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Abstract

Gene Regulatory Network (GRN) describes the regulatory interactions between transcription
factors (TFs) and their target genes, playing a crucial role in understanding developmental biology,
disease mechanisms, and drug target discovery. However, due to the complexity of gene regulation,
inferring GRNs solely from gene expression data remains highly challenging. Additionally, deep
learning models’ dependency high-quality annotation data further constrains their performance
improvement. To address these challenges, this study proposes MultiGRNFormer, a Transformer-
based model for multi-omics GRN inference. The key innovations of this model include: (1)
Integration of transcriptomic and chromatin accessibility data—leveraging a Transformer encoder
to effectively capture gene regulatory relationships and improve inference accuracy. (2)
Incorporation of a positional encoding mechanism, enabling the model to be sensitive to the order
of input features, and meanwhile the use of data augmentation strategies to generate diverse
samples, thereby enhancing the utilization of training data. To evaluate the model’s performance,
we conducted experiments on seven different single-cell multi-omics datasets and compared it with
existing GRN inference methods. The results demonstrate that by combining multi-omics data
integration with data augmentation strategies, superior performance in GRN inference tasks can be
achieved. Our findings provide new insights for future deep learning-based GRN inference
research.

Keywords: network inference; gene regulatory network; deep learning

1. Introduction

Gene Regulatory Networks (GRNs) describe the interactions between transcription factors (TFs)
and their target genes that control gene expression levels [1]. Understanding GRNs is crucial for
deciphering developmental biology mechanisms, disease pathogenesis, and drug target discovery
[2,3].

In recent years, deep learning techniques, based on their powerful nonlinear modeling
capabilities, have demonstrated significant potential in the field of GRN inference [4,5]. However,
existing deep learning-based approaches face a fundamental limitation: the extreme scarcity of high-
quality labeled data [5-7]. Most datasets contain only hundreds to thousands of TF-gene regulatory
pairs, significantly constraining the learning capacity of deep learning models. More critically,
existing methods generally follow a “single-sample single-label” training paradigm, failing to fully
exploit the latent information within limited datasets. Additionally, their insensitivity to input feature
order makes it difficult to capture the dynamic and sequential associations in multi-omics data. For
example, methods such as CNNC [8] and DGRNS[7] convert input data into image representations,
which provide intuitive spatial relationships but lose positional information, which however is
crucial for fully leveraging data and enhancing model performance.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0669.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2025 d0i:10.20944/preprints202509.0669.v1

2 of 13

Data augmentation plays a crucial role in deep learning, especially when the available data is
limited. By applying random transformations to the original data—such as rotation, scaling,
cropping, flipping, and adding noise —it effectively expands the dataset size, enhances the model’s
generalization ability, and reduces the risk of overfitting [9]. Additionally, data augmentation helps
models learn more robust features and improves their adaptability to complex scenarios. It has been
widely applied in various fields, including computer vision, natural language processing, and
bioinformatics, serving as a key technique for boosting the performance of deep learning models [10-
12]. However, despite its extensive research and application in other domains, data augmentation
remains underexplored in the field of GRN inference.

Furthermore, groundbreaking advances in single-cell multi-omics technologies now enable the
simultaneous profiling of the transcriptome (scRNA-seq) and epigenome (scATAC-seq) within
individual cells [13,14]. This provides a more comprehensive perspective for understanding gene
transcription and regulation at the cellular level. Current research has demonstrated that integrating
gene expression data with chromatin accessibility data for GRN inference can better distinguish
direct from indirect regulatory relationships, reduce false positives and false negatives in inference
results, and improve overall accuracy [15-17].

This study proposes MultiGRNFormer, a multi-omics inference framework based on the
Transformer architecture [18]. This framework introduces two key innovations:

Multi-omics modeling of gene regulatory features: Unlike traditional single-omics inference
models that rely only on transcriptomic data, MultiGRNFormer integrates both transcriptomic and
chromatin accessibility data. By leveraging a Transformer encoder, our model simultaneously
captures regulatory information from gene expression and chromatin accessibility to infer GRNs
more accurately.

