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Abstract 

Gene Regulatory Network (GRN) describes the regulatory interactions between transcription 

factors (TFs) and their target genes, playing a crucial role in understanding developmental biology, 

disease mechanisms, and drug target discovery. However, due to the complexity of gene regulation, 

inferring GRNs solely from gene expression data remains highly challenging. Additionally, deep 

learning models’ dependency high-quality annotation data further constrains their performance 

improvement. To address these challenges, this study proposes MultiGRNFormer, a Transformer-

based model for multi-omics GRN inference. The key innovations of this model include: (1) 

Integration of transcriptomic and chromatin accessibility data—leveraging a Transformer encoder 

to effectively capture gene regulatory relationships and improve inference accuracy. (2) 

Incorporation of a positional encoding mechanism, enabling the model to be sensitive to the order 

of input features, and meanwhile the use of data augmentation strategies to generate diverse 

samples, thereby enhancing the utilization of training data. To evaluate the model’s performance, 

we conducted experiments on seven different single-cell multi-omics datasets and compared it with 

existing GRN inference methods. The results demonstrate that by combining multi-omics data 

integration with data augmentation strategies, superior performance in GRN inference tasks can be 

achieved. Our findings provide new insights for future deep learning-based GRN inference 

research. 

Keywords: network inference; gene regulatory network; deep learning 

 

1. Introduction 

Gene Regulatory Networks (GRNs) describe the interactions between transcription factors (TFs) 

and their target genes that control gene expression levels [1]. Understanding GRNs is crucial for 

deciphering developmental biology mechanisms, disease pathogenesis, and drug target discovery 

[2,3]. 

In recent years, deep learning techniques, based on their powerful nonlinear modeling 

capabilities, have demonstrated significant potential in the field of GRN inference [4,5]. However, 

existing deep learning-based approaches face a fundamental limitation: the extreme scarcity of high-

quality labeled data [5–7]. Most datasets contain only hundreds to thousands of TF-gene regulatory 

pairs, significantly constraining the learning capacity of deep learning models. More critically, 

existing methods generally follow a “single-sample single-label” training paradigm, failing to fully 

exploit the latent information within limited datasets. Additionally, their insensitivity to input feature 

order makes it difficult to capture the dynamic and sequential associations in multi-omics data. For 

example, methods such as CNNC [8] and DGRNS[7] convert input data into image representations, 

which provide intuitive spatial relationships but lose positional information, which however is 

crucial for fully leveraging data and enhancing model performance. 
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Data augmentation plays a crucial role in deep learning, especially when the available data is 

limited. By applying random transformations to the original data—such as rotation, scaling, 

cropping, flipping, and adding noise—it effectively expands the dataset size, enhances the model’s 

generalization ability, and reduces the risk of overfitting [9]. Additionally, data augmentation helps 

models learn more robust features and improves their adaptability to complex scenarios. It has been 

widely applied in various fields, including computer vision, natural language processing, and 

bioinformatics, serving as a key technique for boosting the performance of deep learning models [10–

12]. However, despite its extensive research and application in other domains, data augmentation 

remains underexplored in the field of GRN inference. 

Furthermore, groundbreaking advances in single-cell multi-omics technologies now enable the 

simultaneous profiling of the transcriptome (scRNA-seq) and epigenome (scATAC-seq) within 

individual cells [13,14]. This provides a more comprehensive perspective for understanding gene 

transcription and regulation at the cellular level. Current research has demonstrated that integrating 

gene expression data with chromatin accessibility data for GRN inference can better distinguish 

direct from indirect regulatory relationships, reduce false positives and false negatives in inference 

results, and improve overall accuracy [15–17]. 

This study proposes MultiGRNFormer, a multi-omics inference framework based on the 

Transformer architecture [18]. This framework introduces two key innovations: 

Multi-omics modeling of gene regulatory features: Unlike traditional single-omics inference 

models that rely only on transcriptomic data, MultiGRNFormer integrates both transcriptomic and 

chromatin accessibility data. By leveraging a Transformer encoder, our model simultaneously 

captures regulatory information from gene expression and chromatin accessibility to infer GRNs 

more accurately. 

