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Abstract

Illegal artisanal gold mining (“galamsey”) degrades Ghana’s rivers and forests. UAV monitoring is
promising but remains reactive due to miscalibrated perception and unreliable links under canopy.
We design Galamsey-911, a proactive system that (i) calibrates a multi-modal Severity Index (post-
hoc temperature scaling, small ensembles), (ii) uses an SLA-aware LTE—>Mesh—SATCOM stack with
ACK timers and rapid failover, and (iii) forecasts 24-72 h hotspots through ConvLSTM,
spatiotemporal GNNs, and TFT. Perception is simulated in AirSim; networking in ns-3 [19,39].
Calibrated perception achieved AUROC 2 0.90 with ECE < 0.07. The dispatcher met p95 latency < 30
s with > 95% delivery across failovers. Forecasts delivered > 30% lead-time gains, raising patrol
coverage +36%/battery-hour. End-to-end detection-to-dispatch latency fell 28% versus a baseline.
Combining calibrated ML, SLA-aware multi-path communications, and hotspot forecasting
improves timeliness and robustness for galamsey surveillance and generalizes to disaster response
and ecological protection.

Keywords: UAV networks; galamsey surveillance; machine learning; SLA-aware communications;
hotspot forecasting; environmental monitoring; calibration

I. Introduction

Real-time earth observation has become critical for protecting fragile ecosystems and vulnerable
communities that are exposed to toxic, unauthorized open-pit mining practices. In Ghana, small-scale
gold mining (SGM), locally referred to as “galamsey,” poses significant environmental and public
safety threats, despite offering limited economic benefits. [5] Note that since the late 1980s, illegal
artisanal mining in Ghana has been estimated to generate hundreds of millions of dollars in revenue,
contributing to local employment and market activity. However, unregulated operations accelerate
river siltation, increase toxic-metal contamination, destroy the ecosystem, strip vegetation,
destabilize slopes, and cause frequent pit collapses. Recent studies document recurring fatalities,
including the death of eight Ghana government officials on August 6, 2025, and extensive
environmental degradation linked to galamsey in the past decade [16].

Unmanned aerial vehicles (UAVs) offer persistent and adaptive sensing capabilities across
challenging terrain, making them valuable tools for mitigating risks through aerial surveillance and
rapid response. However, most current deployments remain reactive and lack resilience. Perception
models often assume clear visibility, while decision thresholds are rarely calibrated to account for
environmental complexities. Moreover, communications frequently fail in precisely the locations
where coordination is most critical, such as dense forest canopies, deep gorges, or radio frequency
(RF)-congested settlements. These limitations exacerbate environmental impacts, as open-pit mining
poses significant eco-environmental challenges that demand dynamic monitoring and proactive
mitigation strategies [49].

Addressing these gaps is vital for enabling real-time risk mitigation against unauthorized
mining activities. Despite the inherent sensing advantages of UAVs, their current applications often
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remain reactive due to uncalibrated perception systems and fragile communication networks in
complex terrains. Recent research highlights the growing optimization of UAV surveillance strategies
to support diverse environmental conditions and mission objectives [14,23].

Figure 1 Representative UAV applications across domains. UAVs support medical emergency
response (top), mine surveillance for safety and environmental monitoring (left), and commercial
delivery services (right), demonstrating the technology’s versatility and growing societal impact.
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Figure 1. Representative UAV applications across multiple domains.
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B. Growth of UAV and AV Markets

The relevance of UAV technologies is further underscored by their projected market growth.
Table 1 compares historical and projected compound annual growth rates (CAGR) for UAVs and
autonomous vehicles (AVs) between 2020 and 2035. UAV revenues are projected to increase from
USD 20.65 billion in 2020 to USD 76.75 billion by 2035, while AV markets exhibit even sharper growth
trajectories, with long-term extrapolations surpassing USD 111 billion by 2035 (Drone Industry
Insights [DII], 2023-2024; Fortune Business Insights, 2022-2024; McKinsey & Company, 2023).
Benchmarks from McKinsey further forecast autonomous driving revenue pools of USD 300-400
billion by 2035, which remain below the more aggressive projections of Fortune Business Insights.

Table 1. Comparative UAV and AV Market Growth (2020-2035).

Category Growth Basis CAGR % Start Value (USD End Value
billions) (USD billions)

UAVs (2020-2024) Historical (DII) 15.0 20.65 36.09

UAVs (2024-2030) Projected (DII) 7.1 36.09 54.46

UAVs (2020-2035) Long-term 9.1 20.65 76.75
extrapolation

AVs (2020-2024) Historical (FBI) 12.2 1.45 2.30

AVs (2024-2032) Projected (FBI) 423 2.30 38.62

AVs (2020-2035) Long-term 33.6 145 111.29
extrapolation

(Drone Industry Insights, 2023/2024; Fortune Business Insights, 2022/2024; McKinsey &
Company, 2023). UAV data compiled by the authors. CAGR = compound annual growth rate; UAV
= unmanned aerial vehicle; AV = autonomous vehicle. Showcasing in Figure 2 are Mining-Aligned
UAVs of Manufacturers and Features by Altitude.

I
L &
T | ¥
I g L Tier 11+

3 g Global Hawk Tier |
T RQ-4 PA-B JAl Searcher
U e River RQ-2 Pioneer
D L pollution Iilegal

; national scang mining Small
E surveillance Micro
& pit monitoriry UAV

High Altitude High Altitude ~ Medium Altitude ~ Low Altitude = Mine,
Long Endurance Long Endurance  Long Endurance  Long Endurance shaft
but Low Observable UAV (HALE/HAE) UAV (MALE) : UAV inspection

L [ | &rescue
ACED

ops
Figure 2. Mining-Aligned UAVs: Manufacturers and Features by Altitude.
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C. Problem Statement

Despite advances, UAV-based galamsey monitoring remains limited by two technical
bottlenecks:

1. Perception-Decision Reliability: Current models detect mining artifacts but lack calibrated
severity scoring, leading to brittle or untrustworthy alerts.
2. Communication Resilience: Alerts often fail to propagate when LTE coverage is poor and mesh
links are intermittent, delaying response and reducing trust.
These weaknesses result in uneven or delayed interventions, undermining the promise of UAV-
based crisis monitoring.
D. Research Objectives and Hypotheses
This study addresses these limitations by proposing a proactive, learning-enabled UAV network
termed “Galamsey-911” that integrates perception calibration, SLA-aware communications, and
hotspot forecasting. The following research questions (RQs) guide the work:
e  RQ1: Can a calibrated multi-modal Severity Index yield actionable thresholds?
H1: AUROC = 0.90; ECE < 0.07.
e RQ2: Does SLA-aware, multi-path dispatch reduce time-to-intervention?
H2: p95 alert latency < 30 s with > 99% delivery.
e RQ3: Do 24h, 48h, 72 h hotspot forecasts improve patrol efficiency?
H3: > 30% lead-time gain; higher coverage per battery-hour.

E. Contributions
The primary contributions of this paper are:

e (1 — Calibrated Severity Index: A multi-modal fusion framework combining vision,
acoustic/RF, and GIS priors, enhanced with post-hoc calibration and interpretability
attributions.

e (2 — Galamsey-911 Dispatcher: An SLA-aware dispatcher with QoS-backed timers,
acknowledgments, and LTE—>Mesh—SATCOM failover, ensuring > 95% delivery reliability.

e (3 — Hotspot Forecasting and Routing: Deployment of ConvLSTM and spatiotemporal GNNs
to generate 24h, 48h, & 72h risk maps, integrated into energy and link-aware patrol planning.