Data augmentation for GRN inference: We introduce positional encoding to make the model
sensitive to input feature order. Additionally, we apply dynamic input reordering to generate
multiple training samples from single-label data, effectively augmenting the dataset and improving
learning efficiency.

To evaluate the performance of MultiGRNFormer, we conducted experiments on seven different
datasets, comparing our approach with existing single-omics inference models. Experimental results
across these datasets demonstrate that MultiGRNFormer achieves superior performance in GRN
inference. Furthermore, our experiments confirm that the proposed data augmentation method
significantly enhances model prediction performance. We also explored the feasibility of cross-
dataset joint training. Cross-dataset experiments revealed that training across datasets yields
significant advantages on most benchmarks, indicating that increased data diversity helps the model
extract universal regulatory patterns across tissues. Finally, ablation studies confirm that integrating
multi-omics data provides MultiGRNFormer with richer regulatory information, thereby improving
inference accuracy.

2. Materials and Methods

2.1. Datasets

The study used seven publicly available datasets, which consist of scRNA-ATAC-seq data from
different tissues of both human and mouse [19-21].

In the field of GRN, there has been a persistent lack of real-world networks for model evaluation.
As a result, in the GRN inference literature, a common and expedient practice is to evaluate the
accuracy of a resulting network by comparing its edges to an appropriate database of TFs and their
targets. Therefore, We utilized the non-cell type-specific transcriptional regulatory network ChIP-seq
data provided by BEELINE[22] and the functional interactions from the STRING|[23] database as
ground truth networks. Statistical data are shown in Table 1.
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Table 1. Statistics of scRNA-ATAC-seq datasets and two ground-truth networks composed of TFs and the top
500 most variable genes. The numbers in parentheses in the table represent corresponding statistics for

networks composed of TFs and the top 1000 most variable genes.

Non-specific ChIP-seq STRING
Dataset Cells

TFs Genes Density TFs Genes Density
bone 6742 717(722) 1217(1566)  0.032(0.029) 792(796) 937(1113) 0.051(0.045)
breast 1446  186(190)  447(693)  0.052(0.043) 223(231) 300(435) 0.070(0.055)
human  jejunum 5368  57(59) 124(166)  0.134(0.117)  81(84)  87(105)  0.133(0.116)
kidney 13666  175(176)  407(583)  0.060(0.053) 226(230) 277(344) 0.065(0.057)
pbmc 6984  186(196)  551(869)  0.055(0.046) 230(235) 375(562) 0.061(0.051)

brain 4362 100(109)  137(167)  0.028(0.025)

TOUE T lidney 12355 7281)  122(155)  0.036(0.034)

2.2. Data Preprocessing

We first preprocessed the raw count matrices for scRNA-seq and scATAC-seq of the dataset. For
each count matrix, we denoted rows as features (genes or peak regions) and columns as cells
throughout the paper below. Each data matrix was removed if a row or column contained less than
0.1% non-zero values. Data quality control was performed by Seurat V4, including but not limited to
total read counts, mitochondrial gene ratios, and blacklist ratios [24]. After quality control, we
selected the top 1,000 highly variable genes for subsequent analyzes based on gene variance, and the
final gene expression matrix and chromatin accessibility matrix were obtained. The gene expression
matrix was denoted as X% = {xf;- [i=12,..,1;j =1.2,..,J} , with totally I genes and ] cells. The
chromatin accessibility matrix was denoted as X4 = {x,‘fj|k =12,...,K;j=1.2,.., ]}, which has K
peak regions in J cells.

