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Abstract: Stock Market Volatility (SMV) study with an Al diagnosis model examines stock market
movements with artificial intelligence to detect changes, forecast trends, and evaluate risks in order
to make wiser financial decisions. Investors, analysts, and policymakers alike are confronted with
stock market volatility because it is dynamic and difficult to predict. Most traditional models do not
have the ability to represent dynamic interactions between financial instruments. To counter these
challenges, this study suggested a Holographic Multi-Relational Convolutional Graph Neural
Network with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO) architecture. Inputs
of data are taken from the Stock Market Volatility dataset. These data are preprocessed initially using
A Reversible Automatic Selection Normalization (ARASN) method. Features are extracted using
Efficient Inception Transformer (EIT). Future Prediction of the SMV with an Al Diagnosis Model is
subjected to the Holographic Multi-Relational Convolutional Graph Neural Network
(HMRCGNZ2Nets), again optimized using the Circulatory System-Based Optimization (CSBO). Stock
Market Volatility dataset is used to determine how effective the proposed model
HMRCGN2Nets+CSBO is, with a whopping accuracy of 99.9% and a 99.8% recall. The proposed
method is implemented on the Python platform. The result of the suggested HMRCGN2Nets+CSBO
model proved to be outstanding in forecasting stock market volatility. It successfully improved
accuracy and recall over standard techniques and maximized decision-making and risk management
techniques in financial markets through sophisticated data processing and predictive methods.

Keywords: a reversible automatic selection normalization; circulatory system-based optimization;
efficient inception transformer; holographic multi-relational convolutional graph neural network;
stock market volatility

1. Introduction

The major impacts of stock market volatility raise concern among investors and financial
analysts along with policymakers (Rahmani 2023; Amir Masoud 2023, et al.2023). Price volatility of
financial instruments over a given period comes to be called volatility that reflects both market risks
and unforeseen elements. Increasing market uncertainty typically triggers enhanced price instability
that causes rapid market movements in conjunction with high investment risks (Zhang 2023; Yue-
Jun 2023; Han Zhang 2023; Rangan Gupta 2023). Stock market volatility calls for expertise for the
traders to come up with sound strategies as well as well-tested risk control structures and make
logical investment choices. Financial market prediction calls for high-level analysis due to the fact
that they are unpredictable but ride on many economic indicators combined with world events as
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well as emotions of the investors as per studies (Liu 2023; Fang 2023; Muhammad Umair 2023; Junjun
Gao 2023). Previous data collections of prices determine statistical rules for market returns as the
bases of such predicting models (Wu 2023; Feng-lin 2023; et al.2023). Investigations by configurations
ongoing unveil market patterns still effectively but find detection of more complex market non-linear
relations coupled with speedy markets changes in line with current problems (Salisu2022; Afees
A.2022; et al.2022; Bakry2022; Walid 2022). Methods of conventional prediction lack poor
performance in the adapting to changing volatility that result due to disruptions and changes in
markets, changes in investor beliefs and economic disruption. Advanced development of artificial
intelligence opens up opportunities for enhancing forecasting accuracy and responsiveness of
volatility via research in (Liu 2023, Shasha 2023, Huixian Zhao 2023, Gaowen Kong 2023). Refining
market conditions and complex pattern recognition are achievable via deep learning and machine
learning algorithms that are Al-based per (Liu 2022, Min 2022). Suitable financial data analysis results
from machine learning methods because they boost prediction accuracy while revealing otherwise
hidden patterns in the data (Chen 2023, Shengming 2023, et al. 2023. Xiuzhen, Xie 2022, Wenxiu
Zheng 2022, and Muhammad Umair 2022). Al models for diagnosis are designed to improve
volatility prediction through the combination of adaptive learning algorithms with real-time data
processing. In contrast to traditional models, AI models can accept a wider range of data inputs,
including macroeconomic indicators, market sentiment, news headlines, and social media opinions
(Gao 2022, Yang2022, et al.2022.). This allows them to be able to observe the bigger picture of market
trends more effectively and respond to new information more easily (Kundu 2022, Srikanta 2022, and
Amartya Paul 2022). For example, sentiment analysis based on natural language processing (NLP)
enables Al models to quantify market sentiment and predict how investor sentiment might influence
future price swings. Beyond this, Al models can leverage ensemble learning, where combinations of
different algorithms are employed to improve overall forecasting capability and robustness (Liu 2023,
Min 2023, et al. 2023. Khan 2022, Wasiat 2022). Nevertheless, even with these advances, significant
challenges remain in applying Al for volatility forecasting. Geopolitics, monetary policy shifts, and
unexpected economic shocks are some of the many interconnected variables that affect financial
markets and are hard to forecast with precision by any model (Lin 2022, Yu2022; et al.2022). Existing
methods, such as GARCH and stochastic volatility models, struggle to handle high-frequency data
and nonlinear market behavior, often failing to adapt to sudden market changes and structural shifts
effectively. This study aims to address the problems identified.

Novelty As Well As Contribution

The Contribution and Novelty of the paper is as follows:

>  To develop HMRCGN2Nets+CSBO architecture for improved stock market volatility prediction
by enhancing model accuracy and relationship modeling.

»  To preprocess Stock Market Volatility data using the ARASN approach, aiming to enhance data
quality, improve model accuracy, and ensure reversible normalization for better interpretability
and consistency in analysis.

» To extract key features from Stock Market Volatility data using the Efficient Inception
Transformer (EIT).

>  To predict Stock Market Volatility using an Al Diagnosis Model with HMRCGN2Nets optimized
through CSBO, enhancing prediction accuracy, capturing complex relationships, and improving
model efficiency for reliable market trend forecasting.

The remaining manuscript is divided into 5 sections: section two, literature review; section three,
suggested methods; section four, results and discussion; and section five, conclusion and upcoming
projects.

