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Technologies
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Featured Application: Advancing environmental sustainability and the circular economy through
the production of clean and green hydrogen as a promising energy carrier of the future.

Abstract: This research undertakes a comparative analysis of current and emerging hydrogen (Hy)
production technologies, evaluating them based on quantitative and qualitative decision criteria.
The quantitative criteria include cost of Hz production ($/kg H,), energy consumption (MJ/kg H>),
global warming potential (kg CO,-eq/kg H), and technology energy efficiency (%). The qualitative
criteria encompass technology readiness level (TRL) and availability of supply chain materials
(classified as low, medium, or high). To achieve these objectives, an extensive literature review has
been conducted, systematically assessing the selected H: production technologies against the
aforementioned criteria. The insights synthesized from the literature provide a foundation for an
informed, science-based evaluation of the potentials and techno-economic challenges that these
technologies face in achieving the 1-1-1 goal set forth by the U.S. Department of Energy (DOE) in
2021. This ambitious target aims for a H2 production cost of $1/kg H2 within one decade (by the end
of 2031), including costs associated with production, delivery, and dispensing at H: fueling stations
(HRS). Also, DOE established an interim target of $2/kg H, by 2026. This research concludes that
among the examined Hz production technologies, water electrolysis and biomass waste valorization
emerges as the most promising near-term solutions to meet DOE 1-1-1 goal.

Keywords: hydrogen production; clean hydrogen; sustainable hydrogen; waste valorization; bio-
based waste upcycling; DOE 1-1-1 goal; clean hydrogen; circular economy

1. Introduction

Hydrogen is a major contributor to the global effort to achieve the net-positive environmental
goal that goes beyond the net-zero goal that focuses only on offsetting CO2 emissions. The net-
positive goal reenforces the overarching intent of circular economy bio-based waste valorization for
H2 production is one of the key technology pathways for sustainable H2 production [1]. However,
energy transition from the current fossil-based technologies to sustainable H2 production is a
physical transformation in its early stages and there are many technical, economic, and supply-chain
logistics challenges that need to be sorted before at-scale adoption of H2-based technologies can be
realized [2—4]. Accordingly, the present research aims to improve the current state of knowledge
about these challenges by conducting a comparative science-based viability assessment among
current and emerging hydrogen-production technologies. The assessment evaluated the selected
technologies against specific quantitative and qualitative decision criteria. Based on the insights
generated from the comparative assessment, conclusions are made about the most promising H2
production technologies that could meet U.S. DOE 1-1-1 clean energy goal as described in its 2021
‘Hydrogen Shot” Summit. In addition, techno-economic challenges of the selected H2 production
pathways are highlighted.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The remainder of this manuscript is organized as follows: Section 2 outlines the research
methodology employed, Section 3 presents the results, Section 4 discusses the findings, and Section
5 summarizes the conclusions of the comparative assessment. Additionally, Appendix A includes the
supplementary data sources for the values presented in Tables 1 through 9 in Section 3.

2. Research Method

To achieve the objectives of this research, extensive literature reviews (using Google Scholar,
Web of Science, and Scopus) were conducted to assemble the relevant quantitative and qualitative
data. Subsection 2.1 highlights the key findings of the literature reviews. The collated information
was mapped to specific decision criteria that support the comparative assessment. In addition, the
steam-methane reforming (SMR) technology, with and without carbon capture and storage (CCS),
was used as the benchmark H2 production technology. The employed decision criteria are detailed
in subsection 2.2, while Subsection 2.3 provides an overview of the evaluated H, production
technologies.

2.1. Literature Reviews and Key Findings

As an introduction to this subsection, it is worth noting that by 2050, the global energy demand
is anticipated to be around 30 terawatts (TW), which is double that of 2011 [5]. Hydrogen is
specifically being considered as an alternative fuel in the transportation sector to power fuel cell
electric vehicles [6] and for electrifying the commercial aviation (viz., the hybrid-electric and all-
electric aircraft). The U.S. DOE projected that clean H2 could be produced for $2/kg H2 by 2025
(H2New, 2021)! and in its 2021 ‘Hydrogen Shot” Summit, DOE drafted its long-term goal to reduce
the cost of clean H2 production to $1 per kg H2 in 1 decade (Hydrogen Shot, 2021).?

Herein, a literature review of 102 published sources was conducted on various H2-producing
technologies, specifically the most prominent conventional technologies and the most promising
greener technologies. With a couple exceptions, only papers and reports published in the last decade
(2013-2024) were consulted, with an effort to rely on publications from the past 5 years whenever
possible, in order to ensure the comparative analysis contained the most updated information. From
these sources, both quantitative and qualitative data was extracted to support the comparative
assessment of H2 production technologies.

The conventional methods of H2 production provide either ‘gray’ or ‘blue’ hydrogen. Steam-
methane reforming (SMR) is widely acknowledged as the most well-established method [3], and it is
often used as a point of reference to analyze and compare the performance and feasibility of the none
conventional methods. Because SMR is a very mature technology, it is thoroughly studied and
producing low-cost hydrogen, but it also has low potential for technical improvements that will
improve efficiency or performance [7,8]. Several papers studying the conventional methods of
producing blue H2 discuss how CCS reduces emissions significantly, but also increases production
cost and decreases energy efficiency [8-12].

Waste valorization was evaluated as a more sustainable H2 production technology. Utilizing
waste streams eliminates both the polluting effects of waste build-up and the need for energy-
intensive and high-emitting waste incineration. Biomass is a broad term that can be prepared as a
feedstock from organic sources, such as grass, wood, agricultural products, animal waste, food
scraps, municipal solid waste, and algae, and it can be valorized by methods, such as gasification,
pyrolysis, supercritical water gasification, and dark fermentation [11,13]. One study noted that food
waste is specifically suitable for H2 production for a number of reasons, such as its carbohydrate
richness, wide availability, and low cost [14]. Another study explained that converting food waste to

1 H2NEW: Hydrogen (H2) from Next-generation Electrolyzers of Water LTE Task 3c: System and

Techno-economic Analysis (nrel.gov)

2 Hydrogen Shot. (2021). Office of Energy Efficiency and Renewable Energy.
https://www.energy.gov/eere/fuelcells/hydrogen-shot
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H2 via dark fermentation is energetically advantageous because it can be achieved under ambient
temperature and pressure with low chemical energy requirements, but it must be performed onsite
to be feasible due to the high-water content and biodegradability of food waste [15]. Even more so
than food waste fermentation, gasification of biomass is a highly studied process due to its convenient
utilization of diverse waste streams and production of clean biohydrogen. Biomass gasification is
currently faced with low conversion and thermal efficiencies, but they can be improved with the
optimization of the process temperature, the catalyst used, and the biomass content [16].

