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Abstract: Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intel- 9

ligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM 10
systems in dynamic environments, this research proposes a system specifically designed for plant 11
factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight tar- 12
get detection network GY based on YOLOvV5, which utilizes GhostNet as the backbone network. 13
This integration is further enhanced with CoordConv coordinate convolution, CARAFE up-sam- 14
pling operators, and SE attention mechanism, leading to simultaneous improvements in detection 15
accuracy and model complexity reduction. While improving mAP@0.5 by 0.514%, the model simul- 16
taneously reduces the number of parameters by 43.976%, computational cost by 46.488%, and model 17
size by 41.752%. Additionally, the system constructs pure static octree maps and grid maps. Tests 18
conducted on the TUM dataset and a proprietary dataset demonstrate that GY-SLAM significantly = 19
outperforms ORB-SLAMS3 in dynamic scenarios in terms of system localization accuracy and ro- 20
bustness. It shows a remarkable 92.58% improvement in RMSE for Absolute Trajectory Error (ATE). 21
Compared to YOLOvV5s, the GY model brings a 41.5944% improvement in detection speed and a 22
17.7975% increase in SLAM operation speed to the system, indicating strong competitiveness and 23
real-time capabilities. These results validate the effectiveness of GY-SLAM in dynamic environ- 24
ments and provide substantial support for the automation of logistics tasks by robots in specific = 25

contexts. 26

Keywords: SLAM; YOLOv5; GhostNet; Octree Maps; Grid Maps; Plant Factory 27

28

1. Introduction 29

Citation: To be added by editorial Simultaneous Localization and Mapping (SLAM) is one of the key technologies in 30
staff during production. the field of robotic navigation, enabling robots to accurately determine their position and 31
Academic Editor: Firstname Last- create maps of their surroundings without any prior information [1]. Particularly in the 32
name field of mobile robotics, Visual SLAM [2] (VSLAM) has become the focus of research and 33

application due to its cost-effectiveness and its ability to provide rich environmental in- 34
formation [3]. However, most existing VSLAM algorithms are based on the assumption 35
of a static environment [4]. In dynamic environments, when extracting features from dy- 36
namic targets, especially those with strong texture information, it may lead to increased 37
_ trajectory errors or even tracking loss [5]. Therefore, in the process of transferring vegeta- 38
ble packages from the stacking area to the pre-cooling area in plant factory transportation 39
- robots, the SLAM system is affected by dynamic targets such as humans and collaborative 40
robots. This necessitates a SLAM system that can detect and eliminate dynamic feature 41
points in real-time to enhance system accuracy and robustness [6]. 42

Semantic SLAM, produced by the fusion of deep learning and SLAM, provides a 43
Attribution (CC BY) license  PTOMSING solution. It can predict the dynamic characteristics of predefined targets and 44
(https/creativecommons.orgflicense  PrOVide the system with functional attributes and semantic information of the them. This 45
s/by/4.0/). not only enhances the accuracy of robot localization in dynamic scenarios but also lays 46
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the foundation for autonomous intelligent path planning and advanced handling tasks. 47
RGB-D cameras, which provide precise depth information through physical measure- 48
ments, can also be employed for target detection and image segmentation [7]. However, 49
while image segmentation can reduce the interference of dynamic targets, it comes at the 50
cost of system real-time performance [8]. In light of this, YOLO (You Only Look Once) 51
single-stage target detection networks, known for their compact size and efficient real- 52
time performance, have become an ideal choice. With improvements, they can achieve 53
positioning accuracy close to that of image segmentation SLAM while maintaining signif- 54
icantly higher real-time performance, thus striking a balance between SLAM system ac- 55
curacy and real-time capabilities [9]. 56

In this paper, we propose a novel real-time dense semantic SLAM system named GY- 57
SLAM, specifically designed for plant factory transportation robots. This system inte- 58
grates deep learning techniques to assist robots in perceiving the environment from both 59
semantic and geometric perspectives. GY-SLAM can not only effectively identify and 60
eliminate feature points on predefined dynamic targets, but also construct a pure static 61
dense point cloud, and generate an octree map and a grid map for navigation, which im- 62
proves the positioning and mapping capabilities of the SLAM system in dynamic scenes. 63
The main contributions of this paper include: 64
1. Based on ORB-SLAMS3, dense mapping, target detection threads, and a dynamic fea- 65

ture elimination module have been added. A method for constructing dense point 66

clouds based on statistical filtering and voxel down-sampling has been proposed, 67

resulting in the generation of octree maps and grid maps. 68
2. A target detection dataset containing various robots, humans, and vegetable pack- 69

ages was created. Additionally, a SLAM dataset containing RGB and Depth infor- 70

mation, ground truth trajectories, and the aforementioned targets was collected. 71
3. Alightweight target detection model named GY, based on YOLOvb5s, was developed 72

with lightweight processing by incorporating GhostNet. CoordConv coordinate con- 73

volution, CARAFE up-sampling operators, and SE attention mechanisms was intro- 74

duced into the Model. 75
4. The above GY model and the enhanced SLAM system are successfully integrated 76
into a GY-SLAM visual dense semantic system and evaluated. 77

The remaining structure of this paper is as follows: Section 2 reviews relevant work 78
by other scholars in the field. Section 3 provides a detailed introduction to the framework 79
and proposed methods of GY-SLAM. Section 4 describes the materials and methods used 80
in this research. Section 5 reports the experimental evaluation results on our proprietary 81
dataset and the TUM RGB-D dataset. Section 6 discusses the major findings of this re- 82
search. Section 7 summarizes the research achievements of this paper and outlines direc- 83
tions for future work. 84

