Pre prints.org

Article Not peer-reviewed version

Page Faults Minimization for Virtual
Memory Systems Using Working Set
Strategy

Aslanbek Murzakhmetov , Gaukhar Borankulova , Arseniy Bapanov , Zhanna Sadirmekova , Gabit Altybaev

Posted Date: 7 July 2025
doi: 10.20944/preprints202507.0494 v1

Keywords: page fault; page replacement algorithms; working set; program behavior; memory management

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
= available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4548258
https://sciprofiles.com/profile/4621724
https://sciprofiles.com/profile/4670230
https://sciprofiles.com/profile/4571643

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Page Faults Minimization for Virtual Memory

Systems Using Working Set Strategy

Aslanbek Murzakhmetov %%, Gaukhar Borankulova 2, Arseniy Bapanov 2, Zhanna Sadirmekova 2
and Gabit Altybaev 3

1 School of Information Sciences, University of Illinois Urbana-Champaign, IL, 61820, USA

2 Department of Information Systems, Faculty of Technology, M.Kh. Dulaty Taraz University, Taraz, 080001, Kazakhstan
3 Department of Radio Engineering, Electronics and Telecommunications, International Information Technologies
University, Almaty 050040, Kazakhstan

Correspondence: aslanbek@illinois.edu

Abstract

Poor code locality in virtual memory systems is one of the reasons for page faults and, consequently,
slow operation of an entire system. Despite the extensive body of research dedicated to minimizing
page faults, the proposed solutions, which are predominantly based on clustering techniques, fail to
provide approximation errors relative to an unknown optimal or near-optimal solution. We use
Working Set strategy and geometric interpretation of the computational process, which clarifies the
subtleties of optimization and facilitates the development of a mathematical model for minimization
of page faults. Our approach includes functionals and constraints that define a set of possible
solutions, which may be useful for future research aimed at developing an algorithm to achieve an
optimal or e-optimal solution. The results pave the way for researching and finding an efficient and
cost-effective replacement algorithm similar to the working set approach.

Keywords: page fault; page replacement algorithms; working set; program behavior; memory
management

1. Introduction

Virtual memory is a technique in memory management that allows a computer to use more
memory than is physically available by temporarily transferring data from Random Access Memory
(RAM) to disk storage. This is essential for running large programs or multiple applications
simultaneously without running out of physical memory [1]. Virtual memory allows processes to use
more memory than is physically available by swapping data between physical memory and
secondary storage. This is a key mechanism in systems with virtual memory, where memory is
divided into pages and the operating system dynamically manages their placement between RAM
and disk [2,3]. However, this can lead to page faults. It happens when a process tries to access a virtual
memory address for which there's currently no valid mapping in physical RAM and this is called
"minor fault”.

Page faults can also be the result of poor code locality. Poor code locality directly affects the
frequency of page faults because it determines how often and in what order the program accesses
memory pages [4-6]. Poor code locality causes the program to switch between pages frequently and
can lead to thrashing (the system spends more time paging than executing code). The problem is how
to relocate blocks (or program segments) across pages of virtual memory to minimize page faults
[7,8]. Program code transformations, such as program restructuring [9-11] and refactoring [12-16],
as well as various forms of code reorganization, have a positive impact on page faults, particularly in
terms of locality. The absence of a definitive solution to this problem has sustained ongoing interest
and research in both past and present studies.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

2 of 13

Many formulations of page faults or program optimization problems lead to complex
combinatorial challenges, making it necessary in practice to rely on approximate or heuristic
approaches. Most existing research in this area is based on clustering techniques [17,18]. While these
techniques have shown improvements in experimental settings, they provide only approximate
solutions with unknown accuracy, i.e., the cluster approach does not estimate how the solutions are
obtained far or close to unknown exact (optimal) solutions [19,20]. The Working Set strategy,
proposed by P.Denning [21], aims to prevent thrashing (excessive swapping that slows down the
system) by ensuring that the pages a process needs are resident in memory. This strategy is
particularly relevant for optimizing performance in systems with limited RAM, as it balances the
degree of multiprogramming (running multiple processes) and CPU utilization. In [22] proposed
page replacement policy monitors the current working-set size and controls the deferring level of
dirty pages, preventing excessive preservation that could lead to increased page faults, thus
optimizing performance while minimizing write traffic to PCM. In [23] authors modified the
ballooning mechanism to enable memory allocation at huge page granularity. Next, they
developed and implemented a huge page working set estimation mechanism capable of precisely
assessing a virtual machine’s memory requirements in huge page-based environments. Integrating
these two mechanisms, they employed a dynamic programming algorithm to attain dynamic
memory balancing. Also, in [24-26] discussed working set size (WSS) estimation to predict memory
demand in virtual machines, which helps optimize memory management. By accurately estimating
WSS, the strategy minimizes page faults by ensuring sufficient memory allocation to meet actual
usage needs. The working set strategy solves the problem of page faults by preventing actively used
pages from being freed, even if the code is suboptimal. However, poor locality increases the size of
the working set and makes it too large to fit in RAM, which can negate the benefits of the strategy.
We propose an approach to optimize the working set size by using combinatorial space, in the form
of Hasse diagram. This problem is classified as NP-hard, meaning that finding the optimal solution
is computationally hard for large instances, as it would require checking an exponentially large
number of possibilities. Thus, the research has also a fundamental aspect [27-31] that has encouraged
us in our research efforts.

