
Article Not peer-reviewed version

Segment Anything Model (SAM 2)

Unveiled: Functionality, Applications,

and Practical Implementation Across

Multiple Domains

Jahanggir Hossain Setu * , Mahmudul Islam * , Syed Tangim Pasha * , Nabarun Halder * , Ekram Hossain ,

Asif Mahmud , Ashraful Islam * , Md. Zahangir Alam , M. Ashraful Amin

Posted Date: 26 August 2024

doi: 10.20944/preprints202408.1790.v1

Keywords: Segment Anything Model 2; SAM 2; Video Segmentation; Real-Time Segmentation; Video

Processing; Memory Attention; Streaming Memory; Interactive Segmentation; Spatio-Temporal

Segmentation; Promptable Segmentation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2691484
https://sciprofiles.com/profile/2787203


Article

Segment Anything Model (SAM 2) Unveiled:
Functionality, Applications, and Practical
Implementation across Multiple Domains

Jahanggir Hossain Setu *, Mahmudul Islam *, Syed Tangim Pasha *, Nabarun Halder *,
Ekram Hossain, Asif Mahmud, Ashraful Islam, Md. Zahangir Alam and M. Ashraful Amin

Center for Computational & Data Sciences, Independent University Bangladesh, Dhaka, Bangladesh
* Correspondence: jahanggir15-10533sets@iub.edu.bd (J.H.S.); mahmud@iub.edu.bd (M.I.); syed15-8631sets@iub.edu.bd (S.T.P.);

nabarun.earthsets@iub.edu.bd (N.H.)

Abstract: Segment Anything Model 2 (SAM 2) is a state-of-the-art development by Meta AI Research, designed

to address the limitations of its predecessor, SAM, particularly in the realm of video segmentation. SAM 2

employs a transformer-based architecture enhanced with streaming memory, enabling real-time processing for

both images and videos. This advancement is important given the exponential growth of multimedia content

and the subsequent demand for efficient video analysis. Utilizing the SA-V dataset, SAM 2 excels in handling

the intricate spatio-temporal dynamics inherent in video data, ensuring accurate and efficient segmentation. Key

features of SAM 2 include its ability to provide real-time segmentation with minimal user interaction, maintaining

robust performance even in dynamic and cluttered visual environments. This study provides a comprehensive

overview of SAM 2, detailing its architecture, functionality, and diverse applications. It further explores the

model’s potential in improving practical implementations across various domains, emphasizing its significance in

advancing real-time video analysis.

Keywords: Segment Anything Model 2; SAM 2; video segmentation; real-time segmentation; video processing;

memory attention; streaming memory; interactive segmentation; spatio-temporal segmentation; promptable

segmentation

1. Introduction

Image segmentation is a crucial component in several systems that aim to comprehend visual
data. The technique divides images—or video frames—into multiple elements or sections [1]. Image
segmentation refers to assigning semantic labels to pixels, also known as semantic segmentation. It
can also involve the separation of distinct objects, which is called instance segmentation [2]. Image
categorization is a less difficult task than semantic segmentation. It involves labeling each pixel
in an image with a specific item category, e.g., human, car, tree, or sky. On the other hand, image
classification involves predicting a solitary label that represents the complete image [3]. Instance
segmentation extends the capabilities of semantic segmentation by detecting several items in an image
and precisely delineating and isolating each specific object of interest, e.g., discriminating between
different individuals in the image [4]. Initial efforts have been to combine the two segmentation tasks
to comprehend scenes thoroughly [5–8]. Segmentation plays a vital role in a wide range of applications,
including driverless vehicles, medical image analysis, augmented reality, and video surveillance,
among others [9]. A multitude of image segmentation algorithms have been devised in the literature,
ranging from basic techniques, e.g., histogram-based bundling, thresholding [10], k-means clustering
[11], region-growing [12], and watersheds [13], to more sophisticated methods such as graph cuts [14],
active contours [15], conditional and Markov random fields [16], and sparsity-based approaches [17,18].
Currently acknowledged as the next generation of image segmentation algorithms, Deep Learning
(DL) models exhibit significant performance gains in recent years. These models (e.g., Universal
Network (U-Net) [19], High-Resolution Network (HRNet) [20], Mask Region-based Convolutional
Neural Network (Mask R-CNN) [21], Fully Convolutional Networks (FCN) [22], Segmented Neural
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Network (SegNet) [23]), Segment Anything Model (SAM) [24]) often achieve achieving the highest
levels of accuracy on well-known standards, resulting in a significant shift in the sector.