Data augmentation for GRN inference: We introduce positional encoding to make the model 

sensitive to input feature order. Additionally, we apply dynamic input reordering to generate 

multiple training samples from single-label data, effectively augmenting the dataset and improving 

learning efficiency. 

To evaluate the performance of MultiGRNFormer, we conducted experiments on seven different 

datasets, comparing our approach with existing single-omics inference models. Experimental results 

across these datasets demonstrate that MultiGRNFormer achieves superior performance in GRN 

inference. Furthermore, our experiments confirm that the proposed data augmentation method 

significantly enhances model prediction performance. We also explored the feasibility of cross-

dataset joint training. Cross-dataset experiments revealed that training across datasets yields 

significant advantages on most benchmarks, indicating that increased data diversity helps the model 

extract universal regulatory patterns across tissues. Finally, ablation studies confirm that integrating 

multi-omics data provides MultiGRNFormer with richer regulatory information, thereby improving 

inference accuracy. 

2. Materials and Methods 

2.1. Datasets 

The study used seven publicly available datasets, which consist of scRNA-ATAC-seq data from 

different tissues of both human and mouse [19–21]. 

In the field of GRN, there has been a persistent lack of real-world networks for model evaluation. 

As a result, in the GRN inference literature, a common and expedient practice is to evaluate the 

accuracy of a resulting network by comparing its edges to an appropriate database of TFs and their 

targets. Therefore, We utilized the non-cell type-specific transcriptional regulatory network ChIP-seq 

data provided by BEELINE[22] and the functional interactions from the STRING[23] database as 

ground truth networks. Statistical data are shown in Table 1. 
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Table 1. Statistics of scRNA-ATAC-seq datasets and two ground-truth networks composed of TFs and the top 

500 most variable genes. The numbers in parentheses in the table represent corresponding statistics for 

networks composed of TFs and the top 1000 most variable genes. 

Dataset Cells 
Non-specific ChIP-seq STRING 

TFs Genes Density TFs Genes Density 

human 

bone 6742 717(722) 1217(1566) 0.032(0.029) 792(796) 937(1113) 0.051(0.045) 

breast 1446 186(190) 447(693) 0.052(0.043) 223(231) 300(435) 0.070(0.055) 

jejunum 5368 57(59) 124(166) 0.134(0.117) 81(84) 87(105) 0.133(0.116) 

kidney 13666 175(176) 407(583) 0.060(0.053) 226(230) 277(344) 0.065(0.057) 

pbmc 6984 186(196) 551(869) 0.055(0.046) 230(235) 375(562) 0.061(0.051) 

mouse 
brain 4362 100(109) 137(167) 0.028(0.025)    

kidney 12355 72(81) 122(155) 0.036(0.034)    

2.2. Data Preprocessing 

We first preprocessed the raw count matrices for scRNA-seq and scATAC-seq of the dataset. For 

each count matrix, we denoted rows as features (genes or peak regions) and columns as cells 

throughout the paper below. Each data matrix was removed if a row or column contained less than 

0.1% non-zero values. Data quality control was performed by Seurat V4, including but not limited to 

total read counts, mitochondrial gene ratios, and blacklist ratios [24]. After quality control, we 

selected the top 1,000 highly variable genes for subsequent analyzes based on gene variance, and the 

final gene expression matrix and chromatin accessibility matrix were obtained. The gene expression 

matrix was denoted as 𝑿𝑅 = {𝑥𝑖𝑗
𝑅  |𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽} , with totally 𝐼 genes and 𝐽 cells. The 

chromatin accessibility matrix was denoted as 𝑿𝐴 = {𝑥𝑘𝑗
𝐴 |𝑘 = 1,2, … , 𝐾; 𝑗 = 1,2, … , 𝐽}, which has 𝐾 

peak regions in 𝐽 cells. 