In this paper, we focus on the problem of page faults minimization for virtual memory systems.
Motivated by the need to achieve either an optimal or near-optimal solution, our goal is to construct
an approach based on identifing functional and corresponding constraints using the working set
swapping strategy to minimize page faults. We use the geometric interpretation of the computational
process because it offers a visual and analytical tool for solving a problem that is typically approached
through algorithmic or heuristic methods. This approach could potentially reveal patterns or
properties not evident in purely computational models.

2. Methods

In computing systems with page-based organization of the virtual memory, programs generate
a sequence of references (accesses) to their pages during execution, which we will call as “control
state”. At any moment of program execution, the physical memory (RAM) does not contain all pages
of the program, but only a part of them (the resident set). Figure 1 shows an example of virtual and
physical memory. Virtual memory contains blocks of different sizes divided into pages. The physical
memory contains copies of the virtual memory pages and here the blocks are restructured. The size
of the physical memory at any moment of the computational process is much smaller than the size of
the virtual memory. Let the program code with poor locality that requires segmentation consist of n
blocks with numbers i;,i,,...,i, which are singled out in advance and scattered over p pages
81,82, ,8p of a virtual memory.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

3 of 13

Virtual memory
S Physical memory

Block;,

R(q,x)
Block;,

Block;,
Block;,

Block;,

Block;, ,

Block;,

Figure 1. Swapping process.

The code execution causes a problem because of generating a redundant number of page faults,
which can be greatly affected by the reason of poorly structured program code and that reduces
performances both of the program code and a system itself. Let v,, be a length of r-th page, r =
1,2,..,p and [; be alength of block i, i = 1,2, ...,n. Thus the system supports multidimensional size
of pages [32]. As blocks we mean a part of the code such as subroutines, linear segments of a code,
separate interacting programs, data blocks and etc. Distribution of blocks iy, iy, ...,i, over pages
51,82, ..., Sp is assigned, for example via Boolean matrix x = (x;)pxn, Where an element x,; = 1, if
the block with number i belongs to the page with number r and x,; = 0, otherwise. All of such kind
matrices we denote via X.

In our case, working set R(q,x) is generated by control state g and matrix x. As corresponding
denotation for control state, we will use q. The control state g, of the program at moment ¢, it is a
sequence of program references to their pages for the last k moments before moment t. Figure 1
indicated that control state q is q = (il,iz, ...,im(q)) where i; is block number (j = 1,2, ..., m(q)),
which belongs to g and any of them marked as O. Another one symbol ® in Figure 1 means blocks
(or its numbers) which does not belong to q but belong to corresponding page of working set R(g, x)
and present in the physical memory. In other words, all elements O are blocks that are often
referenced and they form the working set, other elements ® are also blocks that do not form the
working set, but they can be present in physical memory at any moment of the computational
process. For the matrix x € X, there are constraints (a)-(c) [33], which are described below:

Functional: As a functional of the main problem, we will take a mathematical expectation of
number of page faults for one run of the program code. As a functional of the auxiliary problem, we
will take a mean value of page faults for h > 1 runs of the program code.

Constraint (a): Total length of the blocks belong to any page does not exceed the length of this
page.

Constraint (b): Any block of the program code belongs only one page of the program code.

Constraint (c): Total length of any working set generated while execution of the program code
does not exceed some system constant that known in advance.

Constraints (a)-(c) have to be assigned by a matrix x = (x;;),xn, Which defines distribution of
the blocks iy,i,,...,i, over pages Si,S,...,5,. An important role for our consideration plays a
Boolean matrix x = (x,;)px, Which determines the structure of a program, i.e., distribution blocks
by, by, ..., b, of a program over pages S3,S,, ..., S,. For x it has to hold constraints (a)-(c), and all of

such kind of matrices form the set X. Next, we present an example of the structure of matrix x
(xXri)pxn With control state q = (i1, iz -, m(qy) singled out among columns of matrix x

(Xri)pxn- The matrix X = (X1)pxn helps to calculate the function &,;(x):