2. Related Work 85

The robustness of SLAM systems in dynamic environments has become a focal point 86
of research for numerous investigators. The primary challenge is how to effectively detect 87
and eliminate dynamic features and avoid using feature points extracted from moving 88
objects for positioning and mapping [10]. As research has progressed, many excellent al- 89
gorithms have endeavored to incorporate target detection and image segmentation tech- 90
niques from deep learning into SLAM system, providing essential semantic priors for de- 91
tecting and eliminating dynamic feature points [11]. 92

Li et al. [12] fused RGB-D camera and encoder information, utilizing the SegNet im- 93
age segmentation network based on Caffe to segment moving objects in images. The DS- 94
SLAM system proposed by Yu et al. [13] passes images with per-pixel semantic labels to 95
the tracking thread through the SegNet image segmentation thread, thus separating out 96
outlier points belonging to dynamic targets. Bescos et al. [14] proposed the DynaSLAM 97
algorithm, which leverages Mask R-CNN to obtain images with per-pixel image segmen- 98
tation and instance labels for dynamic target detection. Ren et al. [15] presented the VI- 99
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MID system, which employs Mask R-CNN to extract object masks and relies on rendering 100
masks obtained from object-level maps for continuous tracking of targets. However, per- 101
pixel image segmentation methods such as SegNet and Mask R-CNN, while achieving 102
high classification accuracy, are slow in speed, which does not meet the real-time target 103
detection requirements for robots. Target detection methods based on bounding boxes 104
exhibit significantly higher efficiency compared to per-pixel image segmentation meth- 105
ods. 106

Zhang et al. [16] integrated modules for target detection and recognition using YOLO 107
into the RGB-D SLAM framework, building semantic octree maps based on object-level 108
entities. Zhang et al. [17] augmented the ORB-SLAM?2 system with a YOLOv5-based ob- 109
ject detection and recognition module, achieving real-time and rapid detection of dynamic 110
features. Guan et al. [18] incorporated a YOLOV5 target detection module into the tracking 111
module of ORB-SLAM3 and generated static environment point cloud maps using RGB- 112
D cameras. Wang et al. [19] proposed YPD-SLAM, a system based on Yolo-FastestV2 tar- 113
get detection and CAPE plane extraction, capable of running on CPU while maintaining 114
relatively high detection accuracy. Song et al. [20] introduced YF-SLAM, which utilizes 115
the lightweight target detection network YOLO-FastestV2 to provide semantic infor- 116
mation in dynamic environments for ORB-SLAM2. Wu et al. [21] presented YOLO-SLAM, 117
which improved detection speed by replacing darknet-53 with darknet-19 for target de- 118
tection. Liu et al. [22] introduced Dynamic-VINS, which utilizes YOLOvV3 to detect various 119
dynamic elements on resource-constrained mobile platforms. 120

When the dynamic objects in the environment are known in advance, the use of deep 121
learning methods can be highly effective, but these methods are heavily reliant on the 122
quality of the network [23]. Simple network architectures may not effectively recognize 123
objects in certain situations, while complex architectures may slow down system perfor- 124
mance. This challenge has driven researchers to seek lightweight and efficient yet stable 125
target detection models to enhance the quality of SLAM systems. This demand provides 126
clear direction and reference for our work on lightweighting and improvements. 127

3. Improved System Description 128

In this section, we will provide a detailed explanation of our proposed GY-SLAM 129
system. This system combines lightweight deep learning techniques with advanced strat- 130
egies for enhancing target detection networks, effectively achieving the functionalities of 131
target detection and dynamic feature elimination. Furthermore, GY-SLAM possesses the = 132
capability to construct precise dense maps, laying a solid foundation for the accurate lo- 133
calization, path planning, and transportation tasks of robots in the dynamic environment 134
of plant factories. We will now proceed to introduce the implementation details of each 135
key component, starting from the overall framework of the system. 136

3.1. Overview of the GY-SLAM System 137

The framework of the GY-SLAM system proposed in this paper is illustrated in Fig- 138
ure 1. The system comprises five main threads running in parallel: Tracking, Local Map- 139
ping, Loop & Map Merging, Target Detection, and Dense Mapping. Among these, the 140
Target Detection and Dense Mapping threads represent innovative extensions based on 141
ORB-SLAMS3, while the Local Mapping and Loop & Map Merging threads remain con- 142
sistent with ORB-SLAM3. 143
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Figure 1. GY-SLAM System Framework. 145
3.1.1. ORB-SLAM3 146

ORB-SLAMS3 is the first feature-based SLAM system that supports monocular, stereo, 147
and RGB-D cameras. It is capable of visual, visual-inertial SLAM, and multi-map creation 148
[24]. The system effectively utilizes short-term, medium-term, long-term, and multi-map 149
data association, thereby effectively suppressing drift and ensuring high-precision locali- 150
zation in medium to large loop-closure scenarios. This comprehensive data association 151
capability significantly improves the system's adaptability and stability, which enables it 152
to achieve a localization accuracy of up to 9mm. 153

3.1.2. Dynamic Feature Elimination 154

We first collected a dataset of YOLO images containing elements relevant to the plant 155
factory transport robot work. Subsequently, we trained the GY target detection model us- 156
ing the GY network. In GY-SLAM, the GY model serves as input to provide predefined 157
target information to the Target Detection Thread. 158

The Target Detection Thread is responsible for processing the video stream captured 159
by the camera frame by frame. After inferring and analyzing the images using the GY 160
model to identify predefined targets and generating bounding boxes of them, it outputs 161
semantic information, localization information, and confidence to the Dynamic Feature 162
Elimination Module in the Tracking Thread. Within the Tracking Thread, we have em- 163
bedded a Dynamic Feature Elimination Module that receives the output from the Target 164
Detection Thread. After extracting ORB feature information in the Tracking Thread, this 165
module eliminates feature points within the dynamic area. This ensures that only static 166
feature points are used for subsequent pose estimation and mapping. 167

