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Abstract: Stock Market Volatility (SMV) study with an AI diagnosis model examines stock market 

movements with artificial intelligence to detect changes, forecast trends, and evaluate risks in order 

to make wiser financial decisions. Investors, analysts, and policymakers alike are confronted with 

stock market volatility because it is dynamic and difficult to predict. Most traditional models do not 

have the ability to represent dynamic interactions between financial instruments. To counter these 

challenges, this study suggested a Holographic Multi-Relational Convolutional Graph Neural 

Network with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO) architecture. Inputs 

of data are taken from the Stock Market Volatility dataset. These data are preprocessed initially using 

A Reversible Automatic Selection Normalization (ARASN) method. Features are extracted using 

Efficient Inception Transformer (EIT). Future Prediction of the SMV with an AI Diagnosis Model is 

subjected to the Holographic Multi-Relational Convolutional Graph Neural Network 

(HMRCGN2Nets), again optimized using the Circulatory System-Based Optimization (CSBO). Stock 

Market Volatility dataset is used to determine how effective the proposed model 

HMRCGN2Nets+CSBO is, with a whopping accuracy of 99.9% and a 99.8% recall. The proposed 

method is implemented on the Python platform. The result of the suggested HMRCGN2Nets+CSBO 

model proved to be outstanding in forecasting stock market volatility. It successfully improved 

accuracy and recall over standard techniques and maximized decision-making and risk management 

techniques in financial markets through sophisticated data processing and predictive methods. 

Keywords: a reversible automatic selection normalization; circulatory system-based optimization; 

efficient inception transformer; holographic multi-relational convolutional graph neural network; 

stock market volatility 
 

1. Introduction 

The major impacts of stock market volatility raise concern among investors and financial 

analysts along with policymakers (Rahmani 2023; Amir Masoud 2023, et al.2023). Price volatility of 

financial instruments over a given period comes to be called volatility that reflects both market risks 

and unforeseen elements. Increasing market uncertainty typically triggers enhanced price instability 

that causes rapid market movements in conjunction with high investment risks (Zhang 2023; Yue-

Jun 2023; Han Zhang 2023; Rangan Gupta 2023). Stock market volatility calls for expertise for the 

traders to come up with sound strategies as well as well-tested risk control structures and make 

logical investment choices. Financial market prediction calls for high-level analysis due to the fact 

that they are unpredictable but ride on many economic indicators combined with world events as 
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well as emotions of the investors as per studies (Liu 2023; Fang 2023; Muhammad Umair 2023; Junjun 

Gao 2023). Previous data collections of prices determine statistical rules for market returns as the 

bases of such predicting models (Wu 2023; Feng-lin 2023; et al.2023). Investigations by configurations 

ongoing unveil market patterns still effectively but find detection of more complex market non-linear 

relations coupled with speedy markets changes in line with current problems (Salisu2022; Afees 

A.2022; et al.2022; Bakry2022; Walid 2022). Methods of conventional prediction lack poor 

performance in the adapting to changing volatility that result due to disruptions and changes in 

markets, changes in investor beliefs and economic disruption. Advanced development of artificial 

intelligence opens up opportunities for enhancing forecasting accuracy and responsiveness of 

volatility via research in (Liu 2023, Shasha 2023, Huixian Zhao 2023, Gaowen Kong 2023). Refining 

market conditions and complex pattern recognition are achievable via deep learning and machine 

learning algorithms that are AI-based per (Liu 2022, Min 2022). Suitable financial data analysis results 

from machine learning methods because they boost prediction accuracy while revealing otherwise 

hidden patterns in the data (Chen 2023, Shengming 2023, et al. 2023. Xiuzhen, Xie 2022, Wenxiu 

Zheng 2022, and Muhammad Umair 2022). AI models for diagnosis are designed to improve 

volatility prediction through the combination of adaptive learning algorithms with real-time data 

processing. In contrast to traditional models, AI models can accept a wider range of data inputs, 

including macroeconomic indicators, market sentiment, news headlines, and social media opinions 

(Gao 2022, Yang2022, et al.2022.). This allows them to be able to observe the bigger picture of market 

trends more effectively and respond to new information more easily (Kundu 2022, Srikanta 2022, and 

Amartya Paul 2022). For example, sentiment analysis based on natural language processing (NLP) 

enables AI models to quantify market sentiment and predict how investor sentiment might influence 

future price swings. Beyond this, AI models can leverage ensemble learning, where combinations of 

different algorithms are employed to improve overall forecasting capability and robustness (Liu 2023, 

Min 2023, et al. 2023. Khan 2022, Wasiat 2022). Nevertheless, even with these advances, significant 

challenges remain in applying AI for volatility forecasting. Geopolitics, monetary policy shifts, and 

unexpected economic shocks are some of the many interconnected variables that affect financial 

markets and are hard to forecast with precision by any model (Lin 2022, Yu2022; et al.2022). Existing 

methods, such as GARCH and stochastic volatility models, struggle to handle high-frequency data 

and nonlinear market behavior, often failing to adapt to sudden market changes and structural shifts 

effectively. This study aims to address the problems identified. 

Novelty As Well As Contribution 

The Contribution and Novelty of the paper is as follows: 

 To develop HMRCGN2Nets+CSBO architecture for improved stock market volatility prediction 

by enhancing model accuracy and relationship modeling. 

 To preprocess Stock Market Volatility data using the ARASN approach, aiming to enhance data 

quality, improve model accuracy, and ensure reversible normalization for be�er interpretability 

and consistency in analysis. 

 To extract key features from Stock Market Volatility data using the Efficient Inception 

Transformer (EIT). 

 To predict Stock Market Volatility using an AI Diagnosis Model with HMRCGN2Nets optimized 

through CSBO, enhancing prediction accuracy, capturing complex relationships, and improving 

model efficiency for reliable market trend forecasting. 

The remaining manuscript is divided into 5 sections: section two, literature review; section three, 

suggested methods; section four, results and discussion; and section five, conclusion and upcoming 

projects. 