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

4 of 13

1T b .. ilidmg 0

7 0 1 . 0. 0

2 0 0 O . 0. 0

O 1 0 R 1

*=(Xpi)pn= 1 0 0 .. O. 0
O 0 O . 0. 0

0O 0 O . 0. 0

p O O O . 0. 0

2.1. Geometric Interpretation of the Computational Process

We consider the geometric interpretation of the computational process using the Hasse diagram,
a graphical representation of a partially ordered set [34]. Each element of the set is represented by a
node. A line (edge) exists between each pair of nodes b and ¢ suchthat b < ¢ and there is no d such
that b <d < ¢, i.e, we say that ¢ covers b [35]. In combinatorial space the control state g, may
happen at latter moments when our program unexpectedly offloads from the physical memory and
after a while the program activates as if it runs from the start (cold start). Another way to start is a
warm start when the system is trying to continue the computing process from level 1 or 2. Further,
we propose that any such event should restore as a warm start (restart) and treat it as one additional
page fault, which we will take into account in additional expressions (1), (2) for functionals of main
and auxiliary problems.

Let the set of control state g be denoted as Q. When the set Q is formed we have to find the
subset of the Q, which we denote as @, and which will be useful for us under the constraint (c). Any
element § € Q has the property, namely, in the Q there is no element q such as § & q.
Conceptually looking at the Hasse diagram, as shown in Figure 2, the element § is a node which is
a peak-node under any random walk path over nodes of the Hasse diagram. Following our approach
for any sequence of control state already from @ along the axis t with fixed 6 €D is a
corresponding random walk path over nodes of the combinatorial space. Thus, the computational
process is a random walk path through the nodes of the combinatorial space, for which we use the
Hasse diagram.

A Hasse diagram is a two poles combinatorial space with a number of blocks n =6, n+ 1 and
several levels. The down pole, located at the zero level (0) corresponds to the empty set q, = @ for
starting any process. The upper pole corresponds to a number of blocks of the program code, i.e.,
n = 6. Elements of the set Q correspond to appropriate nodes of the combinatorial space. Any
control state g = (iy, iy, ...,i,y) € @ that corresponds to the intermediate node (iy,i,,...,i,). For
example, at level I[(1 <1 < n), is an ordered record, such that i; <i, < - < i, and connects with
m nodes of the level [— 1 and with n —m nodes of the level [+ 1. And, node (2,3) of the level 2,
connects with two nodes at level 1, namely, (2) and (3) and connects also with four nodes at level
3, namely, (1,2,3), (2,3,4), (2,3,5) (2,3,6). Among nodes of the singled out path, black nodes are:
(2,3), (1,2.4), (1,3,4,5), (3,6) and are needed for us to optimize nodes g, which are down nodes of the
edges (g,), namely: (2,4), (1,4,5) (3).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

5 of 13

Figure 2. Hasse diagram.

Figure 3 indicates a dedicated random walk path along nodes under k = 4, that correspond to
a working set and singled out path with § and g nodes on it. Eventually, we have a random walk
path over nodes with § and g. Under multiple runs nodes § and g can be changed but at all times
they are existing in the computional process, including the final situation, when the set Q is
determined. The only point to note for description of an algorithm to determine Q is very simple
and consists of sequentially sorting out elements of the Q@ and comparison to a current q. First, it
takes removal of the current element g from Q. If yes, i.e., then g has to be crossed out of
consideration as the candidate for §. If no then we have to continue the check of an inclusion into the
next q from Q. If we cannot find such g from Q@ and the set Q@ already is exhausted then gq
becomes § and we add § into Q. We repeat the process with the next elements of Q as g until the
set Q is exhausted and we form the set Q. It has to be noted that any run of the program takes finite
time.

Figure 3. A dedicated random walk path along nodes.

2.2. Functionals F°(x) and F™(x). Constraints for x € X.

In this subsection we describe functionals and constrains of the main and auxiliary problems.
We will start by finding expressions of the functional of both the main and auxiliary problem and
expressions for corresponding constrains for matrix x = (x,;)pxn. As well, it is useful to determine
the connection between the calculation that will be done and its geometric interpretation. Using
information given above, we introduce a random variable ¢;; which is a number of references to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

6 of 13

block i under the execution of control state g for one run of the program. Let random variable ¢ ;z

be the same as &;; butin j-th run of the program j = 1,2, ..., h. Let expected value of ¢;; and Egi be:

E(¢q) = E()) = Eqy j = 1.2,...,h
and a mean value:

Eé?) = (1/h) Z?zl f‘%), forany q € Q,i =12,...,n.

