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Abstract: Large Vision-Language Models (LVLMs) have achieved remarkable success in vision-language tasks, yet

they often fall short in fine-grained region-level understanding due to limited spatial sensitivity and insufficient

region-specific annotations. To address these challenges, we propose FineRegion-LM, a generative model that

enhances LVLMs’ capabilities in region comprehension through a novel dual-stage framework. Our approach

utilizes dynamic region masking to refine spatial focus and adaptive prompt-based learning for contextual genera-

tion. Extensive experiments on benchmark datasets demonstrate that FineRegion-LM significantly outperforms

existing methods in region description, object classification, and spatial reasoning tasks. Human evaluations

further confirm the effectiveness of our approach in generating accurate and contextually relevant descriptions.

Keywords: Large Vision-Language Models; fine-grained region understanding

1. Introduction

In recent years, Large Vision-Language Models (LVLMs) have made significant strides in the
fields of computer vision and natural language processing by integrating multimodal capabilities to
understand images and text jointly. These models, leveraging extensive pre-training on large-scale
datasets, have excelled in tasks such as image captioning, visual question answering, and object
detection [1,2]. However, despite their impressive performance in holistic image understanding,
current LVLMs often struggle with region-specific comprehension. This limitation is particularly
problematic for applications that require fine-grained spatial understanding, such as autonomous
driving, medical imaging, and scene analysis.

The core challenge in region understanding lies in the model’s ability to precisely focus on
specific areas of an image while maintaining a coherent contextual interpretation. Existing models
like CLIP and BLIP rely heavily on global image features, which often leads to poor performance in
tasks requiring localized region descriptions and spatial reasoning [1,2]. Additionally, most publicly
available training datasets contain annotations at a coarse level, limiting the models’ ability to learn
nuanced details within image regions. This gap indicates a need for an approach that not only
understands the global context of images but also excels at extracting and interpreting information
from localized regions.

Motivated by these challenges, our research proposes a novel framework, FineRegion-LM,
designed to enhance LVLMs for fine-grained region-level understanding. Our approach is built on
the premise that improving spatial sensitivity and leveraging detailed region-specific annotations can
significantly boost model performance on complex vision-language tasks. To achieve this, we introduce
a dual-stage training strategy. In the first stage, we fine-tune a vision encoder using dynamic region
masking to force the model to focus on specific areas. In the second stage, we use a large language
model fine-tuned with region-aware prompts to generate detailed captions and responses for localized
image regions. This two-phase approach ensures that our model is both spatially attentive and
contextually accurate, enabling it to outperform existing methods in tasks that require region-specific
understanding.

To evaluate the effectiveness of our approach, we conduct experiments on widely used datasets
such as ReferCOCOg and Visual Genome, as well as our own generated dataset with fine-grained region
annotations. We assess the performance of our model using standard metrics such as accuracy, mean
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Intersection over Union (mIoU), and F1 score for region description, object detection, and spatial
reasoning tasks. Our method demonstrates significant improvements over baseline models, with an
average performance gain of over 5% in region-specific tasks, indicating its effectiveness in capturing
fine-grained visual details.

• We introduce a novel dual-stage training framework for LVLMs that enhances spatial sensitivity
using dynamic region masking and prompt-based fine-tuning.

• Our approach leverages adaptive region-aware prompts to guide large language models in
generating precise and contextually relevant descriptions for localized regions.

• We demonstrate significant improvements in region understanding on multiple datasets, achiev-
ing state-of-the-art results in fine-grained tasks such as region description and spatial reasoning.

2. Related Work

2.1. Large Vision-Language Models

Large Vision-Language Models (LVLMs) have gained significant traction in recent years due to
their ability to jointly understand and generate content across visual and textual modalities [3,4]. These
models leverage large-scale pre-training on image-text pairs to excel in various multimodal tasks such
as image captioning, visual question answering, and object recognition [5]. Despite their impressive
capabilities, challenges remain in fine-grained region understanding and efficient scaling for complex
real-world applications.