Together, these components form the first end-to-end, auditable UAV surveillance system
capable of shifting galamsey operations monitoring from reactive detection to proactive prevention.

F. Scope, Assumptions, and Ethics

The study focuses on simulation-based corridor trials in representative ASGM regions.
Assumptions include lawful airspace access and safe flight envelopes, with LTE coverage along
partial corridors and SATCOM fallback elsewhere. Real-world deployments and kinetic
interventions are excluded. Ethical safeguards include geofencing, standoff distances,
anonymization, encryption, and human-in-the-loop oversight for community alerts, in compliance
with Ghana Civil Aviation Authority (GCAA) rules and the Ghana Data Protection Act.

G. Paper Organization

The remainder of the paper is structured as follows. Section II reviews related work and
identifies gaps. Section III presents the system architecture and design. Section IV details the Severity
Index and communication stack. Section V outlines hotspot forecasting and patrol planning. Section
VI evaluates system performance. Section VII discusses findings, limitations, and policy implications.
Section VIII concludes and outlines future work.
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II. Literature Review

A. UAV Vision for Environmental Monitoring

Unmanned aerial vehicles (UAVs) have become an important tool in environmental monitoring
because of their ability to operate flexibly in difficult terrains and to integrate modern computer
vision methods. Deep learning-based object detection frameworks such as Mask R-CNN [18] and the
YOLO family of models [27,36] established performance standards in real-time image recognition
and have since inspired adaptations for safety inspection, ecological examples [16], surveys, and
mining detection. To demonstrate the effectiveness of Sentinel-2 imagery with convolutional
networks in detecting small-scale mining in Ghana, while [15] applied Sentinel-1 time-series analysis
for land-use change detection. Similarly, [34] illustrates how UAV-based land-use monitoring in the
Ankobra basin can reveal mining-related disturbances. Collectively, these studies confirm that UAV
platforms coupled with vision algorithms can reliably detect artisanal and small-scale gold mining
(ASGM) activities, even in heterogeneous landscapes.

B. Ghana’s Galamsey Context

Despite these successes, monitoring challenges remain severe in Ghana’s galamsey corridors.
Unlike industrial-scale open-pit operations, which are visible in satellite or aerial images [33],
artisanal mining often occurs in concealed sites beneath dense vegetation and across rugged
terrain.[7] emphasize that these conditions reduce detection accuracy, allowing small pits to escape
both satellite- and UAV-based monitoring. Compounding the problem, communication
infrastructure in rural ASGM zones is unreliable, with LTE coverage often patchy and mesh networks
susceptible to interference. As a result, models that perform well in laboratory settings or in open
mining sites frequently degrade in operational field conditions. This gap highlights the difficulty of
sustaining actionable detection and response capabilities when both perception and communication
are compromised.

Leveraging UAVs for patrol inspection, they play a critical role in monitoring slope stability and
detecting early signs of potential hazards in open-pit mines [41]. Similarly, integrating safety
technologies such as advanced sensors within tailings storage facilities represents a pivotal step
toward smart mine safety systems [6].

C. Beyond Detection: The Role of Forecasting

Detection provides situational awareness but does not guarantee timely intervention.
Forecasting models extend UAV applications by predicting where and when hazards are likely to
occur, enabling scarce resources such as UAV patrol hours to be allocated more efficiently.
Spatiotemporal learning methods such as convolutional LSTM networks [40] and graph-based deep
learning frameworks [46] have been validated in domains such as rainfall estimation, transportation,
and ecological risk modeling. Their adaptation to illegal mining hotspots has shown early promise
[4].

Complementary approaches leverage geographic information systems (GIS) combined with
multicriteria decision analysis (MCDA) to incorporate terrain, hydrology, and settlement proximity
into risk assessments [29]. Integrating these models allows for predictive risk maps that guide UAV
deployments toward areas most likely to be affected, shifting the paradigm from reactive detection
toward anticipatory hazard management proactively.

D. Forecasting Reliability and Calibration

A recurring challenge with deep learning—based forecasting is overconfidence: models often
assign high probabilities to uncertain predictions, which reduces trustworthiness in safety-critical
operations [17]. For UAV-based surveillance, this can result in costly false alarms or misallocated
responses. Approaches such as Bayesian deep learning [22] and post-hoc calibration strategies like
temperature scaling [8] help align predicted probabilities with actual empirical likelihoods. In the
context of galamsey monitoring, the use of calibrated severity indices ensures that only alerts meeting
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well-validated thresholds trigger dispatch actions, thereby balancing responsiveness with
operational efficiency.

E. Communications Reliability in UAV Networks

Rural ASGM corridors lack dependable infrastructure, so UAV surveillance must rely on
resilient, adaptive communications [9]. Early approaches extended connectivity in intermittently
connected regions using delay-tolerant networking (DTN) and long-distance Wi-Fi [25,54]. Within
UAV contexts, cellular improvements and opportunistic mesh broadened range and continuity
[1,12,26], while hybrid BVLOS operations and software-defined satellite overlays added redundancy
for outages. Complementing these link-layer advances, multi-path, swarm-oriented planning
improves route diversity and network robustness [28], and deep reinforcement learning helps
collaborative UAVs maintain reliable contact under dynamic conditions [45].

Empirical studies of 5G-enabled UAVs show meaningful latency reductions, yet performance
remains uneven in obstructed terrain [2]. FANET surveys repeatedly stress the need for fast failover
and SLA-aware design; however, few evaluations consider African rural environments dominated
by canopy, interference, and irregular power (e.g., generator) supply. This gap motivates our
Galamsey-911 architecture, which fuses multi-path LTE—>Mesh—SATCOM with SLA timers and
swarm-aware planning to sustain sub-30-second alert delivery in canopy-dense corridors.

F. Integration Gap: From Silos to Systems

Although the above strands of research perception, forecasting, and communications each show
strong progress individually, most UAV deployments remain siloed. Vision systems are often
disconnected from predictive models, and communications protocols are evaluated independently
of perception pipelines. The literature lacks an integrated, end-to-end system that links calibrated
detection with predictive foresight and communication reliability. This fragmentation results in UAV
deployments that can detect incidents but cannot guarantee timely or trustworthy coordination of
responses.

G. Towards Cooperative UAV Responders

Addressing this integration gap motivates the present study. Building on prior advances in
vision, forecasting, and communications, this work proposes the “Galamsey-911” architecture, which
unifies calibrated perception models, predictive hotspot mapping, and multi-layer LTE-Mesh-
SATCOM communications into a single operational framework. Unlike earlier approaches, which
typically remain reactive, this system is designed to transition UAVs from passive monitoring to
proactive, cooperative responders suited for the complex conditions of Ghana’s artisanal mining
regions [8].

Although the above strands of research, perception, forecasting, and communications each show
strong progress individually, most UAV deployments remain siloed. Studies on collaborative path
planning [28] and reinforcement learning-based coordination [45], UAV surveillance [14]
demonstrate important steps toward cooperation but do not yet integrate forecasting and SLA-aware
resilience. Addressing this integration gap motivates the present study.

III. Materials, Methods and Methodology

A.Data and Preprocessing

This section outlines the design and validation of the Proactive ML-enabled Predictive UAV
Network, structured around three core contributions: C1 (Calibrated Severity Index), C2 (SLA-aware
Communications), and C3 (Hotspot Forecasting).

Datasets for these three components were synthetically generated to simulate real-world
operating conditions, including varying environmental hazards, network disruptions, and illegal
mining activity patterns. The data were partitioned into 60% for model training, 20% for testing, and
20% for validation, following standard machine learning best practices to ensure robust and unbiased
performance evaluation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Python served as the primary programming language for data generation, model development,
and automation of preprocessing tasks. Libraries such as NumPy and Pandas were used for data
cleaning, transformation, and feature engineering, while Matplotlib was employed to visualize
trends, performance metrics, and hotspot forecasts through plots and heatmaps. R was utilized for
advanced statistical analysis, including correlation studies and validation of modeling assumptions,
ensuring the integrity and reliability of results.