2. Literature Survey 
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The papers related to A Study of Stock Market Volatility using an AI Diagnosis Model based on 

neural network methods are given below: 

In 2023, Mukherjee, et al. (Mukherjee 2023, Somenath 2023, et al.2023) has introduced CNN-

ANN popular models for stock market price prediction. ANN (artificial neural networks) repeats 

recursively, predicting future the values of data from the previous few days. Significant results have 

been obtained via deep learning optimization; CNN-ANN both achieved 98.92% and 97.66% 

accuracy, respectively. CNN (Convolutional neural networks) employs a novel method for 

evaluating quantized datasets: 2-D histograms. The effectiveness of these algorithms for predicting 

the stock market was demonstrated by an example investigation regarding the COVID-19 pandemic, 

which revealed a 91% accuracy rate. 

In 2023, Sheth, et al. (Sheth 2023, Dhruhi 2023, Manan Shah 2023) has introduced a LSTM-SVM-

ANN based method for stock market prediction. They do have some shortcomings, though, which 

are being fixed to enhance subsequent outcomes. Because it can take into account intricate, non-linear 

correlations and patterns, ANNs which depends on neural networks, tend to get the greatest results. 

Better outcomes are anticipated in the future using Support Vector Machine (SVM), a relatively 

young technique. A possible disadvantage of Long Short-Term Memory (LSTM) is that it only 

produces decent results when an expansive dataset is supplied. 

In 2023, Chandola, et al. (Chandola 2023, Deeksha 2023, et al. 2023) has presented a Word2Vec-

LSTM technique to predict stock values using news headlines and financial time data. The model is 

designed to assist investors in making more informed decisions by forecasting the trend of stock price 

movement. The performance of the model is measured by its ability to forecast the direction of change 

in stock prices for five firms in various industries. This approach addresses the challenges in 

forecasting stock market conditions due to their volatility and complexity. 

In 2023, Zhao, et al. (Zhao 2023, Yanli 2023, Guang Yang 2023) has proposed a SA-DLSTM, a 

stock market as well as simulation trading prediction hybrid model. It combines long short-term 

memory models (LSTM), denoising autoencoders (DAE) models, and emotion-enhanced 

convolutional neural networks (ECNN). The most important features of stock trading data are 

extracted and enriched with user comments. The method generates reliable sentiment indexes by 

considering the speed at which emotions shift. The experiment results indicate high return and risk 

performance along with greater accuracy of prediction, facilitating investors to make informed 

choices. 

In 2023, Mu, et al. (Mu 2023, Guangyu 2023, et al. 2023) has presented a MS-SSA-LSTM method 

for forecasting stock prices that integrates deep learning, swarm intelligence, and sentiment analysis. 

It optimizes the Long and short-term memory network (LSTM) parameters using the Sparrow Search 

Algorithm and a special sentiment vocabulary from the East Money forum. The model has a high 

degree of universal applicability and performs better than other models. The study discovered that 

China’s significant market instability makes it appropriate for short-term prediction, that LSTM 

hyperparameters may be optimized via SSA, and that adding an emotional index improves predictive 

performance. 

In 2023, Han, et al. (Han 2023, Yechan 2023, Jaeyun Kim 2023, David Enke 2023) has introduced 

an N-Period Min-Max (NPMM) branding method to get around price change sensitivity, which labels 

data at particular time points. Additionally, it creates an automatic trading system with XGBoost. The 

approach is compared to other well-known labeling techniques and tested on 92 NASDAQ 

companies. According to the study, NPMM is an effective and superior technique for predicting stock 

price trends. 

In 2022, Jiao, et al. (Jiao 2022, Xingrui 2022, et al.2022) has presented a text mining-based neural 

network PSO-LSTM model for forecasting crude oil market volatility. Textual components from news 

headlines, such as risk factors, sentiment toward investor’s classifications, and emotional polarity 

score, are combined with other market actions to improve forecasting results. A deep learning LSTM 

model is optimized using PSO (particle swarm optimization) to enhance predicting. The study found 

that the PSO-LSTM strategy reduced predicting accuracy as well as MAE by 5.12% as well as 6.77%, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2025 doi:10.20944/preprints202506.0767.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0767.v1
http://creativecommons.org/licenses/by/4.0/


 4 

 

respectively, when compared to the PSO-LSTM strategy that excluded textual features. Table 1 

provides a summary of the examined methodology. 

Table 1. An overview of the method under evaluation. 

References Methods Advantages Disadvantages 

Mukherjee, et 

al. (Mukherjee, 

Somenath, et 

al.) 

CNN-ANN Deep learning 

optimization improves 

predictive performance.  

CNN uses a novel method 

(2D histograms) for 

dataset evaluation. 

Computationally intensive 

due to deep learning 

models. Requires large 

datasets for effective 

training. 

Sheth, et al. 

(Sheth, Dhruhi, 

and Manan 

Shah) 

LSTM-SVM-

ANN 

Considers complex, non-

linear correlations and 

patterns. ANN and SVM 

enhance prediction 

accuracy. 

LSTM requires large 

datasets to perform well. 

High computational cost 

and complex training 

process. 

Chandola, et al. 

(Chandola, 

Deeksha, et al.) 

Word2Vec-LSTM Considers both financial 

time series and news 

headlines. Improves 

decision-making by 

forecasting stock price 

direction. 

Dependent on the quality 

of the text data and 

financial reports. 

Complexity increases with 

multi-source data. 

Zhao, et al. 

(Zhao, Yanli, 

and Guang 

Yang)  

SA-DLSTM Combines LSTM, DAE, 

and ECNN for better 

feature extraction.  

Considers emotional 

changes to enhance 

prediction. 

High model complexity 

increases computational 

cost. Sentiment analysis 

can be sensitive to noise in 

user-generated data. 

Mu, et al. (Mu, 

Guangyu, et 

al.) 

MS-SSA-LSTM Sentiment analysis 

improves predictive 

accuracy.  

Suitable for short-term 

prediction in volatile 

markets. 

Market instability can lead 

to overfitting. Requires 

specialized sentiment 

vocabulary for different 

markets. 

Han, et al. 

(Han, Yechan, 

Jaeyun Kim, 

and David 

Enke) 

NPMM Market instability can lead 

to overfitting. Requires 

specialized sentiment 

vocabulary for different 

markets. 

Performance depends on 

the quality of labeled data.  

May not generalize well to 

non-NASDAQ markets. 

Jiao, et al. (Jiao, 

Xingrui, et al.) 