Glycerol is another promising waste stream to utilize for H2 generation, as it is produced
abundantly as a byproduct of the transesterification of biomass to biodiesel. By strategically
incorporating H2 production plants into existing biodiesel production plants, glycerol could even
become a free material stream. A simulation-based life cycle assessment (LCA) compared the
environmental and health impacts of several glycerol-based hydrogen production technologies—ATR,
APR, and SCWR-versus those of the conventional method of SMR [17]. A techno-economic analysis
(TEA) compared the cost of hydrogen produced from APR and steam reforming of glycerol, revealing
that APR is slightly less expensive but still not competitive with SMR [18]. Another report on
pathways to produce H2 from biomass provided H2 production costs and TRLs of SCWR, APR, and
SR of glycerol [16].

Water electrolysis is widely considered a promising method of sustainably producing H2 due to
fairly negligent carbon emissions [19-21]. A number of sources compared powering electrolyzers
with the local electricity grid mix versus renewables. Because the grid mix varies so widely, a wide
range of H2 cost values were reported, but in general, it is agreed that costs could be reduced by
strategically utilizing renewable power sources rather than relying on the grid mix [22-26]. Research
has recently explored utilizing wind power and solar PV power to produce green H2 by electrolysis
[20]. While discussed to a lesser extent, other renewables like hydropower and nuclear power are
also contenders for more sustainable electrolysis power sources [27-29]. While hydropower is a well-
established renewable electricity source, one report noted that it will be overtaken by solar PV power
due to its lower levelized cost of electricity (LCOE) and higher energy capacity [30]. Nuclear energy
is also a firmly established renewable energy source, but still setbacks such as social apprehension
keep it from becoming the focus of green H2 research [28]. Different renewable energy sources make
more sense for different areas, depending on what natural resources are most abundant and
consistent in a given region [25]. Therefore, cost and energy efficiency analyses [31] are further
complicated with the additional variable of energy source.

The TRL of water electrolysis varies depending on the technology and the energy source utilized.
However, as explored in a variety of reports, electrolysis is a fairly well-developed technology,
particularly AKE, PEM, and SOE more so than AEM [9,16,22,32,33,34.35]. In addition to its nearly
negligible global warming impact, its high TRL makes electrolysis an attractive green H2 production
technology. However, high H2 production costs and high energy requirements are setbacks that are
keeping electrolysis from replacing the conventional methods. One paper noted that despite its low
GWP and high technological readiness, solar PV-powered electrolysis will only be able to take the
forefront as a potential option for H2 production when its energy efficiency is improved, which will
also subsequently lower its high production costs [5,36].

Electrolyzers are oftentimes divided into two classes: low-temperature electrolyzers (LTEs) and
high-temperature electrolyzers (HTEs). The U.S. DOE has invested R&D funding into these two types
of electrolysis in order to promote the most durable, effective, and efficient system of green H2
production. The characteristics of LTE, such as PEM, is that it is commercially available, but it isn’t
durable, efficient, or affordable enough, while the characteristics of HTE, such as SOE, is that it is less
mature, but has potential for higher efficiency and a longer lifespan [37]. According to one paper,
SOEs are advantageous because of their ability to co-electrolyze steam and carbon dioxide in a single
step and, thus, eliminating the need for an expensive and maintenance-intensive water-gas shift
reactors [38]. SOEs operate at high temperatures, meaning they require greater energy input, but also
that they can utilize low-cost active metals rather than expensive noble metals [38]. The Global
Hydrogen Review claims that AEME electrolysis combines the benefits of PEME and AKE, since it does
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not require expensive platinum utilized by PEME nor the corrosive electrolyte used in AKE, but it is
a less mature technology [22].

Emerging technologies for clean H2 production are also evaluated in this research. Because of
the novelty of these technologies, they will not have very high TRLs, with most still being in the
research and early development stages [16,22,39]. Several studies of thermochemical decomposition
via both solar and nuclear power demonstrate that these technologies are far from being
commercially mature [9,34]. However, even though the technologies are immature, their TEA reveal
that several of the emerging technologies, like bio-photolysis, biomethane pyrolysis. and ESMR, are
potentially able to produce H2 for competitive prices [11,28,40,41]. ESMR is especially attractive when
considered as an easily implemented technology to help aid in the transition from gray to cleaner H2.
It utilizes the same natural gas feedstock, but incorporates renewable electricity to lower emissions,
resulting in a system that is more sustainable than the conventional methods and more economically
and technically feasible than the other emerging technologies [41]. Among the emerging H2
production technologies is the so-called white color, from natural origin, however due to its rare
occurrence in the Earth’s rock, there is no commercial interest at this point in time [42]. This geologic
H2 (aka., white, gold, or natural H2) is found beneath Earth’s surface and is postulated to be
produced by high-temperature reactions between water and iron-rich minerals.?

Most of the other emerging technologies still require more technological development to
compete with the standard hydrogen prices [24,43]. Strategic plant optimization can help lower
production costs. For example, H2 costs from ammonia thermal decomposition via fixed bed reactors
and PSA-membranes are expected to decrease if plants are built to be larger and centralized, which
would lead to economies of scale and less expensive ammonia costs [44,45]. One article discussed
how the fluctuations in H2 production costs via thermochemical processes are mainly due to variable
electricity prices, but the utilization of reliable green electricity from renewable sources like solar PV
and wind turbines can greatly reduce production costs [11]. The lack of comprehensive studies of
promising emerging technology, like biomethane pyrolysis and SMC, has been called out and
discussed. These turquoise-H2 producing technologies [46] are preferable to SMR due to lower
emissions and energy requirements, but still the information on them is sparse and the data is often
conflicting and inconsistent [47]. There tends to be a disproportionate focus on green-H2 production
technologies, particularly water electrolysis, despite other promising candidates. Further analysis of
these emerging technologies will open up a slew of diverse avenues for clean hydrogen production.

