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Abstract: Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intel- 9 

ligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM 10 

systems in dynamic environments, this research proposes a system specifically designed for plant 11 

factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight tar- 12 

get detection network GY based on YOLOv5, which utilizes GhostNet as the backbone network. 13 

This integration is further enhanced with CoordConv coordinate convolution, CARAFE up-sam- 14 

pling operators, and SE attention mechanism, leading to simultaneous improvements in detection 15 

accuracy and model complexity reduction. While improving mAP@0.5 by 0.514%, the model simul- 16 

taneously reduces the number of parameters by 43.976%, computational cost by 46.488%, and model 17 

size by 41.752%. Additionally, the system constructs pure static octree maps and grid maps. Tests 18 

conducted on the TUM dataset and a proprietary dataset demonstrate that GY-SLAM significantly 19 

outperforms ORB-SLAM3 in dynamic scenarios in terms of system localization accuracy and ro- 20 

bustness. It shows a remarkable 92.58% improvement in RMSE for Absolute Trajectory Error (ATE). 21 

Compared to YOLOv5s, the GY model brings a 41.5944% improvement in detection speed and a 22 

17.7975% increase in SLAM operation speed to the system, indicating strong competitiveness and 23 

real-time capabilities. These results validate the effectiveness of GY-SLAM in dynamic environ- 24 

ments and provide substantial support for the automation of logistics tasks by robots in specific 25 

contexts. 26 

Keywords: SLAM; YOLOv5; GhostNet; Octree Maps; Grid Maps; Plant Factory 27 

 28 

1. Introduction 29 

Simultaneous Localization and Mapping (SLAM) is one of the key technologies in 30 

the field of robotic navigation, enabling robots to accurately determine their position and 31 

create maps of their surroundings without any prior information [1]. Particularly in the 32 

field of mobile robotics, Visual SLAM [2] (VSLAM) has become the focus of research and 33 

application due to its cost-effectiveness and its ability to provide rich environmental in- 34 

formation [3]. However, most existing VSLAM algorithms are based on the assumption 35 

of a static environment [4]. In dynamic environments, when extracting features from dy- 36 

namic targets, especially those with strong texture information, it may lead to increased 37 

trajectory errors or even tracking loss [5]. Therefore, in the process of transferring vegeta- 38 

ble packages from the stacking area to the pre-cooling area in plant factory transportation 39 

robots, the SLAM system is affected by dynamic targets such as humans and collaborative 40 

robots. This necessitates a SLAM system that can detect and eliminate dynamic feature 41 

points in real-time to enhance system accuracy and robustness [6]. 42 

Semantic SLAM, produced by the fusion of deep learning and SLAM, provides a 43 

promising solution. It can predict the dynamic characteristics of predefined targets and 44 

provide the system with functional attributes and semantic information of the them. This 45 

not only enhances the accuracy of robot localization in dynamic scenarios but also lays 46 
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the foundation for autonomous intelligent path planning and advanced handling tasks. 47 

RGB-D cameras, which provide precise depth information through physical measure- 48 

ments, can also be employed for target detection and image segmentation [7]. However, 49 

while image segmentation can reduce the interference of dynamic targets, it comes at the 50 

cost of system real-time performance [8]. In light of this, YOLO (You Only Look Once) 51 

single-stage target detection networks, known for their compact size and efficient real- 52 

time performance, have become an ideal choice. With improvements, they can achieve 53 

positioning accuracy close to that of image segmentation SLAM while maintaining signif- 54 

icantly higher real-time performance, thus striking a balance between SLAM system ac- 55 

curacy and real-time capabilities [9]. 56 

In this paper, we propose a novel real-time dense semantic SLAM system named GY- 57 

SLAM, specifically designed for plant factory transportation robots. This system inte- 58 

grates deep learning techniques to assist robots in perceiving the environment from both 59 

semantic and geometric perspectives. GY-SLAM can not only effectively identify and 60 

eliminate feature points on predefined dynamic targets, but also construct a pure static 61 

dense point cloud, and generate an octree map and a grid map for navigation, which im- 62 

proves the positioning and mapping capabilities of the SLAM system in dynamic scenes. 63 

The main contributions of this paper include: 64 

1. Based on ORB-SLAM3, dense mapping, target detection threads, and a dynamic fea- 65 

ture elimination module have been added. A method for constructing dense point 66 

clouds based on statistical filtering and voxel down-sampling has been proposed, 67 

resulting in the generation of octree maps and grid maps. 68 

2. A target detection dataset containing various robots, humans, and vegetable pack- 69 

ages was created. Additionally, a SLAM dataset containing RGB and Depth infor- 70 

mation, ground truth trajectories, and the aforementioned targets was collected. 71 

3. A lightweight target detection model named GY, based on YOLOv5s, was developed 72 

with lightweight processing by incorporating GhostNet. CoordConv coordinate con- 73 

volution, CARAFE up-sampling operators, and SE attention mechanisms was intro- 74 

duced into the Model. 75 

4. The above GY model and the enhanced SLAM system are successfully integrated 76 

into a GY-SLAM visual dense semantic system and evaluated. 77 

The remaining structure of this paper is as follows: Section 2 reviews relevant work 78 

by other scholars in the field. Section 3 provides a detailed introduction to the framework 79 

and proposed methods of GY-SLAM. Section 4 describes the materials and methods used 80 

in this research. Section 5 reports the experimental evaluation results on our proprietary 81 

dataset and the TUM RGB-D dataset. Section 6 discusses the major findings of this re- 82 

search. Section 7 summarizes the research achievements of this paper and outlines direc- 83 

tions for future work. 84 

2. Related Work 85 

The robustness of SLAM systems in dynamic environments has become a focal point 86 

of research for numerous investigators. The primary challenge is how to effectively detect 87 

and eliminate dynamic features and avoid using feature points extracted from moving 88 

objects for positioning and mapping [10]. As research has progressed, many excellent al- 89 

gorithms have endeavored to incorporate target detection and image segmentation tech- 90 

niques from deep learning into SLAM system, providing essential semantic priors for de- 91 

tecting and eliminating dynamic feature points [11]. 92 

Li et al. [12] fused RGB-D camera and encoder information, utilizing the SegNet im- 93 

age segmentation network based on Caffe to segment moving objects in images. The DS- 94 