To apply the chromatin accessibility data to GRNs inference, we used the method described in 

MAESTRO[25] to calculate the peak region in 𝑋𝐴 as the regulatory potential of the corresponding 

gene. Specifically, based on the distance between peak 𝑘 and gene 𝑖 in the genome, the regulatory 

potential weight of peak 𝑘 for gene 𝑖 is denoted as 𝑤𝑖𝑘  and calculated as follows: 

 𝑤𝑖𝑘 =

{
 
 

 
 
0,   dik > 150kb or peak 𝑘 located in any nearby genes

1

Length(exon)
,   peak 𝑘 located at the exon regions of the gene 𝑖 

2
−
𝑑𝑖𝑘
𝑑0 , otherwise

(1) 

where 𝑑𝑖𝑘 denotes the distance from the center of peak 𝑘 to the transcriptional starting site of gene 

𝑖, and 𝑑0 is the half-decay of that distance (set to 10kb). The regulatory potential 𝑤𝑖𝑘 of peak 𝑘 for 

gene 𝑖 is usually calculated as 2
−
𝑑𝑖𝑘
𝑑0 . If 𝑑𝑖𝑘 > 150𝑘𝑏, 𝑤𝑖𝑘  should be less than 0.0005, and in order to 

save computational time, we set it to 0. In MAESTRO, to better fit the gene expression model, if peak 

𝑘 is located in the exon region of the gene, 𝑤𝑖𝑘 should be 1 according to the formula. But since reads 

tend to be located in longer exons than shorter exons, to normalize the likelihood of background 

reads, the total exon reads were normalized by the total exon length of each gene exon. The peak 𝑘 

regulatory potential of gene 𝑖 in cell 𝑗 can then be calculated as: 

 𝑟𝑖𝑘|𝑗 = 𝑤𝑖𝑘 × 𝑥𝑘𝑗
𝐴  (2) 

Finally, the scATAC-seq matrix 𝑿𝐴 is transformed into the gene regulatory potential matrix 𝑿𝑃 

by summing the regulatory potential scores of peaks regulating the same gene: 

 𝑥𝑖𝑗
𝑃 =∑𝑟𝑖𝑘|𝑗

𝑘

 (3) 
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2.3. The MultiGRNFormer framework 

MultiGRNFormer is inspired by the design concept of STGRNS[4], utilizing a Transformer 

architecture to capture intercellular gene expression variations. However, unlike STGRNS, which 

aggregates multiple cells into motifs, we designed a novel input structure to enhance the model’s 

sensitivity to intercellular gene expression changes. Additionally, our input design enables 

MultiGRNFormer to capture the regulatory state of genes within each cell by integrating multimodal 

data. Specifically, in addition to transcriptomic data traditionally used by existing models, we 

incorporate chromatin accessibility data to provide an alternative perspective on the gene regulatory 

process. MultiGRNFormer consists of four key components: an Input Constructor , a Positional 

Encoder, a Multiple Transformer Encoders, and a Regulation Predictor , as illustrated in Figure 1c. 

 

Figure 1. The Pipeline of MultiGRNFormer. (a) Transformation of chromatin accessibility data into a gene 

regulatory potential matrix. (b) Structure of the Transformer encoder module. (c) Overall framework of 

MultiGRNFormer. 

Input Data: MultiGRNFormer takes two modalities of input data: the gene expression matrix 

𝑋𝑅 = {𝑥𝑖𝑗
𝑅 |𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽}  and the gene regulatory potential matrix 𝑋𝑃 = {𝑥𝑖𝑗

𝑃 |𝑖 =

1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽}，where 𝐼 denotes the number of genes, and 𝐽 represents the number of cells. 