PSO-LSTM Combines text mining 

with market data for better 

predictions. Particle 

Swarm Optimization 

enhances LSTM 

performance. 

Sensitive to noise in textual 

data. PSO adds 

computational complexity 

and longer training time. 

Problem Statement 

Stock market volatility presents significant challenges for investors and financial analysts due to 

its unpredictable nature and complex underlying factors. Traditional models often fail to capture the 
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dynamic, multi-relational, and interconnected structure of financial markets, leading to suboptimal 

predictions and increased risk. Hierarchical structures and multi-relational dependencies in the 

patterns of stock market data pose great challenges to today’s deep learning models in realizing their 

fullest capabilities. Also, the durability and accuracy of the predictions provided by these models are 

further limited due to a lack of a suitable optimization system. To deal with these difficulties, this 

paper presents an AI-diagnosis model via a Holographic Multi-Relational Convolutional Graph 

Neural Network with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO) approach. 

The model seeks to encapsulate the intricate, interdependent relationships of stock market data and 

enhance the accuracy of volatility prediction through the use of multi-relational graph structures and 

biologically inspired optimization techniques, thus facilitating better decision-making and risk 

management approaches. 

3. Proposed Methodology 

This part presents the Holographic Multi-Relational Convolutional Graph Neural Network with 

Circulatory System-Based Optimization (HMRCGN2Nets+CSBO), a new framework specifically 

designed to analyze SMV via an advanced AI Diagnosis Model. The introduced model adopts a 

structured five-stage method to make sure of correct and reliable prediction: (1) Data Collection – 

Collects in-depth and applicable data from the Stock Market Volatility Dataset in order to develop a 

robust platform for analysis. (2) Preprocessing –Enhances the quality of data by handling missing 

values, removing outliers, Cleans, normalizes, and ensuring consistency. (3) Feature Extraction – 

Finds and identifies important patterns, trends, and contributing factors from the preprocessed data 

to improve model performance. (4) Prediction – Uses the extracted features to make precise 

predictions regarding stock market volatility. (5) Optimization – Enhances prediction accuracy by 

dynamically adjusting model parameters through a circulatory system-based optimization approach, 

ensuring adaptive learning and improved performance over time. Figure 1 illustrates the detailed 

workflow of the suggested HMRCGN2Nets+CSBO model, highlighting the interaction between 

different stages and the continuous feedback loop that refines the model’s predictive capabilities. 

ARASN

Preprocessing

EIT

Feature Extraction Prediction

Stock Market 
Volatility Dataset

HMRCGN2Nets

CSBO

Optimization

Performance 
Metrics

Data Collection

 

Figure 1. The detailed workflow of the suggested HMRCGN2Nets+CSBO model. 

3.1. Data Collection 

In this research, the input data comes from the Stock Market Volatility Dataset. The Stock Market 

Volatility Dataset contains 5,000 daily records from 2020 to the present, capturing key financial 

indicators for AI-driven volatility analysis. It includes 10 features: Date, Stock_Price ($50-$500), 
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Trading_Volume (1,000-1,000,000), Market_Index (1,000-5,000), Volatility (0.5-5), Sentiment_Score (-

1 to 1), AI_Volatility_Prediction (Low, Medium, High), AI_Confidence_Score (0.60-0.99), 

Economic_Indicator (50-150), and News_Impact_Score (0-1). The dataset is structured for financial 

forecasting and AI-based market trend studies. 

The data under consideration in this study undergo extensive preprocessing, which is 

thoroughly explained in the following discussions. 

3.2. Pre-Processing Using A Reversible Automatic Selection Normalization (ARASN) 

The RASN framework preprocesses stock market data using adaptive normalization, utilizing 

the z-score, interval, integer calibration, and min-max techniques to standardize data, improve 

consistency, and enhance model training and prediction accuracy. A Reversible Automatic Selection 

Normalization (ARASN) (Jin 2022, Xuebo 2022, et al. 2022) approach is to preprocess stock market 

volatility data for improving the prediction performance of an AI-based diagnosis model. The RASN 

framework includes some parts as below, 

 Adaptive Normalization Layer 

This layer processes input data using four different normalization methods to enhance data 

consistency and correlation, The Min-Max Normalization scales data between 0 and 1, it is given by 

equation (1): 

minmax

min
ˆ






c
c     (1) 

The Interval Normalization scales data to a specific range ],[ ba , is given by equation (2): 

minmax

min))((
ˆ






ced
ec    (2) 

The Decimal Calibration scales data based on the decimal position is given by equation (3): 

][log01
ˆ

max10 c

c
c


     (3) 

The Z-Score Normalization scales data to have zero mean and unit variance is given by equation 

(4): 

5101var
ˆ






iance

meanc
c     (4) 

The layer calculates key statistics (mean, variance, min, max, decimal shift) using an 

exponentially weighted average to adapt to changing data patterns is given by equation (5): 

iii ameanrunningameanrunn )1(* 1      (5) 

 Adaptive Inverse Normalization Layer 

Adaptive Inverse Normalization Layer performs the reverse of the normalization process to 

restore data to its original scale after prediction. It uses trainable scaling and a translation factor to 

adapt to nonstationary data is given by equation (6): 

  rr kB  (6) 

 Normalization Method Selection Module 

Selects the best normalization method based on the lowest error values, it is given by equation 

(7): 

),(minmod modmod ee MAERMSEimizee  (7) 

The RASN framework preprocesses stock market data using adaptive normalization, which 

applies four methods to handle different data characteristics. A GRU-based deep learning model 

captures time-series dependencies effectively. Adaptive renormalization ensures reversibility and 

consistency by restoring normalized data to its original scale. The choice module cross-compares 
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prediction performance by RMSE and MAE, and chooses the optimum normalization scheme for 

improving the accuracy of the predictions. The technique of feature extraction is utilized for 

extracting essential features from data and the summary is given below. 

3.3. Feature Extraction Using Efficient Inception Transformer (EIT) 

Following preprocessing, feature extraction takes place. The Efficient Inception Transformer 

(EIT) (Fu 2022, Lihua 2022, et al.2022) is an advanced feature extraction model derived from the 

Inception Transformer framework. It integrates the benefits of both convolutions as well as self-

attention operations in handling complex time-series data, such as stock exchange volatility. Time-

series data with dimensions constitute the input data set. Fine-grained temporal models are crucial 

to the stock market volatility analysis, and this allows the model to extract them. The Enhanced Feed-

Forward Network (E-FFN) and Inception of Multi-Head Self-Attention (Incep-MHSA) blocks from 

the encoder. 