SLAM system proposed by Yu et al. [13] passes images with per-pixel semantic labels to 95 

the tracking thread through the SegNet image segmentation thread, thus separating out 96 

outlier points belonging to dynamic targets. Bescos et al. [14] proposed the DynaSLAM 97 

algorithm, which leverages Mask R-CNN to obtain images with per-pixel image segmen- 98 

tation and instance labels for dynamic target detection. Ren et al. [15] presented the VI- 99 
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MID system, which employs Mask R-CNN to extract object masks and relies on rendering 100 

masks obtained from object-level maps for continuous tracking of targets. However, per- 101 

pixel image segmentation methods such as SegNet and Mask R-CNN, while achieving 102 

high classification accuracy, are slow in speed, which does not meet the real-time target 103 

detection requirements for robots. Target detection methods based on bounding boxes 104 

exhibit significantly higher efficiency compared to per-pixel image segmentation meth- 105 

ods. 106 

Zhang et al. [16] integrated modules for target detection and recognition using YOLO 107 

into the RGB-D SLAM framework, building semantic octree maps based on object-level 108 

entities. Zhang et al. [17] augmented the ORB-SLAM2 system with a YOLOv5-based ob- 109 

ject detection and recognition module, achieving real-time and rapid detection of dynamic 110 

features. Guan et al. [18] incorporated a YOLOv5 target detection module into the tracking 111 

module of ORB-SLAM3 and generated static environment point cloud maps using RGB- 112 

D cameras. Wang et al. [19] proposed YPD-SLAM, a system based on Yolo-FastestV2 tar- 113 

get detection and CAPE plane extraction, capable of running on CPU while maintaining 114 

relatively high detection accuracy. Song et al. [20] introduced YF-SLAM, which utilizes 115 

the lightweight target detection network YOLO-FastestV2 to provide semantic infor- 116 

mation in dynamic environments for ORB-SLAM2. Wu et al. [21] presented YOLO-SLAM, 117 

which improved detection speed by replacing darknet-53 with darknet-19 for target de- 118 

tection. Liu et al. [22] introduced Dynamic-VINS, which utilizes YOLOv3 to detect various 119 

dynamic elements on resource-constrained mobile platforms. 120 

When the dynamic objects in the environment are known in advance, the use of deep 121 

learning methods can be highly effective, but these methods are heavily reliant on the 122 

quality of the network [23]. Simple network architectures may not effectively recognize 123 

objects in certain situations, while complex architectures may slow down system perfor- 124 

mance. This challenge has driven researchers to seek lightweight and efficient yet stable 125 

target detection models to enhance the quality of SLAM systems. This demand provides 126 

clear direction and reference for our work on lightweighting and improvements. 127 

3. Improved System Description 128 

In this section, we will provide a detailed explanation of our proposed GY-SLAM 129 

system. This system combines lightweight deep learning techniques with advanced strat- 130 

egies for enhancing target detection networks, effectively achieving the functionalities of 131 

target detection and dynamic feature elimination. Furthermore, GY-SLAM possesses the 132 

capability to construct precise dense maps, laying a solid foundation for the accurate lo- 133 

calization, path planning, and transportation tasks of robots in the dynamic environment 134 

of plant factories. We will now proceed to introduce the implementation details of each 135 

key component, starting from the overall framework of the system. 136 

3.1. Overview of the GY-SLAM System 137 

The framework of the GY-SLAM system proposed in this paper is illustrated in Fig- 138 

ure 1. The system comprises five main threads running in parallel: Tracking, Local Map- 139 

ping, Loop & Map Merging, Target Detection, and Dense Mapping. Among these, the 140 

Target Detection and Dense Mapping threads represent innovative extensions based on 141 

ORB-SLAM3, while the Local Mapping and Loop & Map Merging threads remain con- 142 

sistent with ORB-SLAM3. 143 
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 144 

Figure 1. GY-SLAM System Framework. 145 

3.1.1. ORB-SLAM3 146 

ORB-SLAM3 is the first feature-based SLAM system that supports monocular, stereo, 147 

and RGB-D cameras. It is capable of visual, visual-inertial SLAM, and multi-map creation 148 

[24]. The system effectively utilizes short-term, medium-term, long-term, and multi-map 149 

data association, thereby effectively suppressing drift and ensuring high-precision locali- 150 

zation in medium to large loop-closure scenarios. This comprehensive data association 151 

capability significantly improves the system's adaptability and stability, which enables it 152 

to achieve a localization accuracy of up to 9mm. 153 

3.1.2. Dynamic Feature Elimination 154 

We first collected a dataset of YOLO images containing elements relevant to the plant 155 

factory transport robot work. Subsequently, we trained the GY target detection model us- 156 

ing the GY network. In GY-SLAM, the GY model serves as input to provide predefined 157 

target information to the Target Detection Thread. 158 

The Target Detection Thread is responsible for processing the video stream captured 159 

by the camera frame by frame. After inferring and analyzing the images using the GY 160 

model to identify predefined targets and generating bounding boxes of them, it outputs 161 

semantic information, localization information, and confidence to the Dynamic Feature 162 

Elimination Module in the Tracking Thread. Within the Tracking Thread, we have em- 163 

bedded a Dynamic Feature Elimination Module that receives the output from the Target 164 

Detection Thread. After extracting ORB feature information in the Tracking Thread, this 165 

module eliminates feature points within the dynamic area. This ensures that only static 166 

feature points are used for subsequent pose estimation and mapping. 167 

3.1.3. Dense Mapping 168 

While ORB-SLAM3 is effective, the sparse maps it generates cannot be directly used 169 

for robot path planning and navigation. Therefore, constructing a pure static dense map 170 

that can be used for navigation is crucial for transport robots. In the Dense Mapping 171 