Input Constructor: The format of data input plays a critical role in maximizing the model’s 

feature extraction capabilities. Thus, we carefully designed an Input Constructor to structure the 

input data effectively. For a given transcription factor (TF) 𝑎  and target gene 𝑏 , their gene 

expression values in the 𝑗 th cell are 𝑥𝑎𝑗
𝑅 ∈ 𝑋𝑅  and 𝑥𝑏𝑗

𝑅 ∈ 𝑋𝑅 , respectively, while their regulatory 

potential values are 𝑥𝑎𝑗
𝑃 ∈ 𝑋𝑃 and 𝑥𝑏𝑗

𝑃 ∈ 𝑋𝑃. To ensure the model accurately captures the regulatory 

state of a gene within a single cell, we concatenate all relevant data from the same cell into a single 

feature vector: 𝑋𝑗
𝑎𝑏 = {𝑥𝑎𝑗

𝑅 , 𝑥𝑎𝑗
𝑃 , 𝑥𝑏𝑗

𝑅 , 𝑥𝑏𝑗
𝑃 }. We retain only the cells where both TF 𝑎 and gene 𝑏 are 

expressed to minimize the impact of missing values. Then, we randomly sample 𝑁 cells from this 

set (with replacement if the available number of cells is less than 𝑁). Finally, the model input is 

structured as: 𝑋𝑎𝑏 = {𝑋𝑗
𝑎𝑏|𝑗 = 1,2, … , 𝑁}. 

Positional Encoding: Since the Transformer encoder lacks an inherent understanding of 

positional information in the input data, we apply positional encoding to 𝑋𝑎𝑏  in order to obtain 

𝑋𝑝𝑜𝑠
𝑎𝑏 , computed as follows: 

 𝑋𝑝𝑜𝑠
𝑎𝑏 = 𝑋𝑎𝑏 + Positional(𝑋𝑎𝑏), (1) 
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where  Positional(·) is the positional encoding function. We adopt a sinusoidal positional encoding 

scheme, where sine functions are applied to odd-indexed elements and cosine functions are applied 

to even-indexed elements: 

 𝑃𝐸(𝑚, 2𝑛) = sin(𝑚 100002𝑛 4⁄⁄  ) , (2) 

 𝑃𝐸(𝑚, 2𝑛 + 1) = cos(𝑚 100002𝑛+1 4⁄⁄ ) , (3) 

where 𝑚 denotes the position of a cell in 𝑋𝑎𝑏 , and 𝑛 represents the feature index, even indices 

corresponding to 2𝑛 and odd indices to 2𝑛 + 1. 

Multiple Transformer Encoders: We employ a multi-layer Transformer encoder [18] with 

residual connections to extract multi-omics features that define gene regulatory interactions. The self-

attention mechanism in the Transformer encoder allows the model to focus more on cells that provide 

strong regulatory evidence. The hierarchical multi-layer structure enhances the model’s ability to 

capture higher-order interactions, while residual connections mitigate the issues of gradient 

vanishing and explosion commonly observed in deep networks. 

Specifically, our encoder consists of multiple identical Transformer layers, each comprising two 

sublayers: multi-head self-attention and a position-wise feed-forward network, as illustrated in 

Figure 1b. The transformation between layers is formally defined as: 

 𝐻(𝑙) = LayerNorm (𝐻(𝑙−1) +MultiHead(𝐻(𝑙−1))) (4) 

 𝐻(𝑙) = LayerNorm (𝐻(𝑙) + FFN(𝐻(𝑙))) (5) 

where 𝐻(𝑙) ∈ ℝ𝑁 ×𝑑𝑚𝑜𝑑𝑒𝑙  denotes the feature representation at the 𝑙 th encoder layer. In our model, 

𝑑𝑚𝑜𝑑𝑒𝑙 = 4, since each sample includes two gene expression values and two regulatory potential 

values. 

 ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉), (6) 

where 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘  are the query, key, and value projection matrices, respectively, 

with 𝑑𝑘 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ, in which ℎ is the number of attention heads. The scaled dot-product attention 

is computed as: 

 Attention(𝑄, 𝐾, 𝑉) = sotfmax (
𝑄𝐾𝑇

√ 𝑑𝑘 
 ) 𝑉 (7) 

The outputs from all attention heads are concatenated and linearly projected to form the final 

representation: 

 MultiHead(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 (8) 

The position-wise feed-forward network (FFN) consists of two linear transformations with a 

GELU activation function: 

 FFN(𝑥) = 𝑊2(GELU(𝑊1𝑥 + 𝑏1)) + 𝑏2, (9) 

where 𝑊1 ∈ ℝ
𝑑𝑚𝑜𝑑𝑒𝑙×ℎ𝑑𝑚𝑜𝑑𝑒𝑙  expands the dimension by a factor of 4, and 𝑊2 ∈ ℝ

ℎ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 

projects it back to the original size. 