Video segmentation, which involves identifying the key objects in a video scene based on their
specific properties or semantics, is a fundamental and difficult problem in Computer Vision (CV). It
possesses numerous potential uses, including robotics, autonomous driving, social media, automated
surveillance, augmented reality, movie creation, and video conferencing [25]. The problem has been
tackled using conventional CV and Machine Learning (ML) methods. These techniques include hand-
crafted features, e.g., optical flow and histogram statistics, heuristic prior knowledge, e.g., motion
boundaries [26] and visual attention mechanism [27], low/mid-level visual representations, e.g., super-
voxel [28], trajectory [29], and object proposal [30], as well as classical ML models, e.g., graph models
[31], clustering [32], support vector machines (SVM) [33], random decision forests [34], random walks
[35], Markov random fields [36], and conditional random fields [37]. Recently, DL models, namely
FCN [22], You Only Look Once (YOLO) v5,v7,v8 models [38–40], Mask R-CNN [21], and SAM [24]
have significantly progressed in video segmentation. DL-based video segmentation algorithms exhibit
significantly higher precision and, at times, greater efficiency than traditional approaches, e.g., SAM
[24], Mask R-CNN [21], etc.

The uprising of foundation models has caused a substantial change in different fields, e.g., Natural
Language Processing (NLP), CV, Reinforcement Learning (RL), etc. These models achieve spectacular
outcomes because of their thorough pre-training on large datasets and exceptional ability to apply
their knowledge to a wide range of specific tasks, e.g., Machine Translation, Image Segmentation,
Autonomous Driving, Healthcare, etc. [41]. The Generative Pre-trained Transformer (GPT) [42]
developed by OpenAI has achieved significant advancements in various language tasks within the
field of NLP. It has also facilitated the development of successful commercial applications such as
ChatGPT [43], renowned for its ability to generate coherent language in real-time and engage in
meaningful interactions with users. Nevertheless, in the field of CV, researchers are still pursuing the
construction of foundation models that are both powerful and adaptable. This pursuit is driven by the
need to solve the distinct obstacles and complexities in the visual domain.

The creation of Contrastive Language-Image Pre-training (CLIP) [44], a model that successfully
integrates image and text modalities, has shown the ability to generalize to new visual concepts
without prior exposure. Despite this, the generalization capacity of vision tasks for AI models is still
limited due to the scarcity of complete training data, especially when compared to NLP models. Last
year, Meta AI Research unveiled the Segment Anything Model (SAM) [24], a highly adaptable and
responsive model that can accurately segment any item in images or videos without requiring extra
training. In CV, this approach is referred to as zero-shot transfer. SAM is a unique CV model trained
using the SA-1B dataset [24], which includes more than 11 million images and one billion masks. This
makes SAM the first foundation model of its kind. SAM is designed to provide precise segmentation
outcomes by utilizing several cues, including points, boxes, or a combination. It has consistently
demonstrated excellent generalization capabilities across various images and objects. Despite its long
achievements, SAM had several limitations. The primary purpose of SAM was to do static picture
segmentation, rendering it inefficient for video analysis [45,46]. The processing speed and efficiency of
the system were not optimized for handling massive datasets, making it less appropriate for real-time
applications [24]. In addition, SAM had a deficiency in its capability to retain memory across several
frames, resulting in a restricted capacity to monitor the movement of objects over a period of time
[45,46]. SAM’s training on static picture datasets also limited its effectiveness and capacity to apply to
various video scenarios [47], e.g., object tracking, action recognition, lighting variations, etc.