 Incep-MHSA 

Inspired by InceptionNet, Incep-MHSA processes input through three parallel branches: Depth-

wise convolution with kernel size D1 to capture local dependencies is given by equation (8): 

))(( 111 ZgvGgvGG DD   (  8) 

Depth-wise convolution with kernel size 33  for spatial context is given by equation (9): 

)(3
2 ZgvGG      (9) 

Average pooling followed by depth-wise convolution to capture broader patterns given by 

equation (10): 

))((3
2 ZavgpoolinggvGR 

    (10) 

The combined feature map is flattened and concatenated equation (11): 

)),,(( 221 RGGeconcadinatlyernomC     (11) 

 E-FFN 

The feed-forward network enhances feature representations using 2D locality. First, the input 

sequence is reshaped into a 2D feature map is given by equation (12): 

)( attensionin YagesequenceimY 
   (12) 

The decoder reconstructs the output by upsampling and combining multi-scale features: 

Features at each scale are upsampled to a common size and concatenated. 

The Efficient Inception Transformer (EIT) model effectively captures both short-term (fine-

grained) and long-term (coarse) patterns in stock market data, including price trends, market 

momentum, and volatility spikes. By combining convolution for local patterns and self-attention for 

global dependencies, it reduces computational complexity through depth-wise convolutions and 

multi-scale feature extraction. This enables improved attention to key market movements and 

enhances the model’s ability to predict sudden market changes, leading to more accurate forecasting 

of stock market volatility. These features are subsequently utilized to predict Stock Market Volatility 

using an AI Diagnosis Model, with detailed explanations provided below. 

3.4. Prediction Using Holographic Multi-Relational Convolutional Graph Neural Network 

(HMRCGN2Nets) 

The HMRCGN2Nets model improves feature handling of the extracted features through the 

incorporation of a Holographic Convolutional Neural Network (HCNN) and a Multi-Relational 

Graph Attention Network (MRGAT) for predicting Stock Market Volatility via an AI Diagnosis 

Model. In order to improve predictive precision, we present the Holographic Multi-Relational 

Convolutional Graph Neural Network (HMRCGN2Nets) model. A marriage of the above two 

architectures taps both convolutional learning and graph relational attention based on the concept to 
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capture both spatial, temporal, and relational dependencies within the data in stock markets. Below 

is a vivid description of the proposed approach, 

3.4.1. Holographic Convolutional Neural Network (HCNN) 

A Holographic Convolutional Neural Network (HCNN) (Wagner 2019, Kelvin H.2019, Sean 

McComb 2019) is an optical neural network structure based on holography and convolution to handle 

intricate data. In stock market volatility prediction, an HCNN can facilitate high-throughput 

computation. 

The input signal ihc  represents the optical neural activity at position and wavelength . The 

field is a weighted sum of Gaussian pixel spots with width v  and spacingb is given by equation 

(13): 
)(

,
0

0),(ˆ),(   ohl

hi
ih shqwiqczpeFzwze

  
 (13) 

where, ihe  neural activity at position ),( hi . ),( wzp Gaussian spot function. oh
0

 is wave vector. 

 is angular frequency. c lens axis offset. This field undergoes a Fourier transform using a lens of 

focal length, producing the Fourier-domain signal is given by equation (14): 

lj
hio

cjhbaHl
hi

hi
ih smsscbcapeFzcbaN hi      222)(2

,
0

0),(ˆ);,(   (14) 

where, ),( cap Fourier transform of Gaussian beam. ic  is a weight parameter. hc  is a bias 

parameter. A polarization-switching phase-conjugate reflector (PCM) is used to phase-conjugate the 

output signal. Photorefractive interference is used to dynamically record the convolutional weights 

in a holographic material: The convolutional weights are dynamically adjusted as a result of the 

interference between the backpropagated error signal and the phase-conjugated forward beam. 

An HCNN uses pixel-based optical patterns to encode historical market data, such as stock 

prices and trading volume, in order to forecast stock market volatility. During forward propagation, 

this data is processed through dynamic holographic convolutional layers to extract market patterns. 

Phase-conjugation in backpropagation adjusts error signals based on market fluctuations. The 

holographic recording dynamically updates convolution weights to improve accuracy. The trained 

HCNN then predicts future volatility by analyzing the learned market patterns in real-time with high 

computational throughput. HCNN-based stock market prediction relies on dynamic optical learning, 

where holographic interference enables adaptive adjustment of convolutional weights providing fast, 

high-throughput insights into market volatility. 

3.4.2. Multi-Relational Graph Attention Network (MRGAN) 

A graph-based deep learning model called Multi-Relational Graph Attention Network 

(MRGAT) (Dai 2022, Guoquan 2022, et al.2022) is capable of efficiently capturing the intricate 

connections and relationships among various items in a knowledge graph. MRGAT portrays the 

financial sector as a homogenous graph, with nodes standing for financial companies and edges for 

relationships, when used to anticipate stock market volatility. A stock market can be represented as 

a multi-relational directed graph is given by equation (15): 

),,(      (15) 

where,   set of entities (e.g., stocks, companies).  set of edge types (e.g., correlation, causation). 

  set of edges (e.g., specific relationships between entities). An edge ),,( nsv means that there is a 

relationship of type s  between node v  and node n . Figure 2 shows the architecture of MRGAT, 
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Figure 2. The Architecture of MRGAT. 

 Encoder 

MRGAT uses an Encoder-Decoder framework, where the encoder learns node embeddings by 

aggregating neighborhood information using attention. To handle multiple types of relationships in 

a heterogeneous graph, MRGAT defines separate query and key matrices for each relation type. For 

a central node and its neighbor with relation, the query and key vectors are computed as equation 

(16 and 17): 

sj
s
j Okp      (16) 

si
s
i Hkh      (17) 

where, jk embeddings of nodes.  sO  trainable query and key matrices for relation s . E dimension 

of query and key vectors. The attention score is calculated using the dot product between the query 

and key vectors is given by equation (18): 

E

hp
a

s
i

s
j

ji      (18) 

The aggregation module combines the neighborhood information based on the attention scores 

given by equation (19): 





jMi

ijij Xkek̂     (19) 

where, jie attention score of neighbour. For multi-head attention, the embeddings from multiple 

attention heads are concatenated. To retain the original node information, a residual connection is 

applied is given by equation (20): 

 Xkkk jjj  ˆ      (20) 

where,  is an activation function (e.g., ReLU). 