Thread, after the system receives keyframes from the Tracking Thread, it first performs 172 

eligibility filtering on map points to obtain a basic pure static dense point cloud. This pro- 173 

cess includes removing map points with significant errors based on effective camera 174 

depth, eliminating outliers based on outlier marking, and removing dynamic feature 175 
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points based on dynamic target localization information provided by the Target Detection 176 

Thread. The final result is a relatively stable pure static dense point cloud. 177 

In constructing the 3D octree map, statistical filtering is used to remove outlier map 178 

points in the dense point cloud, which is achieved by calculating the average distance 179 

between each point and the points within its surrounding neighborhood. Assuming that 180 

the calculation results follow a Gaussian distribution, outlier points with unqualified av- 181 

erage distances are filtered out based on the standard deviation. Subsequently, the point 182 

cloud density is reduced by voxel down-sampling technology. This technique divides 183 

three-dimensional space into uniform voxels, samples only one central point in each voxel 184 

as a representative, and assigns the points in each voxel to the octree structure. Through 185 

recursive operations, we can obtain the octree map. The octree map not only reduces com- 186 

putational load but also preserves critical geometric structures, making it suitable for ro- 187 

bot modeling and navigation in complex dynamic environments. 188 

Grid maps play a crucial role in robot collision detection, navigation, and path plan- 189 

ning. To construct a grid map, we first analyze the robot's obstacle clearance height and 190 

working height. Then, we project the dense point cloud within this height range onto a 191 

grid. After filtering and dilation processing, we obtain a two-dimensional grid map. 192 

3.2. Overview of the GY Lightweight Target Detection Network 193 

The YOLOv5s [25] is adopted as the foundation, and through lightweighting and a 194 

series of improvements, the lightweight GY target detection network is built, aiming to 195 

balance accuracy and computing resources while maintaining high-speed performance. 196 

In this article, the lightweight GhostNet network is integrated with the YOLOv5s, 197 

and then three improvements are conducted to enhance model accuracy and generaliza- 198 

tion. Firstly, CoordConv coordinate convolution is introduced in the FPN structure, ena- 199 

bling the model to perceive the positional information of feature image pixels. Secondly, 200 

the CARAFE up-sampling operator is introduced to expand the receptive field, allowing 201 

the network to perform up-sampling based on the semantic information from the input 202 

feature maps. Finally, at the end of the Backbone, the SE channel attention mechanism is 203 

introduced to focus on global feature maps, effectively modeling the interdependence be- 204 

tween channels. The resulting GY network architecture is illustrated in Figure 2. 205 

 206 

Figure 2. GY network architecture. 207 
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3.2.1. GhostNet Neural Network 208 

GhostNet [26] is a lightweight and efficient CNN network proposed by Huawei No- 209 

ah's Ark Lab in 2020. Its Ghost module first generates intrinsic feature maps using fewer 210 

convolutional kernels and then produces many ghost feature maps through a series of 211 

cost-effective linear transformations. These ghost feature maps are capable of extracting 212 

the desired information from the intrinsic features. In terms of efficiency and accuracy, 213 

the lightweight GhostNet reduces model complexity, making it particularly suitable for 214 

mobile robots with limited memory and computing resources. The computational cost of 215 

Ghost convolution compared to regular convolution is as follows: 216 

cost 1 = h' × w' × n ×k × k × c (1) 

cost 2 = h' × w' × 
n
s

 ×k × k × c + (s - 1) × h' × w' × 
n
s

 ×k × k (2) 

Where cost 1 denotes the computational cost of the regular convolution, cost 2 de- 217 

notes the computational cost of the Ghost convolution, h' × w' × c denotes the heigh, 218 

width and number of channels of the output feature maps, k denotes the convolution 219 

kernel size, s denotes the number of ghost feature maps generated by each intrinsic fea- 220 

ture map. Since s ≪ c, the theoretical acceleration ratio rs of using the Ghost convolution 221 

to replace the regular convolution can be approximated as follows: 222 

rs= 
cost 1
cost 2

 ≈ 
s + c

s + c - 1
 ≈ s (3) 

3.2.2. CoordConv Coordinate Convolution 223 

CoordConv [27] is a coordinate convolution module proposed by Uber in 2018. Tra- 224 

ditional convolutions only capture local information when the convolution kernel per- 225 

forms local operations but do not know the spatial location of the current convolution 226 

kernel. CoordConv adds two additional channels into the input feature map of convolu- 227 

tion to represent pixel coordinates, enabling the network to learn complete translation 228 

invariance or a certain degree of translation dependency according to different task re- 229 

quirements. Simultaneously, it allows the convolution to perceive feature spatial infor- 230 

mation to some extent during learning, thereby enhancing detection accuracy and robust- 231 

ness. 232 

3.2.3. CARAFE Up-sampling Operator 233 

CARAFE [28] is a lightweight up-sampling operator proposed by Wang et al. in 2019. 234 

It can aggregate contextual information over a large receptive field and supports instance- 235 

specific content-aware processing, dynamically generating adaptive up-sampling kernels. 236 

During CARAFE computation, the Kernel Prediction Module is responsible for perceiving 237 

the content at each target location and generating a reassembled kernel. The Content- 238 

Aware Reassembly Module uses the predicted kernel to reassemble the features, increas- 239 

ing the emphasis on information from relevant feature points in local regions. The reas- 240 

sembled feature map contains more semantic information compared to the original fea- 241 

ture map. 242 

3.2.4. SE Attention Mechanism 243 

SE [29] is a channel attention module proposed by Hu et al. in 2019. Through the 244 

Squeeze-and-Excitation module, SE explicitly models interdependencies between feature 245 

channels. The SE attention mechanism allows the network to perform dynamic channel 246 

feature recalibration to enhance the network's representational ability. Simultaneously, 247 

the network can learn to use global information to selectively emphasize useful features 248 

and suppress less useful ones. The structure of the SE building block is illustrated in Fig- 249 

ure 3. 250 
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 251 

Figure 3. A Squeeze-and-Excitation block. 252 

4. Equipment and Methods 253 

In this research, considering the need for robots to recognize three elements: humans, 254 

robots, and vegetable packages, a new SLAM dataset was collected. This dataset serves as 255 

a practical platform for testing SLAM algorithms of plant factory transport robots. Two 256 

separate systems on a single server were used for GY deep learning model training and 257 