3.1.3. Dense Mapping 168

While ORB-SLAMS is effective, the sparse maps it generates cannot be directly used 169
for robot path planning and navigation. Therefore, constructing a pure static dense map 170
that can be used for navigation is crucial for transport robots. In the Dense Mapping 171
Thread, after the system receives keyframes from the Tracking Thread, it first performs 172
eligibility filtering on map points to obtain a basic pure static dense point cloud. This pro- 173
cess includes removing map points with significant errors based on effective camera 174
depth, eliminating outliers based on outlier marking, and removing dynamic feature 175
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points based on dynamic target localization information provided by the Target Detection 176
Thread. The final result is a relatively stable pure static dense point cloud. 177

In constructing the 3D octree map, statistical filtering is used to remove outlier map 178
points in the dense point cloud, which is achieved by calculating the average distance 179
between each point and the points within its surrounding neighborhood. Assuming that 180
the calculation results follow a Gaussian distribution, outlier points with unqualified av- 181
erage distances are filtered out based on the standard deviation. Subsequently, the point 182
cloud density is reduced by voxel down-sampling technology. This technique divides 183
three-dimensional space into uniform voxels, samples only one central point in each voxel 184
as a representative, and assigns the points in each voxel to the octree structure. Through 185
recursive operations, we can obtain the octree map. The octree map not only reduces com- 186
putational load but also preserves critical geometric structures, making it suitable for ro- 187
bot modeling and navigation in complex dynamic environments. 188

Grid maps play a crucial role in robot collision detection, navigation, and path plan- 189
ning. To construct a grid map, we first analyze the robot's obstacle clearance height and 190
working height. Then, we project the dense point cloud within this height range onto a 191
grid. After filtering and dilation processing, we obtain a two-dimensional grid map. 192

3.2. Overview of the GY Lightweight Target Detection Network 193

The YOLOvb5s [25] is adopted as the foundation, and through lightweighting and a 194
series of improvements, the lightweight GY target detection network is built, aiming to 195
balance accuracy and computing resources while maintaining high-speed performance. 196

In this article, the lightweight GhostNet network is integrated with the YOLOvb5s, 197
and then three improvements are conducted to enhance model accuracy and generaliza- 198
tion. Firstly, CoordConv coordinate convolution is introduced in the FPN structure, ena- 199
bling the model to perceive the positional information of feature image pixels. Secondly, 200
the CARAFE up-sampling operator is introduced to expand the receptive field, allowing 201
the network to perform up-sampling based on the semantic information from the input 202
feature maps. Finally, at the end of the Backbone, the SE channel attention mechanism is 203
introduced to focus on global feature maps, effectively modeling the interdependence be- 204
tween channels. The resulting GY network architecture is illustrated in Figure 2. 205
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Figure 2. GY network architecture. 207
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3.2.1. GhostNet Neural Network 208

GhostNet [26] is a lightweight and efficient CNN network proposed by Huawei No- 209
ah's Ark Lab in 2020. Its Ghost module first generates intrinsic feature maps using fewer 210
convolutional kernels and then produces many ghost feature maps through a series of 211
cost-effective linear transformations. These ghost feature maps are capable of extracting 212
the desired information from the intrinsic features. In terms of efficiency and accuracy, 213
the lightweight GhostNet reduces model complexity, making it particularly suitable for 214
mobile robots with limited memory and computing resources. The computational cost of 215

Ghost convolution compared to regular convolution is as follows: 216
costl=h xw xnxkxkxc 1)
.. n S
cost2=h><wXEXkaxc+(s—l)thwx§><k><k (2)

Where cost1 denotes the computational cost of the regular convolution, cost2 de- 217
notes the computational cost of the Ghost convolution, h xw xc denotes the heigh, 218
width and number of channels of the output feature maps, k denotes the convolution 219
kernel size, s denotes the number of ghost feature maps generated by each intrinsic fea- 220
ture map. Since s < ¢, the theoretical acceleration ratio ry of using the Ghost convolution 221
to replace the regular convolution can be approximated as follows: 222

cost 1 s+c
= T .= " 3
: cost2 s+c-1 S ®)

3.2.2. CoordConv Coordinate Convolution 223

CoordConv [27] is a coordinate convolution module proposed by Uber in 2018. Tra- 224
ditional convolutions only capture local information when the convolution kernel per- 225
forms local operations but do not know the spatial location of the current convolution 226
kernel. CoordConv adds two additional channels into the input feature map of convolu- 227
tion to represent pixel coordinates, enabling the network to learn complete translation 228
invariance or a certain degree of translation dependency according to different task re- 229
quirements. Simultaneously, it allows the convolution to perceive feature spatial infor- 230
mation to some extent during learning, thereby enhancing detection accuracy and robust- 231
ness. 232

3.2.3. CARAFE Up-sampling Operator 233

CARAEFE [28] is a lightweight up-sampling operator proposed by Wang et al.in2019. 234
It can aggregate contextual information over a large receptive field and supports instance- 235
specific content-aware processing, dynamically generating adaptive up-sampling kernels. 236
During CARAFE computation, the Kernel Prediction Module is responsible for perceiving 237
the content at each target location and generating a reassembled kernel. The Content- 238
Aware Reassembly Module uses the predicted kernel to reassemble the features, increas- 239
ing the emphasis on information from relevant feature points in local regions. The reas- 240
sembled feature map contains more semantic information compared to the original fea- 241
ture map. 242

3.2.4. SE Attention Mechanism 243

SE [29] is a channel attention module proposed by Hu et al. in 2019. Through the 244
Squeeze-and-Excitation module, SE explicitly models interdependencies between feature 245
channels. The SE attention mechanism allows the network to perform dynamic channel 246
feature recalibration to enhance the network's representational ability. Simultaneously, 247
the network can learn to use global information to selectively emphasize useful features 248
and suppress less useful ones. The structure of the SE building block is illustrated in Fig- 249
ure 3. 250
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Figure 3. A Squeeze-and-Excitation block. 252
4. Equipment and Methods 253