Regulation Predictor: We employ a multi-layer perceptron (MLP) as the regulation predictor. 

First, the regulatory features obtained from the Transformer encoder, 𝐻 ∈ ℝ𝑁×4, are flattened into a 

one-dimensional vector: 

 𝐻′ =  Flatten(𝐻) (10) 

Then, 𝐻′ is passed through the MLP to predict the regulatory probability 𝑝𝑎𝑏  between TF 𝑎 

and gene 𝑏: 

 𝑝𝑎𝑏 = 𝜎(𝑊2 ∙ ReLU(𝑊1𝐻
′ + 𝑏1) + 𝑏2), (11) 

where 𝜎 denotes the sigmoid activation function. 

Parameter Optimization: To train the model, we minimize the Binary Cross Entropy (BCE) loss 

between the predicted regulatory interactions and ground truth labels, enabling the model to 

distinguish fine-grained regulatory relationships: 

 𝐵𝐶𝐸 = −
1

𝑁
∑  

𝑁

𝑖=1

𝑦𝑖 ⋅ log(model(𝑥)) + (1 − 𝑦𝑖) ⋅ log(1 − model(𝑥)) (10) 

where 𝑖 denotes the 𝑖 th TF-gene pair and 𝑦𝑖  denotes the label of the 𝑖 th TF-gene pair. 
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2.4. Experimental Setting and Hyperparameter Optimization 

For each real network, we use 4/5 of the set of positive labels as the training set and 1/5 of the 

positive labels as the test set. Due to the high imbalance of the dataset (as in Table 1), we randomly 

sampled negative individuals in the unobserved links. The training set was constructed with an equal 

number of positive and negative individuals. For the test set, we employed the following sampling 

strategy to simulate real-world sparse regulatory networks: 

 
𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

|𝐸|

1
2
𝑁𝑇𝐹 × 𝑁𝑔𝑒𝑛𝑒

, (11) 

where |𝐸| represents the number of edges in the regulatory network of the dataset, 𝑁𝑇𝐹 and 𝑁𝑔𝑒𝑛𝑒  

denote the number of transcription factors (TFs) and genes, respectively. 𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  and 𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

represent the number of positive and negative individuals in the test set. This widely adopted 

approach aims to evaluate model performance under biologically realistic conditions where 

interaction networks are extremely sparse. 

The baseline methods included in this paper are: 

• CNNC [8]: predicts GRNs using deep convolutional neural networks. 

• STGRNS [4]: a supervised learning method based on Transformer architecture. 

• GENIE3 [26]: an unsupervised learning method based on random forests that constructs GRNs 

using regression coefficient weights. 

• GRNBoost2 [27]: an unsupervised learning method for GRN inference using random gradient 

boosting regression and early stopping regularization. 

For a fair comparison of the models, all models were trained on the same training sets and model 

performance was compared on the same test sets. Due to the high imbalance of government nutrients 

in the test set, we use the AUPRC metric, in addition to the AUROC metric, to measure the ability of 

the models to identify positive individuals. 

3. Results 

3.1. Parameter analysis 

MultiGRNFormer is influenced by several key parameters: the number of sampled cells 𝑁, the 

number of encoder layers, and the hidden layer size of the MLP. To determine an optimal set of 

parameters, we conducted a parameter analysis on two datasets, Human-bone and Human-breast. 

We selected these datasets of different sizes and performed five-fold cross-validation on the training 

sets of each dataset using various parameter combinations. Specifically, the training set was equally 

divided into five subsets, with one subset iteratively held out as the validation subset while the others 

were used for training. Final performance metrics were averaged across all validation rounds. 

