

Title: The Enteric Nervous System and Its Emerging Role as A Therapeutic Target

Abbreviated Title: The ENS as an emerging therapeutic target

Authors: Mark A. Fleming II, MD¹, Lubaina Ehsan, MBBS², Sean R. Moore, MD MS², and Daniel E. Levin, MD¹

Author Affiliations:

¹Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States

²Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908 United States

Corresponding Author:

Mark Fleming II, MD

University of Virginia, Department of Surgery
1215 Lee Street, Charlottesville, VA, 22908

Email: maf2de@hscmail.mcc.virginia.edu

Telephone: 678-602-7499

Fax: 434-924-8945

Abstract

The gastrointestinal (GI) tract is innervated by the enteric nervous system (ENS), an extensive neuronal network that traverses along its walls. Due to local reflex circuits, the ENS is capable of functioning with and without input from the central nervous system. The functions of the ENS range from the propulsion of food to nutrient handling, blood flow regulation and immunological defense. Records of it first being studied emerged in the early 19th century when the submucosal and myenteric plexuses were discovered. This was followed by extensive research and further delineation of its development, anatomy, and function during the next two centuries. The morbidity and mortality associated with the underdevelopment, infection or inflammation of the ENS highlights its importance and the need for us to completely understand its normal function. This review will provide a general overview of the ENS to date and connect specific GI diseases including short bowel syndrome with neuronal pathophysiology. Exciting opportunities in which the ENS could be used as a therapeutic target for common GI diseases will also be highlighted, as the further unlocking of such mechanisms could open the door to more therapy-related advances, and ultimately change our treatment approach.

Keywords: enteric nervous system; ENS; glucagon-like peptide 2; gastrointestinal tract; GI

Introduction

The gastrointestinal (GI) tract is innervated by an extensive intrinsic network of ganglion-rich nerve connections known as the enteric nervous system (ENS) [1, 2]. The human ENS contains approximately 400-600 million neurons that can be found in two major networks—the myenteric and submucosal plexuses, which are also known as *Auerbach's* and *Meissner's* plexus, respectively [3-5]. The ENS is the largest and most complex unit of the peripheral nervous system and is located within the walls of the GI tract, extending from the esophagus to anal canal [6, 7]. In fact, it has been classified as the third division of the autonomic nervous system in addition to the sympathetic and parasympathetic divisions by J.N. Langley during the early 20th century [1, 2, 7, 8]. The submucosal plexus lies just beneath the mucosal layer of the gut and is predominantly found in the small and large intestines, whereas the myenteric plexus is found between the circular and longitudinal layers of smooth muscle and can be found along the entire length of the GI tract [1, 6, 9]. Although it receives central nervous system (CNS) input via the vagus nerve, thoracolumbar and lumbosacral spinal cord, it has been shown very early on to act independently of the CNS [3, 10, 11]. The ENS possesses peristaltic motor, secretory and immunological function in addition to more complex behaviors such as non-propulsive mixing or segmentation, slow orthograde propulsion via the migrating myoelectric complex (MMC), retropulsion of noxious substances, and modification of nutrient handling and changing of local blood flow [1, 4]. This system is supported by peripheral glial cells called enteric glia that helps the ENS maintain the integrity of the epithelial barrier and that have been shown to play a role in intestinal inflammation and interaction with the microbiome [4, 12, 13]. In this review, we will provide a brief general overview of the history, embryology, anatomy and function of the ENS to date as it relates to the small intestine in a way that the average reader can understand. We hope to make a novel contribution to the literature by connecting common GI disorders with specific neuronal pathophysiology, and summarize opportunities for future investigation including the potential role of the ENS in the intestinotrophic effect of glucagon-like peptide 2.

History

The study of the ENS dates back to the nineteenth century when German anatomist and neuropathologist, Leopold Auerbach, was credited with the discovery of *Plexus myentericus Auerbachi*, or Auerbach's (myenteric) plexus in the mid-19th century [14, 15]. This was followed

by the discovery of Meissner's (submucosal) plexus by German anatomist and physiologist, Georg Meissner around the same time [15]. In 1899, two English scientists, Bayliss and Starling published a series of articles detailing their experiments on the function of these plexuses and subsequently described the "Law of the Intestine" [3, 16]. This was the first demonstration of the peristaltic reflex and the ENS' ability to function independent of the CNS. This law was reproduced and further characterized by other early pioneers in the field of neurogastroenterology [1, 10, 17]. More specifically, Paul Trendelenburg was the first to reliably reproduce the peristaltic reflex in a completely isolated intestine of the guinea pig with a stimulus that was easily adjustable [10]. The first attempts of morphological classification were made by R.Y. Cajal and A.S. Dogiel who studied their morphology and microarchitecture identified by silver impregnation methods [14, 18]. In the 20th century, multiple attempts at further classification in an effort to support or refute Dogiel's efforts were made [6, 18, 19].

Embryology

The development of the ENS has largely been studied in murine and avian embryo models [20-22]. The majority of progenitor cells have been shown to originate and migrate from the vagal level of the neural crest along defined pathways ahead of the descending vagus nerve fibers, picking up cues from the microenvironment along the way before differentiating within the wall of the GI tract [21-24]. They migrate as chains proximo-distally within the outer gut mesenchyme and remain in contact with one another for directional migration [25, 26]. A large subset of the vagal enteric neural crest-derived cells take a shortcut through the dorsal mesentery from the ileum to a loop of post-cecal bowel, presumably the ascending colon [25]. Additionally, a small group of sacral crest-derived cells migrate to the bowel through the somatic mesenchyme and enters it with the extrinsic sacral nerves giving rise to approximately 20% of post-umbilical neurons [20, 27-29]. However, this has recently become controversial as a recent report has called for the redefining of the sacral innervation [30]. During human gestation, the ENS becomes functional during the last trimester and continues to develop following birth [11]. Given the complexity of its development with the migration of cells from the neural crest, the ENS has many unique organizational features that makes it similar to the CNS [31]. It lacks much of the internal collagen that creates connective tissue between neurons, and the supportive cells—enteric glia, resemble the astroglia of the CNS and less so Schwann cells (Figure 1) [12, 32-35].