2. Literature Survey
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The papers related to A Study of Stock Market Volatility using an AI Diagnosis Model based on
neural network methods are given below:

In 2023, Mukherjee, et al. (Mukherjee 2023, Somenath 2023, et al.2023) has introduced CNN-
ANN popular models for stock market price prediction. ANN (artificial neural networks) repeats
recursively, predicting future the values of data from the previous few days. Significant results have
been obtained via deep learning optimization;, CNN-ANN both achieved 98.92% and 97.66%
accuracy, respectively. CNN (Convolutional neural networks) employs a novel method for
evaluating quantized datasets: 2-D histograms. The effectiveness of these algorithms for predicting
the stock market was demonstrated by an example investigation regarding the COVID-19 pandemic,
which revealed a 91% accuracy rate.

In 2023, Sheth, et al. (Sheth 2023, Dhruhi 2023, Manan Shah 2023) has introduced a LSTM-SVM-
ANN based method for stock market prediction. They do have some shortcomings, though, which
are being fixed to enhance subsequent outcomes. Because it can take into account intricate, non-linear
correlations and patterns, ANNs which depends on neural networks, tend to get the greatest results.
Better outcomes are anticipated in the future using Support Vector Machine (SVM), a relatively
young technique. A possible disadvantage of Long Short-Term Memory (LSTM) is that it only
produces decent results when an expansive dataset is supplied.

In 2023, Chandola, et al. (Chandola 2023, Deeksha 2023, et al. 2023) has presented a Word2Vec-
LSTM technique to predict stock values using news headlines and financial time data. The model is
designed to assist investors in making more informed decisions by forecasting the trend of stock price
movement. The performance of the model is measured by its ability to forecast the direction of change
in stock prices for five firms in various industries. This approach addresses the challenges in
forecasting stock market conditions due to their volatility and complexity.

In 2023, Zhao, et al. (Zhao 2023, Yanli 2023, Guang Yang 2023) has proposed a SA-DLSTM, a
stock market as well as simulation trading prediction hybrid model. It combines long short-term
memory models (LSTM), denoising autoencoders (DAE) models, and emotion-enhanced
convolutional neural networks (ECNN). The most important features of stock trading data are
extracted and enriched with user comments. The method generates reliable sentiment indexes by
considering the speed at which emotions shift. The experiment results indicate high return and risk
performance along with greater accuracy of prediction, facilitating investors to make informed
choices.

In 2023, Mu, et al. (Mu 2023, Guangyu 2023, et al. 2023) has presented a MS-SSA-LSTM method
for forecasting stock prices that integrates deep learning, swarm intelligence, and sentiment analysis.
It optimizes the Long and short-term memory network (LSTM) parameters using the Sparrow Search
Algorithm and a special sentiment vocabulary from the East Money forum. The model has a high
degree of universal applicability and performs better than other models. The study discovered that
China’s significant market instability makes it appropriate for short-term prediction, that LSTM
hyperparameters may be optimized via SSA, and that adding an emotional index improves predictive
performance.

In 2023, Han, et al. (Han 2023, Yechan 2023, Jaeyun Kim 2023, David Enke 2023) has introduced
an N-Period Min-Max (NPMM) branding method to get around price change sensitivity, which labels
data at particular time points. Additionally, it creates an automatic trading system with XGBoost. The
approach is compared to other well-known labeling techniques and tested on 92 NASDAQ
companies. According to the study, NPMM is an effective and superior technique for predicting stock
price trends.

In 2022, Jiao, et al. (Jiao 2022, Xingrui 2022, et al.2022) has presented a text mining-based neural
network PSO-LSTM model for forecasting crude oil market volatility. Textual components from news
headlines, such as risk factors, sentiment toward investor’s classifications, and emotional polarity
score, are combined with other market actions to improve forecasting results. A deep learning LSTM
model is optimized using PSO (particle swarm optimization) to enhance predicting. The study found
that the PSO-LSTM strategy reduced predicting accuracy as well as MAE by 5.12% as well as 6.77%,
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respectively, when compared to the PSO-LSTM strategy that excluded textual features. Table 1
provides a summary of the examined methodology.

Table 1. An overview of the method under evaluation.

Xingrui, et al.)

Mukherjee, et CNN-ANN Deep learning Computationally intensive
al. (Mukherjee, optimization improves due to deep learning
Somenath, et predictive performance. models. Requires large
al.) CNN uses a novel method datasets for effective
(2D histograms) for training.
dataset evaluation.
Sheth, et al. LSTM-SVM- Considers complex, non- LSTM requires large
(Sheth, Dhruhi, ANN linear correlations and datasets to perform well.
and Manan patterns. ANN and SVM High computational cost
Shah) enhance prediction and complex training
accuracy. process.
Chandola, et al. | Word2Vec-LSTM | Considers both financial Dependent on the quality
(Chandola, time series and news of the text data and
Deeksha, et al.) headlines. Improves financial reports.
decision-making by Complexity increases with
forecasting stock price multi-source data.
direction.
Zhao, et al. SA-DLSTM Combines LSTM, DAE, High model complexity
(Zhao, Yanli, and ECNN for better increases computational
and Guang feature extraction. cost. Sentiment analysis
Yang) Considers emotional can be sensitive to noise in
changes to enhance user-generated data.
prediction.
Mu, et al. (Mu, MS-SSA-LSTM Sentiment analysis Market instability can lead
Guangyu, et improves predictive to overfitting. Requires
al.) accuracy. specialized sentiment
Suitable for short-term vocabulary for different
prediction in volatile markets.
markets.
Han, et al. NPMM Market instability can lead | Performance depends on
(Han, Yechan, to overfitting. Requires the quality of labeled data.
Jaeyun Kim, specialized sentiment May not generalize well to
and David vocabulary for different non-NASDAQ markets.
Enke) markets.
Jiao, et al. (Jiao, PSO-LSTM Combines text mining Sensitive to noise in textual

with market data for better

predictions. Particle

Swarm Optimization
enhances LSTM

performance.

data. PSO adds
computational complexity
and longer training time.