 Decoder 

The decoder predicts stock market volatility based on the node representations generated by the 

encoder. MRGAT adopts Conv-TransE as the decoder, which captures entity-relationship 

interactions using convolutional layers. The score for the triplet is passed through a sigmoid function 

to generate a probability is given by equation (21): 

)),,((),,( jskyjskq      (21) 

In stock market volatility prediction using MRGAT, nodes represent stocks, market indicators, 

and external factors, while edges capture relationships like correlations, market events, and 

dependencies. The encoder generates embeddings that encode both neighborhood and global 

structural information using a multi-relational attention mechanism, which assigns different 

importance to various relationships. The decoder then computes the probability of a stock 

experiencing high or low volatility based on these learned embeddings, enabling more accurate and 
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context-aware predictions. MRGAT can predict stock market volatility by learning the dynamic 

relationships between stocks, market indicators, and external factors, leading to more accurate and 

context-aware predictions. 

The HCNN module takes local temporal patterns and market indicators by convolving historical 

stock prices with convolutional layers, effectively extracting short-term trends and patterns. The 

MRGAT module captures intricate cross-asset dependencies and market organizations with graph 

attention, enabling the model to emphasize important inter-stock relationships and market drivers. 

The integration of HMRCGN2Nets improves the model’s capacity to predict volatility under multi-

relational, nonlinear environments by combining both temporal and relational knowledge, resulting 

in more precise and reliable predictions. In order to enhance the precision of predictions while 

reducing error rates, processing time, complexity, and expenses, the CSBO approach optimizes the 

HMRCGN2Nets model. The major steps in optimizing the HMRCGN2Nets model include: 

3.5. Optimization Using the Circulatory System Based Optimization (CSBO) 

CSBO is applied with this method in order to tune the weight parameters of the model 

HMRCGN2Nets. Through their dynamic adjustment, the performance of the model increases, while 

that of bias can be reduced at the minimum, minimizing costs, computational complexity, processing 

time, and error rate. The algorithm Circulatory System Based Optimization (CSBO) (Ghasemi 2023, 

Mojtaba 2023, et al.2023) simulates human body blood circulation and the blood flow process as a 

means for optimizing solutions to a search space. Below is a structured explanation of the CSBO 

algorithm, including key steps for hyperparameter optimization of the HMRCGN2Nets method, 

Figure 3 provides a detailed, step-by-step explanation of the CSBO approach. 

Step1: Initialization 

Define the search space for the hyperparameters of HMRCGN2Nets. Initialize the population of 

blood masses aGN with size populationM  using a random function within the defined problem range 

is given by equation (22): 

populationiiia MaGNGNCrandGNGN :1);(),1( minmaxmin 
 (22) 

where, iGNmin  and iGNmax  are minimum and maximum bounds for hyperparameters. C  

number of hyperparameters (dimensions), ),1( Crand random vector between 0 and 1. 

Step 2: Generation of Random Variables 

Generation of random variables involves creating numerical values from a defined probability 

distribution (e.g., uniform, normal) to introduce randomness in optimization, enabling diverse 

exploration of the search space. 

Step 3: Evaluation of Fitness Function 

Fitness function that evaluates the performance of the HMRCGN2Nets model based on the given 

hyperparameters. It aims to enhance model performance by minimizing the error rate and 

maximizing accuracy. This optimization process is mathematically expressed in Equation (23): 

   ihfunction cimizecimizefitness  maxmin 
   (23) 

where, hc  is used to reduce cost, computational complexity, processing time, and error rate, while 

ic simultaneously improving accuracy. 

Step 4: Exploration to improve accuracy 

Exploration in optimization refers to the process of searching new, unvisited regions of the 

solution space to discover diverse solutions and avoid getting trapped in local optima. 

 Blood Mass Movement in the Veins 

Each blood mass moves based on the imposed force or pressure, which reflects the gradient of 

the fitness function, is given by equation (24): 
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)()( 232311 GNGNqHGNGNqHGNGN aaaaa
new
a 

   (24) 

where, 1aH determines the direction of movement is given by equation (25): 

aab

ab
ab

GNEGNE

GNEGNE
V






)()(

)()(
   (25) 

where, aq random value between 0 and 1 controlling step size. 1GN , 2GN , 3GN  blood masses with 

different fitness values 

Initialization

Initialize the parameters of CSBO for optimizing the 
weight and bias parameters of HMRCGN2Nets

Random Generation

Fitness Function

Updation of CSBO for Optimizing the weight and 
bias parameters of HMRCGN2Nets

Exploration for improving accuracy

Exploitation for reducing error rate, processing time, 
computational complexity and cost

Halting Criteria 

Increased accuracy and minimizes error rate, 
computational complexity

Termination

l

Yes

No

 

Figure 3. A step-by-step explanation of the CSBO approach. 
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Step 5: Exploitation to lower the cost, computational complexity, processing time, and error 

rate 

Exploitation in optimization refers to refining and improving existing solutions by focusing on 

promising areas of the search space, using knowledge gained from previous evaluations to converge 

toward the optimal solution. 

 Pulmonary Circulation (Weaker Population Improvement) 

Weaker blood masses (solutions) enter pulmonary circulation to improve their fitness is given 

by equation (26): 

MPaCrande
al

randm
GNGN a

new
a :1),,1( 








   (26) 

where, 








al

randm
random normal number, ),1( Crande random value from Cauchy distribution. 

Step size aq  is adjusted for this weaker population is given by equation (27): 

MPaCrandqa :1),,1(     (27) 

 Systematic Circulation (Strong Population Refinement) 

Better solutions circulate systematically to explore better regions is given by equation (28): 

)(* ,1,3,1, bbab
new
ba GNGNqGNGN     (28) 

Update step size aq  based on fitness is given by equation (29): 

MTa
EE

EGNE
q

wrstbst

wrsta
a :1,

)(





    (29) 

where, bstE  and wrstE best and worst fitness values in the current iteration 

Step 6: Termination 

Repeat exploration and exploitation until maximum number of iterations l  reached or no 

significant improvement in the fitness value over several iterations or Convergence threshold is met. 