SLAM algorithm testing. The experimental environment configuration is detailed in Table 258 

1, and the left side of the combination of the two parameters is the deep learning configu- 259 

ration parameter. 260 

Table 1. The experimental environment configurations. 261 

Configuration Parameter Server Configuration 

Hardware 

CPU AMD Ryzen 9 5900X 12-Core Processor 

GPU NVIDIA GeForce RTX 3060-12GB 

RAM 32GB 

Software 
System Windows 10 / Ubuntu 18.04 

Python 3.9.18 / 2.7.17 

Environment 

PyTorch 1.12.1 / 1.9.0 

CUDA 11.6 / 11.1 

CuDNN 8.2.1 / 8.0.5 

4.1. GY Model Training 262 

Our YOLO image dataset primarily consists of images captured by the Intel Re- 263 

alSense Depth Camera D455 with an aspect ratio of 4:3. Additionally, the dataset includes 264 

human images from open datasets and various robot and vegetable package images 265 

downloaded online. We carefully selected a total of 955 images, resized them proportion- 266 

ally to a width of 640 pixels, and annotated them using the Labelimg tool. The classifica- 267 

tion labels include Person, Robot, and Package. Following the principles of data augmen- 268 

tation, we augmented the dataset by a factor of three, resulting in a total of 2865 images 269 

to enhance the model's generalization capability. The ratio of the training and validation 270 

datasets was set to 8:2, while the test dataset consisted of video streams captured by the 271 

GY-SLAM system. The GY network training parameters were configured as follows: 272 

Epoch was set to 300, Batch size was set to 16, Lr0 was set to 0.01, Momentum was set to 273 

0.937, and Weight-Decay was set to 0.0005. 274 

4.2. GY-SLAM Dataset Acquisition 275 

We used the D455 camera to capture RGB and Depth data and employed the NOKOV 276 

Motion Capture System to obtain real-time trajectory ground truth for the robot. The 277 

MR600 transport robot from ShiHe Company served as the mobile platform, with the 278 

D455 camera mounted on a bracket at the top of the robot. We incorporated the work 279 

elements that the transport robot faced into the dataset to validate the subsequent target 280 

detection network's ability to recognize targets and eliminate dynamic feature points. The 281 

dataset encompasses various scenarios, including handheld and wheeled robot shooting, 282 

fast and slow motions, as well as normal and multi-rotational scenarios. The equipment 283 
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used for collecting the SLAM dataset is as shown in Figure 4, with specific parameters 284 

provided in Table 2. 285 

  

(a) Transfer robot platform (b) NOKOV motion capture system 

Figure 4. Equipment for collecting GY-SLAM dataset. (a) MR600 mobile robot, D455 camera and 286 
reflective markers; (b) 12 NOKOV Mars 2H cameras and motion capture system. 287 

Table 2. Equipment parameters for collecting SLAM dataset . 288 

Device Parameter Value 

D455 Camera 
Image Resolution 640 × 480 at 30 FPS (OV9782) 

FOV 86° × 57° 

MR600 Robot 

Overall Dimension 625 × 590 × 465 mm3 

Installation Heigh 350 mm 

Elevation Angle 10° 

Slow Speed 0.4 m/s 

Fast Speed 0.8 m/s 

NOKOV Marker Φ15 mm * 10 

Mars 2H Camera Number 12 

Cameras 3D Accuracy ± 0.15 mm 

5. Experimental Results 289 

5.1. GY Experimental Results 290 

In this article, while ensuring model detection accuracy and FPS exceeding 30, we 291 

prioritize reducing the complexity of the GY model to minimize the computational re- 292 

source consumption during inference. we utilize metrics including mean Average Preci- 293 

sion at IoU threshold of 0.5 (mAP@0.5), the number of model parameters (Parameters), 294 

the computational complexity measured in Giga Floating-Point Operations Per Second 295 

(GFLOPs), and the model size (Weight) as evaluation criteria. The latter three metrics, to 296 

some extent, reflect the model's complexity. 297 

5.1.1. Lightweight Network Comparative Experiment 298 

In this experiment, we use YOLOv5s as the baseline model and integrated it with 299 

three mainstream lightweight feature extraction networks for comparative experiments in 300 

order to obtain the most cost-effective lightweight network. The results are shown in Table 301 

3. 302 

 303 

 304 

 305 

 306 

 307 

 308 
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Table 3. Lightweight network comparative experiment. 309 

Network mAP@0.5/% Parameters GFLOPs Weight/M 

CSPDarkNet53 (YOLOv5s) 94.850 7018216 15.774 13.70 

ShuffleNetV2 - YOLOv5s 89.949 3794120 7.989 7.68 

MobileNetV3 - YOLOv5s 91.358 3543926 6.297 7.17 

GhostNet - YOLOv5s (GY*) 94.181 3681120 8.046 7.49 
1 GY*: the model in its solely lightweight form, without any enhancements. 310 

 311 

The results presented in Table 3 reveal that substituting the original CSPDarkNet53 312 

backbone feature extraction network in YOLOv5s with various lightweight networks sig- 313 

nificantly reduced the model's parameters, computation, and size. However, this substan- 314 

tial reduction in complexity was accompanied by varying degrees of decreased detection 315 

accuracy. When integrated with ShuffleNetV2, the model exhibited the smallest reduction 316 

in complexity, but underwent the largest decrease in mAP@0.5, which was 4.901%. In con- 317 

trast, integration with MobileNetV3 led to the most substantial reduction in complexity, 318 

along with a decrease in mAP@0.5 of 3.492%. Upon combining with GhostNet, the reduc- 319 

tion in the model's complexity was intermediate compared to the other two models, with 320 

the smallest decline in mAP@0.5, recorded at 0.669%. Consequently, the network GY*, re- 321 

sulting from the combination of GhostNet and YOLOv5s, was selected as the optimal orig- 322 

inal lightweight network. 323 

5.1.2. Ablation Experiment 324 

To validate the contribution of the improved methods proposed in this study to the 325 

model performance, we designed an ablation experiment based on YOLOv5s as a bench- 326 