Problem Statement

Stock market volatility presents significant challenges for investors and financial analysts due to
its unpredictable nature and complex underlying factors. Traditional models often fail to capture the
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dynamic, multi-relational, and interconnected structure of financial markets, leading to suboptimal
predictions and increased risk. Hierarchical structures and multi-relational dependencies in the
patterns of stock market data pose great challenges to today’s deep learning models in realizing their
fullest capabilities. Also, the durability and accuracy of the predictions provided by these models are
further limited due to a lack of a suitable optimization system. To deal with these difficulties, this
paper presents an Al-diagnosis model via a Holographic Multi-Relational Convolutional Graph
Neural Network with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO) approach.
The model seeks to encapsulate the intricate, interdependent relationships of stock market data and
enhance the accuracy of volatility prediction through the use of multi-relational graph structures and
biologically inspired optimization techniques, thus facilitating better decision-making and risk
management approaches.

3. Proposed Methodology

This part presents the Holographic Multi-Relational Convolutional Graph Neural Network with
Circulatory System-Based Optimization (HMRCGN2Nets+CSBO), a new framework specifically
designed to analyze SMV via an advanced Al Diagnosis Model. The introduced model adopts a
structured five-stage method to make sure of correct and reliable prediction: (1) Data Collection —
Collects in-depth and applicable data from the Stock Market Volatility Dataset in order to develop a
robust platform for analysis. (2) Preprocessing —Enhances the quality of data by handling missing
values, removing outliers, Cleans, normalizes, and ensuring consistency. (3) Feature Extraction —
Finds and identifies important patterns, trends, and contributing factors from the preprocessed data
to improve model performance. (4) Prediction — Uses the extracted features to make precise
predictions regarding stock market volatility. (5) Optimization — Enhances prediction accuracy by
dynamically adjusting model parameters through a circulatory system-based optimization approach,
ensuring adaptive learning and improved performance over time. Figure 1 illustrates the detailed
workflow of the suggested HMRCGN2Nets+CSBO model, highlighting the interaction between
different stages and the continuous feedback loop that refines the model’s predictive capabilities.

Stock Market ARASN EIT HMRCGN2Nets

. -t~ S i =~
Volatility Dataset e 7 . / ..
[ —— . B \ .

Data Collection

Preprocessing Feature Extraction Prediction

m

Optin-Ti-za;tion
Figure 1. The detailed workflow of the suggested HMRCGN2Nets+CSBO model.

3.1. Data Collection

In this research, the input data comes from the Stock Market Volatility Dataset. The Stock Market
Volatility Dataset contains 5,000 daily records from 2020 to the present, capturing key financial
indicators for Al-driven volatility analysis. It includes 10 features: Date, Stock_Price ($50-$500),
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Trading_Volume (1,000-1,000,000), Market_Index (1,000-5,000), Volatility (0.5-5), Sentiment_Score (-
1 to 1), Al_Volatility_Prediction (Low, Medium, High), AI_Confidence_Score (0.60-0.99),
Economic_Indicator (50-150), and News_Impact_Score (0-1). The dataset is structured for financial
forecasting and Al-based market trend studies.

The data under consideration in this study undergo extensive preprocessing, which is
thoroughly explained in the following discussions.

3.2. Pre-Processing Using A Reversible Automatic Selection Normalization (ARASN)

The RASN framework preprocesses stock market data using adaptive normalization, utilizing
the z-score, interval, integer calibration, and min-max techniques to standardize data, improve
consistency, and enhance model training and prediction accuracy. A Reversible Automatic Selection
Normalization (ARASN) (Jin 2022, Xuebo 2022, et al. 2022) approach is to preprocess stock market
volatility data for improving the prediction performance of an Al-based diagnosis model. The RASN
framework includes some parts as below,

e Adaptive Normalization Layer

This layer processes input data using four different normalization methods to enhance data
consistency and correlation, The Min-Max Normalization scales data between 0 and 1, it is given by
equation (1):

. c—min
=" 1)
max— min
The Interval Normalization scales data to a specific range[a, b], is given by equation (2):

é:e_l_(d—e)(c—min)

; @)
max— min
The Decimal Calibration scales data based on the decimal position is given by equation (3):
~ c
c= ®)

U
107log[d] ., ]
The Z-Score Normalization scales data to have zero mean and unit variance is given by equation

(4):

A ¢ —mean
c= (4)

Jvariance +1x10°°
The layer calculates key statistics (mean, variance, min, max, decimal shift) using an

exponentially weighted average to adapt to changing data patterns is given by equation (5):
runn_mean, = a * running mean,_, +(1—a)v,

®)
e  Adaptive Inverse Normalization Layer

Adaptive Inverse Normalization Layer performs the reverse of the normalization process to
restore data to its original scale after prediction. It uses trainable scaling and a translation factor to
adapt to nonstationary data is given by equation (6):

B, =ck,. +¢ (6)
. Normalization Method Selection Module

Selects the best normalization method based on the lowest error values, it is given by equation
@):
mode < minimize RMSE,

‘mode * MAEmode ) 7)

The RASN framework preprocesses stock market data using adaptive normalization, which
applies four methods to handle different data characteristics. A GRU-based deep learning model
captures time-series dependencies effectively. Adaptive renormalization ensures reversibility and

consistency by restoring normalized data to its original scale. The choice module cross-compares
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prediction performance by RMSE and MAE, and chooses the optimum normalization scheme for
improving the accuracy of the predictions. The technique of feature extraction is utilized for
extracting essential features from data and the summary is given below.

3.3. Feature Extraction Using Efficient Inception Transformer (EIT)

Following preprocessing, feature extraction takes place. The Efficient Inception Transformer
(EIT) (Fu 2022, Lihua 2022, et al.2022) is an advanced feature extraction model derived from the
Inception Transformer framework. It integrates the benefits of both convolutions as well as self-
attention operations in handling complex time-series data, such as stock exchange volatility. Time-
series data with dimensions constitute the input data set. Fine-grained temporal models are crucial
to the stock market volatility analysis, and this allows the model to extract them. The Enhanced Feed-
Forward Network (E-FFN) and Inception of Multi-Head Self-Attention (Incep-MHSA) blocks from
the encoder.

e Incep-MHSA

Inspired by InceptionNet, Incep-MHSA processes input through three parallel branches: Depth-
wise convolution with kernel size 1x D to capture local dependencies is given by equation (8):

Gl = gVGDxl (gVGlxD (Z)) ( 8)
Depth-wise convolution with kernel size 3 x 3 for spatial context is given by equation (9):
3
G, =gvG (2) ©)
Average pooling followed by depth-wise convolution to capture broader patterns given by
equation (10):
R, = gvG’ (avgpooling 7)) (10)
The combined feature map is flattened and concatenated equation (11):
C = lyernom(concadinate(G,,G,,R,)) (11)
e E-FFN

The feed-forward network enhances feature representations using 2D locality. First, the input
sequence is reshaped into a 2D feature map is given by equation (12):

)/in = Sequenceinage(yattension) (12)

The decoder reconstructs the output by upsampling and combining multi-scale features:
Features at each scale are upsampled to a common size and concatenated.