Calculation of the §4;(x) can be done in the following way:

0, if blocki € S € R(q,x)
6qi(x) =
1, otherwise

In other words, the value &,;(x) = 0 is corresponding to the absence of the page fault under event
q = i, the value 64;(x) = 0, if block i belongs to some page S from R(g,x). Otherwise the value
04i(x) = 1 is corresponding to the page fault. If block i € q then it has to be §4;(x) =0 forany x €
X. Next, we can remove the control state q, from Q, then a total number of page faults for one run
of the program will be:

E= DD Sty G

qEeQ.

and for the functional of the main problem which has to be minimized we have:

n n
F@) =)) B 8uG) +) Eoy— mip (1)

qeqQ.

It is worth noting that in the expression for ¢ the any value ¢;; does not depend on matrix x € X
and quite the opposite the function §,;(x) depends on given q € Q and i and x € X and does not
depend on random event q — i and where it happens. For the functional F"(x) of the auxiliary
problem holds:

n n
(h) _ WE (h) ;
FM(x) = E E . Egi 0qi(x) + E . Eqi — min (2)

qEeQ.

It is interesting to note that value E‘g?)

node q and thenode q Ui in the Hasse diagram, where the function 84i(x) = 1 and otherwise.

from (2) can be assigned to the edge that connects the

This edge has to be weighted as zero if the function §,4;(x) = 0. It may help to calculate the value of
the functional F™(x) for fixed x € X. It will be sufficient to determine whether the weight of any
edge in question is 1 or 0, which means whether a page error has occurred or not. The system of
constraints (a) - (c) setting the set of X of admissible solutions for both the main problem (1) and for
auxiliary problem (2) registers in the form:

n
Z L2 Sv, T=12.,p ®
i=1
14
Xi=1 i=12..m)
r=1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

7 of 13
P
ZUT “Hgr(x) < Ng, q €0Q; (5)
r=1
xi €{0,1},r=12,..,p;;i=12,..,n (6)

where in (5) the value v, islength of page r,r = 1,2, ...,p. The system (3)-(6) contains p +n + |Q|
non-trivial correlations. Note that constraints (3)-(5) correspond to constraints (a)-(c) respectively.
The function Hg, (x): Hy,-(x) = 1, if page S, € R(q,x) and Hg,(x) = 0, otherwise, i.e., the function
Hg,(x) is the characteristic function of the R(q,x). Under given q and r it is easy to calculate

Hg,(x) via elements of the matrix x, namely if q= (i1, iz, «, im(q)) € Q then:
Hgr(x) = (JRax Xy

2.3. Reduction in a Number of Inequalities of the Control State in Working Set R(q, x)

Constraint (5) contains |Q! inequalities and probably there are a lot. Here is an opportunity to
reduce essentially a number of inequalities in (5). As already mentioned, from a practical point of
view, we may propose that there exists a system constant, let it be N, which limits the dimension of
any working set R(g,x) and which is known in advance. It is necessary to note the set Q and then
we can substitute system (5) for:

P
Z v, - Hgp(x) <N, g € 0; @)
r=1

but first we must put in (5) for all N, =N, q € Q. Let |R(q,x)| be the length of the working set
R(q,x) q € Q, and x € X. To give a ground for substitution it is worth paying attention to Figure 2
and Figure 3 with black nodes on them corresponding to control state § € Q and nodes q € Q, such
as q & §G. Then the next correlations hold: if ¢ € § then R(q,x) € R(§,x) and |R(q,x)| <, where
q € Q, § € Q and if inequality (7) holds for some g € @ then it also holds for any q € Q which q €
g. Here it is taken into account that any q € Q belongs to at least one § from @ as shown in Figure
3, node (3). Evidently, the set X of admissible solutions is non empty since an initial distribution
block iy,1y,...,1,, over pages S, ,S,,, ...,Sgp satisfies constraints (3)-(6).

3. Results

The nonlinear model of the reorganization of the program code which is constructed above,
contains nonlinear functional (1) and/or (2) and both linear inequalities (3), (4) and nonlinear system
of constraints in (5). The power of the set @ in (7) is not too large in contrast with the power of Q in
(5). The constraints (5), (7) show instead of controlling a size of any R(gq,x) with totally |Q]|
inequalities, after substitution (7) instead of (5) we have in (7) only |Q| inequalities. As for functional
(1) or (2) it can be reduced to a number of addends in (1) or (2) on the basis of the idea that if block i €
q then 64(x) =0 for any x € X and second sum in (1) or (2) has instead of i = 1,2, ...,n, only the
indexes i €1(q), where the set I(q) does not contain such i belongs to g. Under given
q = (i1, iz,) im(q) and i and under the event q — i, if iy € (i3, i3, .., Im() and i €
(i, i3,) lm(q)) then there will be no page fault. If i; € (i3, 13, ..., i;nq)) and i €
(i, i3, -+, Im(q)) then there will also be no page fault. It is important to note that some methods of
discrete optimization, based on construction of valuation function, in our case, for the problem (2) on
the basis of geometric interpretation of the computational process, it is the lower valuation function,
which is written on the left side of (8):