mark, with the results presented in Table 4. 327 

Table 4. Ablation experiment. 328 

Test CoordConv CARAFE SENet GhostNet mAP@0.5/% Parameters GFLOPs Weight/M 

1 × × × × 94.850 7018216 15.774 13.70 

2 (GY*) × × × √ 94.181 3681120 8.046 7.49 

3 √ × × √ 95.153 3759008 8.144 7.64 

4 × √ × √ 95.220 3821224 8.315 7.77 

5 √ √ × √ 95.317 3899112 8.414 7.92 

6 × × √ √ 94.872 3713888 8.073 7.56 

7 √ × √ √ 95.238 3791776 8.171 7.70 

8 (GY) √ √ √ √ 95.364 3931880 8.441 7.98 

 329 

Based on the results in Table 4, and using the GY* lightweight network from test 2 as 330 

a reference, the following conclusions were drawn from comparative tests: In test 3, the 331 

introduction of the CoordConv convolution module in the FPN structure of the Neck part 332 

added an additional 2.116% in parameters, 1.218% in computation, and 2.003% in weight, 333 

but resulted in a 0.972% increase in mAP@0.5. In test 4, incorporating the CARAFE up- 334 

sampling operator led to an additional 3.806% in parameters, 3.343% in computation, and 335 

3.738% in weight, with a 1.039% improvement in mAP@0.5. Test 5, which combined both 336 

the CoordConv and CARAFE, resulted in an increase of 5.922% in parameters, 4.574% in 337 

computation, and 5.741% in weight, and a 1.136% enhancement in mAP@0.5. Test 6, which 338 

introduced the SE channel attention module at the end of the Backbone part, added 0.890% 339 

to the parameters, 0.336% to the computation, and 0.935% to the weight, while increasing 340 

the mAP@0.5 by 0.691%. Test 7, combining both the CoordConv and SE, led to an addi- 341 

tional 3.006% in parameters, 1.554% in computation, and 2.804% in weight, but raised the 342 

mAP@0.5 by 1.057%. In test 8, the GY model was developed by integrating the GhostNet 343 

lightweight network, CoordConv convolution module, CARAFE up-sampling operator, 344 

and SE attention module. Compared to the original GY* lightweight model, although 345 
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there was a 6.812% increase in parameters, a 4.909% increase in computation, and a 6.542% 346 

increase in weight, there was also a notable 1.183% improvement in mAP@0.5. In compar- 347 

ison with the original YOLOv5s model, the GY model exhibited a 43.976% reduction in 348 

parameters, a 46.488% reduction in computation, and a 41.752% reduction in weight, 349 

while simultaneously achieving a 0.514% increase in mAP@0.5, reaching 95.364%.  350 

The results indicate that the GY model, developed by enhancing YOLOv5s, not only 351 

significantly reduces model complexity but also boosts average detection accuracy, con- 352 

sequently making the model's performance more superior. 353 

5.1.3. Attention Mechanism Comparative Experiment 354 

To validate the superiority of the introduced SE attention module, we used the orig- 355 

inal lightweight network GY* as the baseline and conducted comparative experiments by 356 

replacing it with four different attention mechanisms: CBAM, CA, ECA, and EMA. The 357 

results are presented in Table 5. 358 

Table 5. Attention mechanism comparative experiment. 359 

Attention mAP@0.5/% Parameters GFLOPs Weight/M 

GY* 94.181 3681120 8.046 7.49 

GY*-SE 94.872 3713888 8.073 7.56 

GY*-CBAM 93.965 3713986 8.099 7.56 

GY*-CA 94.645 3706768 8.074 7.55 

GY*-ECA 94.148 3681123 8.048 7.49 

GY*-EMA 94.230 3722336 8.340 7.57 

 360 

The data in Table 5 clearly illustrates that the increase in model complexity is remark- 361 

ably minimal, regardless of the type of attention module introduced. Interestingly, the 362 

introduction of CBAM and ECA modules actually led to a decrease in the model's 363 

mAP@0.5, contrary to expectations of an increase. Among the attention modules that did 364 

enhance average detection accuracy, the EMA module, despite being the most complex, 365 

ironically resulted in the least improvement in mAP@0.5, a mere increase of 0.049%. Both 366 

the CA and SE modules induced almost identical increments in model complexity. How- 367 

ever, the CA module improved the model's mAP@0.5 by only 0.464%, which was less ef- 368 

fective compared to the SE module. Significantly, our results demonstrate that the SE 369 

module, which we proposed, achieves the highest enhancement in mAP@0.5 of 0.691% 370 

among all the models tested. 371 

5.1.4. Algorithm Comparative Experiment 372 

In order to verify the superior performance of our proposed GY network, we con- 373 

ducted comparative experiments with other target detection algorithms, and the results 374 

are shown in Table 6. 375 

Table 6. Algorithm comparative experiment. 376 

Algorithm mAP@0.5/% Weight/M 

YOLOv3 94.456 117.00 

YOLOv5n 93.366 3.74 

YOLOv5s 94.850 13.70 

YOLOv5m 95.881 40.20 

YOLOv5l 95.813 88.50 

YOLOv5x 95.996 165.00 

Ours (GY) 95.364 7.98 

 377 

The results presented in Table 6 illustrate that the model developed with our inno- 378 

vative GY network exhibits unparalleled cost-effectiveness. It significantly surpasses the 379 
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smaller YOLOv5n, achieving a 1.998% increase in mAP@0.5. When compared with larger 380 

models such as YOLOv5m, l, x, and YOLOv3, the GY model makes a modest trade-off in 381 

average detection accuracy, yet it benefits from a marked reduction in complexity—de- 382 

creasing by a factor of 5 to 20 times. The mAP@0.5 curves for various models across dif- 383 

ferent experiments are illustrated in Figure 5. 384 

  

(a) Lightweight network comparative experiment (b) Ablation experiment 

  

(c) Attention mechanism comparative experiment (d) Algorithm comparative experiment 