Under consideration of the limitations of the SAM model, Meta AI Research recently introduced a
new model, Segment Anything Model 2 (SAM 2) [47]. It is designed for prompt object segmentation in
both images and videos. It runs in real-time using a transformer-based architecture with streaming
memory. SAM 2 builds on the success of the original SAM model, which was designed to facilitate
flexible, prompt image segmentation. There is a need for a model that can handle images and
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videos seamlessly with the rapid growth of multimedia content and the increasing demand for video
analysis. SAM 2 meets this need by incorporating advanced features like streaming memory and a
robust training SA-V dataset. SAM 2 is introduced to address the limitations of the original SAM
model, specifically in handling video data. The new model extends segmentation capabilities from
static images to videos and accommodates the complex spatio-temporal dynamics involved. SAM 2
addresses several challenges in visual segmentation. It provides efficient real-time video segmentation
and quick and accurate video frame processing. The model enhances accuracy while requiring fewer
interactions. This makes it more user-friendly and effective in practical applications. Additionally,
SAM 2 improves the ability to segment objects in dynamic and cluttered environments. This ensures
robust performance even in complex visual scenes. The objective of this study is to provide an overview
of SAM 2.

2. Literature Review

There are various segmentation techniques available and each of them has its own unique
approach and applications. These techniques can be broadly categorized into three main types e.g.
traditional segmentation techniques, ML-based segmentation techniques, and DL-Based techniques.
Traditional techniques depend on basic image processing methods. ML-based techniques use statistical
models and algorithms while DL-based techniques use neural networks for advanced segmentation
tasks. In this section, we will describe various segmentation techniques across these three categories.

2.1. Traditional Segmentation Techniques

Global Thresholding: Global thresholding uses one threshold value for the whole image. Pixels
above the threshold are marked as foreground, and those below are marked as background. This
method is quick and easy but may struggle with uneven lighting or complex backgrounds. Global
Thresholding can be used for simple image processing tasks like document scanning [48].

Adaptive Thresholding: Adaptive thresholding sets a threshold for smaller parts of the image
and adjusts for different lighting conditions. This method calculates the threshold for each pixel based
on its neighbours which makes it better for unevenly illuminated images. Though this method is
slower than global thresholding but it is useful in fields like medical imaging and document processing
[49].

Otsu’s Method: Otsu’s method automatically finds the best threshold by minimizing the variation
within the foreground and background pixel intensities. It is particularly useful for bimodal images
where the histogram has two distinct peaks. This method does not work well on images with
overlapping intensity distributions. It is commonly used in automated industrial inspection and
medical imaging [50].

Canny Edge Detector: The Canny edge detector is a multi-step process for detecting edges in
images. It includes Gaussian smoothing which finds intensity gradients, non-maximum suppression,
and edge tracking using hysteresis. This method is sensitive to noise and requires careful parameter
tuning while widely used in edge detection and video processing [51].

Sobel Operator: The Sobel operator applies convolution masks to determine the gradient mag-
nitude of image intensity. It emphasizes edges and transitions that provide a simple way to detect
edges. This method is susceptible to noise and is mainly used in real-time edge detection for video
surveillance [52].

Prewitt Operator: Similar to the Sobel operator, the Prewitt operator calculates image intensity
gradients using convolution masks. It is used for edge detection but is less sensitive to noise compared
to the Sobel operator. This method is used in basic image processing tasks [53].

Region Growing: Region growing begins with seed points and adds neighbouring pixels that
match similarity criteria. It works well for images with distinct regions but can be sensitive to noise
and initial seed selection. This method is mainly applied in medical imaging e.g. tumor detection [54].
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Region Splitting and Merging: This technique splits an image into regions and merges adjacent
ones that meet similarity criteria. It is an iterative process that combines both splitting and merging
steps. This method is computationally expensive and it is widely used in satellite image analysis and
remote sensing [55].

K-means Clustering: K-means clustering divides the image into K groups based on pixel in-
tensity. It iteratively assigns pixels to clusters and updates cluster centroids until convergence. This
method requires pre-specifying the number of clusters and is used in colour quantization and image
compression [56].