The optimal parameter combinations differed significantly between the two datasets: for 

Human-bone, the optimal combination was that 𝑁 = 1000, encoder layers is 2, and MLP hidden size 

is 1024; while for Human-breast, it was that 𝑁 = 500, encoder layers is 1, and MLP hidden size is 

512. We hypothesize that this discrepancy is related to dataset size. To select an appropriate set of 

parameters, we averaged the results across different parameter settings, as shown in Figure 2. The 

results indicate that the model is not highly sensitive to the number of encoder layers and the hidden 

layer size of the MLP, as different values for these parameters had minimal impact on performance. 

However, the number of sampled cells 𝑁 had a significant impact. The optimal value for 𝑁 was 800 

for Human-bone and 500 for Human-breast, likely due to the larger dataset benefiting from a higher 

𝑁 . The number of encoder layers exhibited similar trends across both datasets, with one layer 

performing the worst and two to three layers yielding competing results. The hidden layer size of the 

MLP showed consistent performance across all tested values. Given the fact that most datasets are 

similar in size to or smaller than Human-breast, we adopted the parameter combination of 𝑁 = 500, 

encoder layers is 2, and MLP hidden size is 128 for all experiments unless otherwise specified. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2025 doi:10.20944/preprints202509.0669.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0669.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 13 

 

 

Figure 2. Parameter Analysis of MultiGRNFormer. The figure presents the experimental results of five-fold 

cross-validation on the training sets of the human bone (top) and human breast (bottom) datasets. 

3.2. Performance of MultiGRNFormer in Gene Regulatory Network Inference 

To evaluate the performance of our model, we conducted a comprehensive benchmark test 

against four established methods across seven datasets, with results shown in Figure 3. 

MultiGRNFormer achieved the best performance on most datasets, particularly excelling in the 

AUPRC metric, where it outperformed all other models across all datasets. However, on some 

datasets, the AUROC metric approached random comparison outcome. This phenomenon may be 

attributed to the highly imbalanced test sets, where the overwhelming presence of negative samples 

allows AUROC to be dominated by the true negative rate (TN). As a result, slight model performance 

improvements may not be reflected in the AUROC scores. In the TFS+1000 tests, MultiGRNFormer 

outperformed others on both AUROC and AUPRC. Specifically, our model achieved higher AUROC 

scores than in the TFS+500 setting, whereas AUPRC scores exhibited a slight decline. This suggests 

that an increase in training data improved model performance in AUROC, but the more imbalanced 

nature of the TFS+1000 test set counteracted the benefits by reducing recall. 
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Figure 3. Summary of GRN Prediction Performance Across Seven Multi-Omics Datasets. Each result in 

AUROC (a) and AUPRC (b) metrics represents the average of five independent runs. The evaluation includes 

seven datasets and two ground-truth networks (Non-specific ChIP-seq, STRING). Each multi-omics dataset 

consists of transcription factors (TFs) and either 500 highly variable genes (left) or 1000 highly variable genes 

(right). 

3.3. Enhancing MultiGRNFormer Performance through Data Augmentation 

A primary challenge in deep learning-based gene regulatory network inference is the limited 

availability of labeled data, which constrains the scale of deep learning models. Deep learning models 

are highly sensitive to training data size, with larger training sets generally leading to better 

performance. As shown in Figure 3, all deep learning models achieved the best results on the largest 

dataset (human bone). MultiGRNFormer incorporates a positional encoding module, enabling the 

model to be sensitive to input order. Leveraging this feature, we designed a novel data augmentation 

strategy: without altering the gene regulatory relationships, we generate multiple training samples 

by randomly shuffling the input order of a TF-gene label. This approach modifies the relative 

positions of cells in the input data while preserving the regulatory relationships between genes, 

thereby expanding the size of the training dataset. 