Another reason to invest more resources in a wider range of promising clean H2 production
technologies is their potential to be combined and integrated into hybrid systems. This integration
process can strategically lower H2 production cost, decrease energy requirements and carbon
emissions, increase efficiency, and utilize waste to make useful products. A well-established example
of technology integration is the addition of CCS to gray H2 production technology, a method that
succeeds in reducing emissions, but also tends to increase production cost and energy consumption,
while reducing process efficiency [7,8,10,17,47]. More technically advanced and economically and
energetically efficient combinations can be devised. One paper performed an energy analysis of an
integrated system with SMC and SOE for the production of turquoise H2 and clean methanol [38].
Another paper examined hybrid wind and solar PV energy systems, finding that the combination of
power sources meets the load demand and minimizes emissions and system costs [48]. A study
reported that the energy output of FWF can be increased by 7-9 times with a 2-stage fermentation
process that results in H2 produced via dark fermentation and methane produced via anaerobic
digestion [15]. This methane could then be utilized as renewable natural gas to be injected into the
existing natural grid infrastructure.

2.2. Quantitative and Qualitative Decision Criteria

The following set of decision criteria were used as the framework by which the selected H2
production technologies were compared as discussed in the Results Section 3.

3 Hidden hydrogen: Earth may hold vast stores of a renewable, carbon-free fuel | Science | AAAS
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2.2.1. Quantitative Decision Criteria

= Cost of hydrogen production ($/kg H2)

This criterion represents the cost to produce one kilogram of H2 from the given technology. It is
an indicator of the economic viability of each technology. To account for the time-value of money,
H2 production costs that are collected from the published literature are adjusted to 2024 dollar using
the Chemical Engineering Plant Cost Index?, CEPCIL, (Maxwell, 2020). To adjust H2 product cost from
a previous year to 2024, Eq. (1) is applied:

CEPClyq, 4)

H, Costagzs = Hy Costyop (m
Yop

1
Where the subscript YOP signifies the year of publication of H2 production cost.
= Energy consumption (M]/kg H2)
This quantitative criterion represents the amount of energy (MJ]) required to produce one
kilogram of H2 from the given technology.
» Global warming impact (Kg CO2-eq/kg H2)
This quantitative criterion represents the global warming potential (GWP) of the H2 production
technology and shows how many kilograms of CO2 are emitted per kilogram of H2 produced.
= Technology energy efficiency
The energy efficiency of a technology is defined as the ratio of the lower heating value (LHV) of
produced H2 to total energy supplied to the H2 production process. This efficiency is expressed as a
percentage value. Some publications reported this process energy efficiency in terms of high heating
value (HHV) and in order to keep comparisons between the production technologies consistent, these
values are converted herein to be in terms of LHV by multiplying the reported value by the ratio of
H2 LHV to HHV as shown by Eq. (2).
(LHV)y, 120 M]/kg

(HHV)y, 142 M]/kg

= 0.8451
- (2)

In addition to creating consistency in this comparative assessment, evaluating the technology
energy efficiency in terms of LHV rather than HHYV is more conservative as it gives the lower bound
of the efficiency and, therefore, does not overestimate this efficiency value.

2.2.2. Qualitative Decision Criteria

= Technology readiness level (TRL)

Technology readiness levels is a qualitative criterion that reflects the maturity of a given
technology on a nine-point scale (1-9). A higher number indicates greater maturity and readiness for
commercialization. The following color-coded chart depicts the TRL scale as technologies advance
from research to development (R&D) to deployment (Figure 1).

3 4 5 6 7 8
Research —— Development — | —— Deployment —
> > >

Figure 1. Technology readiness levels (TRL).

*  Supply chain material availability

4 Chemical Engineering, WWW.CHEMENGONLINE.COM, MAY 2024
5 Technology Readiness Levels - NASA
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Supply chain material availability is reflective of the availability and ease of accessibility of raw
materials, energy, and equipment for the given H2 production technology. This criterion assesses the
technologies on a three-point scale: low, medium, and high. Due to the qualitative and broad nature
of this criterion, a simple three-point scale prevents the need for tedious analysis and difficult
rankings. However, in order to avoid oversimplification, a comment section is provided to provide
clarity on ratings if deemed necessary.

2.3. Hydrogen Production Technologies Being Evaluated

The production technologies being evaluated are as follows:
»  Conventional via steam-methane reforming (SMR)

The conventional method for H2 production is steam-methane reforming (SMR), which accounts
for around 50% of H2 production [5]. This method converts natural gas (primarily methane) and
steam to H2 and carbon CO2, a byproduct which contributes to global warming. The second
conventional method of producing gray hydrogen is coal gasification, but it is not included in this
research because it is less common than SMR. Autothermal reforming (ATR) of natural gas in yet
another conventional technology for H2 production. ATR is similar to SMR in that it produces H2
and CO2 but it has the advantage of producing more exothermic from the partial oxidation that occur
in the [8]. The produced H2 from SMR, coal gasification, ATR is denoted as ‘gray” H2. Integration of
carbon capture and storage (CCS) with any of these conventional technologies produces the so-called
‘blue’ H2. While integration with CCS results in CO2 emission reduction, both production cost and
energy consumption are shown to increase compared to the case without CCS.

*  Hydrogen production by waste valorization

The utilization of various waste streams for hydrogen production is examined in food waste
fermentation (FWF), waste plastics gasification (wPG), and biomass gasification with and without
CCS. The valorization of biodegradable food waste by dark fermentation, can help alleviate the waste
management crisis and reduce the production of carbon emissions and toxic pollutants in
overcrowded landfills, while also producing more eco-friendly H2 [49-51]. Data-driven
interpretation, comparison and optimization of H2 production from supercritical water gasification
of biomass. Gasification is the high temperature partial oxidation of waste feedstocks, like plastics or
biomass, to produces syngas, which is a mixture of CO and H2. Syngas can be further converted to
make other useful chemicals using the Fischer-Tropsch (FT) process or combusted to generate steam
for electricity generation [52].