Q) L)
Z Z Eding Saing™) = Z ZizlE‘” +8qi(x))

4€Q geQg qeq.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

8 of 13

From [19,36] it follows that, if it is possible to solve the problem with valuation function, which
has been written also in (9)

(W s
D D G C) — min ©

4€Q G€Qq

then it gives the opportunity, with appropriate complexity, to get an exact (optimal) solution of the
problem (2) with functional on the right side of (8). The set Q; on the left part of (8) is a subset of Q,
which is defined by a separate § and consists of a number of q € Q. If we look to Figure 3, a
node g has to be connected with node § by the edge, i.e., (g,§) which is the oriented edge with
nodes g and §. Meanwhile it is not necessary to take into account both on the left side of (8) and (9)
the edge (§, 7), since the weight of the (§,g) equals 0. On the left side of (8) for any § € Q anode g
is running for edge (g, §) until the set Q4 is exhausted. We include a node g into Q; if there is at
least one reference, while h runs of the program, from node g to the node §. The number i on the
left part of (8) is defined as G\ g, i.e., i = 4\ g, letitbe a denotation i3\ 5. The left part of (8) contains
a lesser number of addends than the right side of (8). The same we may say about the functional of
the problem (1), i.e., about F°(x). As for optimal solution of (1) it is interesting to point out conditions
for initial data when the optimal solution of problem (2), let it be the matrix x; , will be an ¢ -
optimal solution of the problem (1) in sense:

Pr{lF°(x") = F°(x;)| <e}=1-mn, >0, n€(0,1) (10)

where the matrix x* is an unknown optimal solution of the problem (1). Those conditions first of all
imply, to determine common properties of the distribution laws for the variables &,;,i = 1,2,...,n;q €
Q and lower bound for the number h of executions (runs) of the code, under which inequality (10)
holds.

Under the known values Ej; in (1) i.e., the distribution law of each random variable &,;,i =
1,2,..,n; q € Q is known, the algorithm of the solution, both the initial problem (1), and the problem
(2) can be based on valuation function (see (8)) and the property of the function &4;(x):

5qri(x) + 5qr/i(x) < 5qrnqlli(x) + SG'UC_[”i(x)'

which takes place for any §',g” € Q € Q and represents a special case of the property of
supermodularity. In the case of unknown values E,; (the distribution law of the random variables
i =12,..,m;q€Q is unknown) the situation for solution of problem (1) becomes more
complicated. In this case the problem (2) could be used as an auxiliary problem for (1) and optimal
solution of (2), i.e.,, x; can be taken as the solution of (1) in the sense of the inequality (10).

We used a heatmap technique to visualize page faults and different working set sizes as shown
in Figure 4(a), (b) and (c), where are shown the number of page faults with a different working set
size and a fixed Physical Memory Size. Figure 4(d) indicates a comparison result of page faults
simulation in different algorithms like Working Set, LRU (Least Recently Used) and FIFO (First In,
First Out). Experiments were performed with different parameters: Virtual Memory Size, Physical
Memory Size, Working Set Size, Access Sequence Length, Locality Factor. The Working Set algorithm
tries to keep only actively used pages in memory. If the working set size is smaller than the physical
memory size, the number of page faults will be low, if working set size increases, then page faults
also increase accordingly. The LRU algorithm unloads the page that has not been used for the longest
time. It performs well, especially when there is locality in the order of accesses.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

9 of 13

Page Faults for Algorithm: Working Set

Page Faults for Algorithm: Working Set

- 4100

4380 - 4380

Physical Memory Size
00

4360 4360

£
Bl
£
g
&
Physical Memory Size
400

4340 4340

4320 - 4320

10 100 200 0
Working Set Size Warking Set Size

(a) (b)

i
Page Faults for Algorithm: Working Set Page Faultsfor Different Algerithms

PMS=400 |
, =200 | vio0

- 4400

d Working Set Size

4380 2
S Pis=400
4478 486 g Wss=100

4360

Physical Memory Size
400

Physical Memory 5

| 4340

Y | 4320
10 100 200
working set Size Hgorithm

(©) (d)

Figure 4. Comparing simulation results of page faults with different working set size in (a), (b), (c) and

algorithms in (d).

The FIFO algorithm unloads the page that was loaded first. It shows worse results compared to
LRU and working set, especially in the presence of cyclic access patterns. The simulation results on
page fault optimization show that in the fixed size of physical memory, there are fewer page faults
for all algorithms. This is because more pages can be loaded simultaneously, reducing the need for
paging. When the physical memory size is small, the number of faults increases because the
algorithms are forced to offload pages more frequently. The heatmap shows that for a given algorithm
and physical memory size, if the cell color is light, it indicates a large number of page faults. For
example, a FIFO with a small physical memory size may have a high number of page faults. If the
cell color is dark, it indicates a low number of page faults. For example, an LRU with a large physical
memory size may have low page fault values.