In this regard, the symptoms of obstruction seen in Hirschsprung's disease (Table 1) occurs when a segment of bowel is deprived of ganglion cells secondary to defective migration of enteric glia. This highlights the importance of the ENS to the gut and its motor function [36].

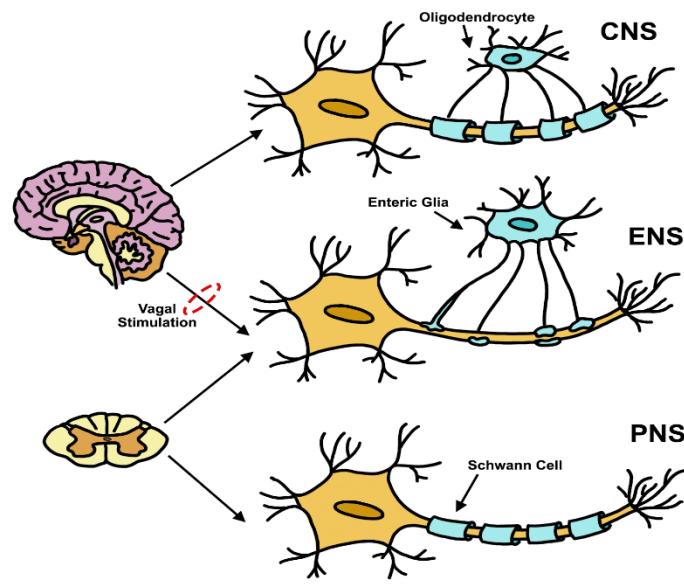


Figure 1: Similarities and differences of the ENS, CNS and PNS and their supportive cells. CNS- central nervous system, ENS- enteric nervous system, PNS- peripheral nervous system.

Anatomy and Function

The ENS consists of up to 20 different types of neurons; containing more than all the sympathetic and parasympathetic ganglia combined and a similar amount of neurons to what is in the spinal cord [11, 32]. The major categories as observed by Furness et al. in the Burnstock laboratory include intrinsic primary afferent neurons (IPANs), motor neurons, and interneurons (Figure 2) [1, 9, 11, 14, 37]. These neurons are further classified based on their morphological (Dogiel types I-VII), electrical (types S and AH), chemical (neurotransmitters) and functional properties [14, 19, 38].

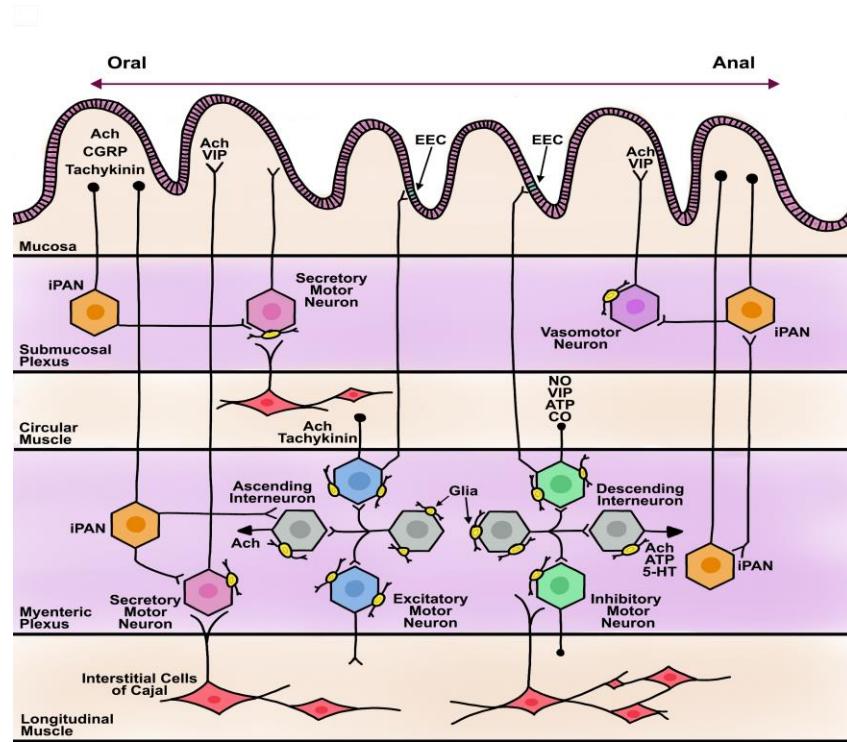


Figure 2: Drawing of the layers of small intestine showing complex ENS network, differentiated cells and neurotransmitters. iPAN- intrinsic primary afferent neuron, EEC- entero-endocrine cell, Ach- acetylcholine, CGRP- calcitonin-gene related peptide, VIP- vasoactive intestinal peptide, ATP- adenosine triphosphate, NO- nitric oxide, CO- carbon monoxide, 5-HT- serotonin.

Intrinsic Primary Afferent Neurons

The intrinsic primary afferent neurons (IPANs) are some of the first sensory neurons to detect the physical state of the intestine. They are located in the submucosal and myenteric plexuses [39]. The primary neurotransmitters of IPANs are acetylcholine, calcitonin-gene related peptide (CGRP) and tachykinin; the secondary neurotransmitter is undetermined [4, 9, 40]. Morphologically, IPANs are classified as Dogiel type II [39]. They are round or oval in shape and create multi-axonal or pseudounipolar synapses with multiple types of neuronal elements to form intrinsic reflex circuits [39, 41, 42]. In the guinea pig model, myenteric sensory neurons of Dogiel type II morphology make up the majority (~97%) of neurons that project to the mucosa [43]. In the more complicated porcine model, most of the mucosal-projecting neurons live in the

submucosal plexus, and a minority (12%) are located in the myenteric plexus. Of the latter group, approximately 23% of the myenteric neurons projecting to the mucosa are Dogiel type II, highlighting a stark difference in the proportion of primary afferent myenteric neurons between both models [19]. Notably, guinea pig and murine models show IPANs to be responsive to mucosal mechanical distortion, to distortion of their processes in the external muscle layers, and to chemicals that interact with the mucosa [39, 44-47]. Within this context, primary afferent nerves such as IPANs have been investigated with respect to their altered excitability and influence on motor activity in inflammatory disorders of the gut (Crohn's, ulcerative colitis or infectious), and innovative therapeutic targets have been identified (Table 1) [48-50].