Recent advancements in LVLMs include the development of methods to enhance their spatial sen-
sitivity and region-level comprehension. For instance, TextHawk2 demonstrates superior performance
in bilingual Optical Character Recognition (OCR) and grounding tasks while reducing token usage by
16 times through optimized token efficiency strategies [6]. Similarly, MoE-LLaVA employs a mixture
of experts approach to balance model performance and computational cost, effectively scaling LVLMs
for diverse vision-language applications [7].

Another notable contribution is the introduction of attention prompting techniques. For example,
the study by [8] explores the use of visual attention prompts to enhance the alignment between textual
inputs and image features. These approachs significantly improves LVLMs’ accuracy in complex
multimodal tasks [9,10]. Additionally, CogCoM introduces a chain-of-manipulations method [11] to
dive into fine-grained image details, making LVLMs more adept at handling nuanced visual content
[12].

Despite these advancements, evaluating the performance of LVLMs remains a challenge. The
study [13] critically examines existing evaluation methodologies and proposes new metrics to better
assess the effectiveness of LVLMs in real-world scenarios. Moreover, the issue of cross-modality
knowledge conflicts, as discussed by [14], highlights the need for strategies to mitigate inconsistencies
between visual and textual modalities.

To further enhance LVLMs, self-training techniques have been employed to improve image com-
prehension. The work by [15] utilizes self-supervised learning to refine model understanding, thereby
enhancing performance on visual reasoning tasks. Meanwhile, generalist models like VisionLLM v2
demonstrate the feasibility of creating end-to-end multimodal models capable of handling hundreds
of tasks with a unified framework [16].

In summary, while current LVLMs have shown remarkable progress in bridging the gap between
vision and language, there are still areas that require improvement, especially in terms of region-level
understanding, efficient scaling, and robust evaluation [17,18]. Our proposed method builds upon
these advancements by introducing a dual-stage framework that focuses on enhancing fine-grained
region comprehension and context-aware text generation.
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2.2. Vision Region Understanding

Vision region understanding has become a crucial component in advancing the capabilities of
vision-language models, particularly in tasks that require fine-grained spatial reasoning and region-
specific comprehension. The ability to focus on specific regions within an image is essential for
applications like object detection, scene understanding, and multimodal dialogue systems. Recent
advancements in this area have introduced various techniques to enhance the spatial sensitivity and
contextual accuracy of models.

One of the recent approaches, RegionGPT, proposes a framework that integrates region-level
understanding into vision-language models by leveraging generative pre-training techniques to
enhance spatial comprehension [19]. Building on this, SpatialRGPT focuses on improving grounded
spatial reasoning capabilities by introducing task-specific prompts, which help models understand
spatial relationships more effectively [20]. Similarly, RegionViT uses a regional-to-local attention
mechanism to extend the capabilities of vision transformers, allowing them to capture both global and
local image features [21].

Another line of work explores optimizing large language models for region-specific tasks. For
instance, GPT4RoI applies instruction tuning on regions of interest (RoI), allowing the model to
generate more accurate and context-aware descriptions of localized content [22]. Groma introduces
a localized visual tokenization approach to improve the grounding of multimodal large language
models, facilitating better alignment between image regions and textual inputs [23]. This helps to
enhance the model’s performance in tasks involving region-level grounding.

Furthermore, there have been efforts to unify region localization and vision understanding in pre-
trained language model [24,25]. The GLIPv2 model integrates object localization with vision-language
tasks, achieving better results by jointly optimizing these components [26]. Additionally, Optimization
Efficient Open-World Visual Region Recognition addresses the challenges of recognizing regions in
open-world settings, where the diversity and ambiguity of visual data are significantly higher [27].

In terms of enhancing position-awareness in vision-language models, Position-Enhanced Visual
Instruction Tuning has been proposed to incorporate positional information into the tuning process,
thus improving the spatial coherence of generated responses [28]. These advancements highlight the
ongoing efforts to refine region-level comprehension in vision-language models, making them more
robust and versatile for real-world applications.