The Efficient Inception Transformer (EIT) model effectively captures both short-term (fine-
grained) and long-term (coarse) patterns in stock market data, including price trends, market
momentum, and volatility spikes. By combining convolution for local patterns and self-attention for
global dependencies, it reduces computational complexity through depth-wise convolutions and
multi-scale feature extraction. This enables improved attention to key market movements and
enhances the model’s ability to predict sudden market changes, leading to more accurate forecasting
of stock market volatility. These features are subsequently utilized to predict Stock Market Volatility
using an Al Diagnosis Model, with detailed explanations provided below.

3.4. Prediction Using Holographic Multi-Relational Convolutional Graph Neural Network
(HMRCGN2Nets)

The HMRCGN2Nets model improves feature handling of the extracted features through the
incorporation of a Holographic Convolutional Neural Network (HCNN) and a Multi-Relational
Graph Attention Network (MRGAT) for predicting Stock Market Volatility via an Al Diagnosis
Model. In order to improve predictive precision, we present the Holographic Multi-Relational
Convolutional Graph Neural Network (HMRCGN2Nets) model. A marriage of the above two
architectures taps both convolutional learning and graph relational attention based on the concept to
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capture both spatial, temporal, and relational dependencies within the data in stock markets. Below
is a vivid description of the proposed approach,

3.4.1. Holographic Convolutional Neural Network (HCNN)

A Holographic Convolutional Neural Network (HCNN) (Wagner 2019, Kelvin H.2019, Sean
McComb 2019) is an optical neural network structure based on holography and convolution to handle
intricate data. In stock market volatility prediction, an HCNN can facilitate high-throughput
computation.

The input signal ¢, represents the optical neural activity at position and wavelength77. The

field is a weighted sum of Gaussian pixel spots with width v and spacingb is given by equation
(13):

e(Za W) = 2F0 Z € p(Z —C- an W= hq)sl(hoo—/ll)

ih

(13)
where, €, neural activity at position (7,/). p(z, w) Gaussian spot function. ko is wave vector.
« is angular frequency. c lens axis offset. This field undergoes a Fourier transform using a lens of
focal length, producing the Fourier-domain signal is given by equation (14):
N(a,b;c) =zF, Z e, pla+co,,b+cr,)xs PHOmD g [m? 0 —gls M (14)

ih

where, p(a,c)Fourier transform of Gaussian beam. cO, is a weight parameter. €7, is a bias

parameter. A polarization-switching phase-conjugate reflector (PCM) is used to phase-conjugate the
output signal. Photorefractive interference is used to dynamically record the convolutional weights
in a holographic material: The convolutional weights are dynamically adjusted as a result of the
interference between the backpropagated error signal and the phase-conjugated forward beam.

An HCNN uses pixel-based optical patterns to encode historical market data, such as stock
prices and trading volume, in order to forecast stock market volatility. During forward propagation,
this data is processed through dynamic holographic convolutional layers to extract market patterns.
Phase-conjugation in backpropagation adjusts error signals based on market fluctuations. The
holographic recording dynamically updates convolution weights to improve accuracy. The trained
HCNN then predicts future volatility by analyzing the learned market patterns in real-time with high
computational throughput. HCNN-based stock market prediction relies on dynamic optical learning,
where holographic interference enables adaptive adjustment of convolutional weights providing fast,
high-throughput insights into market volatility.

3.4.2. Multi-Relational Graph Attention Network (MRGAN)

A graph-based deep learning model called Multi-Relational Graph Attention Network
(MRGAT) (Dai 2022, Guoquan 2022, et al.2022) is capable of efficiently capturing the intricate
connections and relationships among various items in a knowledge graph. MRGAT portrays the
financial sector as a homogenous graph, with nodes standing for financial companies and edges for
relationships, when used to anticipate stock market volatility. A stock market can be represented as
a multi-relational directed graph is given by equation (15):

¥=w.N,J) (15)
where, I/ set of entities (e.g., stocks, companies). J set of edge types (e.g., correlation, causation).
N set of edges (e.g., specific relationships between entities). An edge (V,s,7)means that there is a
relationship of type s betweennode v and node n . Figure 2 shows the architecture of MRGAT,
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Figure 2. The Architecture of MRGAT.

. Encoder

MRGAT uses an Encoder-Decoder framework, where the encoder learns node embeddings by
aggregating neighborhood information using attention. To handle multiple types of relationships in
a heterogeneous graph, MRGAT defines separate query and key matrices for each relation type. For
a central node and its neighbor with relation, the query and key vectors are computed as equation
(16 and 17):

p =k,0, (16)
hi =kH, (17)
where, k , embeddings of nodes. O, trainable query and key matrices for relation s . £ dimension

of query and key vectors. The attention score is calculated using the dot product between the query
and key vectors is given by equation (18):

pih;

Jji \/E

The aggregation module combines the neighborhood information based on the attention scores

a (18)

given by equation (19):
k, =Y ekX (19)
ieM;
where, € attention score of neighbour. For multi-head attention, the embeddings from multiple
attention heads are concatenated. To retain the original node information, a residual connection is
applied is given by equation (20):
. |z
k' = oo(kj +h, X ) (20)
where, ®0is an activation function (e.g., ReLU).
¢  Decoder

The decoder predicts stock market volatility based on the node representations generated by the
encoder. MRGAT adopts Conv-TransE as the decoder, which captures entity-relationship
interactions using convolutional layers. The score for the triplet is passed through a sigmoid function
to generate a probability is given by equation (21):

q(k, s, J) = o(y(k,s, /) (21)

In stock market volatility prediction using MRGAT, nodes represent stocks, market indicators,
and external factors, while edges capture relationships like correlations, market events, and
dependencies. The encoder generates embeddings that encode both neighborhood and global
structural information using a multi-relational attention mechanism, which assigns different
importance to various relationships. The decoder then computes the probability of a stock
experiencing high or low volatility based on these learned embeddings, enabling more accurate and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0767.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0767.v1

10

context-aware predictions. MRGAT can predict stock market volatility by learning the dynamic
relationships between stocks, market indicators, and external factors, leading to more accurate and
context-aware predictions.