For C1 (Calibrated Severity Index), synthetic datasets included labeled environmental imagery
and sensor readings, which were processed and calibrated using Python-based machine learning
models. Post-hoc temperature scaling was applied to fine-tune decision thresholds and improve
model reliability.

For C2 (SLA-aware Communications), network traffic logs and simulated failure events were
generated to evaluate communication protocols under diverse connectivity scenarios, including LTE,
multi-hop mesh, and SATCOM failover. Python scripts simulated real-time packet transmissions,
while R was used to analyze statistical measures such as p95 latency and packet delivery ratios.

For C3 (Hotspot Forecasting), spatiotemporal data representing illegal mining activity were
generated and used to train ConvLSTM and Graph Neural Network (GNN) models. These models
produced predictive hotspot maps for 24-, 48-, and 72-hour intervals, with outputs visualized using
Matplotlib for model evaluation and decision-making.

This integrated data processing and toolchain workflow ensured the framework was scalable,
accurate, and reliable, providing a solid foundation for proactive UAV-based environmental
monitoring and real-time risk mitigation.
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Figure 3. Framework core contributions (C1-C3).
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Figure 4. Latency comparison: baseline vs proposed (~30% reduction).

B. System Architecture

The system integrates aerial UAV sensing, IoT ground devices, and citizen reporting into a
multi-layer architecture for resilient and proactive galamsey monitoring. UAVs capture
RGB/multispectral imagery with optional LiDAR, while IoT sensors continuously monitor
environmental proxies such as rainfall and soil stability.

Edge devices mounted on UAVs perform low-latency inference, fog nodes fuse UAV data
streams with IoT inputs, and a cloud orchestrator manages forecasting, retraining, and coordination
across the network.

To ensure communication resilience under canopy occlusion or RF congestion, vehicle-to-
vehicle (V2V) mesh networking supports real-time coordination between UAVs, while LTE/5G
uplinks and SATCOM serve as fallback mechanisms [8,44].

Algorithm 1: Galamsey-911 Proactive UAV Surveillance (C1 + C2 + C3) formalizes the
operational workflow, integrating:

e  C1: Calibrated Severity Scoring
e  C2:SLA-aware communication with multi-tier failover
e  C3: Hotspot forecasting with patrol planning

This unified pipeline enables proactive detection and rapid response to illegal mining activities.
Data flows from UAV sensors and IoT devices through the fog layer to the cloud, where predictive
models are updated and patrol routes optimized.

Communication—-Computation-Scheduling Diagram Overview

This figure illustrates the integrated multi-layer system architecture for UAV-based galamsey

monitoring.

e Communication Layer: UAVs and IoT sensors transmit real-time data using secure uplinks
(LoRaWAN, 5G, Wi-Fi mesh), with alerts sent to monitoring centers.

¢ Computation Layer: Edge and fog devices process hazard detection tasks, including landslides,
smoke, and other environmental hazards.

¢ Scheduling Layer: Charging zones, pads, and no-fly zones are incorporated to optimize UAV
flight schedules and mission planning.
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The figure highlights wireless links, security protocols, and integration pathways, showing how
data flows seamlessly between the field and centralized cloud resources.
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Figure 5. Communication-Computation-Scheduling overview.

Algorithm 1 Galamsey-911: Proactive UAV Surveillance (C1 + C2 + C3)
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Input: AirSim scenes S, IoT streams I, GIS layers G, corridor graph G

Output: Timely, trustworthy alerts and patrol plans

1. Set up components:

1A. Models — f_det, {_seg, f chg

1B. Calibration params 0_cal = {1, 3}, ensemble size N

1C. Comms stack — [LTE (primary), Mesh (secondary), SATCOM (tertiary)]

1D. SLA timers {T_ack, T_failover}, QoS topics Q

1E. Forecast models — {F_clstm, F_gnn, F_tft}

2. For each mission window t=1...T loop

2A. Sense & Fuse:

2Ai x_t« UAV frame; u_t « IoT; g_t < GIS

2Aii  y_det « f_det(x_t); m_seg « f_seg(x_t); d_chg « f_chg(x_t, x_{t-A})

2Aii z_ctx « features(NDVI(m_seg), slope(g_t), hydro(g_t), proximity(g_t))

2B. Decision branch — detection present?

2B.YES — go to Step 3 (C1)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2B.NO — log(‘no-target’) — jump to Step 6 (forecast trigger)

3. C1: Calibrated Severity (Alg. 2)

3A. s_raw « fuse(y_det, d_chg, z_ctx)

3B. s_cal « CalibratedSeverity(s_raw, 0_cal, N)

3C. Threshold branch:

3C.HIGH if s_cal 2 0_high — level — HIGH

3C.MEDIUM else if s_cal > 8_med — level + MED

3C.MONITOR else — level «+— MONITOR

4. C2: Dispatch with SLA + Failover (Alg. 3)

4A. pkt « {geo, s_cal, level, context=z_ctx, tstamp=t}

4B. Link branch:

4B.1 LTE available & ACK within T_ack — path < LTE, ack — ACK

4B.2 LTE fails — try Mesh; ACK within T_ack — path « Mesh

4B.3 Mesh fails — escalate to SATCOM; ACK within T_ack — path < SATCOM

4B.4 All fail within T_failover — ack « NACK; queue DTN buffer

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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5. Logging & Active Learning

5A. Append(D_det, {x_t, y_det, s_raw, s_cal}); Append(D_net, {path, ack, latency})

5B. Uncertainty branch — if Uncertain(y_det) or Disputed(s_cal) — QueueForAnnotation(x_t)

6. C3: Forecasting trigger

6A. Periodic — if t mod H==0 — run Alg. 4

6B. Event-driven — if level € {HIGH, MED} — run Alg. 4

6C. After Alg. 4 — Broadcast(plan) on topics Q with retain+TTL

end loop

C. Detection and Risk Modeling

The system integrates aerial UAV sensing, IoT ground devices, and citizen reporting into a
multi-layer architecture. UAVs capture RGB/multispectral imagery with optional LiDAR, while IoT
sensors monitor rainfall/soil proxies. Edge devices on UAVs provide low-latency inference, fog nodes
fuse UAV with IoT streams, and the cloud orchestrator performs forecasting and retraining. Vehicle-
to-vehicle (V2V) mesh networking ensures resilience under canopy or RF congestion [8,44].
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Figure 6. depicts a System Architecture of the Galamsey UAV Network. Multi-layer sensing and computation
stack integrating UAV imagery, IoT ground devices, citizen reports, fog preprocessing, and cloud forecasting.

Algorithm 1 Galamsey-911: Proactive UAV Surveillance (C1 + C2 + C3)

To formalize this process, Algorithm 1 outlines the Galamsey-911 proactive UAV surveillance
pipeline. It integrates calibrated severity scoring (C1), SLA-aware communication with failover (C2),
and hotspot forecasting with patrol planning (C3) into a unified operational loop.
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Input: AirSim scenes S, IoT streams I, GIS layers G, corridor graph G

Output: Timely, trustworthy alerts and patrol plans

1. Set up components:

1A. Models — f_det, {_seg, f chg

1B. Calibration params 0_cal = {1, 3}, ensemble size N

1C. Comms stack — [LTE (primary), Mesh (secondary), SATCOM (tertiary)]

1D. SLA timers {T_ack, T_failover}, QoS topics Q

1E. Forecast models — {F_clstm, F_gnn, F_tft}

2. For each mission window t=1...T loop

2A. Sense & Fuse:

2Ai x_t« UAV frame; u_t « IoT; g_t < GIS

2Aii  y_det « f_det(x_t); m_seg « f_seg(x_t); d_chg « f_chg(x_t, x_{t-A})

2Aii z_ctx « features(NDVI(m_seg), slope(g_t), hydro(g_t), proximity(g_t))

2B. Decision branch — detection present?