Watershed Algorithm: The watershed algorithm views a grayscale image as a topographic map
and identifies the lines that divide regions. This method does over-segmentation in noisy images but
is effective in separating overlapping objects [57].

Normalized Cuts: Normalized cuts segment the image by minimizing a criteria that balances the
edge weights between and within segments. This method is computationally expensive and requires
graph construction but is useful for object recognition [58].

2.2. Machine Learning-Based Segmentation Techniques

K-Nearest Neighbors (KNN): KNN classifies each pixel by the majority vote of its closest neigh-
bours in the feature space. It is simple but can be computationally expensive for large datasets and it is
used in small-scale image segmentation tasks [59].

Support Vector Machines (SVM): SVM finds the best hyperplane to separate pixel classes in
the feature space which maximizes the margin between classes. This method requires a well-defined
feature space and is applied in texture segmentation. [60].

Random Forests: Random forests use multiple decision trees to classify pixels based on features
which provides robust and accurate segmentation. This method is prone to overfitting on noisy
datasets and is used in multi-spectral image segmentation [61].

Logistic Regression: Logistic regression models the probability of a pixel belonging to a class
using a logistic function. It is a linear model but can be extended to multi-class segmentation. This
method is limited to linear decision boundaries and can be applied in binary segmentation tasks like
object detection[62].

Bayesian Networks: Bayesian networks use probabilistic models to predict the likelihood of a
pixel belonging to a segment which incorporates prior knowledge and observed data. This method
requires prior knowledge and is used in probabilistic image segmentation in medical imaging [63].

Conditional Random Fields (CRF): CRFs model the conditional probability of the pixel labels
given the image that considers the dependencies between neighbouring pixels for improved segmen-
tation accuracy. This method is difficult to optimize and effective in refining segmentation maps
[64].

2.3. Deep Learning-Based Techniques

Fully Convolutional Networks (FCNs): FCNs convert traditional CNNs into fully convolutional
networks for pixel-wise prediction that allows for end-to-end training and segmentation. This method
struggles with fine details and is widely used in real-time semantic segmentation tasks [65].

U-Net: U-Net has an encoder-decoder structure with skip connections that is designed for
biomedical image segmentation. It is known for its ability to work with very few training images. This
method requires large amounts of labelled data and is used in biomedical image segmentation [66].

SegNet: SegNet uses an encoder-decoder architecture for pixel-wise classification that transfers
indices from the encoder to the decoder to improve segmentation accuracy and reduce computation.
This method may lose spatial details and is applied in road scene segmentation for autonomous driving
[67].
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Mask R-CNN: Mask R-CNN builds on Faster R-CNN by adding a branch to predict segmentation
masks for each Region of Interest (RoI) that allows for both object detection and segmentation at the
same time. This method requires a large dataset and is Used in instance segmentation [68].

DeepLab: DeepLab is a semantic segmentation technique that uses atrous convolutions to capture
multi-scale context while preserving resolution. It also incorporates fully connected Conditional
Random Fields (CRFs) to improve object edges and small details. The limitation of this method is slow
inference time but it is effective in semantic segmentation for autonomous vehicles [69].

Despite the advancements in existing segmentation models, there are several limitations such
as difficulty handling complex video data, high computational demands, and a lack of flexibility in
real-time applications. These models often can not maintain accuracy across diverse and dynamic
environments which leads to poor performance in practical scenarios. The development of SAM2
addresses these challenges by introducing a more robust architecture capable of effective real-time
segmentation in both images and videos. This makes SAM2 optimal for a wide range of applications
across various domains.

3. Architecture Comparison of SAM and SAM 2

The primary goal of this chapter is to provide a comprehensive comparison of the SAM and SAM
2 architectures. By examining the architectural differences between these two models, this chapter aims
to shed light on the specific advancements and innovations that SAM 2 introduces over its predecessor,
SAM.