The HCNN module takes local temporal patterns and market indicators by convolving historical
stock prices with convolutional layers, effectively extracting short-term trends and patterns. The
MRGAT module captures intricate cross-asset dependencies and market organizations with graph
attention, enabling the model to emphasize important inter-stock relationships and market drivers.
The integration of HMRCGN2Nets improves the model’s capacity to predict volatility under multi-
relational, nonlinear environments by combining both temporal and relational knowledge, resulting
in more precise and reliable predictions. In order to enhance the precision of predictions while
reducing error rates, processing time, complexity, and expenses, the CSBO approach optimizes the
HMRCGN2Nets model. The major steps in optimizing the HMRCGN2Nets model include:

3.5. Optimization Using the Circulatory System Based Optimization (CSBO)

CSBO is applied with this method in order to tune the weight parameters of the model
HMRCGN2Nets. Through their dynamic adjustment, the performance of the model increases, while
that of bias can be reduced at the minimum, minimizing costs, computational complexity, processing
time, and error rate. The algorithm Circulatory System Based Optimization (CSBO) (Ghasemi 2023,
Mojtaba 2023, et al.2023) simulates human body blood circulation and the blood flow process as a
means for optimizing solutions to a search space. Below is a structured explanation of the CSBO
algorithm, including key steps for hyperparameter optimization of the HMRCGN2Nets method,
Figure 3 provides a detailed, step-by-step explanation of the CSBO approach.

Step1: Initialization

Define the search space for the hyperparameters of HMRCGN2Nets. Initialize the population of

blood masses GN, with size M using a random function within the defined problem range

population
is given by equation (22):
GNa = GNmini + Vai’ld(l, C) x (GNmaxi - GNmini )’ a= 1 : Mpopulation (2.2)
where, GN_. . and GN__ . are minimum and maximum bounds for hyperparameters. C

number of hyperparameters (dimensions), 7and(l,C) random vector between 0 and 1.

Step 2: Generation of Random Variables

Generation of random variables involves creating numerical values from a defined probability
distribution (e.g., uniform, normal) to introduce randomness in optimization, enabling diverse
exploration of the search space.

Step 3: Evaluation of Fitness Function

Fitness function that evaluates the performance of the HMRCGN2Nets model based on the given
hyperparameters. It aims to enhance model performance by minimizing the error rate and
maximizing accuracy. This optimization process is mathematically expressed in Equation (23):

fitness ;. ..,,= minimize (¢, )maximize(co,
(23)

where, €7, isused toreduce cost, computational complexity, processing time, and error rate, while

0, simultaneously improving accuracy.

Step 4: Exploration to improve accuracy
Exploration in optimization refers to the process of searching new, unvisited regions of the
solution space to discover diverse solutions and avoid getting trapped in local optima.

. Blood Mass Movement in the Veins

Each blood mass moves based on the imposed force or pressure, which reflects the gradient of
the fitness function, is given by equation (24):
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GN!""=GN,+H, xq,x(GN, —GN,)+ H,; xq, x(GN, —GN,) (24)
where, H , determines the direction of movement is given by equation (25):
_ E(GN,)-E(GN,)
" |EGN,) - E(ON,)

(25)

+w
a

where, ¢, random value between 0 and 1 controlling step size. GN,, GN,, GN 5 blood masses with

C Initialization )

Initialize the parameters of CSBO for optimizing the
weight and bias parameters of HMRCGN2Nets

Y

Random Generation

v

> Fitness Function

v

Updation of CSBO for Optimizing the weight and
bias parameters of HMRCGN2Nets

L]

! l Exploration for improving accuracy

Y

Exploitation for reducing error rate, processing time,
computational complexity and cost

different fitness values

computational complexity

C Termination )

Figure 3. A step-by-step explanation of the CSBO approach.

Increased accuracy and minimizes error rate, l
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Step 5: Exploitation to lower the cost, computational complexity, processing time, and error
rate

Exploitation in optimization refers to refining and improving existing solutions by focusing on
promising areas of the search space, using knowledge gained from previous evaluations to converge
toward the optimal solution.

¢  Pulmonary Circulation (Weaker Population Improvement)

Weaker blood masses (solutions) enter pulmonary circulation to improve their fitness is given
by equation (26):
randm

GN" =GN, + ( j xrande(1,C),a=1:MP  (26)

al

randm
where, ; random normal number, rande(l,C)random value from Cauchy distribution.
a

Step size ¢, is adjusted for this weaker population is given by equation (27):
q, =rand(1,C),a=1: MP (27)
e  Systematic Circulation (Strong Population Refinement)
Better solutions circulate systematically to explore better regions is given by equation (28):
GN,, =GN, +4,*(GN;, —GN,;) (28)
Update step size ¢, based on fitness is given by equation (29):
_E(GN,)-E
4a = E, —E

best and worst fitness values in the current iteration

L a=1:MT (29)

wrst

where, £, and E

wrst

Step 6: Termination

Repeat exploration and exploitation until maximum number of iterations / reached or no
significant improvement in the fitness value over several iterations or Convergence threshold is met.

This section presents a comprehensive framework for predicting SMV using an Al-based
Diagnostic Model built on a Holographic Multi-Relational Convolutional Graph Neural Network
with Circulatory System-Based Optimization (HMRCGN2Nets+CSBO). The model integrates
advanced techniques to improve accuracy and reliability. Data preprocessing is managed by ARASN,
which effectively addresses inconsistencies and noise, ensuring high-quality input data. Detailed
patterns and relationships within the data are captured through EIT-based feature extraction. The
HMRCGN2Nets model delivers optimal predictions, further refined through CSBO for enhanced
performance. The following section explores the results in detail, demonstrating the effectiveness and
broader implications of this predictive framework.