Table 1 presents that Working Set is the most effective when there is locality in the order of
accesses, especially when the physical memory size is large. LRU performs consistently well and is a
compromise between implementation complexity and efficiency. This algorithm -effectively
minimizes the number of page faults. FIFO is the least efficient, especially when the physical memory
size is small, because it does not consider locality and may discard pages that will be used soon.

Table 1. Average page faults for different algorithms.

Algorithm Average A"/erage
Page Faults Locality Factor
Working Set 4352 0.72
LRU 4371 0.72
FIFO 4397 0.72

We conducted two more experimental studies using a 10-node FPGA-based system arranged in
a ring topology. These experiments extend the original analysis by comparing caching algorithms

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

10 of 13

and exploring the impact of varying cache sizes, using a random memory access workload to simulate
a worst-case scenario. We evaluated WS, LRU and FIFO caching algorithms with a cache size of 5%
allocated from free memory. Each of the 10 nodes performed 100,000 operations, with 80% accessing
local memory and 20% requesting remote data. Performance was assessed through average page fault
time, page fault frequency, and total execution time. Table 2 shows the results indicate that the WS
algorithm consistently outperformed the alternatives. WS reduced the average page fault time to 6
ps and the fault frequency to 35%, yielding a total execution time of 13 seconds. LRU and FIFO
showed similar performance, with average fault times of 7 us and frequencies around 38%, resulting
in execution times of 14.5 seconds. Random Replacement performed the worst, with a fault time of 8
us, a frequency of 40%, and an execution time of 15 seconds.

Table 2. Performance Metrics for Caching Algorithms.

. Av. Page Fault Time Page Fault Total Execution
Algorithm .
(ps) Frequency (%) Time (s)
WS 6 35 13
LRU 7 38 14.5
FIFO 7 38 14.5

The superior performance of WS likely stems from its ability to maintain a set of actively used
pages, adapting even to random access patterns. LRU and FIFO, while effective in workloads with
locality, offer little advantage here, and RR’s lack of pattern consideration makes it the least efficient.
We varied the cache size—1%, 5%, 10%, and 20% of total memory —using the Working Set algorithm,
sourcing memory from both free reserves and data memory (overflow). The same workload and
system configuration were applied. As cache size increased from 1% to 10%, page fault frequency
dropped from 39% to 33%, and total execution time decreased from 14.8 seconds to 12.8 seconds as
shown in Figure 5a. Beyond 10%, at 20%, the frequency stabilized at 32%, and execution time
plateaued at 12.7 seconds, indicating diminishing returns. Average page fault time remained steady
at around 6 ps across all sizes. With data memory caching, fault frequency decreased from 38% at 1%
to 30% at 10%, with execution time improving from 14.5 seconds to 13.5 seconds. However, at 20%,
execution time rose to 14 seconds despite a frequency of 29%, as reduced data memory led to more
frequent evictions and reloads as shown Figure 5b.

50 Execution Time vs. Cache Size (Free Memory) Execution Time vs. Cache Size (Data Memory)
- 15.0
1455

14.5 s

=
&

14.5

=
o

Execution Time (s)
-
w &
o
Execution Time (s)
N
o

135

12.7 s|

2.5 5.0 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Cache Size (%) Cache Size (%)

(a) (b)

Figure 5. (a) Execution Time vs. Cache Size (Free Memory); (b) Execution Time vs. Cache Size (Data Memory).

These experiments reaffirm the efficacy of RAM page caching, with the Working Set algorithm
proving optimal for random workloads. The choice of algorithm significantly impacts performance,
with WS reducing execution time by up to 14% compared to no caching (15 seconds).

4. Discussion

The results of the simulation experiments show that the locality of accesses to memory pages is
a key factor for increasing the efficiency of paging algorithms. We see that Working Set and LRU are

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

11 of 13

the most efficient paging algorithms, while FIFO is inferior to them in all parameters. Cache size
optimization reveals a sweet spot around 10% for both free and data memory caching. Beyond this,
free memory caching yields minimal gains, while overflow caching introduces trade-offs due to
limited data space. This suggests a need for careful memory allocation to balance caching benefits
and data availability. Future research could investigate dynamic cache sizing algorithms that adapt
to workload changes or explore realistic application-specific workloads to broaden the applicability
of these findings.