This section presents a comprehensive framework for predicting SMV using an AI-based 

Diagnostic Model built on a Holographic Multi-Relational Convolutional Graph Neural Network 

with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO). The model integrates 

advanced techniques to improve accuracy and reliability. Data preprocessing is managed by ARASN, 

which effectively addresses inconsistencies and noise, ensuring high-quality input data. Detailed 

patterns and relationships within the data are captured through EIT-based feature extraction. The 

HMRCGN2Nets model delivers optimal predictions, further refined through CSBO for enhanced 

performance. The following section explores the results in detail, demonstrating the effectiveness and 

broader implications of this predictive framework. 

4. Results and Discussions 

This section presents the results and evaluation of the suggested method, which was executed 

in Python. Table 2 provides specifics on the implementation parameters. 
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Table 2. Implementation Parameters. 

Parameters Description 

Proposed Neural Network 

OS 

Optimization 

Dataset 

Software 

HMRCGN2Nets  

Windows 10 

CSBO  

Stock Market Volatility  

Python 3.7 

4.1. Dataset Descriptions 

This section provides an in-depth analysis of predicting stock market volatility using an AI-

driven Diagnostic Model. The study utilizes the Stock Market Volatility dataset, with further details 

about the dataset provided in the following sections. 

Stock Market Volatility Dataset 

The Stock Market Volatility Dataset contains 5,000 daily records from 2020 to the present, 

capturing key financial indicators for AI-driven volatility analysis. It includes 10 features: Date, 

Stock_Price ($50-$500), Trading_Volume (1,000-1,000,000), Market_Index (1,000-5,000), Volatility 

(0.5-5), Sentiment_Score (-1 to 1), AI_Volatility_Prediction (Low, Medium, High), 

AI_Confidence_Score (0.60-0.99), Economic_Indicator (50-150), and News_Impact_Score (0-1). The 

dataset is structured for financial forecasting and AI-based market trend studies. Eighty percent of 

these are utilized for training, and 20 percent are used for testing. 

4.2. Performance Metrics 

The effectiveness of the proposed HMRCGN2Nets+CSBO method is evaluated by comparing it 

with several established approaches, including CNN-ANN [16], LSTM-SVM-ANN [17], Word2Vec-

LSTM [18], SA-DLSTM [19], MS-SSA-LSTM [20], NPMM [21], and PSO-LSTM [22]. The evaluation is 

based on various performance metrics, such as RMSE, MAPE, MSE, error rate, recall, F1 score, 

accuracy, MAE, precision, training time, computational complexity, and processing time. The 

mathematical formulations of these evaluation metrics are presented in Table 3. 

Table 3. Performance metrics. 

Performance metrics Equations (30-35) 

Precision 











 O

k k

kk

gMn

gsMn

B 1 |)(|

|)(|1

  (30)

 

Recall 








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 O

k k
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g
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|)(|1
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F1-Score 


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
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Accuracy 
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RMSE 2

,,
),(

,, )ˆ(
1

ji
ba

ji cc
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where, ks  represents the input data used for evaluating SMV, including historical price movements, trading 

volumes, market sentiment, and macroeconomic indicators. kg denotes the outcome of the volatility 

assessment process. B  is the total number of observations or data points in the dataset. Mn  refers to the AI-

driven method used for training the volatility prediction model. )( ksMn represents the predicted volatility 

values generated by the diagnostic model. jic ,,  is the actual observed volatility at a given time. jic ,,
ˆ  is the 

predicted volatility value. 

4.3. Performance Analysis of Proposed Methods 

This section evaluates the performance of the HMRCGN2Nets+CSBO method. Table 4 presents 

a comparison between the proposed approach and existing methods. 

Table 4. comparison of the suggested strategy with current practices. 

Methods  CNN-

ANN  

 

 

[16] 

LSTM-

SVM-

ANN  

 

[17] 

Word2

Vec-

LSTM  

[18] 

SA-

DLST

M  

 

[19] 

MS-

SSA-

LSTM  

[20] 

NPMM  

 

 

[21] 

PSO-

LSTM  

 

[22] 

HMRCGN2Nets+CS

BO  

 

 

(Proposed) 

Metrics 

Accuracy 

(%) 

90.8 97.2 93.4 91.7 94.3 96.7 92.5 99.9 

Recall  

(%) 

89.1 91.5 95.4 93.5 89.3 92.2 90.4 99.8 

Precision  

(%) 

90.1 93.4 95.5 89.7 92.4 94.7 96.8 99.8 

Specificity (%) 97.8 94.6 95.2 91.8 86.8 92.7 90.8 99.7 

F1-Score 

(%) 

96.3 90.4 91.4 95.8 93.9 94.7 89.5 99.6 

MSE 8.1 6.9 7.8 5.4 8.5 6.0 7.3 0.1 

MAE 9.8 8.4 6.2 7.9 7.4 8.5 9.2 2.0 

RMSE 6.0 7.8 8.5 9.2 8.4 7.3 6.8 2.1 

Table 4 compares the proposed HMRGCN2Net+s+CSBO model with other deep learning 

methods. The proposed model shows the highest performance across key metrics: accuracy (99.9%), 

recall (99.8%), precision (99.8%), specificity (99.7%), and F1-score (99.6%). It also achieves the lowest 

error rates with MSE (0.1), MAE (2.0), and RMSE (2.1), demonstrating its superior predictive accuracy 
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and consistency. These results highlight the model’s enhanced capability in handling complex data 

compared to existing approaches. Table 5 presents the analysis of the hypotheses. 

Table 5. Analysis of Hypotheses. 