4. Results and Discussions

This section presents the results and evaluation of the suggested method, which was executed
in Python. Table 2 provides specifics on the implementation parameters.
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Table 2. Implementation Parameters.

Parameters Description
Proposed Neural Network HMRCGN2Nets
(O] Windows 10
Optimization CSBO
Dataset Stock Market Volatility
Software Python 3.7

4.1. Dataset Descriptions

This section provides an in-depth analysis of predicting stock market volatility using an Al-
driven Diagnostic Model. The study utilizes the Stock Market Volatility dataset, with further details
about the dataset provided in the following sections.

Stock Market Volatility Dataset

The Stock Market Volatility Dataset contains 5,000 daily records from 2020 to the present,
capturing key financial indicators for Al-driven volatility analysis. It includes 10 features: Date,
Stock_Price ($50-$500), Trading_Volume (1,000-1,000,000), Market_Index (1,000-5,000), Volatility
(0.5-5), Sentiment_Score (-1 to 1), Al _Volatility_Prediction (Low, Medium, High),
Al_Confidence_Score (0.60-0.99), Economic_Indicator (50-150), and News_Impact_Score (0-1). The
dataset is structured for financial forecasting and Al-based market trend studies. Eighty percent of
these are utilized for training, and 20 percent are used for testing.

4.2. Performance Metrics

The effectiveness of the proposed HMRCGN2Nets+CSBO method is evaluated by comparing it
with several established approaches, including CNN-ANN [16], LSTM-SVM-ANN [17], Word2Vec-
LSTM [18], SA-DLSTM [19], MS-SSA-LSTM [20], NPMM [21], and PSO-LSTM [22]. The evaluation is
based on various performance metrics, such as RMSE, MAPE, MSE, error rate, recall, F1 score,
accuracy, MAE, precision, training time, computational complexity, and processing time. The
mathematical formulations of these evaluation metrics are presented in Table 3.

Table 3. Performance metrics.

Performance metrics Equations (30-35)
Precision 1 & |Mn(s, )N g, |
EZ( | Mn(g,)| J -
Recall L& ([ Mn(s,) N g, |
EZ‘[ 18 | J 31)
F1-Score 1 & (2| Mn(s,)ng, |
E;(Wn(gkwgkj @)
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Accuracy ii |Mn(s,) N g, |
Bia\UMni(s,)V g, | (33)
MAE 1 A
E |ci,,j _ci,j |
(ab) (34)
RMSE 1 ?
3 Z (€., —¢i;)
(ah) (35)

where, §, represents the input data used for evaluating SMV, including historical price movements, trading
volumes, market sentiment, and macroeconomic indicators. &, denotes the outcome of the volatility

assessment process. B is the total number of observations or data points in the dataset. M7 refers to the Al-

driven method used for training the volatility prediction model. Ml’l(Sk) represents the predicted volatility
values generated by the diagnostic model. ¢; ; is the actual observed volatility at a given time. Cﬂ‘i” ; is the

predicted volatility value.

4.3. Performance Analysis of Proposed Methods

This section evaluates the performance of the HMRCGN2Nets+CSBO method. Table 4 presents
a comparison between the proposed approach and existing methods.

Table 4. comparison of the suggested strategy with current practices.

Methods CNN- LSTM- Word2 SA- MS- NPMM PSO- HMRCGN2Nets+CS
ANN SVM- Vec- DLST SSA- LSTM BO
N ANN | LSTM | M | LSTM
[18] [20] [21] [22]
[16] [17] [19] (Proposed)
Accuracy 90.8 97.2 93.4 91.7 94.3 96.7 92.5 99.9
(%)
Recall 89.1 91.5 95.4 93.5 89.3 92.2 90.4 99.8
(%)
Precision 90.1 93.4 95.5 89.7 92.4 94.7 96.8 99.8
(%)
Specificity (%) 97.8 94.6 95.2 91.8 86.8 92.7 90.8 99.7
F1-Score 96.3 90.4 91.4 95.8 93.9 94.7 89.5 99.6
(%)
MSE 8.1 6.9 7.8 54 8.5 6.0 7.3 0.1
MAE 9.8 8.4 6.2 7.9 74 8.5 9.2 2.0
RMSE 6.0 7.8 8.5 9.2 8.4 7.3 6.8 21

Table 4 compares the proposed HMRGCN2Net+s+CSBO model with other deep learning
methods. The proposed model shows the highest performance across key metrics: accuracy (99.9%),
recall (99.8%), precision (99.8%), specificity (99.7%), and Fl-score (99.6%). It also achieves the lowest
error rates with MSE (0.1), MAE (2.0), and RMSE (2.1), demonstrating its superior predictive accuracy
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and consistency. These results highlight the model’s enhanced capability in handling complex data
compared to existing approaches. Table 5 presents the analysis of the hypotheses.

Table 5. Analysis of Hypotheses.

Methods Computation | Complexity | Speed | Efficiency | Strongnes
al Cost of of s
Computation Computatio
n

CNN-ANN [16] 0.90 0.70 0.20 0.15 0.28

LSTM-SVM-ANN [17] 0.80 0.88 0.19 0.21 0.25

Word2Vec-LSTM [18] 0.59 0.70 0.28 0.10 0.10

SA-DLSTM [19] 0.78 0.85 0.30 0.20 0.21

MS-SSA-LSTM [20] 0.60 0.67 0.45 0.39 0.18

NPMM [21] 0.88 0.74 0.18 0.29 0.25

PSO-LSTM [22] 0.72 0.87 0.21 0.20 0.30
HMRCGN2Nets+CSBO

(Proposed) 0.01 0.04 0.99 0.99 0.99

Table 5 compares different models based on computational cost, complexity, speed, efficiency,
and strength. The proposed HMRGCN2Nets+CSBO model outperforms others with the lowest
computational cost (0.01) and complexity (0.04), while achieving the highest speed (0.99), efficiency
(0.99), and strength (0.99). This indicates that the proposed model is highly efficient and strong while
maintaining minimal computational overhead, making it more effective and practical than other
existing models for complex tasks. Figure 4 shows the (a) Al confidence score distribution and (b)
Sentiment score distribution,

Al Confidence Score Distribution Sentiment Score Distribution

= >

g g 125

[ o

E 2100

£ £ 5
50
25

°060 065 070 075 080 085 090 095 100 ® 100 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 100
Al Confidence Score Sentiment Score
(a) ®)

Figure 4. The (a) AI confidence score distribution and (b) Sentiment score distribution.