In this research, considering the need for robots to recognize three elements: humans, 254
robots, and vegetable packages, a new SLAM dataset was collected. This dataset servesas 255
a practical platform for testing SLAM algorithms of plant factory transport robots. Two 256
separate systems on a single server were used for GY deep learning model training and 257
SLAM algorithm testing. The experimental environment configuration is detailed in Table 258
1, and the left side of the combination of the two parameters is the deep learning configu- 259

ration parameter. 260
Table 1. The experimental environment configurations. 261
Configuration Parameter Server Configuration
CPU AMD Ryzen 9 5900X 12-Core Processor
Hardware GPU NVIDIA GeForce RTX 3060-12GB
RAM 32GB
Software System Windows 10 / Ubuntu 18.04
Python 3.9.18/2.7.17
PyTorch 1.12.1/1.9.0
Environment CUDA 11.6 /11.1
CuDNN 8.2.1/8.0.5
4.1. GY Model Training 262

Our YOLO image dataset primarily consists of images captured by the Intel Re- 263
alSense Depth Camera D455 with an aspect ratio of 4:3. Additionally, the dataset includes 264
human images from open datasets and various robot and vegetable package images 265
downloaded online. We carefully selected a total of 955 images, resized them proportion- 266
ally to a width of 640 pixels, and annotated them using the Labelimg tool. The classifica- 267
tion labels include Person, Robot, and Package. Following the principles of data augmen- 268
tation, we augmented the dataset by a factor of three, resulting in a total of 2865 images 269
to enhance the model's generalization capability. The ratio of the training and validation 270
datasets was set to 8:2, while the test dataset consisted of video streams captured by the 271
GY-SLAM system. The GY network training parameters were configured as follows: 272
Epoch was set to 300, Batch size was set to 16, Lr0 was set to 0.01, Momentum was set to 273
0.937, and Weight-Decay was set to 0.0005. 274

4.2. GY-SLAM Dataset Acquisition 275

We used the D455 camera to capture RGB and Depth data and employed the NOKOV 276
Motion Capture System to obtain real-time trajectory ground truth for the robot. The 277
MR600 transport robot from ShiHe Company served as the mobile platform, with the 278
D455 camera mounted on a bracket at the top of the robot. We incorporated the work 279
elements that the transport robot faced into the dataset to validate the subsequent target 280
detection network's ability to recognize targets and eliminate dynamic feature points. The 281
dataset encompasses various scenarios, including handheld and wheeled robot shooting, 282
fast and slow motions, as well as normal and multi-rotational scenarios. The equipment 283
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used for collecting the SLAM dataset is as shown in Figure 4, with specific parameters 284
provided in Table 2. 285

(a) Transfer robot platform (b) NOKOV motion capture system
Figure 4. Equipment for collecting GY-SLAM dataset. (a) MR600 mobile robot, D455 camera and 286
reflective markers; (b) 12 NOKOV Mars 2H cameras and motion capture system. 287
Table 2. Equipment parameters for collecting SLAM dataset . 288
Device Parameter Value
Image Resolution 640 x 480 at 30 FPS (OV9782)
D4
55 Camera FOV 869 x 57°
Overall Dimension 625 x 590 x 465 mm?
Installation Heigh 350 mm
MR600 Robot Elevation Angle 10°
Slow Speed 0.4 m/s
Fast Speed 0.8 m/s
NOKOV Marker @15 mm * 10
Mars 2H Camera Number 12
Cameras 3D Accuracy +0.15 mm
5. Experimental Results 289
5.1. GY Experimental Results 290

In this article, while ensuring model detection accuracy and FPS exceeding 30, we 291
prioritize reducing the complexity of the GY model to minimize the computational re- 292
source consumption during inference. we utilize metrics including mean Average Preci- 293
sion at IoU threshold of 0.5 (mAP@0.5), the number of model parameters (Parameters), 294
the computational complexity measured in Giga Floating-Point Operations Per Second 295
(GFLOPs), and the model size (Weight) as evaluation criteria. The latter three metrics, to 296
some extent, reflect the model's complexity. 297

5.1.1. Lightweight Network Comparative Experiment 298

In this experiment, we use YOLOv5s as the baseline model and integrated it with 299
three mainstream lightweight feature extraction networks for comparative experimentsin 300
order to obtain the most cost-effective lightweight network. The results are shown in Table 301
3. 302

303
304
305
306
307
308
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Table 3. Lightweight network comparative experiment. 309
Network mAP@0.5/% Parameters GFLOPs Weight/M

CSPDarkNet53 (YOLOv5s) 94.850 7018216 15.774 13.70

ShuffleNetV2 - YOLOv5s 89.949 3794120 7.989 7.68

MobileNetV3 - YOLOv5s 91.358 3543926 6.297 7.17

GhostNet - YOLOv5s (GY¥) 94.181 3681120 8.046 7.49
1 GY*: the model in its solely lightweight form, without any enhancements. 310

311

The results presented in Table 3 reveal that substituting the original CSPDarkNet53 312
backbone feature extraction network in YOLOv5s with various lightweight networks sig- 313
nificantly reduced the model's parameters, computation, and size. However, this substan- 314
tial reduction in complexity was accompanied by varying degrees of decreased detection 315
accuracy. When integrated with ShuffleNetV2, the model exhibited the smallest reduction 316
in complexity, but underwent the largest decrease in mAP@0.5, which was 4.901%. In con- 317
trast, integration with MobileNetV3 led to the most substantial reduction in complexity, 318
along with a decrease in mAP@0.5 of 3.492%. Upon combining with GhostNet, the reduc- 319
tion in the model's complexity was intermediate compared to the other two models, with 320
the smallest decline in mAP@0.5, recorded at 0.669%. Consequently, the network GY*, re- 321
sulting from the combination of GhostNet and YOLOv5s, was selected as the optimal orig- 322
inal lightweight network. 323