5. Conclusions

Poor code locality encourages the study of program restructuring and optimization strategies,
such as the working set strategy, to minimize page faults in[virtual memory systems. This paper
proposes a combinatorial approach to optimize working set size, and aims at obtaining near optimal
solutions using geometric interpretation and functional constraints. In order to optimize the
calculations, a valuation function was found which includes the empirical average of the experiments
and a system of constraints. Our proposed geometric interpretation of the computational process in
the form of a Hasse diagram helps to reduce the dimensionality of the page faults minimization
problem. The approach outlined in the paper provides a basis for finding the optimal solution to the
main problem, i.e., to page faults minimization, if the minimum distribution of random variables is
known in advance. Otherwise, with an unknown minimum of the random variable distribution, the
constructed approach provides the basis for finding an accurate solution to the auxiliary problem,
i.e., the experimental average of page faults.

Currently, the working set strategy is usually used as a theoretical research base, either for
comparison or for auxiliary purposes, as it is considered expensive to implement. However, in our
case, if the program code has a block structure, then the results obtained can be used to build a fast,
accessible and affordable swap algorithm.

Author Contributions: Conceptualization, A.M., G.B. and Z.S.; methodology, A.M.; software, AM. and A.B;
validation, Z.S., A.B. and G.A.; formal analysis, G.B., G.A; investigation, G.A.; resources, A.M.; data curation,
A.B. and Z.S.; writing —original draft preparation, A.M., G.A. and G.B.; writing —review and editing, A.M. and
Z.S.; visualization, A.B. and A.M.; supervision, A.M.; project administration, G.B.; All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by a grant from the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan, grant number “AP19174930”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data can certainly be provided upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Allen, T.; Cooper, B.; Ge, R. Fine-Grain Quantitative Analysis of Demand Paging in Unified Virtual
Memory. ACM Trans. Archit. Code Optim. 2024, 21, 1-24, d0i:10.1145/3632953.

2. Nestor, J.; Yin, Z. Work in Progress: A Visualization Aid for Learning Virtual Memory Concepts, in
Proceedings of ASEE Annual Conference and Exposition: Excellence Through Diversity (ASEE),
Minneapolis, 2022.

3. Lian, Z; Li, Y.; Chen, Z; Shan, S.; Han, B.; Su, Y. EBPF-Based Working Set Size Estimation in Memory
Management. In Proceedings of the 2022 International Conference on Service Science (ICSS); IEEE: Zhuhai,
China, 2022; pp. 188-195.

4. Chen, Y.-C; Wu, C.-F,; Chang, Y.-H.; Kuo, T.-W. Exploring Synchronous Page Fault Handling. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2022, 41, 3791-3802, doi:10.1109/TCAD.2022.3197517.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

12 of 13

5. Doron-Arad, I.; Naor, J. (Seffi) Non-Linear Paging. LIPIcs, Volume 297, ICALP 2024 2024, 297, 57:1-57:19,
doi:10.4230/LIPICS.ICALP.2024.57.

6. Wood, C; Fernandez, E.B.; Lang, T. Minimization of Demand Paging for the LRU Stack Model of Program
Behavior. Information Processing Letters 1983, 16, 99-104, d0i:10.1016/0020-0190(83)90034-0.

7. Dyusembaev, A. E. On one approach to the problem of segmenting programs, Doklady Akademii Nauk,
vol. 329, no. 6, pp. 712-723, 1993.

8. Teabe, B.; Yuhala, P.; Tchana, A.; Hermenier, F.; Hagimont, D.; Muller, G. Memory Virtualization in
Virtualized Systems: Segmentation Is Better than Paging 2020.

9. Ngetich, M.K\Y.; Otieno, C.; Kimwele, M.; Gitahi, S. Advancements in Code Restructuring: Enhancing
System Quality through Object-Oriented Coding Practices. In Proceedings of the 2023 IEEE 27th
International Conference on Intelligent Engineering Systems (INES); IEEE: Nairobi, Kenya, July 26 2023;
pp- 000125-000130.

10. Yegon Ngetich, M.K.; Otieno, D.C.; Kimwele, D.M. A Model for Code Restructuring, A Tool for Improving
Systems Quality In Compliance With Object Oriented Coding Practice. IJCATR 2019, 8, 196-200,
doi:10.7753/IJCATR0805.1010.

11. Peachey,].B.; Bunt, R.B.; Colbourn, C.J. Some Empirical Observations on Program Behavior with
Applications to Program Restructuring. IIEEE Trans. Software Eng. 1985, SE-11, 188-193,
doi:10.1109/TSE.1985.232193.

12. D.B. Roberts, Practical Analysis for Refactoring (1999). (Ph.D. thesis) University of Illinois

13. Cedrim, D.; Garcia, A.; Mongiovi, M.; Gheyi, R.; Sousa, L.; De Mello, R.; Fonseca, B.; Ribeiro, M.; Chavez,
A. Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23 Software Projects. In
Proceedings of the Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering;
ACM: Paderborn Germany, August 21 2017; pp. 465-475.