To apply the chromatin accessibility data to GRNs inference, we used the method described in
MAESTRO[25] to calculate the peak region in X4 as the regulatory potential of the corresponding
gene. Specifically, based on the distance between peak k and gene i in the genome, the regulatory
potential weight of peak k for gene i is denoted as wy, and calculated as follows:

0, djx > 150kb or peak k located in any nearby genes
1

Wik =\ Length(exon)
_dik
2 do,otherwise
where d;; denotes the distance from the center of peak k to the transcriptional starting site of gene

, peak klocated at the exon regions of the gene i 1)

i,and d, is the half-decay of that distance (set to 10kb). The regulatory potential wy, of peak k for
d;

gene i isusually calculated as Z_dL:. If dy, > 150kb, wy, should be less than 0.0005, and in order to

save computational time, we set it to 0. In MAESTRO, to better fit the gene expression model, if peak

k islocated in the exon region of the gene, wy, should be 1 according to the formula. But since reads

tend to be located in longer exons than shorter exons, to normalize the likelihood of background

reads, the total exon reads were normalized by the total exon length of each gene exon. The peak k

regulatory potential of gene i incell j can then be calculated as:
Tiklj = Wik X Xi; (2)

Finally, the scATAC-seq matrix X# is transformed into the gene regulatory potential matrix X*
by summing the regulatory potential scores of peaks regulating the same gene:

xf; = Zriku 3)

k
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2.3. The MultiGRNFormer framework

MultiGRNFormer is inspired by the design concept of STGRNS[4], utilizing a Transformer
architecture to capture intercellular gene expression variations. However, unlike STGRNS, which
aggregates multiple cells into motifs, we designed a novel input structure to enhance the model’s
sensitivity to intercellular gene expression changes. Additionally, our input design enables
MultiGRNFormer to capture the regulatory state of genes within each cell by integrating multimodal
data. Specifically, in addition to transcriptomic data traditionally used by existing models, we
incorporate chromatin accessibility data to provide an alternative perspective on the gene regulatory
process. MultiGRNFormer consists of four key components: an Input Constructor , a Positional
Encoder, a Multiple Transformer Encoders, and a Regulation Predictor, as illustrated in Figure 1c.
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Figure 1. The Pipeline of MultiGRNFormer. (a) Transformation of chromatin accessibility data into a gene
regulatory potential matrix. (b) Structure of the Transformer encoder module. (c) Overall framework of
MultiGRNFormer.

Input Data: MultiGRNFormer takes two modalities of input data: the gene expression matrix
XR = {xi"}li =12,..,I;j=12,..,]} and the gene regulatory potential matrix X° = {xﬁ-li =
1,2,..,1;j =1,2,..,J}, where I denotes the number of genes, and J represents the number of cells.

Input Constructor: The format of data input plays a critical role in maximizing the model’s
feature extraction capabilities. Thus, we carefully designed an Input Constructor to structure the
input data effectively. For a given transcription factor (TF) a and target gene b, their gene
expression values in the j th cell are xf; € X® and xj; € X¥, respectively, while their regulatory
potential values are x;; € X and x}; € XP. To ensure the model accurately captures the regulatory
state of a gene within a single cell, we concatenate all relevant data from the same cell into a single
feature vector: X’ = {xf;,xb;, xf;, xf;}. We retain only the cells where both TF a and gene b are
expressed to minimize the impact of missing values. Then, we randomly sample N cells from this
set (with replacement if the available number of cells is less than N). Finally, the model input is
structured as: X = {X{* i =12,..,N}.

Positional Encoding: Since the Transformer encoder lacks an inherent understanding of
positional information in the input data, we apply positional encoding to X?® in order to obtain
Xgb., computed as follows:

X538 = X 4 Positional (X?), D

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where Positional(-) is the positional encoding function. We adopt a sinusoidal positional encoding
scheme, where sine functions are applied to odd-indexed elements and cosine functions are applied
to even-indexed elements:
PE(m, 2n) = sin(m/100002™/*), 2)
PE(m,2n + 1) = cos(m/10000%"+1/4), 3)
where m denotes the position of a cell in X ab and n represents the feature index, even indices
corresponding to 2n and odd indices to 2n + 1.

Multiple Transformer Encoders: We employ a multi-layer Transformer encoder [18] with
residual connections to extract multi-omics features that define gene regulatory interactions. The self-
attention mechanism in the Transformer encoder allows the model to focus more on cells that provide
strong regulatory evidence. The hierarchical multi-layer structure enhances the model’s ability to
capture higher-order interactions, while residual connections mitigate the issues of gradient
vanishing and explosion commonly observed in deep networks.