Figure 4 presents two histograms: (a) shows the distribution of AI confidence scores, which are
concentrated between 0.60 and 1.00, with notable fluctuations and a visible density curve indicating
variation in model confidence. (b) displays the sentiment score distribution, spanning from -1.00 to
1.00, indicating a more balanced spread of positive and negative sentiment scores. The smoother
density curve suggests more uniformity in sentiment classification. Both graphs highlight the
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frequency of different score values, reflecting the AI model’s performance and sentiment analysis
balance. Figure 5 shows the (a) Market index vs. volatility and (b) volatility vs. stock price,

Market Index vs, Volatility ) Vo!atillty VS, St_r.lck Price
5 > Al Prediction | 5 .
Low
2 Medium
4 -y : High | 4
bl
g 3 =3
- -
L} =
F 2
1 1
1000 1500 2000 2500 32000 3500 4000 4500 5000 100 200 300 400 500
Market Index Stock Price
(@) (b)

Figure 5. The (a) Market index vs. volatility and (b) volatility vs. stock price.

Figure 5 presents two scatter plots: (a) shows the relationship between Market Index and
Volatility, with AI predictions color-coded as Low (blue), Medium (orange), and High (red). The
spread indicates no clear pattern, suggesting unpredictability in volatility across the market index.
(b) Ilustrates Volatility vs. Stock Price with a dense red scatter, showing a uniform spread and no
obvious correlation. Both plots highlight the complex and seemingly random nature of volatility in
relation to market index and stock prices. Figure 6 shows the (a) Al volatility prediction counts and

(b) stock price trend over time,

Al Volatility Prediction Counts Stock Price Trend Over Time
2000 | soo! ] - z I
1750
1500 40
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(=]
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=
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100 ¢
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Al Volatility Prediction

(2)

Figure 6. The (a) Al volatility prediction counts and (b) stock price trend over time.

Figure 6 shows two plots: (a) illustrates Al volatility prediction counts, where the Low category
dominates with nearly 2000 counts, while High predictions are fewer, and Medium predictions are
absent, indicating a skewed prediction pattern. (b) Depicts the stock price trend over time, showing
high volatility and frequent fluctuations from 2000 to 2014. The dense clustering of data points
suggests consistent market activity, but no clear upward or downward trend, reflecting complex
stock price behavior over time. Figure 7 shows the model accuracy as well as loss,
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Model Accuracy and Loss
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Figure 7. The model accuracy as well as loss.

Figure 7 shows the model’s accuracy as well as loss over 200 epochs. The training accuracy
(orange) quickly reaches 1.0, indicating perfect learning, while the validation accuracy (blue)
stabilizes near 1.0, suggesting good generalization. The training loss (green) and validation loss
(purple) drop rapidly and stabilize close to zero, indicating effective model convergence with
minimal error. The rapid improvement and consistent performance reflect a well-trained model with
high accuracy and low overfitting risk. Figure 8 shows the (a) trading volume distribution and (b)
news impact score vs. volatility,

MNews Impact Score vs. Volatility

Trading Volume Distribution 5
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Fizs g 3
3 F
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Trading Volume bk News Impact Score
a
(a) )

Figure 8. The (a) trading volume distribution and (b) news impact score vs. volatility.

Figure 8 presents’ two plots: (a) shows the trading volume distribution, which appears relatively
uniform with moderate variation and a smooth density curve, indicating consistent trading activity
across different volumes. (b) Depicts the relationship between news impact score and volatility,
represented by a dense scatter plot of orange points. The even spread suggests no clear correlation
between news impact scores and market volatility, implying that news events may not have a
predictable effect on volatility levels. Figure 9 shows the correlation heat map,
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Correlation Heatmap
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Figure 9. The Correlation Heatmap.

Figure 9 shows a correlation heatmap representing the relationships between various financial
metrics. With blue denoting negative correlations and red denoting positive correlations, the color
intensity represents the direction and degree of correlations. Stock price, trading volume, market
index, and other factors show weak correlations (close to zero), and suggesting minimal linear
relationships among them. The diagonal values are all 1.0, representing perfect self-correlation. The
overall weak correlations reflect complex and non-linear interactions in financial data. Figure 10
shows the function value over iterations in 3D space.

2000
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Function Value
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Figure 10. The function value over iterations in 3D space.

Figure 10 presents a 3D surface plot showing the function value over iterations. The x and y axes
represent iteration values, while the z-axis shows the function value. The color gradient, from purple
(low) to yellow (high), indicates changes in function value. Peaks and valleys in the surface suggest
the function’s complex behavior, with sharp increases and decreases. This visualization helps analyze
optimization patterns and convergence behavior during model training or mathematical function
evaluation. Figure 11 shows the economic indicator,
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Figure 11. The economic indicator.

Figure 11 shows the density distribution of the economic indicator. The plot reveals a relatively
uniform distribution with slight variations, indicating that the economic indicator values are fairly
evenly spread across the range of approximately 40 to 160. The density peaks are consistent,
suggesting that certain economic indicator values appear more frequently. The smooth curve reflects
a balanced spread without significant skewness or clustering, implying stable economic performance
over the observed period.

4.4. A Comparison of the Suggested Approach with Existing Techniques Statistically

The efficacy of the suggested method is assessed using five statistical tests: the Shapiro-Wilk
(SW) as well as Kolmogorov-Smirnov (KS) tests for normalcy testing, the Kruskal-Wallis H test, the
Wilcoxon Signed-Rank (WSR) test, and the Friedman (FT) test. Table 6 presents an analysis of
variance between the suggested approach and current approaches.