»  Waste byproduct reforming (glycerol from biodiesel production)

A promising waste stream to utilize for H2 production is the glycerol byproduct that results
from biodiesel production via the transesterification of agricultural crops [17]. The technologies
studied that convert glycerol into hydrogen are supercritical water reforming (SCWR), aqueous-
phase reforming (APR), autothermal reforming, and steam reforming (SR).

»  Greener hydrogen production via water electrolysis

The water electrolysis technologies considered herein are alkaline electrolyzer (AKE), proton
exchange membrane electrolyzer (PEME), anion exchange membrane electrolyzer (AEME), and solid
oxide electrolyzer (SOE) via solar photovoltaic (PV) power, wind power, hydropower, grid mix
electricity, and nuclear power. Hydrogen produced via water electrolysis with renewable energy is
called green H2 and is characterized by its low global warming impact. Electrolysis powered by grid
mix electricity does not produce green H2, but it benefits from utilizing the current electricity grid.
The US grid electricity mix is roughly as follows: 38% natural gas, 17% coal, 20% nuclear, 11% wind,
7% hydropower, 5% solar, and 2% other [53].

»  Emerging hydrogen production technologies

Various emerging clean H2 production technologies were evaluated in this comparative
analysis. The high-temperature processes biomethane pyrolysis and solar methane cracking (SMC)
produce the so-denoted ‘turquoise’ H2 and carbon-black. SMC utilizes concentrated solar energy to
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power the high-temperature process, resulting in even cleaner hydrogen [38]. Biophotolysis,
electrified steam-methane reforming (ESMR), and ammonia (NH3) thermal decomposition via fixed-
bed reactor and via PSA-membrane technology were also evaluated in this research. Biophotolysis
utilizes sunlight energy to convert water to hydrogen through biological systems [40]. ESMR
combines traditional SMR with renewable electricity. Both solar thermal powered thermochemical
decomposition of water and nuclear-powered thermochemical decomposition of water were
researched. There are many variations in nuclear-powered thermochemical decomposition, but only
four of the most promising cycles were included in this study. These are the three-step sulfur-iodine
(5-1) cycle, the two-step hybrid sulfur (HyS) cycle, the four-step copper-chlorine (Cu-Cl) cycle, and
the three-step magnesium-chlorine (Mg-Cl) cycle.

3. Results

The sources introduced in the literature review subsection 2.1 were examined to perform a
comparative analysis among the H2 production technologies for the decision criteria introduced in
subsection 2.2. The quantitative and qualitative results of the comparative analysis are organized in
Tables 1-9. As shown below, Tables 1-3 give the cost of H2, energy consumption, and global warming
impact of the technologies. Tables 4-6 provide the energy efficiencies in terms of (LHV)u: of the
technologies. Tables 7-9 show the TRL and supply chain material availability of the technologies.

It should be noted that for most decision criteria, the results are recorded as a range of values.
This is because multiple sources were cross referenced in order to provide the most accurate data.
For each technology, there are a variety of conditions, such as plant size and local electricity cost, that
can vary widely. Therefore, a technology’s performance for a given criteria cannot be given in a single
value without being very specific about plant specifications (viz., technology type, production
capacity, etc.). Providing a range of values from multiple sources is less limiting to the overarching
objective of the comparative assessment. It is important to note that for waste plastic gasification [54]
with CCS and biomass gasification with CCS (Table 1), as well as biomethane pyrolysis (Table 3),
certain papers reported their global warming impact as a negative value. These scenarios imply that
net carbon emissions are negative by utilizing waste streams that would have emitted more carbon
otherwise and also by capturing the carbon emissions associated with gasification.

Table 1. Cost of H2 ($/kg Hz), energy consumption (MJ/kg Hz), and GWP (kg CO2/kg H>) of
conventional production technologies and waste valorization technologies.

Hydrogen Production Technology

Cost of Hydrogen ($/kg H;)
(all in 2023 U.S. §)

Energy Consumption
(MJ/kg Hy)

Global Warming Impact
(kg CO,/kg Hy)

Conventional H2 production with natural gas

Gray H2 Production (SMR without carbon capture) 1.19-2 4005161 18320 0.80-11 001501
Blue H2 Production (SMR with carbon capture) 1.64-2 20051140 224.75-265 91061 3.32-8.200513
Blue H2 Production (ATR with carbon capture) 1.44-1 7H0LELEL 162.02[] 2-461632]
H2 production by waste valorization (cleaner & sustainable)
Waste plastics gasification (WP G) 2.23-3 41518 20.8-2530 12.8-15.601 -8.46 - -5.04
(ccs)e

Food waste fermentation (FWF) 2.57-2_881R0 120-18084 6.6% - 95031
Biomass gasification 1.72-4. 142 115-18005152] 1.9-1803
Biomass gasification w/CCS 3,761 180-24082] -15 - -1367
Waste byproduct reforming (glycerol from biodiesel production):

¥ Supercritical water reforming (SCWR) of glvcerol 1.69-4 360201 33.170 3160

>  Aqueous-phase reforming (APR) of glycerol 4.48-9 9202013 23.7601 411

> Autothermal reforming (ATR) of glycerol 1.2003 121.15M 87.20u

¥ Steam reforming (SR) of glycerol 2.03-2.630201, 4 86-9.67E] 40-60C1 4-18062

Note: Appendix A provides the supplemental sources of data reported in Table 1.