Specifically, our encoder consists of multiple identical Transformer layers, each comprising two
sublayers: multi-head self-attention and a position-wise feed-forward network, as illustrated in
Figure 1b. The transformation between layers is formally defined as:

H® = LayerNorm (H(l‘l) + MultiHead(H(l‘l))) 4
H® = LayerNorm (H® + FEN(H©)) (5)
where H®W € RN Xdmodel denotes the feature representation at the [ th encoder layer. In our model,
dmodger = 4, since each sample includes two gene expression values and two regulatory potential
values.
head; = Attention(QW?, KWK, vw}), (6)
where W2, WK, WY € R¥moderxdk are the query, key, and value projection matrices, respectively,
with dy = dypger/h, in which h is the number of attention heads. The scaled dot-product attention
is computed as:

. QK"
Attention(Q, K, V) = sotfmax 7 %4 @)
k
The outputs from all attention heads are concatenated and linearly projected to form the final
representation:
MultiHead(Q, K, V) = Concat(head]l, ..., head, )W (8)

The position-wise feed-forward network (FFN) consists of two linear transformations with a
GELU activation function:

FFN(x) = W,(GELU(W;x + b)) + b, 9
where W, € R¥modet*hdmodel expands the dimension by a factor of 4, and W, € R*modet*model
projects it back to the original size.

Regulation Predictor: We employ a multi-layer perceptron (MLP) as the regulation predictor.
First, the regulatory features obtained from the Transformer encoder, H € RN*4, are flattened into a
one-dimensional vector:

H' = Flatten(H) (10)
Then, H' is passed through the MLP to predict the regulatory probability p,, between TF a

and gene b:
Pap = (W, - ReLU(W,H' + by) + b,), 11

where ¢ denotes the sigmoid activation function.

Parameter Optimization: To train the model, we minimize the Binary Cross Entropy (BCE) loss
between the predicted regulatory interactions and ground truth labels, enabling the model to
distinguish fine-grained regulatory relationships:

N
BCE = _%Z y; - log(model(x)) + (1 — y;) - log(1 — model(x)) (10)

=1
where i denotes the i th TF-gene pair and y; denotes the label of the i th TF-gene pair.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.4. Experimental Setting and Hyperparameter Optimization

For each real network, we use 4/5 of the set of positive labels as the training set and 1/5 of the
positive labels as the test set. Due to the high imbalance of the dataset (as in Table 1), we randomly
sampled negative individuals in the unobserved links. The training set was constructed with an equal
number of positive and negative individuals. For the test set, we employed the following sampling
strategy to simulate real-world sparse regulatory networks:

positive |E |

_ , (11)
Npositive + Nnegati"‘? %NTF X Ngene

where |E| represents the number of edges in the regulatory network of the dataset, Nrr and Nyep,
denote the number of transcription factors (TFs) and genes, respectively. Npositive and Npegative
represent the number of positive and negative individuals in the test set. This widely adopted
approach aims to evaluate model performance under biologically realistic conditions where
interaction networks are extremely sparse.

The baseline methods included in this paper are:

e CNNC [8]: predicts GRNs using deep convolutional neural networks.

e  STGRNS [4]: a supervised learning method based on Transformer architecture.

e  GENIE3 [26]: an unsupervised learning method based on random forests that constructs GRNs
using regression coefficient weights.

e  GRNBoost2 [27]: an unsupervised learning method for GRN inference using random gradient

boosting regression and early stopping regularization.

For a fair comparison of the models, all models were trained on the same training sets and model
performance was compared on the same test sets. Due to the high imbalance of government nutrients
in the test set, we use the AUPRC metric, in addition to the AUROC metric, to measure the ability of
the models to identify positive individuals.