5.1.2. Ablation Experiment 324

To validate the contribution of the improved methods proposed in this study to the 325
model performance, we designed an ablation experiment based on YOLOv5s as a bench- 326

mark, with the results presented in Table 4. 327
Table 4. Ablation experiment. 328
Test CoordConv CARAFE SENet GhostNet mAP@0.5/% Parameters GFLOPs Weight/M
1 x x x x 94.850 7018216 15.774 13.70
2 (GY*) x x x \ 94.181 3681120 8.046 7.49
3 \ x x \ 95.153 3759008 8.144 7.64
4 x \ x \ 95.220 3821224 8.315 7.77
5 \ \ x \ 95.317 3899112 8.414 7.92
6 x x \ \ 94.872 3713888 8.073 7.56
7 \ x \ \ 95.238 3791776 8.171 7.70
8 (GY) \ \ \ \ 95.364 3931880 8.441 7.98
329

Based on the results in Table 4, and using the GY* lightweight network from test2as 330
a reference, the following conclusions were drawn from comparative tests: In test 3, the =~ 331
introduction of the CoordConv convolution module in the FPN structure of the Neck part 332
added an additional 2.116% in parameters, 1.218% in computation, and 2.003% in weight, 333
but resulted in a 0.972% increase in mAP@0.5. In test 4, incorporating the CARAFE up- 334
sampling operator led to an additional 3.806% in parameters, 3.343% in computation, and 335
3.738% in weight, with a 1.039% improvement in mAP@0.5. Test 5, which combined both 336
the CoordConv and CARAFE, resulted in an increase of 5.922% in parameters, 4.574% in 337
computation, and 5.741% in weight, and a 1.136% enhancement in mAP@0.5. Test 6, which 338
introduced the SE channel attention module at the end of the Backbone part, added 0.890% 339
to the parameters, 0.336% to the computation, and 0.935% to the weight, while increasing 340
the mAP@0.5 by 0.691%. Test 7, combining both the CoordConv and SE, led to an addi- 341
tional 3.006% in parameters, 1.554% in computation, and 2.804% in weight, but raised the 342
mAP@0.5 by 1.057%. In test 8, the GY model was developed by integrating the GhostNet 343
lightweight network, CoordConv convolution module, CARAFE up-sampling operator, 344
and SE attention module. Compared to the original GY* lightweight model, although 345
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there was a 6.812% increase in parameters, a 4.909% increase in computation, and a 6.542% 346
increase in weight, there was also a notable 1.183% improvement in mAP@0.5. In compar- 347
ison with the original YOLOv5s model, the GY model exhibited a 43.976% reduction in 348
parameters, a 46.488% reduction in computation, and a 41.752% reduction in weight, 349
while simultaneously achieving a 0.514% increase in mAP@0.5, reaching 95.364%. 350

The results indicate that the GY model, developed by enhancing YOLOvV5s, not only 351
significantly reduces model complexity but also boosts average detection accuracy, con- 352
sequently making the model's performance more superior. 353

5.1.3. Attention Mechanism Comparative Experiment 354

To validate the superiority of the introduced SE attention module, we used the orig- 355
inal lightweight network GY* as the baseline and conducted comparative experiments by 356
replacing it with four different attention mechanisms: CBAM, CA, ECA, and EMA. The 357

results are presented in Table 5. 358
Table 5. Attention mechanism comparative experiment. 359
Attention mAP@0.5/% Parameters GFLOPs Weight/M

GY* 94.181 3681120 8.046 7.49
GY*-SE 94.872 3713888 8.073 7.56
GY*-CBAM 93.965 3713986 8.099 7.56
GY*-CA 94.645 3706768 8.074 7.55
GY*-ECA 94.148 3681123 8.048 7.49
GY*-EMA 94.230 3722336 8.340 7.57

360

The data in Table 5 clearly illustrates that the increase in model complexity is remark- 361
ably minimal, regardless of the type of attention module introduced. Interestingly, the 362
introduction of CBAM and ECA modules actually led to a decrease in the model's 363
mAP@0.5, contrary to expectations of an increase. Among the attention modules that did 364
enhance average detection accuracy, the EMA module, despite being the most complex, 365
ironically resulted in the least improvement in mAP@0.5, a mere increase of 0.049%. Both 366
the CA and SE modules induced almost identical increments in model complexity. How- 367
ever, the CA module improved the model's mAP@0.5 by only 0.464%, which was less ef- 368
fective compared to the SE module. Significantly, our results demonstrate that the SE 369
module, which we proposed, achieves the highest enhancement in mAP@0.5 of 0.691% 370
among all the models tested. 371

5.1.4. Algorithm Comparative Experiment 372

In order to verify the superior performance of our proposed GY network, we con- 373
ducted comparative experiments with other target detection algorithms, and the results 374

are shown in Table 6. 375
Table 6. Algorithm comparative experiment. 376
Algorithm mAP@0.5/% Weight/M
YOLOv3 94.456 117.00
YOLOvb5n 93.366 3.74
YOLOvb5s 94.850 13.70
YOLOv5m 95.881 40.20
YOLOvSI 95.813 88.50
YOLOv5x 95.996 165.00
Ours (GY) 95.364 7.98
377

The results presented in Table 6 illustrate that the model developed with our inno- 378
vative GY network exhibits unparalleled cost-effectiveness. It significantly surpasses the 379
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smaller YOLOvb5n, achieving a 1.998% increase in mAP@0.5. When compared with larger
models such as YOLOv5m, 1, x, and YOLOvV3, the GY model makes a modest trade-off in
average detection accuracy, yet it benefits from a marked reduction in complexity —de-
creasing by a factor of 5 to 20 times. The mAP@0.5 curves for various models across dif-
ferent experiments are illustrated in Figure 5.
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Figure 5. The graph of mAP@0.5 curve. (a) The mAP@0.5 curves for different models in lightweight
network comparative experiment; (b) The mAP@0.5 curves for different models in ablation experi-
ment; (¢) The mAP@0.5 curves for different models in attention mechanism comparative experi-
ment; (d) The mAP@0.5 curves for different models in algorithm comparative experiment.