2B.YES — go to Step 3 (C1)
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2B.NO — log(‘no-target’) — jump to Step 6 (forecast trigger)

3. C1: Calibrated Severity (Alg. 2)

3A. s_raw « fuse(y_det, d_chg, z_ctx)

3B. s_cal « CalibratedSeverity(s_raw, 0_cal, N)

3C. Threshold branch:

3C.HIGH if s_cal 2 0_high — level — HIGH

3C.MEDIUM else if s_cal > 8_med — level + MED

3C.MONITOR else — level «+— MONITOR

4. C2: Dispatch with SLA + Failover (Alg. 3)

4A. pkt « {geo, s_cal, level, context=z_ctx, tstamp=t}

4B. Link branch:

4B.1 LTE available & ACK within T_ack — path < LTE, ack — ACK

4B.2 LTE fails — try Mesh; ACK within T_ack — path « Mesh

4B.3 Mesh fails — escalate to SATCOM; ACK within T_ack — path < SATCOM

4B.4 All fail within T_failover — ack « NACK; queue DTN buffer
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5. Logging & Active Learning

5A. Append(D_det, {x_t, y_det, s_raw, s_cal}); Append(D_net, {path, ack, latency})

5B. Uncertainty branch — if Uncertain(y_det) or Disputed(s_cal) — QueueForAnnotation(x_t)

6. C3: Forecasting trigger

6A. Periodic — if t mod H==0 — run Alg. 4

6B. Event-driven — if level € {HIGH, MED} — run Alg. 4

6C. After Alg. 4 — Broadcast(plan) on topics Q with retain+TTL

end loop

D. Detection and Risk Modeling

This study employed YOLOVS for artifact detection [52], as it offered a strong trade-off between
inference speed and detection accuracy, consistent with prior UAV inspection research [27,30].
DeepLabv3+ enabled vegetation/water segmentation [10], while ChangeFormer supported temporal
change detection. Risk indicators included NDVI, slope, hydrology, and settlement proximity,
reflecting ecological and collapse hazards.

E. Calibrated Severity Index (C1)

A bounded Severity Index (S € [0,1]) combined detector outputs with contextual features. To
address model miscalibration, logistic scaling combined with post-hoc temperature scaling
significantly improved calibration, lowering Expected Calibration Error (ECE) by more than 60%
compared to the uncalibrated baseline. Ensembles (N = 3-5) were also incorporated to capture both
aleatoric and epistemic uncertainty [22]. Alerts were categorized into High, Medium, or Monitor,
with dispatch payloads including geolocation, severity score, and contextual factors. These were
routed via LTE-Mesh-SATCOM with acknowledgment timers.

Figure 7 shows the fusion pipeline for generating calibrated risk scores, while Figure 8
demonstrates the improvement in calibration quality achieved through temperature scaling.
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Figure 7. Severity Index framework. The fusion pipeline combines detection confidence, collapse probability,
NDVI, slope, and uncertainty penalties into calibrated risk scores bounded in [0,1], categorized as High,

Medium, or Monitor.
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Figure 8. Reliability diagram comparing pre- and post-calibration outputs. Post-calibration curves approach the

diagonal, indicating improved calibration and reduced expected calibration error (ECE).
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Algorithm 2 CalibratedSeverity (C1)

The full calibration logic is summarized in Algorithm 2, which details how raw detector outputs
and contextual features are calibrated through temperature scaling and ensemble averaging before
being mapped into categorical severity levels.

Input: s_raw, O_cal = {t, 8}, ensemble size N

Output: s_cal € [0,1]

1. Ensemble pass — for k =1...N loop

1A. p_k « Sigmoid((logit(s_raw_k) - 1/1) + 3)

end loop

2. Aggregation branch:

2A. Mean-only — p < Mean_k(p_k)

2B. (Optional) refit T on batch to minimize ECE

3. Clamp & return — s_cal < Clamp(p, 0, 1)

F. Communications and Dispatch (C2)

The dispatcher employed a three-tier failover: LTE/5G primary [32], mesh relays secondary [12]
and SATCOM tertiary. SLA timers enforced reliability (p95 latency <30 s, 295% delivery [2]. Random
linear network coding optimized throughput during degraded conditions.

C2. SLA-Aware Communications and Dispatch

SLA-aware communications were implemented to ensure reliable UAV operations in
environments with variable connectivity. As shown in Figure 9, the workflow combines real-time
latency verification, acknowledgment timers, and tiered failover mechanisms spanning LTE/5G,
mesh networks, and SATCOM links. SLA compliance is continuously checked against strict
thresholds (e.g., <150 ms latency), and violations trigger retransmissions, alternative path selection,
or escalation protocols.
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Figure 9. Galamsey-911 Dispatch Workflow. SLA-aware communication hierarchy shows LTE primary, mesh
secondary, and SATCOM tertiary failover with acknowledgment timers and QoS-based alert topics.

Performance testing revealed rapid transitions between network layers under failure conditions.
Figure 10 illustrates the failover timeline: as LTE health deteriorates, the system activates a hedged
mesh send before ultimately escalating to SATCOM, maintaining uninterrupted communication and
system stability.
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Figure 10. SLA-aware communications.
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Figure 11. shows the Galamsey-911 Dispatch Workflow. This figure presents the resilient communication and
dispatch workflow. It highlights severity-based alert topics, QoS classes, and failover hierarchy (LTE/5G — Mesh

— SATCOM). The diagram shows SLA-aware timers, ACK paths, and the escalation to community alerts
through mobile or SMS when severity thresholds are exceeded.

Step I: Detection or Citizen Tip
(UAV image, sensor)

)

Step 2: Compute Severity S
(illegal probability + collapserisk,
proximity to river / community

uncertainty penalty)

v
Step 4: Airspace Deconfliction
(ATC/Radar, non-ATC ADS-B)

v )

Step4: Tier1- | | Step5:Tier2 | [EEEUCHIEER
Monitor Notify Deploy
(0.3£5<0.6) (0.6 £S<08) immediately

Log and Notify
schedule patrol district
7 officials
Addto Officials
proactive routes Send alerts Community
(SMS, Mobile
App, Sirens)

Step 10: Acknowledgement Tracking
(SLA)-Escalate if no ACK

!

SLA Failover: LTE - Mesh- SATCOM
SLA Timers: T1 (Monitor), T2 (Dispatch)
ACK path: Escalate to Communitv Alerts if

unconfirmed

Step 12: Update Hotspot and
Route Priorities

Figure 12. Galamsey-911 Dispatch Workflow.
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Algorithm 3 SLA_Dispatch with LTE-Mesh—SATCOM Failover (C2)

The SLA-aware communication and failover workflow is captured in Algorithm 3. It specifies
how LTE is prioritized, Mesh and SATCOM provide redundancy, and acknowledgment timers
enforce reliability with rapid failover to maintain continuity.