Table 1: Examples of ENS involvement in various GI diseases and its role as a therapeutic target

Disorder	ENS Involvement*	Clinical Feature(s)	Therapeutic Targets†
Gut Inflammation	Proinflammatory cytokine-mediated alteration of afferent nerves and enteric glia [48, 49]	Specific to inflammatory disorder (Crohn's, ulcerative colitis, infectious diarrhea)	IL-1 β , TNF- α , mast cell products, 5-HT ₃ agonists, substance P and CGRP [48]
Hirschsprung's Disease	Aganglionosis of myenteric and submucosal plexuses due to defective migration of neural crest cells; disruption of ICC network [51, 52]	Chronic constipation, obstruction, failure to thrive, toxic megacolon [36]	Neuronal stem cell therapy; exploitation of proliferative ICC signaling pathways [52-55]
Infectious Secretory Diarrhea	Prostanoid- and 5HT-mediated stimulation of secreto- motor neurons triggered by inflammatory mediators released by mast cells and neutrophils [56-58]	Loose and watery stools, +/- blood, abdominal pain, dehydration, nutrient loss, sepsis [59]	Neural blockade, Loperamide [56-58, 60]
Diabetic Diarrhea	Diabetic autonomic neuropathy resulting in vagal and sympathetic nerve damage [61]	Nocturnal watery and painless stools, +/- incontinence [62]	Unclear, codeine phosphate [62]
Short Bowel Syndrome	Intestinotrophic effects mediated by presence of GLP-2 receptor on submucosal neurons and endocrine cells [63-65]	Intestinal failure resulting in malabsorption and malnutrition [66]	GLP-2 analogs such as Teduglutide [64, 66-68]
Chronic intestinal pseudo-obstruction (CIPO)	Hyperactive but disorganized excitatory motor neurons due to dysfunctional or damaged inhibitory motor neurons and loss of ICC [52, 69-71]	Nausea, vomiting, abdominal pain, distention, constipation, diarrhea, malnutrition [70, 71]	Metoclopramide, erythromycin, octreotide and neostigmine; proliferative ICC pathways [52, 71, 72]
Post-operative Ileus	Increased sympathetic activity resulting from inhibitory neural reflexes from the spinal cord; release of inhibitory neurotransmitters and ICC loss (NO, VIP, substance P) [73-75]	Nausea, vomiting, abdominal distention, obstipation [76]	Octreotide and CGRP as potential therapies; proliferative ICC pathways [52, 72, 74, 75]
Parkinson's Disease (PD) And Creutzfeldt-Jakob Disease	Deposits of alpha-synuclein and misfolded proteins found in enteric neurons/glia [77, 78]	GI dysfunction, constipation, reservoir of prions [78]	Explore ENS role as a biomarker in these diseases

*May not represent a singular pathophysiological process of the disease. †Therapeutic targets may or may not be approved for clinical use.

Motor Neurons

Motor neurons of the ENS innervate the circular and longitudinal muscle layers, intrinsic arterioles and epithelium including entero-endocrine cells [9, 11, 31]. Five broad types have been identified as excitatory, inhibitory, secretomotor, vasomotor and neurons innervating entero-endocrine cells [9]. The excitatory motor neurons predominantly use acetylcholine as their neurotransmitter with a small component of tachykinins (substance P) [9, 40, 79, 80]. They mainly innervate the circular muscle extending near the boundary of the submucosa and also project more orally compared to the inhibitory neurons [46]. The inhibitory motor neurons primarily use nitric oxide as their neurotransmitter, with vasoactive intestinal peptide (VIP), adenosine triphosphate (ATP) and carbon monoxide (CO) as secondary ones [81-84]. They project to muscle that is close (within 2mm) to their cell bodies in the anal direction [46]. The excitatory motor neurons stimulate smooth muscle contraction whereas the inhibitory neurons discharge in a continuous fashion, and so inactivity of inhibitory neurons results in propulsive contraction towards the anus [14, 15]. The effects of both excitatory and inhibitory motor neurons have been shown in part to be mediated by the interstitial cells of Cajal (ICC), and this concept is supported by the presence of NO and excitatory tachykinin transmitter receptors on these cells [46, 85-89]. Abnormal excitatory and inhibitory input due to the effect of the autonomic nervous system (sympathetic inhibition of Ach release), neurotransmitters (VIP, NO, Substance P, CGRP), hormones such as corticotropin-releasing factor (CRF), endogenous opioids, and bowel manipulation has been shown to result in various forms of gastrointestinal dysmotility in animal experiments [69, 75, 90]. In addition, the inhibitory effect of anesthetics and morphine on gastrointestinal motility has been demonstrated in humans [75]. These identified mechanisms support the idea that the cause of intestinal pseudo-obstruction and post-operative ileus is likely multifactorial and that the targeting of these pathways could lead to preventative and/or curative therapies (Table 1).

Secretomotor neuron cell bodies are located in the submucosal and myenteric plexuses, however they are a part of secretomotor circuits that involve IPANs with nerve endings in the mucosa [46]. Their activity is initiated through the interaction of luminal contents such as glucose with the mucosa, or by toxins such as cholera and enterotoxins [14, 91, 92].

Secretomotor neurons main function is to secrete chloride ions into the intestinal lumen dragging water molecules with them. They consist of a cholinergic and a non-cholinergic type [46]. The non-cholinergic type uses VIP or a related peptide as its primary neurotransmitter and mediates most of the local reflex response in contrast to the cholinergic neurons that act on muscarinic receptors on the mucosal epithelium [14, 92, 93].

Similar to the secretomotor neurons, the vasomotor neuron cell bodies are located in the submucosal plexus ganglia and their activity is presumed to also be mediated by IPANs, though not significantly [14, 46, 94]. They are the least studied type of motor neuron, however, there is enough evidence to suggest that they are split into cholinergic and non-cholinergic neurons, with acetylcholine as the likely primary neurotransmitter and VIP as secondary [46, 94-97]. It is easy to understand how the secretomotor and vasomotor neurons work in tandem to regulate epithelial secretion and blood flow, and it is important to note that these reflexes are under extrinsic modulation via the sympathetics [9].

