-Varona, S.; Manic, G.; et al. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. *EMBO J.* **2010**, *29*, 1272–1284.
- 35. Old, L.J. Cancer/testis (CT) antigens a new link between gametogenesis and cancer. *Cancer Immun.* **2001**, 1, 1.
- 36. Gorgoulis, V.G.; Zacharatos, P.; Mariatos, G.; Liloglou, T.; Kokotas, S.; Kastrinakis, N.; Kotsinas, A.; Athanasiou, A.; Foukas, P.; Zoumpourlis, V.; et al. Deregulated expression of c-mos in non-small cell lung carcinomas: relationship with p53 status, genomic instability, and tumor kinetics. *Cancer Res.* **2001**, *61*, 538–549.
- 37. Simpson, A.J.G.; Caballero, O.L.; Jungbluth, A.; Chen, Y.-T.; Old, L.J. Cancer/testis antigens, gametogenesis and cancer. *Nat. Rev. Cancer* **2005**, *5*, 615–625.
- 38. Kalejs, M.; Erenpreisa, J. Cancer/testis antigens and gametogenesis: a review and "brain-storming" session. *Cancer Cell Int.* **2005**, *5*, 4.
- 39. Erenpreisa, J.; Cragg, M.S.; Salmina, K.; Hausmann, M.; Scherthan, H. The role of meiotic cohesin REC8 in chromosome segregation in gamma irradiation-induced endopolyploid tumour cells. *Exp. Cell Res.* **2009**, *315*, 2593–2603.
- 40. Chung, J.-Y.; Kitano, H.; Takikita, M.; Cho, H.; Noh, K.H.; Kim, T.W.; Ylaya, K.; Hanaoka, J.; Fukuoka, J.; Hewitt, S.M. Synaptonemal complex protein 3 as a novel prognostic marker in early stage non-small cell lung cancer. *Hum. Pathol.* **2013**, *44*, 472–479.
- 41. Lindsey, S.F.; Byrnes, D.M.; Eller, M.S.; Rosa, A.M.; Dabas, N.; Escandon, J.; Grichnik, J.M. Potential role of meiosis proteins in melanoma chromosomal instability. *J. Skin Cancer* **2013**, 2013, 190109.
- 42. Yant, L.; Bomblies, K. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication. *Genes Dev.* **2015**, 29, 2405–2419.
- 43. Bernstein, H.; Byerky, H.; Hopf, F.; Michod, R.E. DNA repair and complementation: The major factors in the origin and maintenance of sex. In *The origin and evolution of sex.*; Halvorson, H.O.A.M.A., Ed.; Alan R. Liss, Inc., 1995; pp. 29–45.
- 44. Raikov, I.B. Meiosis in protists: Recent advances and persisting problems. Eur. J. Protistol. 1995, 31, 1-7.
- 45. Otto, S.P. The evolutionary enigma of sex. Am. Nat. 2009, 174 Suppl 1, S1–S14.
- 46. Bogdanov, Y.F. 10.1023/A:1023345311889. Russian Journal of Genetics 2003, 39, 363-381.
- 47. Bogdanov, Y. Conservatism and evolution of meiosis. Molecular basis; Lambert Academic Publishing, 2016; p. 104; ISBN 9783659966644.
- 48. Wilkins, A.S.; Holliday, R. The evolution of meiosis from mitosis. *Genetics* **2009**, *181*, 3–12.
- 49. Bomblies, K.; Higgins, J.D.; Yant, L. Meiosis evolves: adaptation to external and internal environments. *New Phytol.* **2015**, *208*, 306–323.
- 50. Lenormand, T.; Engelstädter, J.; Johnston, S.E.; Wijnker, E.; Haag, C.R. Evolutionary mysteries in meiosis.

- Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371.
- 51. Niculescu, V.F. Carcinogenesis: recent insights in protist stem cell biology lead to a better understanding of atavistic mechanisms implied in cancer development. *MOJ Tumor Res* **2018**, *1*, 18–29.
- 52. Niculescu, V.F. Developmental and Non Developmental Polyploidy in Xenic and Axenic Cultured Stem Cell Lines of Entamoeba invadens and E. histolytica. *Insights in Stem Cells* **2016**, *2*, 1.