The key insights to be drawn from the reported data in Table 1 are as follows:

a) For conventional H2 production from natural gas: a.1) Due to the exothermic heat generation,
the ATR technology has the lowest energy consumption (MJ/kg H2), a.2) Without CCS, SMR
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technology has the highest CO2 emissions (kg CO2/kg H2), and a.3) As would expected,

integrating CCS with the conventional H2 production technology increases the cost of H2

production ($/kg H2), however, this cost increase is impacted by other location-dependent

externalities such as cost of energy, cost of electricity, labor cost, etc.

b) For H2 production via waste valorization: b.1) Biomass gasification with CCS technology has
the highest energy consumption (MJ/kg H2), b) Aqueous-phase reforming (APR) of glycerol has
the lowest CO2 emissions (kg CO2/kg H2), and b.3) Cost of H2 production ($/kg H2) using ATR
of glycerol seems to be the lowest compared to the other waste valorization technologies.

Table 2. Cost of H2 ($/kg Hz), energy consumption (MJ/kg Hz), and GWP (kg COz/kg Hz) of various
water electrolysis technologies with different energy sources.
Hydrogen Production Technology Cost of Hydrogen ($%kg Hy) | Energy Consumption | Global Warming Impact
(all in 2023 U S. $) (MI/kg Hy) (Kg CO,/Kg H;)
Greener H2 production via water electrolysis
Wind + Alkaline Electrolysers (AKE) 5.25-11.92R1ELE 180-280041 0.0325-4 450650
Wind + Proton Exchange Membrane Electrolysers (PEME) 4-12.27@10050] 180-28004] 0.0325- 3.60061652
Wind + Solix oxide Electrolysers (SOE} 6.72-7.770403] 165.6-184012104] 0.032500
Wind + Anion Exchange Membrane (AEM) Electrolyzer 4.48-8.9601%1 185-23704] 0.032504]
Solar PV + Alkaline Electrolysers (AKE) 7.00-0.861] 180-280041 0.37-8.780616321
Solar PV + Proton Exchange Membrane Electrolysers (PEME) 10.13-16.51(0:50 184-28004 0.37-7.79061521
Solar PV + Solix oxide Electrolysers (30E) 3.36-8.0608 165.6-174.200 0.37-2.300.652
Solar PV + Anion Exchange Membrane Electrolyzer (AEME) 3.36-8.060181 185-23704] 0.3708
Hydro Power + Electrolyzers (AKE. PEME. OXE. AEME) 2.7061 180-216041 0.72-1.7582.20
Grid Mix + Electrolysers 4.00-8.8 1 (18LIELI17L 2811101 180-216031 1-30031132]
Nuclear power + PEM 4.66-7.1500 180-280041 1162
Nuclear power + SOE 3.79-5000.621 165-180021 0.67-2.1C2
Note: Appendix A provides the supplemental sources of data reported in Table 2.
The data summarized in Table 2 shows that:

e PEME technology that uses solar PV electricity tend to have the highest cost of H2 production
($/kg H2) compared to the other technologies.

e  Water electrolyzers that use electricity from the grid mix tend to have the highest CO2 emission

(kg CO2/kg H2).

reprints202411.2248.v1
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Table 3. Cost of H2 production ($/kg Hz), energy consumption (MJ/kg Hz), and GWP (kg CO2/kg Hz)
of emerging clean H2 technologies.
Hydrogen Production Technology Cost of Hydrogen ($/kg H;) Energy Consumption Global Warming Impact
(allin 2023 U.S. §) (MI/kg Hy) (Kg CO/Kg Hy)
*  Emerging H2 production technologies

+  Turquoise H2 produced from biomethane pyrolysis 1.36-3.3700LE01[0] 36-10804] —10.4 to —4.0004]
+  Electrified steam methane reforming (ESMR) 1,536 2g 804 5-ghat
+  Solar methane cracking (SMC) 2062 180032 1963
+  Solar thermal + thermochemical decomposition 7.74-12 22 H0L[28].130] 110-15080 0]
+  Nuclear + thermochemical decomposition

» 51 2.66-7 58411 159-22304 0-0.502L34

» HyS 2.30-8.3404[2] 116-1281 0-0.48R2L1+4]

» Cu-Cl 2.24-4.70021[29[+4] 11121 0-10121128]

> Mg-Cl 4.11-5.150280.0441 16002¢) 0-11281144]
- Bio-photolysis 1.42-7.27069) 110-160% 7.5E4
+  Ammonia thermal decomposition via fixed bed reactor 4.24-11.360%1 100-1350%8 0-1891
+  Ammonia thermal decomposition with PSA-membrane separation 5.98-1164 100-150% 0-1F¢1
+  Integration of biomass gasification (BG) with chemical looping hydrogen | For the Air case and O2 case, | n/a - 151310 - 17.00

production (CLHP). the costs are 3.05 and 2.82
Source: Wu, D. et al. (2024) S/kg H2, respectively

Note: Appendix A provides the supplemental sources of data reported in Table 3.

For the data shown in Table 3 for the emerging H2 production technologies, the following
observations can be derived:

¢ Thermochemical decomposition integrated with solar thermal as well as ammonia thermal
decomposition with PSA membrane separation seem to the highest cost of H2 production ($/kg
H2).

o Electrified steam-methane reforming (ESMR) had the lowest energy consumption (M]J/kg H2).

e (CO2 emissions (kg CO2/kg H2) from the evaluated emerging H2 production technologies seem
to be low with biomethane pyrolysis as the most environmentally friendly followed by

thermochemical decomposition integrated with solar thermal.
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Table 4. Energy efficiencies (%) of conventional H2 production technologies and waste valorization

H2 production technologies.

Hydrogen Production Technology Energy efficiency (%0)*

=  Conventional with natural gas (NG)

«  SMR a5-75231
«  SMR w/CCS 54063
«  ATR w/NG & CCS 45-56[51133]

=  Waste valorization

= wPG 40-5001%1

« FWF 57-80B1.201
+  Biomass gasification 40-50I181[30]
+  Biomass gasification w/CCS 400301

+  Glycerol-based:

» SCWER 55-60054
» ATR 71-74091
» APR 45-55091
¥ Steam reforming (SR) 60-700¢]

Note: Appendix A provides the supplemental sources of data reported in Table 4.

Table 4 shows that SMR and steam reforming (SR) of glycerol feedstock have the highest energy
efficiency. Biomass gasification technology integrated with CCS has the lowest energy efficiency.
Carbon capture and storage (CCS) tends to increase the energy consumption and, hence, lowers the
energy efficiency of the technology being evaluated.
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Table 5. Energy efficiencies (%) of H2 production via various water electrolysis technologies with
different energy sources.