3. Method

In this section, we present our proposed approach, FineRegion-LM, which is designed as a
generative model focused on fine-grained region-level understanding within the context of Large
Vision-Language Models (LVLMs). The generative nature of our model allows it to produce detailed
region-specific captions and contextual explanations rather than simply classifying or detecting objects.
This enables more nuanced and descriptive outputs that are crucial for tasks like region-aware visual
question answering and scene interpretation.

3.1. Dual-Stage Framework Overview

The FineRegion-LM consists of a two-stage framework designed to enhance the spatial sensitivity
and contextual generation capabilities of LVLMs. The first stage involves dynamic region masking
to improve spatial focus, while the second stage utilizes adaptive prompt-based fine-tuning for
generating detailed captions and responses. Let I ∈ RH×W×3 denote an input image, where H and W
represent its height and width, respectively.
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3.2. Dynamic Region Masking with Vision Encoder

We begin by extracting the visual features of the input image I using a Swin Transformer backbone.
The feature map F ∈ Rh×w×d is generated as:

F = SwinTransformer(I), (1)

where h, w, and d represent the spatial dimensions and feature depth, respectively. To enhance region-
level focus, we apply a dynamic region masking mechanism. For each region of interest (RoI) Ri, we
generate a mask Mi:

Mi(x, y) =

{
1, if (x, y) ∈ Ri,

0, otherwise.
(2)

The masked feature map Fi for region Ri is computed as:

Fi = F ⊙ Mi, (3)

where ⊙ denotes element-wise multiplication. This process forces the model to focus on specific
regions while ignoring irrelevant parts of the image.

3.3. Adaptive Prompt-Based Fine-Tuning with Language Model

In the second stage, we integrate the region-specific features with a generative language model
(e.g., T5 or GPT-4) to generate descriptive captions. Let zi be the feature vector obtained by pooling Fi:

zi = AdaptivePooling(Fi). (4)

The feature vector zi is then used to condition the language model. We employ an adaptive prompt P
based on the context of the region:

Ti = Prompt(zi, P), (5)

where Ti represents the generated textual output for region Ri. The language model generates the final
caption Ci:

Ci = LanguageModel(Ti). (6)

By using adaptive prompts, the language model is guided to generate more accurate and contextually
relevant descriptions.

3.4. Training

The training objective of FineRegion-LM involves optimizing a joint loss function to ensure both
accurate region recognition and high-quality text generation. The overall loss L is defined as:

L = Lmask + λ1Lcaption + λ2Lconsistency, (7)

where:

• Lmask: Ensures that the model focuses on the correct regions by penalizing incorrect attention
maps.

• Lcaption: A cross-entropy loss between the generated and ground truth captions.
• Lconsistency: A self-supervised consistency loss to ensure that similar regions produce consistent

descriptions.

For the captioning loss, let C∗ denote the ground truth caption for region Ri. The captioning loss
is given by:

Lcaption = −
T

∑
t=1

log p(C∗
t |zi, Ti,1:t−1), (8)
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where T is the length of the caption and p(·) represents the probability predicted by the model.
The consistency loss encourages consistent outputs for regions with overlapping content:

Lconsistency =
1
N

N

∑
i=1

N

∑
j=1

I(Ri ∩ Rj ̸= ∅) · ||Ci − Cj||22, (9)

where I(·) is an indicator function and N is the number of regions in the image.

3.5. Inference

During inference, given an input image I , the model first extracts region-specific features using
the vision encoder with dynamic masking. Then, it generates descriptive captions using the fine-tuned
language model. The final output consists of a set of captions {Ci}, each corresponding to a specific
region in the image, providing a detailed and context-aware understanding of the visual content.

4. Experiments

In this section, we present an extensive evaluation of our proposed FineRegion-LM method
against several state-of-the-art models in the domain of region-level vision-language tasks. Our
experiments involve quantitative analysis, ablation studies, and human evaluations to comprehensively
assess the effectiveness of our approach. The results demonstrate that FineRegion-LM significantly
outperforms existing methods across multiple metrics, highlighting its superior region understanding
capabilities.