3. Results

3.1. Parameter analysis

MultiGRNFormer is influenced by several key parameters: the number of sampled cells N, the
number of encoder layers, and the hidden layer size of the MLP. To determine an optimal set of
parameters, we conducted a parameter analysis on two datasets, Human-bone and Human-breast.
We selected these datasets of different sizes and performed five-fold cross-validation on the training
sets of each dataset using various parameter combinations. Specifically, the training set was equally
divided into five subsets, with one subset iteratively held out as the validation subset while the others
were used for training. Final performance metrics were averaged across all validation rounds.

The optimal parameter combinations differed significantly between the two datasets: for
Human-bone, the optimal combination was that N = 1000, encoder layers is 2, and MLP hidden size
is 1024; while for Human-breast, it was that N = 500, encoder layers is 1, and MLP hidden size is
512. We hypothesize that this discrepancy is related to dataset size. To select an appropriate set of
parameters, we averaged the results across different parameter settings, as shown in Figure 2. The
results indicate that the model is not highly sensitive to the number of encoder layers and the hidden
layer size of the MLP, as different values for these parameters had minimal impact on performance.
However, the number of sampled cells N had a significant impact. The optimal value for N was 800
for Human-bone and 500 for Human-breast, likely due to the larger dataset benefiting from a higher
N. The number of encoder layers exhibited similar trends across both datasets, with one layer
performing the worst and two to three layers yielding competing results. The hidden layer size of the
MLP showed consistent performance across all tested values. Given the fact that most datasets are
similar in size to or smaller than Human-breast, we adopted the parameter combination of N = 500,
encoder layers is 2, and MLP hidden size is 128 for all experiments unless otherwise specified.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 2. Parameter Analysis of MultiGRNFormer. The figure presents the experimental results of five-fold

cross-validation on the training sets of the human bone (top) and human breast (bottom) datasets.

3.2. Performance of MultiGRNFormer in Gene Regulatory Network Inference

To evaluate the performance of our model, we conducted a comprehensive benchmark test
against four established methods across seven datasets, with results shown in Figure 3.
MultiGRNFormer achieved the best performance on most datasets, particularly excelling in the
AUPRC metric, where it outperformed all other models across all datasets. However, on some
datasets, the AUROC metric approached random comparison outcome. This phenomenon may be
attributed to the highly imbalanced test sets, where the overwhelming presence of negative samples
allows AUROC to be dominated by the true negative rate (IN). As a result, slight model performance
improvements may not be reflected in the AUROC scores. In the TES+1000 tests, MultiGRNFormer
outperformed others on both AUROC and AUPRC. Specifically, our model achieved higher AUROC
scores than in the TFS+500 setting, whereas AUPRC scores exhibited a slight decline. This suggests
that an increase in training data improved model performance in AUROC, but the more imbalanced
nature of the TFS+1000 test set counteracted the benefits by reducing recall.
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Figure 3. Summary of GRN Prediction Performance Across Seven Multi-Omics Datasets. Each result in
AUROC (a) and AUPRC (b) metrics represents the average of five independent runs. The evaluation includes
seven datasets and two ground-truth networks (Non-specific ChIP-seq, STRING). Each multi-omics dataset
consists of transcription factors (TFs) and either 500 highly variable genes (left) or 1000 highly variable genes
(right).

3.3. Enhancing MultiGRNFormer Performance through Data Augmentation

A primary challenge in deep learning-based gene regulatory network inference is the limited
availability of labeled data, which constrains the scale of deep learning models. Deep learning models
are highly sensitive to training data size, with larger training sets generally leading to better
performance. As shown in Figure 3, all deep learning models achieved the best results on the largest
dataset (human bone). MultiGRNFormer incorporates a positional encoding module, enabling the
model to be sensitive to input order. Leveraging this feature, we designed a novel data augmentation
strategy: without altering the gene regulatory relationships, we generate multiple training samples
by randomly shuffling the input order of a TF-gene label. This approach modifies the relative
positions of cells in the input data while preserving the regulatory relationships between genes,
thereby expanding the size of the training dataset.