Hydrogen Production Technology

Energy Efficiency (%0)*

Greener H2 (water electrolysis)

+  Wind + AKE

50-700231I7LI8LE]

+  Wind + PEME 58-T4L7.E]

«  Wind + S0E 71-8419L18L]
+  Wind + AEME 690421

+  Solar PV + AKE 59-703118LM
«  Solar PV +PEME 60-6891127HE]

+  Solar PV + S0E

69-84 [26LI12L[6].111]

«  Solar PV + AEME

HOM2

+  Hydropower + electrolyzers

61.6-66.10024.521

+  Grid mix + electrolyzers 60-84 1811271
= Nuclear + 50E T1-81[300.18L001]
+  Nuclear power + PEME 60-65001

Note: Appendix A provides the supplemental sources of data reported in Table. 5.

Table 5 shows that solid-oxide electrolyzers (SOE) using electricity from wind turbines, solar
PV, and nuclear power seem to have the highest energy efficiency.
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Table 6. Energy efficiencies (%) of emerging clean H2 production technologies.

Hydrogen Production Technology Energy Efficiency (%)*

» Emerging technologies

+  Biomethane pyrolysis 40-36018L012]
- ESMR 701
= SMC 40.4-32 2[26]
= Solar thermal + thermochemical decomposition 2060

+  Nuclear + thermochemical decomposition

51 42-520841029]

» HyS 4908

» Cu-Cl 430+4]

» Mg-Cl 4504
«  Bio-photolysis 10-15541E5043]
+  Ammonia thermal decomposition via fixed bed reactor 78-8008
+  Ammonia thermal decomposition with PSA-membrane separation 87-0008

Note: Appendix A provides the supplemental sources of data reported in Table. 6.

Table 6 shows that, among the evaluated emerging H2 production technologies, ammonia
thermal decomposition integrated with PSA membrane separation to be the most energy-efficient
technology and bio-photolysis as the least energy-efficient technology.

Table 7. Color-coded technology readiness level (TRL) and supply chain material availability of
conventional and waste valorization H2 production technologies.

Hydrogen Production Technology TRL Supply Chain Material Availability Feedstock Type

L | M H

=  Conventional using NG:

SMR v methane
SMR w/CCS v methane
ATR w/CCS 502 v methane

= Waste valorization

wPG 70201 v Waste plastics
FWF v Food waste
Biomass gasification 7-9R01E] v biomass
Biomass gasification w/CCS 562 v biomass

Glycerol-based

» SCWR 40201 v Glycerol waste
» ATR 762 v Glyeerol waste
» APR 4-5020 v Glycerol waste
» SR Vv Glyeerol waste

Note: Appendix A provides the supplemental sources of data reported in Table. 7.
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As shown in Table 7, SMR is the most mature & commercial-scale technology and, hence, has
the TRL of 9. Food waste fermentation (FWF) technology is least mature and, hence, has the lowest
TRL in the 2 to 5 range. Steam reforming of glycerol has a high TRL of 8. Glycerol supercritical water
reforming (SCWR) and aqueous-phase reforming (APR) have lower TRL compared to more mature
ATR technology. With respect to supply chain feedstock availability, glycerol waste, biomass, waste
plastic and food waste are more available compared to natural gas (primarily methane).

Table 8. Color-coded technology readiness level (TRL) and supply chain material availability of H2

production via various water electrolysis technologies with different energy sources.

Hydrogen Production Technology TRL Supply Chain Material Availability Comments
L M H
=  Greener H2 (water electrolysis):

Wind + AKE v Nickel. Cupper

Wind + PEME §-832LI%1 QI20 v Platinum, Iridium, titanium

Wind + SOE 5B, §-70181, 837 v Scandium

Wind + AEME 332 4508 §E7 v Platinum, Nickel, Transition Metal Catalysts
(Ce02-La20)*

Solar PV + AKE v Nickel, Cupper

Solar PV + PEME J Platinum, Iridium, titanium

Solar PV = SOE 5032, 6-70161, BT v Scandium

Solar PV + AEME 302 4508 §h7 ¥ Platinum, Nickel, Transition Metal Catalysts
(CeO2-La20)*

Hydropower + electrolyzers v

Grid mix + electrolyzers v

Nuclear + SOE 562, gB7 v Scandium

Nuclear power + PEME 6-862, 08371 v Platinum, Iridium, titanium

* |

Note: Appendix A provides the supplemental sources of data reported in Table. 8.

As displayed in Table 8, the alkaline electrolyzer (AKE) is the most mature technology with TRL
of 9 and the least mature electrolyzer technology is the anode exchange membrane electrolyzer type
with a TRL as low as 2 or 3. Supply chain availability of metals used in the electrolyzer electrodes are
for the most part location-dependent.

reprints202411.2248.v1
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Table 9. Color-coded technology readiness level (TRL) and supply chain material availability of
emerging clean H2 production technologies.
Hydrogen Production Technology TRL Supply Chain Material Availability Comments
L M H
Emerging technologies
Biomethane pyrolysis l_’il'l!],flﬂ] N
ESMR 4018 7
SMC 3.562 N
Solar thermal + thermochemical decompesition 3-4B2.67 v Zn0/Zn cycle
Nuclear + thermochemical decomposition
» S8 3-4B257] Vv
> HyS 34627 v
> CuCl 343257 Vv
»  Mg-Cl 3-4B2.57 v
Bio-photolysis 40531 v
Ammonia thermal decomposition via fixed bed reactors - v Precious metal catalyst
Ammonia thermal decomposition with PSA-membrane 4381 v
separation

i I W RN B

Note: Appendix A provides the supplemental sources of data reported in Table. 9.

From Table 9, it can be seen that ammonia thermal decomposition via fixed bed reactors seem
to have the highest TRL of 9. All other H2 production technologies have lower TRLs which are
indicative that these technologies did not achieve the required maturity level to be commercialized
at scale. Once again, supply chain material availability is highly location-dependent among other
externalities.