We expanded the training sets from three datasets by different augmentation factors and 

evaluated performance using their respective test sets. Applying this approach in the TFS+1000 

setting, as shown in Figure 4, we observed performance improvements as the augmentation factor 

increased. For the largest dataset, Human-bone, applying a fivefold data augmentation led to a 5.6% 

increase in AUROC and a 2.2% increase in AUPRC compared to no augmentation. For Human-breast, 

the respective improvements were 3.7% and 2%. On the smallest dataset, Human-jejunum, 

augmentation effects were negligible for factors of 2–4 but became significant at a factor of 5. We 

further applied fivefold data augmentation across all seven datasets (Figure 5) and found consistent 

performance improvements, suggesting that our model captures regulatory relationships by 

leveraging gene expression variations across different cells. 

 

Figure 4. Effect of Different Factors of Data Augmentation on Model Performance. MultiGRNFormer was 

trained on datasets with varying degrees of data augmentation and evaluated on the original test sets from 

across three datasets (TFs+1000). All experiments were conducted five times to ensure result consistency. 
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Figure 5. Comparison of Test Results With Data Augmentation. The AUROC (left) and AUPRC (right) metrics 

were evaluated on seven datasets (TFs+1000) using Non-specific ChIP-seq (top) and STRING (bottom) as 

ground truth networks. Each experiment was repeated five times for consistency. 

3.4. Cross-Dataset Learning to Improve MultiGRNFormer Performance 

Based on the effectiveness of data augmentation, we investigated whether MultiGRNFormer 

could leverage features learned from other datasets to enhance performance on a target dataset. We 

designed an experiment where the model was pre-trained on multiple datasets (25 epochs) before 

being fine-tuned on the target dataset (10 epochs) and evaluated on the target test set. As shown in 

Figure 6a, this approach yielded limited improvements, with most datasets showing no significant 

advantage. We hypothesize that the current training data scale does not sufficiently mitigate batch 

effects across datasets. To address this, we repeated the experiment using fivefold data augmentation 

for all training datasets. The results in Figure 6b indicate that the combined approach (cross-dataset 

& Augmented 5) significantly improved model performance compared to augmentation alone. This 

suggests that integrating data augmentation and cross-dataset training not only mitigates batch 

effects but also enables the model to learn more generalizable gene regulatory relationships. 

 

Figure 6. Comparison of Results Using Different Training Strategies. The AUROC (left) and AUPRC (right) 

metrics were evaluated on seven datasets (TFs+1000) using Non-specific ChIP-seq as the ground truth 

network. Each experiment was repeated five times. (a) presents the test results of models trained with cross-

dataset training versus standard training. (b) compares models trained with both cross-dataset training and 

fivefold data augmentation, models trained with only data augmentation, and models trained using standard 

methods. 
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On most datasets, the cross-dataset & Augmented 5 approach substantially improved model 

performance, with AUROC increasing by an average of 4.7% and AUPRC by 2.7%. However, 

performance gains varied across species. In the five human datasets, AUROC improved by an 

average of 6.4% and AUPRC by 3.7%. In contrast, the two mouse datasets showed minimal 

improvement (AUROC +0.5%, AUPRC +0.1%), with a performance decline observed in the mouse-

brain dataset. We attribute this to two factors: (1) the mouse datasets were significantly smaller than 

the human datasets, containing only a few hundred regulatory interactions, which remained 

insufficient even after augmentation, and (2) interspecies differences likely exceeded batch effects, 

which our model struggled to account for. 

We conducted additional experiments to explore the feasibility of training a universal model 

capable of inferring gene regulatory networks across datasets. In these experiments, we trained 

models on the six remaining datasets (with fivefold data augmentation) and directly evaluated them 

on the target dataset’s test set, without fine-tuning on its training set. The resulting models performed 

only slightly better than random predictions. This suggests that training on the target dataset remains 

crucial for learning dataset-specific batch effects, indicating that our current model cannot fully 

eliminate these effects. 