Methods Computation

al Cost 

Complexity 

of 

Computation 

Speed Efficiency 

of 

Computatio

n 

Strongnes

s 

CNN-ANN [16] 0.90 0.70 0.20 0.15 0.28 

LSTM-SVM-ANN [17] 0.80 0.88 0.19 0.21 0.25 

Word2Vec-LSTM [18] 0.59 0.70 0.28 0.10 0.10 

SA-DLSTM [19] 0.78 0.85 0.30 0.20 0.21 

MS-SSA-LSTM [20] 0.60 0.67 0.45 0.39 0.18 

NPMM [21] 0.88 0.74 0.18 0.29 0.25 

PSO-LSTM [22] 0.72 0.87 0.21 0.20 0.30 

HMRCGN2Nets+CSBO  

(Proposed) 
0.01 0.04 0.99 0.99 0.99 

Table 5 compares different models based on computational cost, complexity, speed, efficiency, 

and strength. The proposed HMRGCN2Nets+CSBO model outperforms others with the lowest 

computational cost (0.01) and complexity (0.04), while achieving the highest speed (0.99), efficiency 

(0.99), and strength (0.99). This indicates that the proposed model is highly efficient and strong while 

maintaining minimal computational overhead, making it more effective and practical than other 

existing models for complex tasks. Figure 4 shows the (a) AI confidence score distribution and (b) 

Sentiment score distribution, 

(a) (b)  

Figure 4. The (a) AI confidence score distribution and (b) Sentiment score distribution. 

Figure 4 presents two histograms: (a) shows the distribution of AI confidence scores, which are 

concentrated between 0.60 and 1.00, with notable fluctuations and a visible density curve indicating 

variation in model confidence. (b) displays the sentiment score distribution, spanning from -1.00 to 

1.00, indicating a more balanced spread of positive and negative sentiment scores. The smoother 

density curve suggests more uniformity in sentiment classification. Both graphs highlight the 
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frequency of different score values, reflecting the AI model’s performance and sentiment analysis 

balance. Figure 5 shows the (a) Market index vs. volatility and (b) volatility vs. stock price, 

(a) (b)  

Figure 5. The (a) Market index vs. volatility and (b) volatility vs. stock price. 

Figure 5 presents two scatter plots: (a) shows the relationship between Market Index and 

Volatility, with AI predictions color-coded as Low (blue), Medium (orange), and High (red). The 

spread indicates no clear pattern, suggesting unpredictability in volatility across the market index. 

(b) Illustrates Volatility vs. Stock Price with a dense red scatter, showing a uniform spread and no 

obvious correlation. Both plots highlight the complex and seemingly random nature of volatility in 

relation to market index and stock prices. Figure 6 shows the (a) AI volatility prediction counts and 

(b) stock price trend over time, 

(a) (b)  

Figure 6. The (a) AI volatility prediction counts and (b) stock price trend over time. 

Figure 6 shows two plots: (a) illustrates AI volatility prediction counts, where the Low category 

dominates with nearly 2000 counts, while High predictions are fewer, and Medium predictions are 

absent, indicating a skewed prediction pattern. (b) Depicts the stock price trend over time, showing 

high volatility and frequent fluctuations from 2000 to 2014. The dense clustering of data points 

suggests consistent market activity, but no clear upward or downward trend, reflecting complex 

stock price behavior over time. Figure 7 shows the model accuracy as well as loss, 
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Figure 7. The model accuracy as well as loss. 

Figure 7 shows the model’s accuracy as well as loss over 200 epochs. The training accuracy 

(orange) quickly reaches 1.0, indicating perfect learning, while the validation accuracy (blue) 

stabilizes near 1.0, suggesting good generalization. The training loss (green) and validation loss 

(purple) drop rapidly and stabilize close to zero, indicating effective model convergence with 

minimal error. The rapid improvement and consistent performance reflect a well-trained model with 

high accuracy and low overfitting risk. Figure 8 shows the (a) trading volume distribution and (b) 

news impact score vs. volatility, 

(a) (b)  

Figure 8. The (a) trading volume distribution and (b) news impact score vs. volatility. 

Figure 8 presents’ two plots: (a) shows the trading volume distribution, which appears relatively 

uniform with moderate variation and a smooth density curve, indicating consistent trading activity 

across different volumes. (b) Depicts the relationship between news impact score and volatility, 

represented by a dense scatter plot of orange points. The even spread suggests no clear correlation 

between news impact scores and market volatility, implying that news events may not have a 

predictable effect on volatility levels. Figure 9 shows the correlation heat map, 
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Figure 9. The Correlation Heatmap. 

Figure 9 shows a correlation heatmap representing the relationships between various financial 

metrics. With blue denoting negative correlations and red denoting positive correlations, the color 

intensity represents the direction and degree of correlations. Stock price, trading volume, market 

index, and other factors show weak correlations (close to zero), and suggesting minimal linear 

relationships among them. The diagonal values are all 1.0, representing perfect self-correlation. The 

overall weak correlations reflect complex and non-linear interactions in financial data. Figure 10 

shows the function value over iterations in 3D space. 

 

Figure 10. The function value over iterations in 3D space. 

Figure 10 presents a 3D surface plot showing the function value over iterations. The x and y axes 

represent iteration values, while the z-axis shows the function value. The color gradient, from purple 

(low) to yellow (high), indicates changes in function value. Peaks and valleys in the surface suggest 

the function’s complex behavior, with sharp increases and decreases. This visualization helps analyze 

optimization patterns and convergence behavior during model training or mathematical function 

evaluation. Figure 11 shows the economic indicator, 
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Figure 11. The economic indicator. 

Figure 11 shows the density distribution of the economic indicator. The plot reveals a relatively 

uniform distribution with slight variations, indicating that the economic indicator values are fairly 

evenly spread across the range of approximately 40 to 160. The density peaks are consistent, 

suggesting that certain economic indicator values appear more frequently. The smooth curve reflects 

a balanced spread without significant skewness or clustering, implying stable economic performance 

over the observed period. 

4.4. A Comparison of the Suggested Approach with Existing Techniques Statistically 

The efficacy of the suggested method is assessed using five statistical tests: the Shapiro-Wilk 

(SW) as well as Kolmogorov-Smirnov (KS) tests for normalcy testing, the Kruskal-Wallis H test, the 

Wilcoxon Signed-Rank (WSR) test, and the Friedman (FT) test. Table 6 presents an analysis of 

variance between the suggested approach and current approaches. 

Table 6. Statistical Comparison of the Proposed Approach with Existing Approaches. 