4. Discussion
Based on the results presented (Tables 1 through 9) in Section 3, the following discission and
insights can be synthesized:

e Conventional H2 production via SMR has the low-cost advantage (around $1-2/kg Hz2) and high
TRL. However, SMR technology without CCS suffers from the high global warming impact of
around 11 kg COz/kg H>, as well as its nonrenewable feedstock requirement of natural gas.

e SMR with CCS and ATR with CCS result in lower global warming impacts, but they still produce
around 2-8 kg COu/kg Hz, which is higher than the emissions of the majority of H2 production
via water electrolysis. Also, the energy requirements (MJ/kg H2) of blue H2 production
technologies are generally higher than those of gray H2 production technologies. The emerging
carbon capture, utilization, and storage (CCUS) is expected to add additional environmental and
economic values that go beyond CCS only.¢

e Assessment of waste valorization as an alternative to the conventional methods for H2
production reveals that its most robust advantage is its high supply chain material availability

due to using waste as the feedstock. The various methods utilize different waste streams that

¢ The global forecast to 2030 for CCUS technologies is expected to grow at an average compound
annual growth rate (CAGR) of 24.0%, from $3.1 billion in 2023 to $12.9 billion in 2030 (Source:
MarketsandMarkets (MnM) Newsletter, 2024).
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would otherwise contribute to costly waste management and environmental issues like toxic
leaching and emission of air pollutants from landfills and waste incineration.

¢ Interms of GWP, waste valorization methods that are integrated with CCS can produce negative
carbon emissions with the utilization of waste that otherwise would have been incinerated.
Otherwise, when only considering carbon emissions, these technologies are not necessarily more
sustainable than the conventional methods, with the exception of APR with a promising GWP of
4.11 kg CO2/kg Hz(Khalil, 2021). Therefore, incorporating CCS technology into waste valorization
technologies will enhance their environmental benefits.

e  Waste plastics gasification (WPG), food waste fermentation (FWF), and biomass gasification with
and without CCS are somewhat more expensive than the conventional methods (around $2-4/kg
H:), but not so expensive as to be uncompetitive, particularly when potential for technological
improvements and economies of scale are taken into considered. The energy requirements of the
processes range vastly, from 20-240 MJ/kg Hz, but as noted earlier, these values vary widely with
plant location, energy sources, and many other externalities. Therefore, it is perhaps more
meaningful to examine energy efficiency, which is fairly average for wPG and biomass
gasification (40-50%) and slightly higher for FWEF. Improvements in technology will improve
energy efficiency and subsequently further decrease production costs.

¢ Examining the four methods of glycerol conversion (data in Table 1) reveals that APR is more
attractive than both ATR and SCWR, not only due to its lower carbon emissions, but also its lower
energy consumption [17]. Therefore, APR outperforms its glycerol-based counterparts in
sustainability and energy consumption, but with a TRL of 4-5, APR is not a mature technology
yet and is, therefore, currently the most expensive, followed by steam reforming (SR), then
SCWR, and finally ATR [17]. Also, the energy efficiencies of the four technologies range from 45-
74, with APR performing the least efficiently. Considering all factors, APR is the most worthwhile
technology of the four glycerol-based hydrogen production processes to improve upon.

e The compiled literature data about water electrolysis reveals that it is a very promising
technology for green H2 production, producing close to zero carbon emissions. The performance
of electrolysis varies depending on the specific technology and electricity source. First examining
costs in Table 2, hydropower and nuclear power currently produce the least expensive H2,
around $2.7/kg Hz. The grid mix, wind power, and solar PV power are slightly more expensive,
with wind generally less expensive than solar PV. In terms of the types of electrolyzer, SOE and
AEME are more cost-effective than PEME and AKE. For wind and solar PV power, the most
optimal costs for SOE and AEME are $3.36-6.72/kg H: and for PEME and AKE the most optimal
costs are $4-10.13/kg Hz. The energy requirements for the various technologies and power sources
are comparable to one another, ranging from 165-280 MJ/kg Hz. However, energy efficiency does
differ, with wind-powered electrolysis slightly more efficient than solar PV, and with SOE being
the most efficient type of electrolyzer.

e Examining TRLs of water electrolysis technologies in Table 8, PEME and AKE are the most
technologically mature, but their material supply chain availabilities are not very high in terms
of availability. PEME specifically has a lower material supply chain availability score because it
requires a rare metal (platinum) catalyst. Taking all of the criteria into consideration, a case could
be made for any of the water electrolysis processes, but SOE powered by renewable electricity

appears to be an especially worthwhile technology to focus on in the future. The source of
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renewable electricity that should be utilized depends on the characteristics of the region in which
the electrolyzer is built. While wind energy showed greater energy efficiency and lower
production cost in the literature review, this does not necessarily mean it is the most optimal
option everywhere. Also, an important alternative that was not in the scope of this research is the
possibility of utilizing multiple sources of renewable electricity in conjunction with, or
integrating them into, the electricity grid mix. A hybrid configuration can ensure a more stable
and reliable electricity supply, particularly in the case of wind and solar PV, which are known to
be intermittent sources.

e The literature review also revealed some encouraging data about the emerging H2 production
technologies. Biomethane pyrolysis, ESMR, supercritical water gasification of sewage sludge [56],
industrial CO-to-H2 via water gas shift reaction [57], solar thermal thermochemical
decomposition, nuclear thermochemical decomposition, bio-photolysis, and ammonia thermal
decomposition were herein investigated, all of which are in the late research and early
development stages, except for ammonia thermal decomposition via fixed bed reactors, which
exhibits a TRL of 9. Because these technologies are mostly laboratory-scale or small-scale, data
relies heavily on simulations and models. Out of the emerging technologies, currently
biomethane pyrolysis, ESMR, and bio-photolysis predict the lowest hydrogen costs of minimum
costs of $1.36-1.53 per kg Hz. Nuclear thermochemical decomposition is not far behind, at $2.24-
4.11/kg H., with price varying by almost $2 depending on the cycle type. Solar thermal
thermochemical decomposition and ammonia thermal decomposition are currently not
competitive and will need a lot of technological development and improvements to become
viable options for hydrogen production. However, ammonia decomposition via fixed bed
reactors or PSA-membranes can produce H2 at a high energy efficiency with close-to-zero carbon
emissions, while utilizing ammonia as a renewable feedstock. Therefore, more so than solar
thermal decomposition, which has a low energy efficiency, the strategic integration of ammonia
thermal decomposition technologies has fairly high prospects as long as production costs are
lowered.