Entero-endocrine cells are highly specialized cells that reside in the intestinal mucosa interacting with various chemical and mechanical stimuli within the gut's lumen [14]. The major transmitters include, but are not limited to, cholecystokinin (CCK), secretin, somatostatin, serotonin (5-HT), corticotrophin-releasing factor, gastrin, leptin, ghrelin and glucagon-like peptide 2 (GLP-2) [11, 14, 98]. They are released from these cells and interact with afferent nerve fibers in the lamina propria which in turn communicate with excitatory and inhibitory motor neurons [14]. The production of GLP-2 by entero-endocrine cells is worth highlighting further for the purpose of this review. There is evidence to suggest that these cells detect and participate in the transport of glucose across the mucosa via the activation of glucose transporters by GLP-2 [99]. However, the receptor for GLP-2 is on submucosal neurons as well, which implies that glucose transport could also be mediated by enteric neurons that are excited by GLP-2 [100, 101].

Interneurons

There are two main types of interneurons—ascending or orally-directed interneurons, and descending or anally-directed interneurons [18]. They are primarily located in the myenteric plexus. Just like the motor neurons, the interneurons' primary neurotransmitter is acetylcholine. Furthermore, ATP has been identified as a secondary neurotransmitter especially in the

descending type [46, 102, 103]. However, there is conflicting evidence on whether or not 5-HT is also a secondary neurotransmitter of the descending interneuron [39, 46, 103]. In the guinea-pig, one type of ascending and three types of descending interneurons have been identified and have been noted to form chains that extend the length of the GI tract [9, 46]. The majority of the input to the ascending interneurons comes from IPANs, and the remaining input is from other ascending interneurons [46]. In contrast, the descending interneurons receive very little input from IPANS but rather from other descending interneurons. It is therefore thought that the descending interneurons are heavily involved in the MMC of the small intestine [39, 46].

Supporting Cells

Enteric Glia

The enteric glia are the supporting, non-neuronal cells of the myenteric and submucosal plexuses with an approximate ratio of glia to neurons of 2-3 to 1 [35, 78]. They are believed to originate from the neural crest and migrate to the bowel either at the time that the vagal and sacral crest derived cells do, or later during gut development at the time of extrinsic nerve migration [12, 13]. A unique characteristic is the abundance of glial fibrillary acidic protein (GFAP) that is present in their cytoplasm compared to Schwann cells [12]. This is a result of the large amount of 10 nm intermediate filaments known as “glial filaments” that they possess [33, 104, 105]. The enteric glia are far more irregular in shape compared to Schwann cells, and they have long processes that radiate out and terminate into small swellings called “end feet” forming an incomplete glial sheath that partially separates the myenteric neurons from the surrounding connective tissue [35]. Several neurotransmitters such as acetylcholine, catecholamines, glutamate, adenosine and serotonin activate enteric glia [13]. They nourish neurons, maintain homeostasis and are now being increasingly acknowledged as active regulators of multiple physiological processes [13, 78]. There is some evidence to suggest that enteric glia may have a neurosecretory function, just like astroglia are believed to play a role in controlling ionic flux in the CNS [35]. Enteric glia interact with various other non-neuronal cell types such as enterocytes, entero-endocrine and immune cells which speaks to their emerging role in regulating various intestinal functions and their involvement in pathological disorders such as diarrhea, Parkinson’s disease and Creutzfeldt-Jakob disease (Table 1) [13, 78].

Interstitial Cells of Cajal

The interstitial cells of Cajal (ICC) have been called the pacemakers of the GI tract due to their ability to produce cyclic spontaneous depolarization and slow waves described as the basic electrical rhythm [106]. They are responsible for initiating slow waves within the GI tract smooth muscle layers due to the lack of unique ion mechanisms within smooth muscle cells necessary to independently produce them [107]. Slow waves are needed to depolarize smooth muscle cells enough to activate calcium influx and trigger excitation-contraction coupling [108]. Furthermore, studies in humans and mice have suggested a mechanosensitive function induced by muscle stretch that then influences slow wave frequency and smooth muscle chronotropy, however the underlying mechanisms are not fully understood [109, 110]. Experiments in avian and murine models, have shown that ICC are derived from mesenchymal cells induced by kit signaling, and develop independently from the enteric neuron [52, 111, 112]. Thus they express c-kit—the marker by which these cells are identified, and a transmembrane receptor that induces receptor tyrosine kinase activity after the binding of its ligand, steel factor (kit ligand or stem cells factor) [106]. As mentioned earlier, they also possess receptors for tachykinins and NO produced by excitatory and inhibitory neurons respectively, as well as for 5-HT [113, 114]. They are characterized by an elongated, fusiform body with few processes, and are located at the junction of motor neurons and smooth muscle cells, forming connections similar to traditional synapses [106-108]. Moreover, ICC are involved in an integrated functional syncytium comprised of smooth muscle cells, ICC and platelet-derived growth factor positive-cells (i.e. SIP syncytium) [108, 115]. From a pathological perspective, loss of ICC have been observed in a variety of human intestinal motility disorders including chronic intestinal pseudo-obstruction (CIPO), Hirschsprung's disease, inflammatory bowel diseases (IBD), mechanical obstruction, and slow transit constipation (Table 1) [52, 108, 116, 117]. Though this remains controversial, ICC have also been suggested as a source of gastrointestinal stromal tumors (GIST) and as one of the reasons for the effectiveness of tyrosine kinase inhibitor, Imatinib [52, 118].

GLP-2 and Enteric Neurons

Glucagon-like peptide 2 (GLP-2) is heavily involved in the digestive process and is co-secreted, along with its sister hormone GLP-1, from entero-endocrine L-cells of the small and large intestines [67, 119]. Studies have demonstrated its ability to inhibit gastric emptying and