3.1. Architecture of SAM

Inspired by techniques from NLP, the SAM is a foundational model for segmentation tasks [70].
Promptable segmentation is its main objective. To indicate the objects to segment in an image, different
input forms are used in this context, including masks, bounding boxes, foreground/background points,
and free-form text [70]. Even in undetermined situations, e.g., overlapping objects, partial occlusion,
small objects, unfamiliar objects etc., SAM attempts to produce trustworthy segmentation masks in
response to any given prompt. Unlike interactive segmentation models that are primarily intended for
human interaction, this model’s versatility enables its application to a broad range of scenarios, e.g.,
medical imaging, autonomous driving, aerial and satellite imagery, robotics navigation, underwater
exploration, traffic management etc. [70].

SAM was developed to address the growing need for a robust segmentation model capable
of handling diverse and complex datasets. Inspired by advances in NLP and pre-trained Vision
Transformer (ViT), SAM was designed to influence the strengths of these technologies to achieve high
performance in segmentation tasks. Key milestones in its development include the integration of
promptable segmentation, the use of ViT as an image encoder, and the creation of the extensive SA-1B
dataset containing over 1.1 billion masks. SAM’s contributions to the field of CV include its innovative
approach to segmentation and its ability to generalize across various prompts and applications.

3.1.1. The Segment Anything Task

Specifically, the next token prediction task [70] serves as a source of inspiration for SAM’s method-
ology. Using the context that the words before it have provided, the task is to predict the word that will
come after it in a sequence. Similarly, SAM uses prompts to guide the segmentation process, predicting
the appropriate segmentation masks based on the input prompts [70]. The concept of promptable
segmentation is central to SAM. A prompt can take various forms, e.g., foreground/background points,
bounding boxes, masks, or free-form text, and indicates what objects to segment in an image [70]. This
flexibility allows SAM to be used in a wide range of applications and makes it adaptable to different
types of input [71]. The primary objective of SAM is to generate valid segmentation masks based on
any given prompt, even in ambiguous scenarios. This capability enables SAM to perform zero-shot
transfer to downstream segmentation tasks, as it can adapt to new prompts and datasets without
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requiring additional training [70]. SAM employs a natural pre-training algorithm that influnces the
concept of promptable segmentation. This approach facilitates zero-shot transfer, allowing SAM to
perform well on downstream segmentation tasks by engineering appropriate prompts. The model’s
ability to generalize from pre-training to new tasks makes it highly versatile and efficient [70,71].

3.1.2. Network Design of SAM

Three key elements are central to SAM’s design, as Figure 1 illustrates.

• The task of promptable segmentation to facilitate zero-shot generalization [70].
• This model architecture consists of a mask decoder, prompt encoder, and image encoder [70].
• The dataset that powers the task and model, specifically the SA-1B dataset containing over 1.1

billion masks [70].

Figure 1. Overview of the architecture of SAM

Image Encoder

The image encoder is responsible for generating one-time image embeddings, which are important
for the segmentation process. These embeddings capture the essential features of the image, providing
the necessary information for the prompt encoder and mask decoder [70]. SAM utilizes a Masked
Auto-Encoder (MAE) pre-trained ViT as its image encoder. The ViT processes high-resolution inputs
efficiently, creating robust embeddings that are used in subsequent stages of the segmentation process.
This pre-trained ViT allows SAM to impact powerful pretraining methods, enhancing its performance
and scalability [71]. The image encoder is designed to process high-resolution inputs efficiently. By
running once per image, it creates embeddings that can be seamlessly integrated into the segmentation
process. This efficiency is important for real-time performance and scalability [70].

Prompt Encoder

In real-time, the prompt encoder is in charge of encoding various prompt types, e.g., text, masks,
boxes, and points, into an embedding vector [70]. Because of this adaptability, SAM can respond to a
greater variety of input prompts. Dense prompts are summed element-wise with the image embedding
and embedded using convolutions, same as masks. By using these methods, SAM is guaranteed to be
able to interpret different kinds of prompts efficiently [70]. An off-the-shelf text encoder from CLIP is
used to encode free-form text prompts. This integration allows SAM to handle textual input effectively,
further expanding its range of applications, e.g., content-based image retrieval, image captioning,
visual question answering, sentiment analysis in images, medical report generation, remote sensing
analysis etc. [70].