From Figure 5, it can be observed that the improvement strategies we chose at differ-
ent stages are relatively optimal. We compared the detection effectiveness of the GY
model with the YOLOv5s model. The detection results are shown in Figure 6, where the
GY model is capable of identifying small and occluded targets, and its overall detection
accuracy is also higher than that of the YOLOv5s network.
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Figure 6. Comparison graph of detection result between YOLOv5s and GY. (a) The imagesa, b, c,d 394
on the left side represent the detection results of YOLOv5s in four images; (b) The images e, f, g, h 395
on the right side represent the detection results of GY in four images same with YOLOv5s. 396

5.2. GY-SLAM Experimental Results 397

We integrated the GY model into our GY-SLAM system for target recognition tasks. 398
The performance of GY-SLAM was evaluated on both our proprietary dataset and the 399
TUM RGB-D dataset, with an assessment of the tracking time consumption. Additionally, 400
it was compared with the DynaSLAM. Absolute Trajectory Error (ATE) and Relative Pose 401
Error (RPE) are commonly used to evaluate the quality of visual SLAM systems, where 402
ATE is suitable for measuring the global consistency of a trajectory, while RPE is more 403
appropriate for assessing drift in translation and rotation. We utilize Root Mean Square 404
Error (RMSE) and Mean Error (Mean) to reflect ATE and RPE as evaluation indicators. 405
Each algorithm is executed 10 times on the same sequence, and the average of these 10 406

results is taken as the indicator's value. 407
5.2.1. Performance Evaluation on the TUM RGB-D Dataset 408
Table 7. Results of metric absolute trajectory error (ATE). 409
TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements
Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%
Fr3_s_hs 0.0566 0.0531 0.0310 0.0263 0.0326 0.0264 42.4028 50.2825
Fr3_s_static 0.0104 0.0093 0.0078 0.0069 0.0086 0.0075 17.3077 19.3548
Fr3_w_hs 0.2798 0.2376 0.0291 0.0259 0.0268 0.0236 90.4217 90.0673
Fr3_w_rpy 0.7203 0.6092 0.0548 0.0446 0.0534 0.0384 92.5864 93.6967
Fr3_w_static 0.0361 0.0284 0.0104 0.0091 0.0105 0.0094 70.9141 66.9014
Fr3_w_xyz 0.3725 0.3019 0.0311 0.0264 0.0292 0.0243 92.1611 91.9510
Table 8. Results of metric translational drift (RPE). 410
TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements
Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%
Fr3_s_hs 0.0823 0.0658 0.0485 0.0419 0.0486 0.0411 40.9478 37.5380
Fr3_s_static 0.0159 0.0140 0.0112 0.0100 0.0123 0.0107 22.6415 23.5714
Fr3_w_hs 0.4186 0.3230 0.0422 0.0379 0.0393 0.0350 90.6116 89.1641
Fr3_w_rpy 1.0827 0.8892 0.0777 0.0641 0.0746 0.0566 93.1098 93.6347
Fr3_w_static 0.0551 0.0412 0.0166 0.0146 0.0160 0.0142 70.9619 65.5340

Fr3_w_xyz 0.5335 0.4003 0.0443 0.0384 0.0415 0.0362 92.2212 90.9568
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Table 9. Results of metric rotational drift (RPE). 411

TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements
Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%
Fr3_s_hs 2.1441 1.8132 1.0404 0.9381 1.0275 0.9218 52.0778 49.1617
Fr3_s_static 0.4062 0.3657 0.3494 0.3152 0.3429 0.3043 15.5835 16.7897
Fr3_w_hs 9.2855 7.1467 1.0462 0.9543 1.0393 0.9282 88.8073 87.0122
Fr3_w_rpy 20.0856 15.7122 1.4833 1.1780 1.4826 1.2572 92.6186 91.9986
Fr3_w_static 0.9887 0.7647 0.3070 0.2789 0.3577 0.3201 63.8212 58.1404
Fr3_w_xyz 9.8547 7.1101 0.7542 0.6201 0.7008 0.5635 92.8887 92.0747

412

The comparative results of different algorithms on various dynamic sequences of the 413
TUM RGB-D dataset are presented in Table 7-Table 9. Table 7 to Table 9 clearly demon- 414
strate that GY-SLAM shows significant improvements in ATE and RPE compared to ORB- 415
SLAMS3. In the ATE results of Table 7, under high dynamic scenarios, RMSE and Mean 416
are enhanced by up to 92.5864% and 93.6967%, respectively. In low dynamic scenarios, 417
such as in the Fr3_s_static sequence, the improvements in RMSE and Mean are 17.3077% 418
and 19.3548%, respectively. It is noted that in low dynamic scenes, DynaSLAM slightly 419
outperforms GY-SLAM. This is due to DynaSLAM's ability to further differentiate static =~ 420
features within dynamic regions, whereas GY-SLAM eliminates all features in these areas, = 421
leading to a scarcity of features available for tracking. The translational and rotational drift 422
results in RPE, as shown in Table 8 and Table 9, exhibit a similar trend and magnitude of 423
error reduction as seen with ATE. 424
The results indicate that the absolute trajectory error of GY-SLAM has been reduced 425