- 53. Demin, S.Y.; Berdieva, M.A.; Goodkov, A.V. Cyclic polyploidy in obligate agamic amoebae. *Tsitologiya* **2018**, *60*, 935–938.
- 54. Lahr, D.J.G.; Parfrey, L.W.; Mitchell, E.A.D.; Katz, L.A.; Lara, E. The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. *Proc. Biol. Sci.* **2011**, *278*, 2081–2090.
- 55. Hofstatter, P.G.; Brown, M.W.; Lahr, D.J.G. Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. *Genome Biol. Evol.* **2018**, *10*, 3118–3128.
- 56. Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. *Cell Biol. Int.* **2000**, 24, 621–633.
- 57. Sundaram, M.; Guernsey, D.L.; Rajaraman, M.M.; Rajaraman, R. Neosis: a novel type of cell division in cancer. *Cancer Biol. Ther.* **2004**, *3*, 207–218.
- 58. Puig, P.-E.; Guilly, M.-N.; Bouchot, A.; Droin, N.; Cathelin, D.; Bouyer, F.; Favier, L.; Ghiringhelli, F.; Kroemer, G.; Solary, E. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. *Cell Biol. Int.* **2008**, *32*, 1031–1043.
- 59. Lagadec, C.; Vlashi, E.; Della Donna, L.; Dekmezian, C.; Pajonk, F. Radiation-induced reprogramming of breast cancer cells. *Stem Cells* **2012**, *30*, 833–844.
- 60. Erenpreisa, J.; Cragg, M.S. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. *Cancer Cell Int.* **2013**, *13*, 92.
- 61. Zhang, S.; Mercado-Uribe, I.; Xing, Z.; Sun, B.; Kuang, J.; Liu, J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. *Oncogene* **2014**, *33*, 116–128.
- 62. Rohnalter, V.; Roth, K.; Finkernagel, F.; Adhikary, T.; Obert, J.; Dorzweiler, K.; Bensberg, M.; Müller-Brüsselbach, S.; Müller, R. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. *Oncotarget* **2015**, *6*, 40005–40025.
- 63. Mittal, K.; Donthamsetty, S.; Kaur, R.; Yang, C.; Gupta, M.V.; Reid, M.D.; Choi, D.H.; Rida, P.C.G.; Aneja, R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. *Br. J. Cancer* **2017**, *116*, 1186–1194.
- 64. Díaz-Carballo, D.; Saka, S.; Klein, J.; Rennkamp, T.; Acikelli, A.H.; Malak, S.; Jastrow, H.; Wennemuth, G.; Tempfer, C.; Schmitz, I.; et al. A Distinct Oncogenerative Multinucleated Cancer Cell Serves as a Source of Stemness and Tumor Heterogeneity. *Cancer Res.* **2018**, *78*, 2318–2331.
- 65. Mirzayans, R.; Andrais, B.; Murray, D. Roles of Polyploid/Multinucleated Giant Cancer Cells in Metastasis and Disease Relapse Following Anticancer Treatment. *Cancers* **2018**, *10*.
- 66. Scherthan, H.; Weich, S.; Schwegler, H.; Heyting, C.; Härle, M.; Cremer, T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. *J. Cell Biol.* **1996**, *134*, 1109–1125.
- 67. Jackson, T.R.; Salmina, K.; Huna, A.; Inashkina, I.; Jankevics, E.; Riekstina, U.; Kalnina, Z.; Ivanov, A.; Townsend, P.A.; Cragg, M.S.; et al. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells. *Cell Cycle* **2013**, *12*, 430–441.
- 68. Huna, A.; Salmina, K.; Erenpreisa, J.; Vazquez-Martin, A.; Krigerts, J.; Inashkina, I.; Gerashchenko, B.I.; Townsend, P.A.; Cragg, M.S.; Jackson, T.R. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. *Cell Cycle* **2015**, *14*, 2969–2984.
- 69. Venera Nikolova, Maya Markova, Ralitsa Zhivkova, Irina Chakarova, Valentina Hadzhinesheva, Stefka Delimitreva Kariosphere, the Enigmatic "Surrounded Nucleolus" of Maturing Oocytes. *Acta morphologica et anthropologica* **2017**, 1-2.