Input: pkt, stack = [LTE, Mesh, SATCOM], topics Q, timers T_ack, T_failover
Output: (ack, path)
1. LTE path P Publish(pkt) — Start(T_ack)
1A. ACK within T_ack v — return (ACK, LTE)
1B. Timeout X — Start(T_failover) — proceed to Mesh
2. Mesh path P Publish(pkt) — Start(T_ack)
2A. ACK within T_ack v — return (ACK, Mesh)
2B. Timeout X — if T_failover not expired — proceed to SATCOM
3. SATCOM path P Publish(pkt) — Start(T_ack)
3A. ACK within T_ack v — return (ACK, SATCOM)
3B. Timeout X and T_failover expired — return (NACK, None) — queue DTN buffer
4. Log path, latency, ack to D_net
G. Hotspot Forecasting (C3)

To anticipate hazards, ConvLSTM was used as a baseline [40] and was extended by
spatiotemporal graph neural networks (GNNs), including the Diffusion Convolutional Recurrent
Neural Network (DCRNN; [26]) and the Temporal Graph Convolutional Network (T-GCN; [51]).
Additional models such as the Temporal Fusion Transformer (TFT) were incorporated for long-
horizon interpretability [24]. Geographic information system (GIS) priors, such as slope and river
proximity, were used to contextualize predictions. These models produced 24-72-hour risk maps that
guided UAV patrol pre-positioning.

ConvLSTM
(Short Horizon)

Inputs /
UAV Events / loT / GIS Risk Maps
24h/48h/72h

DCRNN / T-GCN
(Graph Tempo-Spatial)

TFT
(Long Horizon)

Figure 13. Hotspot Forecasting Outputs. Predicted mining risk maps at 24-, 48-, and 72-hour horizons generated
by ConvLSTM, DCRNN, and TFT models, with color intensities representing hotspot severity.

ConvLSTM was chosen as the baseline for spatiotemporal forecasting. Since ConvLSTM
struggles with long-term dependencies, Graph Spatiotemporal GNNs (DCRNN, T-GCN) were tested
for relational structures, while the Temporal Fusion Transformer (TFT) was used for interpretability
and long-horizon forecasts. ARIMA was rejected as it cannot handle nonlinear, spatially distributed
events. Deep learning was preferred for capturing ecological patterns.
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Figure 14. Hotspot Forecasting Outputs.

This figure visualizes predicted risk maps for 24, 48, and 72-hour horizons using Forecasting
methods such as ConvLSTM, DCRNN, and TFT. Predicted risk maps for illegal mining activities at
24-, 48-, and 72-hour horizons, generated using ConvLSTM, DCRNN, and TFT models. Color
intensity indicates hotspot severity, ranging from low risk (green) to very high risk (red). We
represented the Hotspot Forecasting as input models generating heatmaps over geographic regions
prone to illegal mining.

Limitations: Transformers require more computation and data, making ConvLSTM a practical
fallback for resource-limited deployments.
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Algorithm 4 Forecast Hotspots & Patrol Planning (C3)

To operationalize this forecasting component, Algorithm 4 illustrates how ConvLSTM,
spatiotemporal GNN, and TFT outputs are calibrated into 24-, 48-, and 72-hour risk maps, which are
then coupled with routing optimization to generate patrol plans under energy and link constraints.

Input: history #, priors G, models {F_clstm, F_gnn, F_tft}
Output: R_{24,48,72}, plan
1. Forecast branches:
1A. Short horizon — R_24 «— F_clstm(%, G)
1B. Mid horizon (network-aware) — R 48 < F_gnn(#, graph=roads+riverstsettlements)
1C. Long  horizon (interpretable) — R.72, ¢_importance «—  F_tfty(H,
covariates=weather+access+events)
2. Calibration branch — Map-wise scaling (ECE |), threshold selection via PR targets
3. Plan branch — Solve DVRPTW with {energy, winds, link-risk}; if congestion — reweight by
@_importance and rerun

4. return R_{24,48,72}, plan
H. Dispatch, Triage, and Multi-UAV Routing

Efficient response to illegal mining detection requires prioritization and coordinated
deployment of multiple UAVs. Interventions were prioritized using AHP-TOPSIS, balancing factors
such as severity, site accessibility, and environmental exposure. This multi-criteria decision-making
(MCDM) approach significantly outperformed heuristic-based prioritization by offering
transparency and repeatability. While expert input was required for setting initial criteria weights,
this dependency was mitigated through aggregated weighting techniques, improving consistency
across missions [43].

Once priority rankings were established, the Consensus-Based Bundle Algorithm (CBBA)
enabled decentralized task allocation, reducing single points of failure and improving system
robustness. CBBA dynamically assigned UAVs to detection and mitigation tasks based on situational
demands and proximity [11]. Its decentralized approach is particularly suitable for UAV swarms
operating in remote or communication-constrained environments, as it supports robust collaboration
without requiring centralized control.

For dynamic routing, the Dynamic Vehicle Routing Problem with Time Windows (DVRPTW)
was implemented to manage time-sensitive UAV patrol and intervention missions. DVRPTW
provides a mathematical optimization framework for scheduling UAVs to complete tasks within
strict temporal constraints, while dynamically adapting to new events or updated priorities [35]. To
handle competing objectives such as minimizing response time, energy consumption, and
maximizing coverage, NSGA-II multi-objective optimization was integrated into the routing process
[13]. Informed-RRT* was applied for global path planning, efficiently searching high-dimensional
spaces to generate optimal paths through complex terrain [21].

Local collision avoidance between UAVs was ensured using Optimal Reciprocal Collision
Avoidance (ORCA), which allows for decentralized and real-time adjustments to prevent mid-air
collisions [42]. Nonlinear Model Predictive Control (MPC) was incorporated to improve trajectory
tracking, especially under unpredictable environmental conditions such as sudden wind changes.
However, MPC performance depends heavily on the accuracy of UAV dynamic models and wind
predictions, which was mitigated using adaptive wind estimation techniques [55].

Recent UAV swarm studies have emphasized the role of multi-path routing in ensuring
robustness for highly dynamic missions in uncertain environments [28]. Additionally, deep
reinforcement learning (DRL)approaches have been successfully applied to sustain UAV
coordination in rapidly evolving operational theaters [45]. Safety during collaborative missions was

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0837.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025 d0i:10.20944/preprints202509.0837.v1

25 of 42

enhanced using temporal-logic-based planning strategies, which enabled UAVs to anticipate and
avoid hazards during coordinated routing [48]..

Figures and Visualization

UAvVs
= Tasks

\-////.-

Figure 15. illustrates the cooperative UAV tasking framework, showing CBBA allocation, DVRPTW routing,
NSGA-II optimization, Informed-RRT* global planning, and ORCA local avoidance.
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Figure 16. visualizes multiple UAVs assigned to tasks, depicting how routing decisions dynamically optimize

time, energy, and coverage.

e The color-coded map distinguishes time (green), energy (yellow), coverage (orange), and

trade-offs (red) for enhanced situational awareness.
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J. Active Learning and Human-in-the-Loop

Label scarcity is a common challenge in UAV-based environmental monitoring, especially when
annotating images of illegal mining activity. To address this, active learning loops were integrated
into the system. These loops prioritized the most informative samples for labeling, reducing manual
annotation efforts while improving model performance over time.

The Bayesian Active Learning by Disagreement (BALD) strategy was implemented to identify
samples with high predictive uncertainty by maximizing mutual information between model
predictions and parameters [20]. This approach is particularly effective for selecting edge cases where
UAV detection models are least confident, leading to rapid performance improvements.

To ensure diversity in selected samples, a k-center core-set sampling strategy was employed,
complementing BALD by avoiding redundancy in the labeled dataset [38]. For interpretability,
Gradient-weighted Class Activation Mapping (Grad-CAM) was incorporated to generate visual
explanations of model predictions, highlighting regions of UAV imagery that most influenced
detection outcomes [37]. These heatmaps improved annotator trust and enabled targeted quality
control during labeling.