Figure 5. The graph of mAP@0.5 curve. (a) The mAP@0.5 curves for different models in lightweight 385 
network comparative experiment; (b) The mAP@0.5 curves for different models in ablation experi- 386 
ment; (c) The mAP@0.5 curves for different models in attention mechanism comparative experi- 387 
ment; (d) The mAP@0.5 curves for different models in algorithm comparative experiment. 388 

From Figure 5, it can be observed that the improvement strategies we chose at differ- 389 

ent stages are relatively optimal. We compared the detection effectiveness of the GY 390 

model with the YOLOv5s model. The detection results are shown in Figure 6, where the 391 

GY model is capable of identifying small and occluded targets, and its overall detection 392 

accuracy is also higher than that of the YOLOv5s network. 393 
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(a) (b)  (e) (f) 

  

 

  

(c) (d)  (g) (h) 

Figure 6. Comparison graph of detection result between YOLOv5s and GY. (a) The images a, b, c, d 394 
on the left side represent the detection results of YOLOv5s in four images; (b) The images e, f, g, h 395 
on the right side represent the detection results of GY in four images same with YOLOv5s. 396 

5.2. GY-SLAM Experimental Results 397 

We integrated the GY model into our GY-SLAM system for target recognition tasks. 398 

The performance of GY-SLAM was evaluated on both our proprietary dataset and the 399 

TUM RGB-D dataset, with an assessment of the tracking time consumption. Additionally, 400 

it was compared with the DynaSLAM. Absolute Trajectory Error (ATE) and Relative Pose 401 

Error (RPE) are commonly used to evaluate the quality of visual SLAM systems, where 402 

ATE is suitable for measuring the global consistency of a trajectory, while RPE is more 403 

appropriate for assessing drift in translation and rotation. We utilize Root Mean Square 404 

Error (RMSE) and Mean Error (Mean) to reflect ATE and RPE as evaluation indicators. 405 

Each algorithm is executed 10 times on the same sequence, and the average of these 10 406 

results is taken as the indicator's value. 407 

5.2.1. Performance Evaluation on the TUM RGB-D Dataset 408 

Table 7. Results of metric absolute trajectory error (ATE). 409 

TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements 

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/% 

Fr3_s_hs 0.0566 0.0531 0.0310 0.0263 0.0326 0.0264 42.4028 50.2825 

Fr3_s_static 0.0104 0.0093 0.0078 0.0069 0.0086 0.0075 17.3077 19.3548 

Fr3_w_hs 0.2798 0.2376 0.0291 0.0259 0.0268 0.0236 90.4217 90.0673 

Fr3_w_rpy 0.7203 0.6092 0.0548 0.0446 0.0534 0.0384 92.5864 93.6967 

Fr3_w_static 0.0361 0.0284 0.0104 0.0091 0.0105 0.0094 70.9141 66.9014 

Fr3_w_xyz 0.3725 0.3019 0.0311 0.0264 0.0292 0.0243 92.1611 91.9510 

Table 8. Results of metric translational drift (RPE). 410 

TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements 

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/% 

Fr3_s_hs 0.0823 0.0658 0.0485 0.0419 0.0486 0.0411 40.9478 37.5380 

Fr3_s_static 0.0159 0.0140 0.0112 0.0100 0.0123 0.0107 22.6415 23.5714 

Fr3_w_hs 0.4186 0.3230 0.0422 0.0379 0.0393 0.0350 90.6116 89.1641 

Fr3_w_rpy 1.0827 0.8892 0.0777 0.0641 0.0746 0.0566 93.1098 93.6347 

Fr3_w_static 0.0551 0.0412 0.0166 0.0146 0.0160 0.0142 70.9619 65.5340 

Fr3_w_xyz 0.5335 0.4003 0.0443 0.0384 0.0415 0.0362 92.2212 90.9568 
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Table 9. Results of metric rotational drift (RPE). 411 

TUM RGB-D ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements 

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/% 

Fr3_s_hs 2.1441 1.8132 1.0404 0.9381 1.0275 0.9218 52.0778 49.1617 

Fr3_s_static 0.4062 0.3657 0.3494 0.3152 0.3429 0.3043 15.5835 16.7897 

Fr3_w_hs 9.2855 7.1467 1.0462 0.9543 1.0393 0.9282 88.8073 87.0122 

Fr3_w_rpy 20.0856 15.7122 1.4833 1.1780 1.4826 1.2572 92.6186 91.9986 

Fr3_w_static 0.9887 0.7647 0.3070 0.2789 0.3577 0.3201 63.8212 58.1404 

Fr3_w_xyz 9.8547 7.1101 0.7542 0.6201 0.7008 0.5635 92.8887 92.0747 

 412 

The comparative results of different algorithms on various dynamic sequences of the 413 

TUM RGB-D dataset are presented in Table 7-Table 9. Table 7 to Table 9 clearly demon- 414 

strate that GY-SLAM shows significant improvements in ATE and RPE compared to ORB- 415 

SLAM3. In the ATE results of Table 7, under high dynamic scenarios, RMSE and Mean 416 

are enhanced by up to 92.5864% and 93.6967%, respectively. In low dynamic scenarios, 417 

such as in the Fr3_s_static sequence, the improvements in RMSE and Mean are 17.3077% 418 

and 19.3548%, respectively. It is noted that in low dynamic scenes, DynaSLAM slightly 419 

outperforms GY-SLAM. This is due to DynaSLAM's ability to further differentiate static 420 

features within dynamic regions, whereas GY-SLAM eliminates all features in these areas, 421 

leading to a scarcity of features available for tracking. The translational and rotational drift 422 

results in RPE, as shown in Table 8 and Table 9, exhibit a similar trend and magnitude of 423 

error reduction as seen with ATE. 424 

The results indicate that the absolute trajectory error of GY-SLAM has been reduced 425 

by approximately an order of magnitude compared to ORB-SLAM3, achieving centime- 426 

ter-level or even millimeter-level precision. This improvement is attributed to the seman- 427 

tic information generated by GY, which effectively assists the system in identifying and 428 

eliminating dynamic feature points. Compared to DynaSLAM, GY-SLAM exhibits more 429 

superior performance in most sequences. The system performs well in high dynamic sce- 430 

narios but is slightly constrained in low dynamic environments. Figure 7 shows the Ab- 431 

solute Trajectory Error (ATE) graphs for ORB-SLAM3, DynaSLAM, and GY-SLAM on 432 

partial sequences. As can be seen from Figure 7, the error in GY-SLAM is significantly 433 

reduced. 434 

   