- 70. Bogolyubov, D.S. Karyosphere (Karyosome): A Peculiar Structure of the Oocyte Nucleus. *Int. Rev. Cell Mol. Biol.* **2018**, 337, 1–48.
- 71. Can, A.; Semiz, O.; Cinar, O. Centrosome and microtubule dynamics during early stages of meiosis in mouse oocytes. *Mol. Hum. Reprod.* **2003**, *9*, 749–756.
- 72. Mazia, D.; Paweletz, N.; Sluder, G.; Finze, E.M. Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus. *Proc. Natl. Acad. Sci. U. S. A.* **1981**, *78*, 377–381.
- 73. Raĭkov, I.B. The protozoan nucleus, morphology and evolution; Springer Verlag, 1982;.
- 74. Walen, K.H. SPATIAL RELATIONSHIPS IN THE REPLICATION OF CHROMOSOMAL DNA. *Genetics* **1965**, *51*, 915–929.
- 75. Ghosh, S.; Paweletz, N.; Schroeter, D. Failure of sister chromatid separation leads to formation of

- diplochromosomes in colcemid treated PtK1 cells. Cell Biol. Int. 1993, 17, 945–948.
- 76. Beçak, M.L.; Beçak, W.; Pereira, A. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae). *An. Acad. Bras. Cienc.* **2003**, *75*, 285–300.
- 77. Erenpreisa, J.; Kalejs, M.; Ianzini, F.; Kosmacek, E.A.; Mackey, M.A.; Emzinsh, D.; Cragg, M.S.; Ivanov, A.; Illidge, T.M. Segregation of genomes in polyploid tumour cells following mitotic catastrophe. *Cell Biol. Int.* **2005**, *29*, 1005–1011.
- 78. Erenpreisa, J.; Salmina, K.; Huna, A.; Kosmacek, E.A.; Cragg, M.S.; Ianzini, F.; Anisimov, A.P. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. *Cell Biol. Int.* **2011**, *35*, 687–695.
- 79. Erenpreisa, J.; Ivanov, A.; Wheatley, S.P.; Kosmacek, E.A.; Ianzini, F.; Anisimov, A.P.; Mackey, M.; Davis, P.J.; Plakhins, G.; Illidge, T.M. Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. *Cell Biol. Int.* **2008**, *32*, 1044–1056.
- 80. Erenpreisa, J.; Salmina, K.; Huna, A.; Jackson, T.R.; Vazquez-Martin, A.; Cragg, M.S. The "virgin birth", polyploidy, and the origin of cancer. *Oncoscience* **2015**, *2*, 3–14.
- 81. Wheeler, D.A.; Wang, L. From human genome to cancer genome: the first decade. *Genome Res.* **2013**, 23, 1054–1062.
- 82. Weinberg, R.A. Coming full circle-from endless complexity to simplicity and back again. *Cell* **2014**, *157*, 267–271.
- 83. Weihua, Z.; Lin, Q.; Ramoth, A.J.; Fan, D.; Fidler, I.J. Formation of solid tumors by a single multinucleated cancer cell. *Cancer* **2011**, *117*, 4092–4099.
- 84. Shaffer, S.M.; Dunagin, M.C.; Torborg, S.R.; Torre, E.A.; Emert, B.; Krepler, C.; Beqiri, M.; Sproesser, K.; Brafford, P.A.; Xiao, M.; et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. *Nature* **2017**, *546*, 431–435.
- 85. Mirzayans, R.; Andrais, B.; Murray, D. Viability Assessment Following Anticancer Treatment Requires Single-Cell Visualization. *Cancers* **2018**, *10*.
- 86. Prigogine, I.; Stenders, I. Order Out of Chaos: Man's New Dialogue with Nature; FONTANA PRESS, 1985;.
- 87. Kauffman, S. Homeostasis and differentiation in random genetic control networks. *Nature* **1969**, 224, 177–178.
- 88. Huang, S.; Eichler, G.; Bar-Yam, Y.; Ingber, D.E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. *Phys. Rev. Lett.* **2005**, *94*, 128701.