Table 6. Statistical Comparison of the Proposed Approach with Existing Approaches.

Methods SW WSR H-test | KStest | FT p- Mean Standard | Variance
Test test / U- p- p- Valu Deviatio | Inflation
p- test p- Value | Value e n Factor
Value Value
CNN-ANN [16] = 0.470 0.380 0.69 0.079 | 0.090 @ 278,700.17 | 3,310.19 1.95
LSTM-SVM- 0.360 0.270 0.75 0.068 | 0.077 | 460,99020 | 2,220.65 1.89
ANN [17]

Word2Vec- 0.390 0.170 0.89 0.090 0.087 | 81,800.37 3,175.81 1.77

LSTM [18]

SA-DLSTM [19] | 0.420 0.260 0.70 0.067 | 0.060 | 384,925.21 2,320.92 1.81
MS-SSA-LSTM 0.310 0.399 0.92 0.078 0.075 | 282,450.91 1,143.74 1.90
[20]

NPMM [21] 0.355 0.437 0.80 0.080 | 0.080 | 69,780.51 5,322.80 1.70
PSO-LSTM [22] | 0.282 0.310 0.78 0.098 | 0.091 | 66,840.50 1,382.89 1.49
HMRCGN2Nets | <0.001 <0.001 <0.001 | <0.001 | <0.00 | 65,923.20 6,599.93 1.001

+CSBO 1

(Proposed)

Table 6 presents a statistical comparison of the proposed HMRGCN2Nets+CSBO approach with
existing methods. The proposed model shows the lowest p-values (<0.001) across SW, WSR, H, and
KS tests, indicating strong statistical significance. It achieves the lowest mean (65,923.20), standard
deviation (6,599.93), and variance inflation factor (1.001), reflecting high consistency and low
variability. The FT test value of 1 confirms its robustness. These results demonstrate the proposed
model’s superior stability and predictive reliability.
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4.5. Ablation Study of the Suggested Approach

The ablation study demonstrates the incremental contributions of each component in the
HMRCGN2Nets+CSBO model. Table 7 presents the findings of this analysis for the proposed
approach.

Table 7. Ablation study.

Model Configuration HCNN | MRGAT | CSBO | Accuracy | Precision | Recall | F1

(O/o) (O/o) (O/o) Score
(%)
Baseline (Without v v X 90.3 92.1 93.5 94.8
CSBO)
HCNN Only v X X 81.8 79.3 76.9 80.1
MRGAT Only X v X 82.6 80.8 78.9 83.9
HCNN + CSBO v X v 89.5 90.9 89.7 91.3
MRGAT + CSBO X v v 88.7 91.5 88.9 92.4
Full Model v v v 99.9 99.8 99.7 99.6
(HMRCGN2Nets+CSBO)

Table 7 evaluates ablation study contribution of HCNN, MRGAT, and CSBO components to the
model’s performance. The full model (HMRGCN2Nets+CSBO) achieves the highest accuracy (99.9%),
precision (99.8%), recall (99.7%), and Fl-score (99.6%). Removing any component reduces
performance, with the largest drop seen when HCNN or MRGAT is absent. The results highlight that
combining all three components enhances overall model performance, confirming their individual
and collective importance in achieving optimal predictive accuracy and consistency.

4.6. Discussion

The proposed HMRCGN2Nets+CSBO model demonstrates outstanding predictive accuracy and
efficiency in forecasting stock market volatility. The thorough comparison with well-known models
as CNN-ANN, LSTM-SVM-ANN, as well as PSO-LSTM demonstrates the superiority of the
suggested approach. It maintained the lowest error rates with MSE (0.1), MAE (2.0), and RMSE (2.1)
while achieving the maximum accuracy (99.9%), recall (99.8%), precision (99.8%), specificity (99.7%),
as well as F1-score (99.6%). These outcomes demonstrate how well the model handles dynamic and
complex financial data in comparison to alternative deep learning techniques. According to the
performance analysis, HMRCGN2Nets+CSBO performs exceptionally well in terms of both accuracy
and computational efficiency. It recorded the lowest computational cost (0.01) and complexity (0.04),
while achieving the highest speed (0.99) and efficiency (0.99). This shows that not only is the model
highly accurate but it is also light on computation, rendering it usable in real-time analysis of stock
markets. Ablation study further validates each of the component’s (HCNN, MRGAT, and CSBO)
contribution in terms of improvement in model performance. The entire model performs better than
individual or partially combined versions, demonstrating the fact that bringing together all of them
is needed to achieve peak predictive accuracy. Statistical testing supports the validity and accuracy
of the model proposed. The model had the lowest p-values (<0.001) under the SW, WSR, H, and KS
tests, which signify very high statistical significance. It had the lowest mean (65,923.20) and variance
inflation factor (1.001), which suggest its stability and robustness under varying market
environments. Visual analysis of Al confidence scores, sentiment scores, and market indices displays
the model’s ability to capture intricate financial patterns. The proposed model’s capacity for adjusting
to different market conditions and delivering constant high accuracy makes it a powerful financial
forecasting and strategic planning resource. These results define HMRCGN2Nets+CSBO as an
extremely effective and accurate solution for stock market volatility forecasting.
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5. Conclusions

In this manuscript, the HMRCGN2Nets+CSBO is successfully implemented. The input data
which are derived from the Stock Market Volatility dataset are pre-processed initially through the
ARASN method and further feature extraction through the EIT method. The prediction of the SMV
by an Al Diagnosis Model is given to the HMRCGN2Nets model, and the optimization is done
through the CSBO approach to facilitate precise measurement of Stock Market Volatility by an Al
Diagnosis Model. The system is designed through Python. The proposed HMRCGN2Nets+CSBO
approach is tested with the Stock Market Volatility dataset with a very high accuracy of 99.9% and
an extremely low rate of error of 0.1%. This reflects how good it can perform and grow in the future
for this area and also reflects how good it is compared to existing methods. Future research can focus
on improving model scalability, incorporating real-time data feeds, optimizing circulatory strategies,
enhancing interpretability, and scaling the model to various financial markets to enhance predictive
performance and resilience to different market conditions.
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