We expanded the training sets from three datasets by different augmentation factors and
evaluated performance using their respective test sets. Applying this approach in the TFS+1000
setting, as shown in Figure 4, we observed performance improvements as the augmentation factor
increased. For the largest dataset, Human-bone, applying a fivefold data augmentation led to a 5.6%
increase in AUROC and a 2.2% increase in AUPRC compared to no augmentation. For Human-breast,
the respective improvements were 3.7% and 2%. On the smallest dataset, Human-jejunum,
augmentation effects were negligible for factors of 2—4 but became significant at a factor of 5. We
further applied fivefold data augmentation across all seven datasets (Figure 5) and found consistent
performance improvements, suggesting that our model captures regulatory relationships by
leveraging gene expression variations across different cells.

Average AUC

Model
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 human-breast
s human-jejunum
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Figure 4. Effect of Different Factors of Data Augmentation on Model Performance. MultiGRNFormer was
trained on datasets with varying degrees of data augmentation and evaluated on the original test sets from
across three datasets (TFs+1000). All experiments were conducted five times to ensure result consistency.
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Figure 5. Comparison of Test Results With Data Augmentation. The AUROC (left) and AUPRC (right) metrics
were evaluated on seven datasets (TFs+1000) using Non-specific ChIP-seq (top) and STRING (bottom) as

ground truth networks. Each experiment was repeated five times for consistency.

3.4. Cross-Dataset Learning to Improve MultiGRNFormer Performance

Based on the effectiveness of data augmentation, we investigated whether MultiGRNFormer
could leverage features learned from other datasets to enhance performance on a target dataset. We
designed an experiment where the model was pre-trained on multiple datasets (25 epochs) before
being fine-tuned on the target dataset (10 epochs) and evaluated on the target test set. As shown in
Figure 6a, this approach yielded limited improvements, with most datasets showing no significant
advantage. We hypothesize that the current training data scale does not sufficiently mitigate batch
effects across datasets. To address this, we repeated the experiment using fivefold data augmentation
for all training datasets. The results in Figure 6b indicate that the combined approach (cross-dataset
& Augmented 5) significantly improved model performance compared to augmentation alone. This
suggests that integrating data augmentation and cross-dataset training not only mitigates batch
effects but also enables the model to learn more generalizable gene regulatory relationships.
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Figure 6. Comparison of Results Using Different Training Strategies. The AUROC (left) and AUPRC (right)
metrics were evaluated on seven datasets (TFs+1000) using Non-specific ChIP-seq as the ground truth
network. Each experiment was repeated five times. (a) presents the test results of models trained with cross-
dataset training versus standard training. (b) compares models trained with both cross-dataset training and
fivefold data augmentation, models trained with only data augmentation, and models trained using standard

methods.
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On most datasets, the cross-dataset & Augmented 5 approach substantially improved model
performance, with AUROC increasing by an average of 4.7% and AUPRC by 2.7%. However,
performance gains varied across species. In the five human datasets, AUROC improved by an
average of 6.4% and AUPRC by 3.7%. In contrast, the two mouse datasets showed minimal
improvement (AUROC +0.5%, AUPRC +0.1%), with a performance decline observed in the mouse-
brain dataset. We attribute this to two factors: (1) the mouse datasets were significantly smaller than
the human datasets, containing only a few hundred regulatory interactions, which remained
insufficient even after augmentation, and (2) interspecies differences likely exceeded batch effects,
which our model struggled to account for.

We conducted additional experiments to explore the feasibility of training a universal model
capable of inferring gene regulatory networks across datasets. In these experiments, we trained
models on the six remaining datasets (with fivefold data augmentation) and directly evaluated them
on the target dataset’s test set, without fine-tuning on its training set. The resulting models performed
only slightly better than random predictions. This suggests that training on the target dataset remains
crucial for learning dataset-specific batch effects, indicating that our current model cannot fully
eliminate these effects.