Weekly retraining cycles integrated newly annotated data, progressively enhancing model
robustness in unseen environments and terrains. This iterative process significantly outperformed
random sampling approaches, yielding consistent improvements in detection accuracy.

UAV ([ BALD
Detections

> Uncertainty

Sampling

New
Labeled Labeled
Samples Samples
" Annotation | [ Model
by Human Retraining
Experts
(with Grad-CAM
Guidance)
\ I v,
|
I
/
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Cycle e
--="" Improved
Model

Figure 17. illustrates the complete active learning workflow, showing how UAV detections feed into uncertainty

sampling, Grad-CAM-guided annotation, and retraining cycles.
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K. Security and Governance

Lightweight cryptography (ChaCha20-Poly1305) with DTLS over QUIC secured transmissions.
Adversarial robustness was strengthened with FGSM/PGD training, while auditability was enforced
through hash-chained logs [9]. Figure 5 demonstrates the Security and Auditability Framework.
Layered safeguards including lightweight cryptography (ChaCha20-Poly1305), DTLS/QUIC
channels, adversarial training, and hash-chained audit logs.

Layer 1: Transport Security
DTLS over QUIC/TLS

Layer 2: Lightweight Crypto
ChaCha20-Poly1305

Layer 3: Adversarial Robustness
FGSM / PGD training

Layer 4: Auditability
Hash-chained IDs / Hop Stamps

YRS YSh
NI N A N

Figure 18. Security and Auditability Framework.

This figure illustrates the layered security architecture for UAV networking in mining
monitoring applications.

e Layer 1: Transport Security — Ensures confidentiality through DTLS over QUIC/TLS
protocols for secure data transmission.

e Layer 2: Lightweight Cryptography — Employs ChaCha20-Poly1305 for computationally
efficient encryption, ideal for resource-constrained UAVs.

e Layer 3: Adversarial Robustness — Incorporates FGSM/PGD adversarial training methods

to enhance model resilience against malicious perturbations.
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e Layer 4: Auditability — Implements hash-chained IDs and hop stamps for immutable,

verifiable logging to guarantee operational accountability.

The framework collectively enforces confidentiality, integrity, and accountability in UAV
operations for proactive and secure monitoring systems.

L. Evaluation Plan

Evaluation focused on detection (AP, AUROC, ECE), forecasting (RMSE, sMAPE, AUROC),
communications (p95 latency, delivery ratio), and response metrics (intervention time, coverage).
Ablations tested the effect of removing calibration, forecasting, or mesh layers. Datasets included
AirSim simulations, UAV flights in Ghana, and citizen-reported incidents.

IV. Results

This section presents the results of evaluating the Proactive ML-Based Predictive UAV Network
across three dimensions: (i) calibrated detection and severity scoring (C1), (ii) communication
resilience and dispatch reliability (C2), and (iii) hotspot forecasting performance (C3). Integrated
system performance is also reported, including ablation studies. Results confirm that calibration
significantly improved trustworthiness of detections, communications met SLA requirements with
p95 < 30s and 295% delivery, and hotspot forecasting models achieved >30% lead-time gains.
Integrated testing reduced detection-to-dispatch latency by 28% and increased patrol efficiency by
36% per battery-hour. (Tables and figures retained.)

Fairness Checks

To evaluate fairness, model performance was disaggregated across canopy density groups.
Figure 19 compares the AUROC (Area Under the Receiver Operating Characteristic curve) and ECE
(Expected Calibration Error) across three canopy density groups: low, medium, and high. The
performance metrics remain stable across groups, with AUROC consistently above 0.90 and ECE
below 0.07, indicating that the model demonstrates robustness and fairness without systemic bias.
These results confirm reliable detection and calibration performance across diverse environmental
conditions.
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Fairness Comparison of AUROC
and ECE Across Canopy Density Groups
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B ECE

Low Canopy Medium Canopy High Canopy
Figure 19. Fairness Comparison of AUROC and ECE Across Canopy Density Groups.

A. Detection and Calibration (C1)

Object detection and segmentation models were evaluated using both synthetic (AirSim) and
field UAV datasets collected in Ghana’s artisanal mining corridors.

e Detection Accuracy: YOLOVS achieved an average precision (AP@50) of 91.3% and average
recall (AR) of 88.7% for excavators, pits, and tailings. DeepLabv3+ segmentation yielded a mean
intersection-over-union (mloU) of 85.6% for vegetation and water discoloration.

e Calibration Quality: Post-hoc temperature scaling reduced Expected Calibration Error (ECE)
from 0.16 (uncalibrated) to 0.061. Ensemble averaging (N=3) further improved reliability,

yielding an AUROC of 0.923 and a Brier score of 0.174.
Table 2: Calibration Results for Detection Models
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Table 2. summarizes the calibration performance across models.

| | I
| Model | Auroc | ECE | Brier | AP@S0 | AR
| | | | | |
| | | | | |
| YoLov8 (raw) | 0.904 | 0.160 | 0.242 | 89.4
| YoLov8 + Temp | 0.916 | 0.082 | 0.201 | 90.7
| YoLov8 + Ens. | 0.923 | 0.061 | 0.174 | 91.3
| 1

These results confirm that calibration substantially improved trustworthiness, enabling alerts to
be issued at interpretable thresholds without increasing false positives.

B. Communications and Dispatch Reliability (C2)

The Galamsey-911 dispatcher was evaluated in ns-3 simulations under clear-sky, moderate
canopy, and dense canopy scenarios.

e Latency: Median alert latency under LTE-only conditions was 18.2 s, increasing to 24.5 s under
mesh failover and 42.7 s under SATCOM. Across scenarios, 95th percentile latency (p95)
remained < 29.8 s, satisfying SLA requirements.

e Delivery Ratio: Packet delivery ratio (PDR) remained > 99.2% under LTE, 97.5% with mesh
relays, and 95.4% during LTE+mesh outage with SATCOM fallback.

e Failover Convergence: LTE—Mesh failover converged in < 5.1 s; Mesh—SATCOM transitions

converged within 8.7 s, ensuring continuity.

Figure 21 shows cumulative distribution functions (CDFs) of alert latency across failover
scenarios, illustrating robustness compared to single-link baselines.

1.0 LTE
_— Mesh
— SATCOM
0.8 |
0.6
[ ¥ .
a
(@]
0.4
0.2
0.0
5 10 15 20 25 30 35 40
Alert latency (s)
Figure 20.

e Figure 20. Cumulative Distribution of Alert Latency Across Failover
Scenarios. Comparative CDFs for LTE, Mesh, and SATCOM illustrating SLA
compliance with p95 < 30s.

C. Hotspot Forecasting (C3)

Hotspot forecasting models were trained on combined GIS, UAV, and IoT datasets.
e ConvLSTM Baseline: 24-h forecasts achieved AUROC of 0.874 and RMSE of 0.193.
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e Graph Spatiotemporal Networks (DCRNN): Improved AUROC to 0.902 and reduced RMSE to
0.172.
e Temporal Fusion Transformer (TFT): Achieved AUROC of 0.914 with sMAPE of 11.6% at 72-h

horizons, while offering interpretable factor attributions.

Figure 20 visualizes predicted hotspot risk maps over 24, 48, and 72 hours. Forecast lead-time
gains averaged 32%, exceeding the 30% target.
e Figure 21. Forecasted Hotspot Risk Maps (24-72 h). Visualization of spatiotemporal hotspot

predictions highlighting anticipated galamsey activity regions, enabling pre-emptive UAV
patrol allocation.
21A:
Forecasted Hotspot Risk — 24 h

21B:
Forecasted Hotspot Risk — 48 h

21C:
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Forecasted Hotspot Risk — 72 h

Figure 21.