gastric acid secretion stimulated by meals, as well as its role in increasing intestinal barrier function as part of the immune response [67, 120, 121]. Glucagon-like peptide 2 also regulates many intestinal adaptive processes including epithelial proliferation, apoptosis and inflammation [67, 122]. To exert its effects, GLP-2 interacts with its receptor on the enteric neurons and intestinal endocrine cells as demonstrated in the mouse, rat, pig and human intestines [65, 67, 123, 124]. The GLP-2 receptor is highly selective for its cognate ligand, GLP-2, and does not allow effective binding of its structurally related peptide, GLP-1 [67, 124]. When the enteric neuron is exposed to GLP-2, it results in expansion of the mucosal epithelium of the small and large intestines and exerts anti-apoptotic actions in the normal and injured intestine by inducing the expression of cell survival genes and proteins [63, 64, 67, 125]. Clinically, this has benefited both adult and pediatric patients who are suffering from short bowel syndrome through the development of the GLP-2 analog, Teduglutide (Table 1) [63, 64, 68, 126, 127]. Therefore, the clinical success of Teduglutide makes sense as GLP-2 was previously linked to the regulation of nutrient absorption in several models, as well as in healthy human subjects [128-131]. Furthermore, GLP-2 has been shown to selectively increase visceral blood flow in pigs, healthy humans, as well as in short bowel syndrome patients [132-134]. In the study of short bowel syndrome patients, the increase in blood flow correlated with the length of their remaining intestine, implying that GLP-2 exerted metabolic effects on the intestine itself as opposed to the vasculature [134]. In fact, this was demonstrated earlier in a representative porcine model (given its similarity to humans) where GLP-2-induced stimulation of visceral blood flow was mediated by intestinal endocrine cells and the enteric neuron; re-enforcing its clinical role in the treatment of SBS patients, and making it a potential therapeutic target for low-flow gut diseases such as non-occlusive mesenteric ischemia [65]. Thus, the unlocking of these GLP-2 mechanisms has opened the door to a broad avenue of research looking at the role of GLP-2, the enteric neuron and the repair, improvement and maintenance of mucosal integrity and nutrient absorption.

Conclusion

The enteric nervous system is the largest and most complex unit of the peripheral nervous system, with ~600 million neurons releasing a multitude of neurotransmitters to facilitate the motor, sensory, absorptive and secretory functions of the gastrointestinal tract. The ENS receives regulatory signals from the central nervous system via vagal, thoracolumbar and lumbosacral

input, however, it is also capable of independent function as evidenced by the intestinal peristaltic reflex. The involvement of the ENS in pathological disorders of the gastrointestinal tract, and the presence of receptors on the enteric neuron for enteric hormones and its transmitters, provides the foundation for future targeted therapies that could help patients suffering from a broad range of GI disorders.

Author Contributions: Conceptualization and Validation, M.F., L.E., S.M. and D.L.; Resources, M.F.; Visualization, L.E. and M.F.; Writing - original draft, M.F.; Writing - review & editing, M.F., L.E., S.M. and D.L.; Supervision, S.M. and D.L.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gershon, M.D., *The enteric nervous system*. Annu Rev Neurosci, 1981. **4**: p. 227-72.
2. Furness, J.B. and M. Costa, *Types of nerves in the enteric nervous system*. Neuroscience, 1980. **5**(1): p. 1-20.
3. Bayliss, W.M. and E.H. Starling, *The movements and innervation of the small intestine*. J Physiol, 1899. **24**(2): p. 99-143.
4. Furness, J.B., *The enteric nervous system and neurogastroenterology*. Nat Rev Gastroenterol Hepatol, 2012. **9**(5): p. 286-94.
5. Schofield, G.C., *Anatomy of muscular and neural tissues in the alimentary canal*, in *Handbook of Physiology*, C.F. Code, Editor. 1968, American Physiological Society: Washington, DC. p. 1579-1627.
6. Gabella, G., *Innervation of the gastrointestinal tract*. Int Rev Cytol, 1979. **59**: p. 129-93.
7. Rao, M. and M.D. Gershon, *Enteric nervous system development: what could possibly go wrong?* Nat Rev Neurosci, 2018. **19**(9): p. 552-565.
8. Langley, J.N., *The Autonomic Nervous System Part I*. 1921, Cambridge: W. Heffer & Sons Ltd.,
9. Furness, J.B., *Types of neurons in the enteric nervous system*. J Auton Nerv Syst, 2000. **81**(1-3): p. 87-96.
10. Trendelenburg, P., *Physiological and pharmacological investigations of small intestinal peristalsis. Translation of the article "Physiologische und pharmakologische Versuche über die Dünndarmperistaltik"*, Arch. Exp. Pathol. Pharmakol. 81, 55-129, 1917. Naunyn Schmiedebergs Arch Pharmacol, 2006. **373**(2): p. 101-33.
11. Furness, J.B., et al., *The enteric nervous system and gastrointestinal innervation: integrated local and central control*. Adv Exp Med Biol, 2014. **817**: p. 39-71.
12. Gershon, M.D. and T.P. Rothman, *Enteric glia*. Glia, 1991. **4**(2): p. 195-204.
13. Grubisic, V. and B.D. Gulbransen, *Enteric glia: the most alimentary of all glia*. J Physiol, 2017. **595**(2): p. 557-570.
14. Hansen, M.B., *The enteric nervous system I: organisation and classification*. Pharmacol Toxicol, 2003. **92**(3): p. 105-13.
15. Gershon, M.D., *The Second Brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine*. 1999, New York, NY: HarperPerennial.
16. Bayliss, W.M. and E.H. Starling, *The movements and innervation of the small intestine*. J Physiol, 1901. **26**(3-4): p. 125-38.
17. Alvarez, W.C., *Bayliss and Starling's Law of the Intestine OR the Myenteric Reflex*. The American Journal of Physiology, 1924. **69**(2): p. 229-248.
18. Brehmer, A., F. Schrodil, and W. Neuhuber, *Morphological classifications of enteric neurons--100 years after Dogiel*. Anat Embryol (Berl), 1999. **200**(2): p. 125-35.
19. Hens, J., et al., *Mucosal projections of enteric neurons in the porcine small intestine*. J Comp Neurol, 2000. **421**(3): p. 429-36.
20. Burns, A.J. and N.M. Douarin, *The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system*. Development, 1998. **125**(21): p. 4335-47.
21. Le Douarin, N.M., *Cell line segregation during peripheral nervous system ontogeny*. Science, 1986. **231**(4745): p. 1515-22.