by approximately an order of magnitude compared to ORB-SLAMS3, achieving centime- 426
ter-level or even millimeter-level precision. This improvement is attributed to the seman- 427
tic information generated by GY, which effectively assists the system in identifying and 428
eliminating dynamic feature points. Compared to DynaSLAM, GY-SLAM exhibits more 429
superior performance in most sequences. The system performs well in high dynamic sce- 430
narios but is slightly constrained in low dynamic environments. Figure 7 shows the Ab- 431
solute Trajectory Error (ATE) graphs for ORB-SLAM3, DynaSLAM, and GY-SLAM on 432
partial sequences. As can be seen from Figure 7, the error in GY-SLAM is significantly =~ 433

reduced. 434
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Figure 7. Absolute trajectory error diagram. (a) Images a, b, and c respectively represent the ATE 435
graphs of ORB-SLAM3, DynaSLAM, and GY-SLAM on the Fr3_w_hs sequence; (b) Images d, e,and 436
f represent the ATE graphs of the three algorithms on the Fr3_w_rpy sequence; (c) Images g, h, and 437
irepresent the ATE graphs of the three algorithms on the Fr3_w_xyz sequence. 438
5.2.2. Performance Evaluation on the Proprietary Dataset 439
Table 10. Absolute trajectory error (ATE) results on Wheeled Dataset. 440
Test Wheeled ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements
es
Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/%  Mean/%

Mid_hd 0.0238 0.0193 0.0249 0.0212 0.0224 0.0178 6.0391 8.0776
Mid_Id_r 0.1714 0.1609 0.1919 0.1690 0.1505 0.1354 12.1878 15.8675
Mid_Id_rr 0.2019 0.1912 0.1671 0.1546 0.1832 0.1727 9.2641 9.6695
Slow_1d 0.1848 0.1548 0.1819 0.1524 0.1739 0.1429 5.8898 7.6930
Slow_hd 0.3166 0.3068 0.2153 0.2077 0.2277 0.2195 28.0829 28.4339
Slow_hd_w  0.1960 0.1875 0.1768 0.1714 0.1482 0.1432 24.4045 23.6476

N Ul = W N -

441

Table 10 reveals that GY-SLAM has significantly improved the system's performance 442

in terms of ATE, with the maximum improvements in RMSE and Mean reaching as high 443
as 28.0829% and 28.4339% respectively. Meanwhile, we noted differences in the magni- 444
tude of improvement across various tests: test 2 demonstrated a higher increase compared 445
to test 3, possibly due to the sudden starts and stops of the robot in test 3 leading to accu- 446
racy degradation. The greater improvement in test 5 over test 6 could be attributed to the 447
white wall in test 6, which hindered the extraction of sufficient feature points for stable 448
tracking. The more significant improvement in test 5 compared to test 4 is speculated to 449
result from the GY target detection network's effective identification and handling of dy- 450
namic feature points in the high dynamic scenarios of test 5. The increase in test 5 over 451
test 1, and generally larger improvements in tests 4-6 compared to tests 1-3, might be due 452
to the rapid movement of the robot causing visual blurring, thus making it challenging to 453
effectively extract feature points for stable tracking. In tests 3 and 5, DynaSLAM performs 454
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better, which may be attributed to its ability to effectively identify and process dynamic 455
feature points within the range of near point extraction. In contrast, other algorithms do 456
not distinguish between near and far points, leading to the inclusion of unstable distant 457
points in tracking, thus affecting the system's accuracy. In summary, GY-SLAM demon- 458
strates superior accuracy and robustness in diverse motion modes, scene textures, and 459
dynamism levels, consistently outperforming ORB-SLAM3 in all sequences and exceed- 460

ing DynaSLAM in most data sequences. 461
Table 11. Absolute trajectory error (ATE) results on Handheld Dataset. 462
Test Handheld ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements
es
Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%
1 Hand1 0.2203 0.2048 0.2113 0.1998 0.1272 0.1092 422582  46.6652
2 Hand2 0.3537 0.2943 0.2057 0.1787 0.1059 0.0983 70.0452  66.5881
3 Hand3 0.2386 0.2281 0.0367 0.0312 0.0913 0.0862 61.7216  62.2020
4 Hand4 0.2557 0.2172 0.0432 0.0319 0.0381 0.0318 85.1046  85.3191

463

According to Table 11, GY-SLAM has significantly improved the system's RMSE and 464
Mean in terms of ATE, with the improvements reaching 85.1046% and 85.3191% respec- 465
tively. In Test 3, where a handheld camera was used to continuously capture fast-moving 466
people and robots at close range, DynaSLAM exhibited the best performance, reaffirming 467
its advantage in distinguishing between near and far points. However, GY-SLAM demon- 468
strates higher accuracy and robustness in medium to large dynamic scenes. These results 469
indicate that GY-SLAM is competitive with advanced SLAM algorithms in our dataset. 470
The ATE graphs obtained by evaluating different algorithms using EVO on partial se- 471

quences of our custom dataset are showed in Figure 8. 472
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Figure 8. ATE graph evaluated by EVO. (a) Images a, b, and c respectively represent the ATE graphs 473
of ORB-SLAMS3, DynaSLAM, and GY-SLAM on the Slow_hd_w sequence; (b) Images d, e, and f 474
represent the ATE graphs of the three algorithms on the Hand4 sequence. 475


https://doi.org/10.20944/preprints202401.1603.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 January 2024 doi:10.20944/preprints202401.1603.v1