Methods SW 

Test 

p-

Value 

WSR 

test / U-

test p-

Value 

H-test 

p-

Value 

KS test 

p-

Value 

FT p-

Valu

e 

Mean Standard 

Deviatio

n 

Variance 

Inflation 

Factor 

CNN-ANN [16] 0.470 0.380 0.69 0.079 0.090 278,700.17 3,310.19 1.95 

LSTM-SVM-

ANN [17] 

0.360 0.270 0.75 0.068 0.077 460,990.20 2,220.65 1.89 

Word2Vec-

LSTM [18] 

0.390 0.170 0.89 0.090 0.087 81,800.37 3,175.81 1.77 

SA-DLSTM [19] 0.420 0.260 0.70 0.067 0.060 384,925.21 2,320.92 1.81 

MS-SSA-LSTM 

[20] 

0.310 0.399 0.92 0.078 0.075 282,450.91 1,143.74 1.90 

NPMM [21] 0.355 0.437 0.80 0.080 0.080 69,780.51 5,322.80 1.70 

PSO-LSTM [22] 0.282 0.310 0.78 0.098 0.091 66,840.50 1,382.89 1.49 

HMRCGN2Nets

+CSBO  

(Proposed) 

<0.001 <0.001 <0.001 <0.001 <0.00

1 

65,923.20 6,599.93 1.001 

Table 6 presents a statistical comparison of the proposed HMRGCN2Nets+CSBO approach with 

existing methods. The proposed model shows the lowest p-values (<0.001) across SW, WSR, H, and 

KS tests, indicating strong statistical significance. It achieves the lowest mean (65,923.20), standard 

deviation (6,599.93), and variance inflation factor (1.001), reflecting high consistency and low 

variability. The FT test value of 1 confirms its robustness. These results demonstrate the proposed 

model’s superior stability and predictive reliability. 
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4.5. Ablation Study of the Suggested Approach 

The ablation study demonstrates the incremental contributions of each component in the 

HMRCGN2Nets+CSBO model. Table 7 presents the findings of this analysis for the proposed 

approach. 

Table 7. Ablation study. 

Model Configuration HCNN MRGAT CSBO Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score  

(%) 

Baseline (Without 

CSBO) 

✔ ✔ ✘ 90.3 92.1 93.5 94.8 

HCNN Only ✔ ✘ ✘ 81.8 79.3 76.9 80.1 

MRGAT Only ✘ ✔ ✘ 82.6 80.8 78.9 83.9 

HCNN + CSBO ✔ ✘ ✔ 89.5 90.9 89.7 91.3 

MRGAT + CSBO ✘ ✔ ✔ 88.7 91.5 88.9 92.4 

Full Model 

(HMRCGN2Nets+CSBO) 

✔ ✔ ✔ 99.9 99.8 99.7 99.6 

Table 7 evaluates ablation study contribution of HCNN, MRGAT, and CSBO components to the 

model’s performance. The full model (HMRGCN2Nets+CSBO) achieves the highest accuracy (99.9%), 

precision (99.8%), recall (99.7%), and F1-score (99.6%). Removing any component reduces 

performance, with the largest drop seen when HCNN or MRGAT is absent. The results highlight that 

combining all three components enhances overall model performance, confirming their individual 

and collective importance in achieving optimal predictive accuracy and consistency. 

4.6. Discussion 

The proposed HMRCGN2Nets+CSBO model demonstrates outstanding predictive accuracy and 

efficiency in forecasting stock market volatility. The thorough comparison with well-known models 

as CNN-ANN, LSTM-SVM-ANN, as well as PSO-LSTM demonstrates the superiority of the 

suggested approach. It maintained the lowest error rates with MSE (0.1), MAE (2.0), and RMSE (2.1) 

while achieving the maximum accuracy (99.9%), recall (99.8%), precision (99.8%), specificity (99.7%), 

as well as F1-score (99.6%). These outcomes demonstrate how well the model handles dynamic and 

complex financial data in comparison to alternative deep learning techniques. According to the 

performance analysis, HMRCGN2Nets+CSBO performs exceptionally well in terms of both accuracy 

and computational efficiency. It recorded the lowest computational cost (0.01) and complexity (0.04), 

while achieving the highest speed (0.99) and efficiency (0.99). This shows that not only is the model 

highly accurate but it is also light on computation, rendering it usable in real-time analysis of stock 

markets. Ablation study further validates each of the component’s (HCNN, MRGAT, and CSBO) 

contribution in terms of improvement in model performance. The entire model performs better than 

individual or partially combined versions, demonstrating the fact that bringing together all of them 

is needed to achieve peak predictive accuracy. Statistical testing supports the validity and accuracy 

of the model proposed. The model had the lowest p-values (<0.001) under the SW, WSR, H, and KS 

tests, which signify very high statistical significance. It had the lowest mean (65,923.20) and variance 

inflation factor (1.001), which suggest its stability and robustness under varying market 

environments. Visual analysis of AI confidence scores, sentiment scores, and market indices displays 

the model’s ability to capture intricate financial patterns. The proposed model’s capacity for adjusting 

to different market conditions and delivering constant high accuracy makes it a powerful financial 

forecasting and strategic planning resource. These results define HMRCGN2Nets+CSBO as an 

extremely effective and accurate solution for stock market volatility forecasting. 
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5. Conclusions 

In this manuscript, the HMRCGN2Nets+CSBO is successfully implemented. The input data 

which are derived from the Stock Market Volatility dataset are pre-processed initially through the 

ARASN method and further feature extraction through the EIT method. The prediction of the SMV 

by an AI Diagnosis Model is given to the HMRCGN2Nets model, and the optimization is done 

through the CSBO approach to facilitate precise measurement of Stock Market Volatility by an AI 

Diagnosis Model. The system is designed through Python. The proposed HMRCGN2Nets+CSBO 

approach is tested with the Stock Market Volatility dataset with a very high accuracy of 99.9% and 

an extremely low rate of error of 0.1%. This reflects how good it can perform and grow in the future 

for this area and also reflects how good it is compared to existing methods. Future research can focus 

on improving model scalability, incorporating real-time data feeds, optimizing circulatory strategies, 

enhancing interpretability, and scaling the model to various financial markets to enhance predictive 

performance and resilience to different market conditions. 
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