22. Baetge, G. and M.D. Gershon, *Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons*. Dev Biol, 1989. **132**(1): p. 189-211.
23. Le Douarin, N.M. and M.A. Teillet, *The migration of neural crest cells to the wall of the digestive tract in avian embryo*. J Embryol Exp Morphol, 1973. **30**(1): p. 31-48.
24. Yntema, C.L. and W.S. Hammond, *The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo*. J Comp Neurol, 1954. **101**(2): p. 515-41.
25. Nishiyama, C., et al., *Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system*. Nat Neurosci, 2012. **15**(9): p. 1211-8.
26. Coventry, S., et al., *Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease*. Lab Invest, 1994. **71**(1): p. 82-93.
27. Wang, X., et al., *Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo*. Gastroenterology, 2011. **141**(3): p. 992-1002.e1-6.
28. Anderson, R.B., A.L. Stewart, and H.M. Young, *Phenotypes of neural-crest-derived cells in vagal and sacral pathways*. Cell Tissue Res, 2006. **323**(1): p. 11-25.
29. Kapur, R.P., *Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model*. Dev Biol, 2000. **227**(1): p. 146-55.
30. Espinosa-Medina, I., et al., *The sacral autonomic outflow is sympathetic*. Science, 2016. **354**(6314): p. 893-897.
31. Gershon, M.D., *The enteric nervous system: a second brain*. Hosp Pract (1995), 1999. **34**(7): p. 31-2, 35-8, 41-2 passim.
32. Gershon, M.D., *Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome*. J Clin Gastroenterol, 2005. **39**(5 Suppl 3): p. S184-93.
33. Komuro, T., P. Baluk, and G. Burnstock, *An ultrastructural study of neurons and non-neuronal cells in the myenteric plexus of the rabbit colon*. Neuroscience, 1982. **7**(7): p. 1797-806.
34. Salzer, J.L. and B. Zalc, *Myelination*. Curr Biol, 2016. **26**(20): p. R971-r975.
35. Gabella, G., *Fine structure of the myenteric plexus in the guinea-pig ileum*. J Anat, 1972. **111**(Pt 1): p. 69-97.
36. Bodian, M., F.D. Stephens, and B.C. Ward, *Hirschsprung's disease and idiopathic megacolon*. Lancet, 1949. **1**(6540): p. 6-11.
37. Cook, R.D. and G. Burnstock, *The ultrastructure of Auerbach's plexus in the guinea-pig. I. Neuronal elements*. J Neurocytol, 1976. **5**(2): p. 171-94.
38. Schemann, M., et al., *Cutting-edge technology. III. Imaging and the gastrointestinal tract: mapping the human enteric nervous system*. Am J Physiol Gastrointest Liver Physiol, 2002. **282**(6): p. G919-25.
39. Furness, J.B., et al., *Intrinsic primary afferent neurons and nerve circuits within the intestine*. Prog Neurobiol, 2004. **72**(2): p. 143-64.
40. Grider, J.R., *Neurotransmitters mediating the intestinal peristaltic reflex in the mouse*. J Pharmacol Exp Ther, 2003. **307**(2): p. 460-7.
41. Pompolo, S. and J.B. Furness, *Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons, in myenteric ganglia of guinea-pig small intestine*. J Neurocytol, 1988. **17**(6): p. 771-82.

42. Furness, J.B., *Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons*. Auton Neurosci, 2006. **125**(1-2): p. 81-5.
43. Song, Z.M., S.J. Brookes, and M. Costa, *Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine*. Neurosci Lett, 1991. **129**(2): p. 294-8.
44. Kirchgessner, A.L., H. Tamir, and M.D. Gershon, *Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity*. J Neurosci, 1992. **12**(1): p. 235-48.
45. Kunze, W.A., et al., *Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch*. J Physiol, 1998. **506** (Pt 3): p. 827-42.
46. Kunze, W.A. and J.B. Furness, *The enteric nervous system and regulation of intestinal motility*. Annu Rev Physiol, 1999. **61**: p. 117-42.
47. Mao, Y., B. Wang, and W. Kunze, *Characterization of myenteric sensory neurons in the mouse small intestine*. J Neurophysiol, 2006. **96**(3): p. 998-1010.
48. Collins, S.M., *The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders*. Gastroenterology, 1996. **111**(6): p. 1683-99.
49. Margolis, K.G. and M.D. Gershon, *Enteric Neuronal Regulation of Intestinal Inflammation*. Trends Neurosci, 2016. **39**(9): p. 614-624.
50. Linden, D.R., *Enhanced excitability of guinea pig ileum myenteric AH neurons during and following recovery from chemical colitis*. Neurosci Lett, 2013. **545**: p. 91-5.
51. Langer, J.C., *Hirschsprung disease*. Curr Opin Pediatr, 2013. **25**(3): p. 368-74.
52. Huizinga, J.D., N. Zarate, and G. Farrugia, *Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science*. Gastroenterology, 2009. **137**(5): p. 1548-56.
53. Tsai, Y.H., N. Murakami, and C.E. Gariepy, *Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease*. Neurogastroenterol Motil, 2011. **23**(4): p. 362-9.
54. Martucciello, G., et al., *Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo*. Eur J Pediatr Surg, 2007. **17**(1): p. 34-40.
55. Mosher, J.T., et al., *Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system*. Dev Biol, 2007. **303**(1): p. 1-15.
56. Jones, S.L. and A.T. Blikslager, *Role of the enteric nervous system in the pathophysiology of secretory diarrhea*. J Vet Intern Med, 2002. **16**(3): p. 222-8.
57. Bern, M.J., et al., *Immune system control of rat and rabbit colonic electrolyte transport. Role of prostaglandins and enteric nervous system*. J Clin Invest, 1989. **83**(6): p. 1810-20.
58. Wood, J.D., *Enteric nervous system: sensory physiology, diarrhea and constipation*. Curr Opin Gastroenterol, 2010. **26**(2): p. 102-8.
59. Anand, S., et al., *Pathogen-induced secretory diarrhea and its prevention*. Eur J Clin Microbiol Infect Dis, 2016. **35**(11): p. 1721-1739.
60. Regnard, C., et al., *Loperamide*. J Pain Symptom Manage, 2011. **42**(2): p. 319-23.
61. Duchen, L.W., et al., *Pathology of autonomic neuropathy in diabetes mellitus*. Ann Intern Med, 1980. **92**(2 Pt 2): p. 301-3.
62. Hosking, D.J., T. Bennett, and J.R. Hampton, *Diabetic autonomic neuropathy*. Diabetes, 1978. **27**(10): p. 1043-55.