(a) Fr3_w_hs/ORB-SLAM3 (b) Fr3_w_hs/DynaSLAM (c) Fr3_w_hs/GY-SLAM 
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(d) Fr3_w_rpy/ORB-SLAM3 (e) Fr3_w_rpy/DynaSLAM (f) Fr3_w_rpy/GY-SLAM 

   

(g) Fr3_w_xyz/ORB-SLAM3 (h) Fr3_w_xyz/DynaSLAM (i) Fr3_w_xyz/GY-SLAM 

Figure 7. Absolute trajectory error diagram. (a) Images a, b, and c respectively represent the ATE 435 
graphs of ORB-SLAM3, DynaSLAM, and GY-SLAM on the Fr3_w_hs sequence; (b) Images d, e, and 436 
f represent the ATE graphs of the three algorithms on the Fr3_w_rpy sequence; (c) Images g, h, and 437 
i represent the ATE graphs of the three algorithms on the Fr3_w_xyz sequence. 438 

5.2.2. Performance Evaluation on the Proprietary Dataset 439 

Table 10. Absolute trajectory error (ATE) results on Wheeled Dataset. 440 

Test 
Wheeled ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements 

Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/% 

1 Mid_hd 0.0238 0.0193 0.0249 0.0212 0.0224 0.0178 6.0391 8.0776 

2 Mid_ld_r 0.1714 0.1609 0.1919 0.1690 0.1505 0.1354 12.1878 15.8675 

3 Mid_ld_rr 0.2019 0.1912 0.1671 0.1546 0.1832 0.1727 9.2641 9.6695 

4 Slow_ld 0.1848 0.1548 0.1819 0.1524 0.1739 0.1429 5.8898 7.6930 

5 Slow_hd 0.3166 0.3068 0.2153 0.2077 0.2277 0.2195 28.0829 28.4339 

6 Slow_hd_w 0.1960 0.1875 0.1768 0.1714 0.1482 0.1432 24.4045 23.6476 

 441 

Table 10 reveals that GY-SLAM has significantly improved the system's performance 442 

in terms of ATE, with the maximum improvements in RMSE and Mean reaching as high 443 

as 28.0829% and 28.4339% respectively. Meanwhile, we noted differences in the magni- 444 

tude of improvement across various tests: test 2 demonstrated a higher increase compared 445 

to test 3, possibly due to the sudden starts and stops of the robot in test 3 leading to accu- 446 

racy degradation. The greater improvement in test 5 over test 6 could be attributed to the 447 

white wall in test 6, which hindered the extraction of sufficient feature points for stable 448 

tracking. The more significant improvement in test 5 compared to test 4 is speculated to 449 

result from the GY target detection network's effective identification and handling of dy- 450 

namic feature points in the high dynamic scenarios of test 5. The increase in test 5 over 451 

test 1, and generally larger improvements in tests 4-6 compared to tests 1-3, might be due 452 

to the rapid movement of the robot causing visual blurring, thus making it challenging to 453 

effectively extract feature points for stable tracking. In tests 3 and 5, DynaSLAM performs 454 
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better, which may be attributed to its ability to effectively identify and process dynamic 455 

feature points within the range of near point extraction. In contrast, other algorithms do 456 

not distinguish between near and far points, leading to the inclusion of unstable distant 457 

points in tracking, thus affecting the system's accuracy. In summary, GY-SLAM demon- 458 

strates superior accuracy and robustness in diverse motion modes, scene textures, and 459 

dynamism levels, consistently outperforming ORB-SLAM3 in all sequences and exceed- 460 

ing DynaSLAM in most data sequences. 461 

Table 11. Absolute trajectory error (ATE) results on Handheld Dataset. 462 

Test 
Handheld ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements 

Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/% 

1 Hand1 0.2203 0.2048 0.2113 0.1998 0.1272 0.1092 42.2582 46.6652 

2 Hand2 0.3537 0.2943 0.2057 0.1787 0.1059 0.0983 70.0452 66.5881 

3 Hand3 0.2386 0.2281 0.0367 0.0312 0.0913 0.0862 61.7216 62.2020 

4 Hand4 0.2557 0.2172 0.0432 0.0319 0.0381 0.0318 85.1046 85.3191 

 463 

According to Table 11, GY-SLAM has significantly improved the system's RMSE and 464 

Mean in terms of ATE, with the improvements reaching 85.1046% and 85.3191% respec- 465 

tively. In Test 3, where a handheld camera was used to continuously capture fast-moving 466 

people and robots at close range, DynaSLAM exhibited the best performance, reaffirming 467 

its advantage in distinguishing between near and far points. However, GY-SLAM demon- 468 

strates higher accuracy and robustness in medium to large dynamic scenes. These results 469 

indicate that GY-SLAM is competitive with advanced SLAM algorithms in our dataset. 470 

The ATE graphs obtained by evaluating different algorithms using EVO on partial se- 471 

quences of our custom dataset are showed in Figure 8. 472 

   

(a) Slow_hd_w/ORB-SLAM3 (b) Slow_hd_w/DynaSLAM (c) Slow_hd_w/GY-SLAM 

   

(d) Hand4/ORB-SLAM3 (e) Hand4/DynaSLAM (f) Hand4/GY-SLAM 

Figure 8. ATE graph evaluated by EVO. (a) Images a, b, and c respectively represent the ATE graphs 473 
of ORB-SLAM3, DynaSLAM, and GY-SLAM on the Slow_hd_w sequence; (b) Images d, e, and f 474 
represent the ATE graphs of the three algorithms on the Hand4 sequence. 475 
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5.2.3. Tracking Time Evaluation 476 

In practical applications, time efficiency is a crucial metric for evaluating the quality 477 

of SLAM systems. A time consumption experiment for various algorithms using the 478 