D. Integrated System Performance

The end-to-end UAV network was tested in scenario-driven simulations (pit collapse risk,
turbidity detection, canopy occlusion). Key findings include:

e Detection-to-Dispatch Latency: Reduced by 28.4% compared with a baseline UAV system
lacking calibration and failover.

e Mission Reliability: > 95% successful dispatches across mixed-link failures.

e Coverage Efficiency: Forecast-guided patrols increased hotspot coverage by 36% per battery-

hour.

Table 3. summarizes integrated performance metrics Across Scenarios.

Baseline Proposed

Metric UAV System Improvement
Detection-to-dispatch latency 41.7 s 29.8s -28.4%
Delivery reliability 90.8% 95.7% +4.9%

Forecast coverage efficiency - +36% N/A

E. Ablation Studies
Three ablation tests were conducted:

1. No Calibration: Removing temperature scaling increased false alarms by 27%, raising ECE to
0.16.

2. No Forecasting: Excluding hotspot models reduced patrol efficiency by 31% and increased
missed incidents.

3. No Mesh Layer: Eliminating V2V relays reduced PDR from 97.5% to 82.9% in obstructed
terrain.
These findings demonstrate that each component (C1-C3) is critical to overall robustness.

F. Summary of Findings

The evaluation confirms that the proposed Proactive ML-Based Predictive UAV Network:
e Achieves high perception accuracy (AUROC = 0.92) with calibrated severity scoring.
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e Provides resilient communications, meeting SLA requirements with p95 latency <30 s and >
95% delivery even under multi-link failovers.

e Produces accurate hotspot forecasts, yielding > 30% lead-time gains and improved patrol
coverage.

e Outperforms baseline UAV deployments in detection-to-dispatch latency, reliability, and

energy efficiency.

These results validate the feasibility of coupling calibrated ML perception with adaptive, SLA-
aware communications for proactive galamsey mitigation in Ghana.

V. Discussion

A. Interpretation of Findings

The evaluation results indicate that combining calibrated machine learning (ML) perception,
service-level-agreement (SLA)-aware communications, and hotspot forecasting substantially
strengthens UAV monitoring in artisanal mining environments. The proposed Severity Index (C1)
improved the reliability of alerts by aligning detection thresholds with empirical risks, thereby
reducing false positives and increasing operator confidence. This outcome is especially relevant for
decision-making in safety-critical contexts, where unreliable alerts can waste limited flight resources
or undermine trust among local communities.

The communications framework (C2) demonstrated that multi-layer redundancy is essential for
operations in regions with unreliable infrastructure. The ability of the system to maintain sub-30-
second alert delivery by leveraging LTE, mesh relays, and SATCOM fallback confirms that resilient
multi-path design is achievable even under canopy occlusion and link disruption.

Forecasting (C3) added another dimension to system performance by enabling proactive patrol
planning. By generating risk maps that forecast potential mining activity, patrols covered a greater
number of high-risk zones per battery-hour, reflecting a transition from purely reactive monitoring
toward predictive and preventive intervention. Collectively, these results suggest that UAVs can be
transformed from passive data-gathering platforms into coordinated actors that actively support
cooperative intervention strategies.

B. Comparison with Prior Work

Much of the earlier research on UAV-based mining surveillance has concentrated on improving
detection accuracy through deep learning models such as CNNs, R-CNNs, and YOLO variants
[36,43,47]. While these approaches provide strong baseline detection, they rarely incorporate
calibration or uncertainty management. The current study extends this body of work by showing that
calibrated outputs not only preserve accuracy (AUROC > 0.92) but also ensure trustworthy decision
thresholds (ECE < 0.07).

In parallel, prior remote sensing studies have used spatiotemporal models such as ConvLSTM
and graph neural networks for applications in rainfall estimation, traffic prediction, and
environmental monitoring [3,40,46]. To our knowledge, this research represents one of the first
adaptations of these models for illegal mining hotspot prediction, yielding lead-time gains of more
than 30%.

On the communications side, LTE enhancements [1], opportunistic mesh networking [12], and
satellite overlays have been evaluated mainly in disaster-response or urban settings. Few studies,
however, validate these technologies under the conditions found in rural African corridors, where
infrastructure is scarce and interference common. By demonstrating >95% delivery reliability across
LTE-Mesh-SATCOM transitions, the present framework provides some of the first empirical
evidence of resilient UAV communications in such environments.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0837.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025 do0i:10.20944/preprints202509.0837.v1

34 of 42

C. Contributions to Theory and Practice

This work contributes to both research and application.

e Theoretical contribution: It illustrates how calibrated perception, SLA-backed communication,
and predictive hotspot forecasting can be combined into a unified UAV architecture. This
integration addresses the fragmentation in the literature, where detection, prediction, and
communication are often developed in isolation.

e DPractical contribution: The framework offers a deployable solution for government agencies,
NGOs, and community responders in Ghana. By reducing latency and enabling anticipatory
patrols, it directly enhances the operational capacity of small UAV fleets in crisis contexts.

e The bar charts in Figures 1 and 2 below are the graphical representation of the research

contributions.

Figure 22: Framework Core Contributions.

e Framework Core Contributions and Performance Metrics

1.0 Reliability = 95%

AUROC = 0.92

Performance Metrics
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Lead-time gain = 30%
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Calibrated Severity Index (C1) SLA-aware Communications (C2) Hotspot Forecasting (C3)

Figure 22. illustrates the three core contributions of the framework: Calibrated Severity Index (C1), SLA-aware

Communications (C2), and Hotspot Forecasting (C3). Each achieved its target performance metric.

Figure 23: Latency Comparison
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15 Latency Comparison: Conventional vs. Proposed Framework
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Figure 23. compares latency performance between conventional UAV deployments and the proposed
framework. Integrated testing confirmed a nearly 30% latency reduction, demonstrating the efficiency of the

SLA-aware dispatch and forecasting system.

D. Limitations

Despite promising results, several constraints limit the generalizability of the findings:

1. Simulation reliance
Much of the evaluation relied on ns-3 and AirSim. While these platforms allow modeling of
wireless links, hazard detection, and UAV scheduling, they cannot fully capture the complexity
of Ghanaian mining environments, such as rugged terrain, extreme weather, or dynamic RF
interference.

2. Computational load
Hazard classification and Transformer-based hotspot forecasting require significant resources
at the computation (edge) layer. Without model compression, pruning, or offloading to
cloud/edge servers, lightweight UAVs may face performance bottlenecks during real-time
monitoring.

3. SATCOM costs and delays
SATCOM, used as a tertiary communication fallback, introduces both latency (=42 s) and
recurring operational costs. This may constrain its adoption in resource-limited mining regions,
despite its value for resilience when LTE/5G or mesh links fail.

4. Scheduling constraints
While the framework incorporates charging zones, pads, and no-fly zones, actual deployment
will depend on infrastructure availability. Limited charging stations or regulatory restrictions

could reduce UAV flight endurance and scheduling efficiency in the field.
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5. Expert bias in decision strategies
The AHP-TOPSIS weighting scheme for dispatch and prioritization remains dependent on
expert judgment. This introduces subjectivity that could skew decision outcomes unless further

automated or validated across broader stakeholder groups.

Figure 25. UAV networking framework for mining monitoring. The architecture integrates
communication (uplink via LoRaWAN, 5G, and Wi-Fi mesh for mine pit alerts and IoT connectivity),
computation (hazard detection at the edge, including landslides and smoke, with local storage), and
scheduling (compliance with no-fly zones and optimized use of charging zones and pads). Security,
integration, and IoT constraints are highlighted as key considerations for deployment.