63. Jeppesen, P.B., et al., *Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome*. Gut, 2011. **60**(7): p. 902-14.
64. Jeppesen, P.B., et al., *Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients*. Gut, 2005. **54**(9): p. 1224-31.
65. Guan, X., et al., *GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow*. Gastroenterology, 2006. **130**(1): p. 150-64.
66. Carroll, R.E., et al., *Management and Complications of Short Bowel Syndrome: an Updated Review*. Curr Gastroenterol Rep, 2016. **18**(7): p. 40.
67. Drucker, D.J. and B. Yusta, *Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2*. Annu Rev Physiol, 2014. **76**: p. 561-83.
68. Kim, E.S. and S.J. Keam, *Teduglutide: A Review in Short Bowel Syndrome*. Drugs, 2017. **77**(3): p. 345-352.
69. Wood, J.D., D.H. Alpers, and P.L. Andrews, *Fundamentals of neurogastroenterology*. Gut, 1999. **45 Suppl 2**: p. Ii6-ii16.
70. Stanghellini, V., M. Camilleri, and J.R. Malagelada, *Chronic idiopathic intestinal pseudo-obstruction: clinical and intestinal manometric findings*. Gut, 1987. **28**(1): p. 5-12.
71. Downes, T.J., et al., *Pathophysiology, Diagnosis, and Management of Chronic Intestinal Pseudo-Obstruction*. J Clin Gastroenterol, 2018. **52**(6): p. 477-489.
72. Cullen, J.J., J.C. Eagon, and K.A. Kelly, *Gastrointestinal peptide hormones during postoperative ileus. Effect of octreotide*. Dig Dis Sci, 1994. **39**(6): p. 1179-84.
73. Barquist, E., et al., *Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats*. Am J Physiol, 1996. **270**(4 Pt 2): p. R888-94.
74. Zittel, T.T., et al., *Calcitonin gene-related peptide and spinal afferents partly mediate postoperative colonic ileus in the rat*. Surgery, 1998. **123**(5): p. 518-27.
75. Luckey, A., E. Livingston, and Y. Tache, *Mechanisms and treatment of postoperative ileus*. Arch Surg, 2003. **138**(2): p. 206-14.
76. Vather, R. and I. Bissett, *Management of prolonged post-operative ileus: evidence-based recommendations*. ANZ J Surg, 2013. **83**(5): p. 319-24.
77. Schepersjans, F., P. Derkinderen, and P. Borghammer, *The Gut and Parkinson's Disease: Hype or Hope?* J Parkinsons Dis, 2018. **8**(s1): p. S31-s39.
78. Sharkey, K.A., *Emerging roles for enteric glia in gastrointestinal disorders*. J Clin Invest, 2015. **125**(3): p. 918-25.
79. Brookes, S.J., P.A. Steele, and M. Costa, *Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine*. Neuroscience, 1991. **42**(3): p. 863-78.
80. Holzer, P. and U. Holzer-Petsche, *Tachykinins in the gut. Part I. Expression, release and motor function*. Pharmacol Ther, 1997. **73**(3): p. 173-217.
81. Fahrenkrug, J., et al., *Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications*. J Physiol, 1978. **284**: p. 291-305.

82. Costa, M., et al., *Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine*. *Neurosci Lett*, 1992. **148**(1-2): p. 121-5.

83. Sanders, K.M. and S.M. Ward, *Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission*. *Am J Physiol*, 1992. **262**(3 Pt 1): p. G379-92.

84. Xue, L., et al., *Carbon monoxide and nitric oxide as co-neurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes*. *Proc Natl Acad Sci U S A*, 2000. **97**(4): p. 1851-5.

85. Young, H.M., et al., *Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity*. *Neuroscience*, 1993. **55**(2): p. 583-96.

86. Shuttleworth, C.W., et al., *Immunohistochemical localization of 3',5'-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons*. *Neuroscience*, 1993. **56**(2): p. 513-22.

87. Vigna, S.R., et al., *Characterization of antibodies to the rat substance P (NK-1) receptor and to a chimeric substance P receptor expressed in mammalian cells*. *J Neurosci*, 1994. **14**(2): p. 834-45.

88. Sternini, C., et al., *Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract*. *J Comp Neurol*, 1995. **358**(4): p. 531-40.

89. Portbury, A.L., et al., *Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract*. *J Comp Neurol*, 1996. **367**(3): p. 342-51.

90. Hansen, M.B., *Small intestinal manometry*. *Physiol Res*, 2002. **51**(6): p. 541-56.

91. Frieling, T., J.D. Wood, and H.J. Cooke, *Submucosal reflexes: distension-evoked ion transport in the guinea pig distal colon*. *Am J Physiol*, 1992. **263**(1 Pt 1): p. G91-6.

92. Cooke, H.J., *Neuroimmune signaling in regulation of intestinal ion transport*. *Am J Physiol*, 1994. **266**(2 Pt 1): p. G167-78.

93. Reddix, R., et al., *Vasoactive intestinal polypeptide: a transmitter in submucous neurons mediating secretion in guinea pig distal colon*. *J Pharmacol Exp Ther*, 1994. **269**(3): p. 1124-9.

94. Vanner, S. and A. Surprenant, *Cholinergic and noncholinergic submucosal neurons dilate arterioles in guinea pig colon*. *Am J Physiol*, 1991. **261**(1 Pt 1): p. G136-44.

95. Vanner, S., M.M. Jiang, and A. Surprenant, *Mucosal stimulation evokes vasodilation in submucosal arterioles by neuronal and nonneuronal mechanisms*. *Am J Physiol*, 1993. **264**(2 Pt 1): p. G202-12.

96. Vanner, S. and A. Surprenant, *Neural reflexes controlling intestinal microcirculation*. *Am J Physiol*, 1996. **271**(2 Pt 1): p. G223-30.

97. Neild, T.O., K.Z. Shen, and A. Surprenant, *Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea-pig submucosal plexus*. *J Physiol*, 1990. **420**: p. 247-65.

98. Sjolund, K., et al., *Endocrine cells in human intestine: an immunocytochemical study*. *Gastroenterology*, 1983. **85**(5): p. 1120-30.

99. Margolskee, R.F., et al., *T1R3 and gustducin in gut sense sugars to regulate expression of Na⁺-glucose cotransporter 1*. *Proc Natl Acad Sci U S A*, 2007. **104**(38): p. 15075-80.