'Fr3_w_rpy' sequence from the TUM RGB-D dataset is conducted. During this experiment, 479 

the average time taken by different algorithms to track a single frame is measured, as well 480 

as the time consumed during various key stages of the tracking process. The results are 481 

showed in Table 12, with time units in milliseconds. 482 

Table 12. Time consumption costs of the Tracking thread. 483 

Phase ORB-SLAM3 DynaSLAM GY-SLAM (*) GY-SLAM (Ours) 

Segmentation/Detection × 979.3763 10.1302 5.9166 

Feature Extraction 8.1198 23.4962 8.9929 8.9754 

Light Track × 1.2840 × × 

Geometric Correction × 116.9251 × × 

Track 5.6370 3.5474 4.1580 4.0961 

Total 14.5976 1251.2515 24.2180 19.9078 
1 GY-SLAM (*), in which YOLOv5s is used instead of GY model for target detection. 484 

 485 

The results in Table 12 prove that GY-SLAM achieves real-time processing, with each 486 

stage consuming less than 10ms. Compared to GY-SLAM (*), the lightweight GY model 487 

brings a 41.5944% increase in detection speed and a 17.7975% improvement in SLAM op- 488 

eration speed. Although GY-SLAM takes an additional average of 5.3102ms per frame 489 

compared to ORB-SLAM3, it significantly enhances the system's accuracy and robustness 490 

in dynamic scenes. 491 

5.2.4. Efficacy of Feature Extraction and Mapping 492 

The ORB feature extraction effects of GY-SLAM on different datasets are illustrated 493 

in Figure 9. 494 

   

Figure 9. The feature extraction effects of GY-SLAM on different dataset. 495 

We set the lower and upper projection limits of the occupancy grid map based on the 496 

robot chassis obstacle-clearance height and the overall height during the transportation of 497 

vegetable packages. To prevent any contact, we further raised the height limit by 0.1m 498 

above these established limits. The purely static dense point cloud, 3D octree map, and 499 

2D occupancy grid map constructed by GY-SLAM are illustrated in Figure 10. 500 
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(a) Dense point cloud (b) 3D octree map (c) 2D occupancy grid map 

Figure 10. Efficacy of mapping. (a) The foundational purely static dense point cloud constructed by 501 
GY-SLAM; (b) The 3D octree map generated from the dense point cloud; (c) The 2D occupancy grid 502 
map generated from the dense point cloud. 503 

6. Discussion 504 

The performance of the GY-SLAM system in this study showcases the advancements 505 

in visual SLAM technology in dynamic environments. Our research emphasizes the im- 506 

portance of integrating VSLAM systems with deep learning in dynamic scenes, and the 507 

experimental results reveal limitations of GY-SLAM compared to DynaSLAM in pro- 508 

cessing near-field dynamic targets, targets predefined as static but actually in motion, and 509 

targets predefined as dynamic but stationary. These findings provide crucial directions 510 

for future research. We recommend that future studies could consider integrating deep 511 

learning with geometric information to enhance the system's ability to judge the motion 512 

state of targets, and exploring new strategies for distinguishing between near and far 513 

points to adapt to scenes of varying scales. Both of these approaches would further im- 514 

prove the accuracy and robustness of VSLAM systems. 515 

In a broader context, this study highlights the application potential of VSLAM tech- 516 

nology in the field of automated intelligent logistics. The improvements in the GY-SLAM 517 

system are not only crucial for enhancing the performance of robots in plant factory trans- 518 

portation environments, but they are also likely to have a positive impact on technological 519 

innovation in the logistics industry. We firmly believe that by integrating target detection 520 

technology, future VSLAM systems will be better adapted to complex and variable real- 521 

world application environments, making significant contributions to the advancement of 522 

automation technologies. 523 

7. Conclusions 524 

This study introduces a novel SLAM system, GY-SLAM, designed to enhance the 525 

localization, target detection, and mapping capabilities of robots in dynamic plant factory 526 

transportation environments. GY-SLAM extends ORB-SLAM3 by adding a target detec- 527 

tion thread, a dense mapping thread, and a dynamic feature elimination module. In the 528 

target detection thread, GY-SLAM utilizes the GY target detection network, which is 529 

based on YOLOv5 and integrates GhostNet lightweight technology, CoordConv coordi- 530 

nate convolution, CARAFE up-sampling operator, and SE attention mechanism. These 531 

enhancements not only improve the model's detection accuracy and generalization 532 
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capability, but also notably reduce the model's complexity. While improving mAP@0.5 by 533 

0.514%, the model simultaneously reduces parameters by 43.976%, computation by 534 

46.488%, and weight by 41.752%. In the dense mapping thread, GY-SLAM utilizes dense 535 

point cloud data collected by depth cameras. After undergoing statistical filtering for 536 

noise reduction and voxel down-sampling, it can constructs a dense point cloud for navi- 537 

gation, along with the corresponding 3D octree map and 2D occupancy grid map. 538 

Performance evaluations on the TUM RGB-D and our proprietary dataset indicate 539 

that GY-SLAM exhibits significant improvements in dynamic environments compared to 540 

ORB-SLAM3, especially in handling high dynamic scenes. It shows a remarkable 92.58% 541 

improvement in RMSE for ATE. Compared to YOLOv5s, the GY model brings a 41.5944% 542 

improvement in detection speed and a 17.7975% increase in SLAM operation speed to the 543 

system. In comparison with the current state-of-the-art DynaSLAM system, GY-SLAM 544 

demonstrates superior performance in most dynamic sequences. However, we also no- 545 

ticed that GY-SLAM sometimes underperforms DynaSLAM in low dynamic sequences 546 

and in processing near-field targets. In the future, we plan to integrate deep learning and 547 

geometric information to more accurately process dynamic feature points on all targets, 548 

while simultaneously improving strategies for distinguishing near and far points to fur- 549 

ther optimize GY-SLAM. Our long-term goal is to integrate GY-SLAM into plant factory 550 

transportation robot, enabling it to support advanced tasks such as recognition, transpor- 551 

tation, and route planning, thereby contributing to technological innovation in the logis- 552 

tics industry. 553 
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