4.1. Experimental Setup

We conducted our experiments on three well-known datasets: ReferCOCOg, Visual Genome, and
a custom fine-grained region annotation dataset. We evaluate all models on tasks such as region
description, object classification, and spatial reasoning. The models we compare against include:

• CLIP-based Model: A strong baseline model that uses global image features.
• BLIP: A transformer-based model designed for vision-language pre-training.
• Region-VLP: A model focusing on region-aware pre-training.

4.2. Quantitative Results

We report the accuracy, F1 score, and mean Intersection over Union (mIoU) for each method on
the ReferCOCOg and Visual Genome datasets. The results, shown in Table 1, indicate that our method
achieves the best performance across all metrics.

Table 1. Quantitative comparison of FineRegion-LM with existing methods.

Model Accuracy (%) F1 Score mIoU

CLIP-based Model 74.5 0.68 0.55
BLIP 76.3 0.72 0.57
Region-VLP 78.2 0.75 0.60
FineRegion-LM (Ours) 82.1 0.79 0.64

Our model outperforms the best baseline (Region-VLP) by a margin of 3.9% in accuracy, demon-
strating its superior ability to generate accurate and context-aware region descriptions.

4.3. Ablation Study

To validate the effectiveness of the components of FineRegion-LM, we performed an ablation
study. We tested three configurations: (1) without dynamic region masking, (2) without adaptive
prompts, and (3) the full model. The results are summarized in Table 2.

The results confirm that both dynamic region masking and adaptive prompts are critical compo-
nents that contribute significantly to the model’s performance.
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Table 2. Ablation study results on the ReferCOCOg dataset.

Model Variation Accuracy (%) F1 Score mIoU

No Dynamic Masking 78.3 0.74 0.61
No Adaptive Prompts 79.0 0.76 0.62
Full Model (FineRegion-LM) 82.1 0.79 0.64

4.4. Human Evaluation

We conducted a human evaluation study to further assess the quality of the captions generated
by FineRegion-LM compared to other models. Human evaluators rated the outputs based on three
criteria: accuracy, relevance, and fluency, using a 5-point Likert scale (1: Poor, 5: Excellent). The
results are shown in Table 3.

Table 3. Human evaluation of region-specific caption generation. Ratings are averaged across multiple
evaluators.

Model Accuracy Relevance Fluency

CLIP-based Model 3.8 3.7 4.0
BLIP 4.0 3.9 4.2
Region-VLP 4.3 4.2 4.4
FineRegion-LM (Ours) 4.7 4.5 4.8

The human evaluation results indicate that our model produces more accurate, relevant, and
fluent descriptions compared to the baseline models, further validating its effectiveness in real-world
scenarios.

4.5. Analysis and Discussion

The experimental results demonstrate that FineRegion-LM consistently outperforms existing
models across multiple datasets and evaluation metrics. The combination of dynamic region masking
and adaptive prompts contributes to the model’s enhanced capability to focus on relevant regions
while generating contextually accurate captions. This results in both quantitative improvements
and better qualitative feedback from human evaluators. These findings confirm the robustness and
generalization capability of our method, making it a strong candidate for tasks requiring fine-grained
region-level understanding.

5. Conclusion

In this work, we introduced FineRegion-LM, a novel framework aimed at advancing the region-
level understanding capabilities of Large Vision-Language Models. By employing a dual-stage ap-
proach combining dynamic region masking and adaptive prompt-based fine-tuning, our model
effectively overcomes the limitations of existing methods in capturing fine-grained spatial details. Our
comprehensive experiments on multiple datasets confirm that FineRegion-LM not only achieves supe-
rior quantitative performance but also excels in qualitative human assessments. The ablation studies
further validate the importance of our proposed components. Future work will explore extending
this framework to more complex multi-modal scenarios and incorporating self-supervised learning to
further enhance its robustness.
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