3.5. Leveraging Multi-Omics Data to Enhance MultiGRNFormer Performance

In all previous experiments, we utilized multi-omics datasets for model training. To assess
whether our model benefits from multi-omics data, we conducted experiments using only
transcriptomic data, with results shown in Figure 7. In most cases, multi-omics data outperformed
transcriptomics alone, particularly in the data augmentation (Figure 7b) and cross-dataset training
(Figure 7c) experiments, where AUROC increased by 1.4% and 2.5%, respectively, and AUPRC
increased by 1.1% and 1.9%. However, in standard training (Figure 7a), multi-omics data did not
provide a significant advantage. This suggests that without data augmentation or cross-dataset
training, the traditional “single-sample, single-label” method is insufficient to capture dynamic
correlations across omics layers. By contrast, data augmentation and cross-dataset training provided
sufficient samples, allowing MultiGRNFormer to leverage multi-omics data more effectively, leading
to superior performance in these experimental settings.
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Figure 7. Comparison of Gene Regulatory Network Inference Between Single-Omics and Multi-Omics
Approaches. The AUROC (left) and AUPRC (right) metrics were evaluated on seven datasets (TFs+1000) using
Non-specific ChIP-seq as the ground truth network. Each experiment was repeated five times. (a), (b), and (c)
present the test results under standard training, data augmentation, and cross-dataset training strategies,

respectively, comparing models that utilize both omics modalities versus those using only transcriptomic data.

4. Discussion

This study systematically validates the superior performance of MultiGRNFormer newly
proposed in gene regulatory network (GRN) inference driven by multi-omics data. Experimental
results demonstrate that by integrating transcriptomic (scRNA-seq) and chromatin accessibility
(scATAC-seq) data, a well-trained model can effectively capture dynamic changes in gene expression
and the open states of regulatory elements, thereby reducingfalse positives in unimodal inference. In
data augmentation and cross-dataset joint training scenarios, the multi-omics model achieved
average AUPRC improvements of 1.1% and 1.9%, respectively, compared to using transcriptomic
data alone. To address the challenge of limited labeled data, we propose an input sequence
randomization-based augmentation strategy, which enhances data utilization efficiency by
generating multiple perspectives from a single sample. This technique increases the effective use of
limited labeled data by fivefold, leading to AUROC and AUPRC improvements of 5.6% and 2.2%,
respectively, on the largest dataset (human bone). Meanwhile, for smaller datasets such as human-
jejunum, the enhancement effect follows a nonlinear accumulation pattern, highlighting the role of
data augmentation in improving the generalization ability of deep learning models in GRN inference.

Further investigation reveals that the synergy between cross-dataset training and data
augmentation can overcome the limitations of single-dataset training. When combined with data
augmentation, cross-dataset training improves AUROC by an average of 6.4% and AUPRC by 3.7%
across five human datasets, indicating that the model can capture regulatory patterns across different
tissues. However, cross-species training (e.g., human-to-mouse) does not perform well and may even
lead to performance degradation, underscoring the challenge of improving model performance
through cross-species training.

Although fully cross-dataset “zero-shot” inference has not yet been achieved, the combination
of data augmentation and cross-dataset training has demonstrated superior performance over single-
dataset training in most cases, suggesting that MultiGRNFormer has the potential to learn
generalizable regulatory patterns. The model performs particularly well in multi-omics-driven
scenarios. While the advantage of multi-omics is limited under conventional training, its performance
surpasses unimodal approaches significantly when combined with data augmentation and cross-
dataset training, confirming that leveraging complementary multimodal features requires sufficient
training samples. These findings provide new insights for future GRN inference model development.

This study demonstrates the superior performance of MultiGRNFormer in multi-omics-driven
gene regulatory network (GRN) inference; however, several promising research directions remain
open for future exploration. Subsequent work may proceed along the following avenues: First, to
construct a more comprehensive and accurate representation of the regulatory landscape, future
versions of MultiGRNFormer could be extended to incorporate additional modalities —such as DNA
methylation [28], histone modifications [29], and 3D chromatin conformation [30]. A major challenge
will be to develop effective methods for aligning and integrating these heterogeneous data types
within a unified deep learning framework. Second, future research could investigate more advanced
attention mechanisms or graph neural network architectures to better capture the complex, non-
linear interactions between transcriptomic and epigenomic data.
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