e Out of the rest of H2 production technologies, nuclear thermal thermochemical decomposition
and biomethane pyrolysis appear to be the most promising. The production of ‘turquoise’ H2 via
biomethane pyrolysis has low energy requirements and has a negative global warming potential
by utilizing an otherwise high-emitting feedstock. Thermochemical decomposition with nuclear
power has an energy demand similar to SMR and produces zero carbon emissions. The most
promising cycles are S-I, HyS, and Cu-Cl. The energy efficiencies of the two technologies are
between 40-56%, which could be improved upon with more research and design optimization.
The other technologies exhibit some advantages, such as ESMR’s high energy efficiency and the
potentially low production cost of bio-photolysis, but due to their higher GWPs, they are more

practical as transitional technologies rather than long-term solutions.

5. Conclusions and Recommendations

This research evaluated various H2 production technologies based on cost ($/kg H2), energy
consumption (M]/kg H2), technology efficiency (%), and carbon emissions (kg CO2-eq/kg H2). Steam
Methane Reforming (SMR) with and without Carbon Capture and Storage (CCS) served as the
benchmark H2 production technology. Despite its low cost, SMR without CCS has high carbon
emissions. Water electrolysis, hindered by high energy demands (kWh/kg H2) and high costs ($/kg
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H2), shows promise with advancements in renewable energy sources for green electricity production.
Waste valorization methods, such as biomass gasification, or reforming, and food waste
fermentation, offer dual benefits of waste management and sustainable H2 production, albeit at
higher costs at this early stage of development. Emerging technologies like biomethane pyrolysis and
nuclear-powered thermochemical cycles also present promising avenues for achieving clean and
sustainable H2 production with minimal environmental impact.

Future research should focus on enhancing the technological maturity, scalability, and cost-
efficiency of promising yet underdeveloped H2 production technologies, such as biomass waste
valorization via gasification (or reforming) and water electrolysis using low-cost green electricity, to
achieve negative carbon emissions and competitive production costs. Additionally, the impact of
governmental policies and incentives on H2 economics should be rigorously analyzed to provide a
comprehensive techno-economic framework for sustainable H2 production. Emphasizing the
environmental and social impacts of these technologies and conducting comparative life cycle
assessments along the supply chains and across different countries can further elucidate the global
viability and societal benefits of green H2 initiatives.
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Appendix A: Supplemental Sources of Data Reported in Tables 1 though 9 (Section 3)

This Appendix is cited in the main text under each table in the Results Section 3. The sources of
data reported in Tables 1 though 9 are provided below as follows:
Table 1. Cost of H2 ($/kg Hz), energy consumption (MJ/kg Hz), and GWP (kg COz/kg H2) of
conventional production technologies and waste valorization technologies.
* Osman et al., 2024 (https://doi.org/10.1002/wene.526)
[1] Khalil, 2021 (https://doi.org/10.1093/ce/zkab018)
[2] Afzal et al., 2023 (https://doi.org/10.1039/D3GC00679D)
[3] Khodabandehloo et al., 2020
[5] Oni et al., 2022 (https://doi.org/10.1016/j.enconman.2022.115245)
[15] Diab et al., 2022 (https://doi.org/10.1016/j.ijhydene.2022.05.299)
[19] Parthasarathy, P. & Narayanan, K.S., 2014 (https://doi.org/10.1016/j.renene.2013.12.025)
[20] Lepage et al., 2021 (https://doi.org/10.1016/j.biombioe.2020.105920)
[32] Wilkinson et al., 2023 (https://doi.org/10.1016/j.cesys.2023.100116)
[34] Nikolaidis & Poullikkas, 2017 (https://doi.org/10.1016/j.rser.2016.09.044)
]
|
]

[35] Acar, 2023 (http://dx.doi.org/10.1016/j.ijhydene.2014.12.035)

[40] Ali & Shin, 2022 (https://doi.org/10.3390/en15218246)

[51] Lan & Yao, 2022 (https://www.nature.com/articles/s43247-022-00632-1)

[55] Li et al., 2020 (https://doi.org/10.1016/j.energy.2019.116588)

Table 2. Cost of H2 ($/kg H2), energy consumption (M]/kg Hz), and GWP (kg CO:/kg H2) of
various water electrolysis technologies with different energy sources.

[6] Christensen, 2020 (https://theicct.org/wp-
content/uploads/2021/06/final_icct2020_assessment_of-_hydrogen_production_costs-v2.pdf)

[8] Jang et al., 2022 (https://doi.org/10.1016/j.enconman.2022.115695)
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[9] Schnuelle et al., 2020 (https://doi.org/10.1016/j.ijhydene.2020.08.044)

[10] Clark et al., 2023 (https://doi.org/10.1016/j.enconman.2023.117595)

[12] Saeedmanesh, 2021 (https://escholarship.org/uc/item/6x19c8wf)

[13] Lamagna et al., 2022 (https://doi.org/10.1016/j.egyr.2022.10.355)

[14] IRENA, 2021 (https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_Hydrogen_breakthrough_2021.
pdf?la=en&hash=40FA5BSAD7 AB1666 EECBDE30EF458 C45EE5A0A A6)

[15] Diab et al., 2022 (https://doi.org/10.1016/j.ijjhydene.2022.05.299)

[16] Suleman et al., 2016 (https://doi.org/10.1016/j.ijhydene.2015.12.225)

[17] IEA, 2023 (https://www iea.org/reports/energy-technology-perspectives-2023)

[18] IEA, 2021 (https://www.iea.org/reports/global-hydrogen-review-2021)

[21] Webinar: Wind-to-Hydrogen, 2013 (https://www.energy.gov/eere/fuelcells/webinar-wind-
hydrogen-cost-modeling-and-project-findings)
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