Mask Decoder

Predicting segmentation masks using the image and prompt encoder embeddings is the main
function of the mask decoder. In order to produce precise segmentation masks, it maps these embed-
dings effectively [70]. The mask decoder’s design draws inspiration from pre-existing Transformer
decoder blocks. To efficiently update all embeddings, it integrates cross-attention and prompt self-
attention mechanisms. According to the input prompts and image embeddings, this design guarantees
that the mask decoder can predict segmentation masks with accuracy [70]. Real-time performance
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optimization of the mask decoder allows for smooth interactive prompting of the model [71]. Because
of this optimization, SAM can complete segmentation tasks quickly and effectively, which makes it
appropriate for real-time applications.

3.2. Architecture of SAM 2

Since the SAM-2 was introduced, Meta has expanded the parameters of AI [72]. The remarkable
powers of its predecessor, SAM, are further enhanced by this ground-breaking development in CV.
SAM-2 accurately identifies and segments objects, revolutionizing real-time image and video segmen-
tation [72]. By raising the bar for what is possible in CV, this advancement in visual understanding
creates new opportunities for AI applications in a variety of industries, e.g., healthcare, automotive,
agriculture, finance, entertainment, logistics, real estate, manufacturing, aerospace, sports, tourism,
environmental science, energy, security etc.

SAM-2 expands the use of Meta AI’s models beyond static image segmentation to dynamic video
tasks with new features and improved performance. SAM 2 [72] was developed in response to the
following requirements: introduce memory components; unify the architecture for image and video
tasks; support video segmentation; and improve efficiency and occlusion handling. SAM-2 performs
better than benchmarks thanks to its multiple mask predictions, occlusion prediction, user-guided
refinement, zero-shot segmentation for novel objects, and real-time video segmentation. Future studies
are necessary because even with these improvements, SAM-2 still has issues with long-term memory
tracking, object disambiguation, fine detail preservation, and temporal consistency [72].

3.2.1. Network Design of SAM 2

Enhanced Encoder

For effective, real-time video frame processing, SAM 2 makes use of a pre-trained Hiera model
[72]. As shown in Figure 2, the improvements include a memory encoder, memory bank, and memory
attention module that store and utilize object information to facilitate user interaction throughout the
video.

Within a single architecture, SAM 2 can now handle tasks related to image and video segmentation
due to new techniques and improvements. When the image or video is uncertain, SAM 2 provides
multiple potential masks and processes video frames one at a time, enabling real-time segmentation of
long videos.

Figure 2. Overview of the architecture of SAM 2

Advanced Decoder

A new head to detect object presence in frames has been added to the decoder, which has been
modified for the video context [72]. It can now predict multiple masks for ambiguous prompts.
Segmentation masks are produced by the mask decoder, which effectively maps the image and
prompts embeddings. To effectively update all embeddings and ensure accurate segmentation masks
based on input prompts and image embeddings, it integrates prompt self-attention and cross-attention
mechanisms [72].
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Enhanced Feature Extraction

Using a streaming method, SAM 2 processes video frames one after the other, enabling real-time
segmentation of videos of any length [72]. The model’s ability to handle dynamic scenes is improved
by temporal conditioning, which integrates information from previous frames and prompts. The
model’s adaptability is increased by the memory attention mechanism, which uses transformer blocks
with self-attention and cross-attention mechanisms to condition current frame features on previous
frame information and new prompts [72].

3.2.2. Enhancements in SAM 2 Architecture

SAM 2 adds a number of noteworthy enhancements while still building on the framework
established by SAM. SAM 2 can segment objects in videos, but SAM could only segment images.
Therefore, SAM is image-specific, while SAM 2 is task-specific and uses a single model for both images
and videos. A feature missing from SAM, object tracking across video frames is now possible with
SAM 2. SAM 2 can predict object visibility, that SAM [72] does not have. This is made possible by its
occlusion head. In image segmentation tasks, SAM 2 is 6 times faster than SAM [72]. Even in image
segmentation, it performs better than the original SAM on a number of benchmarks [72].
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