100. Shirazi-Beechey, S.P., et al., *Glucose sensing and signalling; regulation of intestinal glucose transport*. *Proc Nutr Soc*, 2011. **70**(2): p. 185-93.

101. Sigalet, D.L., et al., *The effects of glucagon-like peptide 2 on enteric neurons in intestinal inflammation*. *Neurogastroenterol Motil*, 2010. **22**(12): p. 1318-e350.
102. Surprenant, A., *Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus*. *J Physiol*, 1984. **351**: p. 343-61.
103. Monro, R.L., P.P. Bertrand, and J.C. Bornstein, *ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum*. *J Physiol*, 2004. **556**(Pt 2): p. 571-84.
104. Jessen, K.R., R. Thorpe, and R. Mirsky, *Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes*. *J Neurocytol*, 1984. **13**(2): p. 187-200.
105. Cook, R.D. and G. Burnstock, *The ultrastructure of Auerbach's plexus in the guinea-pig. II. Non-neuronal elements*. *J Neurocytol*, 1976. **5**(2): p. 195-206.
106. Pasternak, A., et al., *Interstitial cells of Cajal - systematic review*. *Folia Morphol (Warsz)*, 2016. **75**(3): p. 281-286.
107. Horowitz, B., S.M. Ward, and K.M. Sanders, *Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles*. *Annu Rev Physiol*, 1999. **61**: p. 19-43.
108. Sanders, K.M., S.M. Ward, and S.D. Koh, *Interstitial cells: regulators of smooth muscle function*. *Physiol Rev*, 2014. **94**(3): p. 859-907.
109. Stroge, P.R., et al., *Sodium current in human intestinal interstitial cells of Cajal*. *Am J Physiol Gastrointest Liver Physiol*, 2003. **285**(6): p. G1111-21.
110. Won, K.J., K.M. Sanders, and S.M. Ward, *Interstitial cells of Cajal mediate mechanosensitive responses in the stomach*. *Proc Natl Acad Sci U S A*, 2005. **102**(41): p. 14913-8.
111. Lecoin, L., G. Gabella, and N. Le Douarin, *Origin of the c-kit-positive interstitial cells in the avian bowel*. *Development*, 1996. **122**(3): p. 725-33.
112. Young, H.M., et al., *Origin of interstitial cells of Cajal in the mouse intestine*. *Dev Biol*, 1996. **180**(1): p. 97-107.
113. Wouters, M.M., G. Farrugia, and M. Schemann, *5-HT receptors on interstitial cells of Cajal, smooth muscle and enteric nerves*. *Neurogastroenterol Motil*, 2007. **19 Suppl 2**: p. 5-12.
114. Vannucchi, M.G., *Receptors in interstitial cells of Cajal: identification and possible physiological roles*. *Microsc Res Tech*, 1999. **47**(5): p. 325-35.
115. Song, N.N. and W.X. Xu, *[Physiological and pathophysiological meanings of gastrointestinal smooth muscle motor unit SIP syncytium]*. *Sheng Li Xue Bao*, 2016. **68**(5): p. 621-627.
116. Antonucci, A., et al., *Chronic intestinal pseudo-obstruction*. *World J Gastroenterol*, 2008. **14**(19): p. 2953-61.
117. Burns, A.J., *Disorders of interstitial cells of Cajal*. *J Pediatr Gastroenterol Nutr*, 2007. **45 Suppl 2**: p. S103-6.
118. Kwon, J.G., et al., *Changes in the structure and function of ICC networks in ICC hyperplasia and gastrointestinal stromal tumors*. *Gastroenterology*, 2009. **136**(2): p. 630-9.
119. Baggio, L.L. and D.J. Drucker, *Biology of incretins: GLP-1 and GIP*. *Gastroenterology*, 2007. **132**(6): p. 2131-57.

120. Wøjdemann, M., et al., *Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs*. Scand J Gastroenterol, 1998. **33**(8): p. 828-32.
121. Wøjdemann, M., et al., *Inhibition of sham feeding-stimulated human gastric acid secretion by glucagon-like peptide-2*. J Clin Endocrinol Metab, 1999. **84**(7): p. 2513-7.
122. Pedersen, J., et al., *The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine*. Peptides, 2015. **67**: p. 20-8.
123. Bjerknes, M. and H. Cheng, *Modulation of specific intestinal epithelial progenitors by enteric neurons*. Proc Natl Acad Sci U S A, 2001. **98**(22): p. 12497-502.
124. Yusta, B., et al., *Enterendoctrine localization of GLP-2 receptor expression in humans and rodents*. Gastroenterology, 2000. **119**(3): p. 744-55.
125. Drucker, D.J., et al., *Induction of intestinal epithelial proliferation by glucagon-like peptide 2*. Proc Natl Acad Sci U S A, 1996. **93**(15): p. 7911-6.
126. Carter, B.A., et al., *Outcomes from a 12-Week, Open-Label, Multicenter Clinical Trial of Teduglutide in Pediatric Short Bowel Syndrome*. J Pediatr, 2017. **181**: p. 102-111.e5.
127. Jeppesen, P.B., et al., *Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure*. Gastroenterology, 2012. **143**(6): p. 1473-1481.e3.
128. Chance, W.T., et al., *Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2*. Am J Physiol, 1997. **273**(2 Pt 1): p. G559-63.
129. Scott, R.B., et al., *GLP-2 augments the adaptive response to massive intestinal resection in rat*. Am J Physiol, 1998. **275**(5): p. G911-21.
130. Hsieh, J., et al., *Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36*. Gastroenterology, 2009. **137**(3): p. 997-1005, 1005.e1-4.
131. Meier, J.J., et al., *Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans*. Gastroenterology, 2006. **130**(1): p. 44-54.
132. Guan, X., et al., *GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1*. Gastroenterology, 2003. **125**(1): p. 136-47.
133. Bremholm, L., et al., *Glucagon-like peptide-2 increases mesenteric blood flow in humans*. Scand J Gastroenterol, 2009. **44**(3): p. 314-9.
134. Bremholm, L., et al., *The effect of Glucagon-Like Peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients*. Regul Pept, 2011. **168**(1-3): p. 32-8.