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19

5.2.3. Tracking Time Evaluation 476

In practical applications, time efficiency is a crucial metric for evaluating the quality 477
of SLAM systems. A time consumption experiment for various algorithms using the 478
'Fr3_w_rpy' sequence from the TUM RGB-D dataset is conducted. During this experiment, 479
the average time taken by different algorithms to track a single frame is measured, as well ~ 480
as the time consumed during various key stages of the tracking process. The results are 481

showed in Table 12, with time units in milliseconds. 482
Table 12. Time consumption costs of the Tracking thread. 483
Phase ORB-SLAM3 DynaSLAM GY-SLAM (%) GY-SLAM (Ours)
Segmentation/Detection x 979.3763 10.1302 5.9166
Feature Extraction 8.1198 23.4962 8.9929 8.9754
Light Track x 1.2840 x x
Geometric Correction x 116.9251 x x
Track 5.6370 3.5474 4.1580 4.0961
Total 14.5976 1251.2515 24.2180 19.9078
1 GY-SLAM (*), in which YOLOVS5s is used instead of GY model for target detection. 484
485

The results in Table 12 prove that GY-SLAM achieves real-time processing, with each 486
stage consuming less than 10ms. Compared to GY-SLAM (*¥), the lightweight GY model 487
brings a 41.5944% increase in detection speed and a 17.7975% improvement in SLAM op- 488
eration speed. Although GY-SLAM takes an additional average of 5.3102ms per frame 489
compared to ORB-SLAMS3, it significantly enhances the system's accuracy and robustness 490
in dynamic scenes. 491
5.2.4. Efficacy of Feature Extraction and Mapping 492

The ORB feature extraction effects of GY-SLAM on different datasets are illustrated 493

in Fiéure 9. i - N 494
? fx “% L 4 A EEhscn S OEcH| N
= — . E f :
== — : - L

Figure 9. The feature extraction effects of GY-SLAM on different dataset. 495

We set the lower and upper projection limits of the occupancy grid map based onthe 496
robot chassis obstacle-clearance height and the overall height during the transportation of ~ 497
vegetable packages. To prevent any contact, we further raised the height limit by 0.Im 498
above these established limits. The purely static dense point cloud, 3D octree map, and 499
2D occupancy grid map constructed by GY-SLAM are illustrated in Figure 10. 500
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(a) Dense point cloud (b) 3D octree map (c) 2D occupancy grid map

Figure 10. Efficacy of mapping. (a) The foundational purely static dense point cloud constructed by ~ 501
GY-SLAM; (b) The 3D octree map generated from the dense point cloud; (c) The 2D occupancy grid 502
map generated from the dense point cloud. 503

6. Discussion 504

The performance of the GY-SLAM system in this study showcases the advancements 505
in visual SLAM technology in dynamic environments. Our research emphasizes the im- 506
portance of integrating VSLAM systems with deep learning in dynamic scenes, and the 507
experimental results reveal limitations of GY-SLAM compared to DynaSLAM in pro- 508
cessing near-field dynamic targets, targets predefined as static but actually in motion, and 509
targets predefined as dynamic but stationary. These findings provide crucial directions 510
for future research. We recommend that future studies could consider integrating deep 511
learning with geometric information to enhance the system's ability to judge the motion 512
state of targets, and exploring new strategies for distinguishing between near and far 513
points to adapt to scenes of varying scales. Both of these approaches would further im- 514
prove the accuracy and robustness of VSLAM systems. 515

In a broader context, this study highlights the application potential of VSLAM tech- 516
nology in the field of automated intelligent logistics. The improvements in the GY-SLAM 517
system are not only crucial for enhancing the performance of robots in plant factory trans- 518
portation environments, but they are also likely to have a positive impact on technological 519
innovation in the logistics industry. We firmly believe that by integrating target detection 520
technology, future VSLAM systems will be better adapted to complex and variable real- 521
world application environments, making significant contributions to the advancement of ~ 522
automation technologies. 523

7. Conclusions 524

This study introduces a novel SLAM system, GY-SLAM, designed to enhance the 525
localization, target detection, and mapping capabilities of robots in dynamic plant factory 526
transportation environments. GY-SLAM extends ORB-SLAM3 by adding a target detec- 527
tion thread, a dense mapping thread, and a dynamic feature elimination module. In the 528
target detection thread, GY-SLAM utilizes the GY target detection network, which is 529
based on YOLOVS5 and integrates GhostNet lightweight technology, CoordConv coordi- 530
nate convolution, CARAFE up-sampling operator, and SE attention mechanism. These 531
enhancements not only improve the model's detection accuracy and generalization 532
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capability, but also notably reduce the model's complexity. While improving mAP@0.5 by 533
0.514%, the model simultaneously reduces parameters by 43.976%, computation by 534
46.488%, and weight by 41.752%. In the dense mapping thread, GY-SLAM utilizes dense 535
point cloud data collected by depth cameras. After undergoing statistical filtering for 536
noise reduction and voxel down-sampling, it can constructs a dense point cloud for navi- 537
gation, along with the corresponding 3D octree map and 2D occupancy grid map. 538
Performance evaluations on the TUM RGB-D and our proprietary dataset indicate 539

that GY-SLAM exhibits significant improvements in dynamic environments compared to 540
ORB-SLAMS3, especially in handling high dynamic scenes. It shows a remarkable 92.58% 541
improvement in RMSE for ATE. Compared to YOLOvb5s, the GY model brings a 41.5944% 542
improvement in detection speed and a 17.7975% increase in SLAM operation speed to the 543
system. In comparison with the current state-of-the-art DynaSLAM system, GY-SLAM 544
demonstrates superior performance in most dynamic sequences. However, we also no- 545
ticed that GY-SLAM sometimes underperforms DynaSLAM in low dynamic sequences 546
and in processing near-field targets. In the future, we plan to integrate deep learning and 547
geometric information to more accurately process dynamic feature points on all targets, 548
while simultaneously improving strategies for distinguishing near and far points to fur- 549
ther optimize GY-SLAM. Our long-term goal is to integrate GY-SLAM into plant factory 550
transportation robot, enabling it to support advanced tasks such as recognition, transpor- 551
tation, and route planning, thereby contributing to technological innovation in the logis- 552
tics industry. 553
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