3.5. Leveraging Multi-Omics Data to Enhance MultiGRNFormer Performance 

In all previous experiments, we utilized multi-omics datasets for model training. To assess 

whether our model benefits from multi-omics data, we conducted experiments using only 

transcriptomic data, with results shown in Figure 7. In most cases, multi-omics data outperformed 

transcriptomics alone, particularly in the data augmentation (Figure 7b) and cross-dataset training 

(Figure 7c) experiments, where AUROC increased by 1.4% and 2.5%, respectively, and AUPRC 

increased by 1.1% and 1.9%. However, in standard training (Figure 7a), multi-omics data did not 

provide a significant advantage. This suggests that without data augmentation or cross-dataset 

training, the traditional “single-sample, single-label” method is insufficient to capture dynamic 

correlations across omics layers. By contrast, data augmentation and cross-dataset training provided 

sufficient samples, allowing MultiGRNFormer to leverage multi-omics data more effectively, leading 

to superior performance in these experimental settings. 
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Figure 7. Comparison of Gene Regulatory Network Inference Between Single-Omics and Multi-Omics 

Approaches. The AUROC (left) and AUPRC (right) metrics were evaluated on seven datasets (TFs+1000) using 

Non-specific ChIP-seq as the ground truth network. Each experiment was repeated five times. (a), (b), and (c) 

present the test results under standard training, data augmentation, and cross-dataset training strategies, 

respectively, comparing models that utilize both omics modalities versus those using only transcriptomic data. 

4. Discussion 

This study systematically validates the superior performance of MultiGRNFormer newly 

proposed in gene regulatory network (GRN) inference driven by multi-omics data. Experimental 

results demonstrate that by integrating transcriptomic (scRNA-seq) and chromatin accessibility 

(scATAC-seq) data, a well-trained model can effectively capture dynamic changes in gene expression 

and the open states of regulatory elements, thereby reducingfalse positives in unimodal inference. In 

data augmentation and cross-dataset joint training scenarios, the multi-omics model achieved 

average AUPRC improvements of 1.1% and 1.9%, respectively, compared to using transcriptomic 

data alone. To address the challenge of limited labeled data, we propose an input sequence 

randomization-based augmentation strategy, which enhances data utilization efficiency by 

generating multiple perspectives from a single sample. This technique increases the effective use of 

limited labeled data by fivefold, leading to AUROC and AUPRC improvements of 5.6% and 2.2%, 

respectively, on the largest dataset (human bone). Meanwhile, for smaller datasets such as human-

jejunum, the enhancement effect follows a nonlinear accumulation pattern, highlighting the role of 

data augmentation in improving the generalization ability of deep learning models in GRN inference. 

Further investigation reveals that the synergy between cross-dataset training and data 

augmentation can overcome the limitations of single-dataset training. When combined with data 

augmentation, cross-dataset training improves AUROC by an average of 6.4% and AUPRC by 3.7% 

across five human datasets, indicating that the model can capture regulatory patterns across different 

tissues. However, cross-species training (e.g., human-to-mouse) does not perform well and may even 

lead to performance degradation, underscoring the challenge of improving model performance 

through cross-species training. 

Although fully cross-dataset “zero-shot” inference has not yet been achieved, the combination 

of data augmentation and cross-dataset training has demonstrated superior performance over single-

dataset training in most cases, suggesting that MultiGRNFormer has the potential to learn 

generalizable regulatory patterns. The model performs particularly well in multi-omics-driven 

scenarios. While the advantage of multi-omics is limited under conventional training, its performance 

surpasses unimodal approaches significantly when combined with data augmentation and cross-

dataset training, confirming that leveraging complementary multimodal features requires sufficient 

training samples. These findings provide new insights for future GRN inference model development. 

This study demonstrates the superior performance of MultiGRNFormer in multi-omics-driven 

gene regulatory network (GRN) inference; however, several promising research directions remain 

open for future exploration. Subsequent work may proceed along the following avenues: First, to 

construct a more comprehensive and accurate representation of the regulatory landscape, future 

versions of MultiGRNFormer could be extended to incorporate additional modalities—such as DNA 

methylation [28], histone modifications [29], and 3D chromatin conformation [30]. A major challenge 

will be to develop effective methods for aligning and integrating these heterogeneous data types 

within a unified deep learning framework. Second, future research could investigate more advanced 

attention mechanisms or graph neural network architectures to better capture the complex, non-

linear interactions between transcriptomic and epigenomic data. 
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