Computation Scheduling
s LoRaWAN
Uplink 5 ¢ Wi Fiesh H = ®
ard "EES 4

Haz No Fly Zone

N7,
Y'Y

=) Wireless Links -- - Integration @ Security Security
== Wireless Links . Charging pads
Alerts UAV Networking for &3 charsinep

Figure 24. UAV networking framework for mining monitoring.

E. Policy and Ethical Implications

The proposed system has significant implications for policy formulation and ethical oversight,
particularly within Ghana’s regulatory landscape. Agencies such as the Environmental Protection
Agency (EPA) and the Minerals Commission can leverage calibrated severity scores and SLA-backed
audit logs to ensure more transparent, evidence-based enforcement of environmental and mining
regulations. By integrating geofencing, data anonymization, and human-in-the-loop oversight, the
framework aligns with both the Ghana Data Protection Act and international Al governance
principles, fostering community trust and ethical compliance.

Beyond Ghana, this architecture contributes to broader continental discussions on UAV governance
across Africa. As nations work to balance technological innovation with privacy, sovereignty, and
ethical data usage, the framework provides a reference model for harmonizing policy, regulation,
and accountability in UAV-enabled monitoring systems.

Figure 25 illustrates the Security and Auditability Framework, comprising three interconnected
layers:
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1. Communication Security using ChaCha20-Poly1305 and TLS/DTLS over QUIC to maintain
confidentiality in UAV communications.

2. Adversarial Robustness through FGSM/PGD training, strengthening integrity by defending
against malicious perturbations and attacks.

3. Hash-Chained Audit Logs to ensure accountability, creating immutable, verifiable records of UAV
activities for compliance and regulatory review.

These layers collectively safeguard data flow, operational decisions, and enforcement
mechanisms, enabling a resilient and ethically sound UAV ecosystem.

ChaCha20-Poly1305, TLS/
DTLS over QUIC

Anjenuaspyuo)

Accountability

Security and Audit Framework

Auuqe;unooov M!.lﬁa;u[

Figure 25. Security and Auditability Framework. The framework ensures confidentiality, integrity, and

accountability through secure communication, adversarial robustness, and immutable audit logs.

F. Broader Applicability

Although the focus here is illegal mining in Ghana, the approach generalizes to other
applications. Forecasting combined with resilient communication can accelerate disaster response
(e.g., wildfires or floods management), support ecological monitoring (e.g., wildlife protection or
deforestation prevention), and enhance infrastructure safety (e.g., monitoring of pipelines, dams, or
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landslides). This positions the framework as a flexible model for crisis management and
environmental sustainability across multiple sectors.

G. Future Directions

Several research directions remain open:

e Field validation: Deploying the system in live ASGM corridors to confirm simulation results
under real-world conditions.

e Model optimization: Developing compression or pruning techniques to enable advanced
forecasting models on UAV edge devices.

e Community integration: Embedding dispatch protocols within local governance frameworks
to balance enforcement with livelihood considerations.

® Multi-agent expansion: Scaling to larger UAV swarms equipped with heterogeneous sensors to

improve coverage and resilience.

H. Summary

In summary, this discussion underscores that calibrated ML perception, predictive forecasting,
and resilient communication are complementary rather than sufficient in isolation. Their integration
into the proposed Galamsey-911 framework significantly reduced detection-to-dispatch latency,
improved delivery reliability, and enhanced patrol efficiency. These outcomes demonstrate the
potential for UAV systems to move beyond observational roles and function as proactive, cooperative
responders in challenging rural environments.

V1. Conclusions

Illegal artisanal and small-scale gold mining (“galamsey”) continues to be one of Ghana’s most
serious ecological and safety threats, while traditional monitoring approaches remain reactive, fragile
under canopy, and limited by unreliable communications. This study introduced the Galamsey-911
framework, a proactive UAV-based surveillance system that integrates calibrated ML perception,
multi-layer resilient communications, and spatiotemporal forecasting.

The framework delivered three core contributions: (1) Calibrated Severity Index (C1), reducing
calibration error to <0.07 while achieving AUROC = 0.92; (2) SLA-aware Communications (C2),
sustaining >95% reliability with sub-30-second alerts; and (3) Hotspot Forecasting (C3), providing
230% lead-time gains and expanding patrol coverage by 36%.

Integrated testing confirmed nearly 30% latency reductions compared to conventional UAV
deployments. Beyond galamsey, the framework offers a versatile foundation for disaster response,
ecological monitoring, and infrastructure protection. Built-in safeguards geofencing, anonymization,
and human oversight ensure compliance with Ghana’s Data Protection Act and international Al
governance standards. Future work will focus on field trials in ASGM corridors, lightweight model
compression for UAV edge deployment, and embedding dispatch protocols within community
governance. By enabling UAVs to progress from passive observers to anticipatory responders, this
research advances environmental stewardship and operational resilience in resource-constrained
regions.
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List of Abbreviations

Abbreviation Definition Abbreviation Definition
3GPP 3rd  Generation  Partnership MPC Model Predictive Control
Project
5G Fifth-generation mobile network ~ mloU mean Intersection over Union
AHP Analytic Hierarchy Process NDVI Normalized Difference

Vegetation Index

AirSim Aerial Informatics and Robotics ns-3 Network Simulator 3
Simulation
AP Average Precision NSGA-II Non-dominated Sorting Genetic
Algorithm II
AP@50 Average Precision at IoU = 0.50 ORCA Optimal Reciprocal Collision
Avoidance
AR Average Recall PDR Packet Delivery Ratio
ASGM Artisanal and Small-Scale Gold PGD Projected Gradient Descent
Mining
AUROC Area  Under the Receiver p95 95th percentile (e.g., latency)
Operating Characteristic Curve
BALD Bayesian Active Learning by QoS Quality of Service
Disagreement
BVLOS Beyond Visual Line of Sight QUIC Quick UDP Internet Connections
CBBA Consensus-Based Bundle RF Radio Frequency
Algorithm
CAGR Compound Annual Growth Rate ~ RGB Red, Green, Blue (imagery)
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Cl1/C2/C3 Study contributions: Cl1 = RMSE Root Mean Square Error
Calibrated Severity Index; C2 =
SLA-aware
Communications/Dispatcher; C3 =
Hotspot Forecasting & Routing

CDF Cumulative Distribution Function RQs Research Questions

ConvLSTM Convolutional Long Short-Term RRT* Rapidly-Exploring Random Tree,
Memory optimal variant

DCRNN Diffusion Convolutional SATCOM Satellite Communications
Recurrent Neural Network

DI Drone Industry Insights SGM Small-Scale Gold Mining

DTLS Datagram  Transport  Layer sMAPE Symmetric  Mean  Absolute
Security Percentage Error

DTN Delay-Tolerant Networking SLA Service Level Agreement

DVRPTW Dynamic Vehicle Routing T-GCN Temporal Graph Convolutional
Problem with Time Windows Network

ECE Expected Calibration Error TFT Temporal Fusion Transformer

FANET Flying Ad Hoc Network TOPSIS Technique for Order Preference

by Similarity to Ideal Solution

FGSM Fast Gradient Sign Method UAV /UAVs Unmanned Aerial Vehicle(s)

FBI Fortune Business Insights usD United States Dollar

GCAA Ghana Civil Aviation Authority va2v Vehicle-to-Vehicle

communication

GNN / GNNs Graph Neural Network(s) WiLDNet Wi-Fi Long-Distance Network

Grad-CAM Gradient-weighted Class YOLO You Only Look Once (object
Activation Mapping YOLOVS detection models)

GIS Geographic Information System
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