- 89. Chang, H.H.; Hemberg, M.; Barahona, M.; Ingber, D.E.; Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. *Nature* **2008**, *453*, 544–547.
- 90. Heng, H.H. Debating Cancer: The Paradox in Cancer Research; World Scientific, 2015; ISBN 9789814520867.
- 91. Heng, H.H.Q.; Regan, S.M.; Liu, G.; Ye, C.J. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? *Mol. Cytogenet.* **2016**, *9*, 15.
- 92. Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. *Nat. Rev. Genet.* **2017**, *18*, 411–424.
- 93. Walen, K.H. Spindle apparatus uncoupling in endo-tetraploid asymmetric division of stem and non-stem cells. *Cell Cycle* **2009**, *8*, 3234–3237.
- 94. Walen, K. Normal Human Cells Acquiring Proliferative Advantage to Hyperplasia-Like Growth-Morphology: Aberrant Progeny Cells Associated With Endopolyploid and Haploid Divisions. *Cancer and Clinical Oncology* **2013**, 2.
- 95. Walen, K.H. Neoplastic-Like CELL Changes of Normal Fibroblast Cells Associated with Evolutionary Conserved Maternal and Paternal Genomic Autonomous Behavior (Gonomery). *J. Cancer Ther.* **2014**, *05*, 860–877.
- 96. Huskins, C.L. SEGREGATION AND REDUCTION IN SOMATIC TISSUES: I. Initial observations on Allium cepa. *J. Hered.* **1948**, *39*, 311–326.
- 97. Rizzoni, M.; Palitti, F.; Perticone, P. Euploid segregation through multipolar mitosis in mammalian cell cultures. *Chromosoma* **1974**, 45, 151–162.
- 98. Tian, X.; Patel, K.; Ridpath, J.R.; Chen, Y.; Zhou, Y.-H.; Neo, D.; Clement, J.; Takata, M.; Takeda, S.; Sale, J.; et al. Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium. *PLoS One* **2016**, *11*, e0167503.
- 99. Kondrashov, A.S. The asexual ploidy cycle and the origin of sex. *Nature* **1994**, 370, 213–216.
- 100. Liu, C.; Cai, Z.; Jin, G.; Peng, D.; Pan, B.-S.; Zhang, X.; Han, F.; Xu, X.; Lin, H.-K. Abnormal gametogenesis induced by p53 deficiency promotes tumor progression and drug resistance. *Cell Discov* **2018**, *4*, 54.
- 101. Verlhac, M.H.; Kubiak, J.Z.; Weber, M.; Géraud, G.; Colledge, W.H.; Evans, M.J.; Maro, B. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic

- maturation in the mouse. Development 1996, 122, 815-822.
- 102. Maguire, M.P. The evolution of meiosis. *J. Theor. Biol.* **1992**, 154, 43–55.
- 103. Bhalla, N.; Dernburg, A.F. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. *Science* **2005**, *310*, 1683–1686.
- 104. Pelttari, J.; Hoja, M.R.; Yuan, L.; Liu, J.G.; Brundell, E.; Moens, P.; Santucci-Darmanin, S.; Jessberger, R.; Barbero, J.L.; Heyting, C.; et al. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. *Mol. Cell. Biol.* 2001, 21, 5667–5677.
- 105. Kouznetsova, A.; Benavente, R.; Pastink, A.; Höög, C. Meiosis in mice without a synaptonemal complex. *PLoS One* **2011**, *6*, e28255.
- 106. Heckmann, S.; Jankowska, M.; Schubert, V.; Kumke, K.; Ma, W.; Houben, A. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. *Nat. Commun.* **2014**, 5.
- 107. Newton, W.C.F.; Darlington, C.D. Meiosis in polyploids: Part I. Triploid and pentaploid tulips. *J. Genet.* **1929**, *21*, 1–15.
- 108. Grell, K.G. Die Chromosomen von Aulacantha scolymantha Haeckel. Arch. Protistenkunde 1953, 1–54.
- 109. Green, K.J.; Kirk, D.L. Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos. *J. Cell Biol.* **1981**, *91*, 743–755.
- 110. Niu, N.; Mercado-Uribe, I.; Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. *Oncogene* **2017**, *36*, 4887–4900.