14. Agnihotri, M.,; Chug, A. Severity Factor (SF): An Aid to Developers for Application of Refactoring
Operations to Improve Software Quality.] Software Evolu Process 2024, 36, €2590, doi:10.1002/smr.2590.

15. Agnihotri, M.; Chug, A. Understanding the Effect of Batch Refactoring on Software Quality. Int | Syst Assur
Eng Manag 2024, 15, 2328-2336, doi:10.1007/s13198-023-02247-x.

16. Coelho, F.; Massoni, T.; L.G. Alves, E. Refactoring-Aware Code Review: A Systematic Mapping Study. In
Proceedings of the 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR); May 2019; pp. 63—
66.

17. Arasteh, B.; Ghanbarzadeh, R.; Gharehchopogh, F.S.; Hosseinalipour, A. Generating the Structural Graph-
based Model from a Program Source-code Using Chaotic Forrest Optimization Algorithm. Expert Systems
2023, 40, €13228, doi:10.1111/exsy.13228.

18. Arasteh, B.; Abdi, M.; Bouyer, A. Program Source Code Comprehension by Module Clustering Using
Combination of Discretized Gray Wolf and Genetic Algorithms. Advances in Engineering Software 2022, 173,
103252, doi:10.1016/j.advengsoft.2022.103252.

19. A. E. Dyusembaev, “Mathematical models of program segmentation,” M: Fizmatlit (Nauka, MAIK'), 2001.

20. Cheng, W.; Wu, C.-F; Chang, Y.-H.; Lin, I.-C. GraphRC: Accelerating Graph Processing on Dual-
Addressing Memory with Vertex Merging. In Proceedings of the Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design; ACM: San Diego California, October 30 2022; pp. 1—-
9.

21. Denning, P.J. The Working Set Model for Program Behavior. In Proceedings of the Proceedings of the ACM
symposium on Operating System Principles - SOSP '67; ACM Press: Not Known, 1967; p. 15.1-15.12.

22. Park, Y.; Bahn, H. A Working-Set Sensitive Page Replacement Policy for PCM-Based Swap Systems.
JSTS:Journal of Semiconductor Technology and Science 2017, 17, 7-14, doi:10.5573/JSTS.2017.17.1.007.

23. Sha,S.;Hu,].-Y.;Luo, Y.-W.; Wang, X.-L.; Wang, Z. Huge Page Friendly Virtualized Memory Management.
J. Comput. Sci. Technol. 2020, 35, 433—452, d0i:10.1007/s11390-020-9693-0.

24. Hu, J; Bai, X; Sha, S.; Luo, Y.; Wang, X,; Wang, Z. Working Set Size Estimation with Hugepages in
Virtualization. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 d0i:10.20944/preprints202507.0494.v1

13 of 13

Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom); IEEE: Melbourne, Australia, 2018; pp. 501-508.

25. Nitu, V,; Kocharyan, A; Yaya, H.; Tchana, A.; Hagimont, D.; Astsatryan, H. Working Set Size Estimation
Techniques in Virtualized Environments: One Size Does Not Fit All. In Proceedings of the Abstracts of the
2018 ACM International Conference on Measurement and Modeling of Computer Systems; ACM: Irvine
CA USA, June 12 2018; pp. 62-63.

26. Verbart, A.; Stolpe, M. A Working-Set Approach for Sizing Optimization of Frame-Structures Subjected to
Time-Dependent Constraints. Struct Multidisc Optim 2018, 58, 1367-1382, doi:10.1007/s00158-018-2063-7.

27. Dyusembaev, A.E. On the Correctness of Algebraic Closures of Recognition Algorithms of the “Tests”
Type. USSR Computational Mathematics and Mathematical Physics 1982, 22, 217-226, doi:10.1016/0041-
5553(82)90111-2.

28. Alanko, T.O.; Haikala, L].; Kutvonen, P.H. Program Restructing in Segmented Virtual Memory. Performance
Evaluation 1981, 1, 153-169, doi:10.1016/0166-5316(81)90017-1.

29. Paris, J.-F.; Ferrari, D. An Analytical Study of Strategy-Oriented Restructuring Algorithms. Performance
Evaluation 1984, 4, 117-132, doi:10.1016/0166-5316(84)90006-3.

30. Ghosal, D.; Serazzi, G.; Tripathi, S.K. The Processor Working Set and Its Use in Scheduling Multiprocessor
Systems. IIEEE Trans. Software Eng. 1991, 17, 443-453, d0i:10.1109/32.90447.

31. Marshall, W.T.; Nute, C.T. Analytic Modelling of “Working Set like” Replacement Algorithms. In
Proceedings of the Proceedings of the 1979 ACM SIGMETRICS conference on Simulation, measurement
and modeling of computer systems - SIGMETRICS '79; ACM Press: Boulder, Colorado, United States, 1979;
pp- 65-72.

32. Denning, P.J. Working Set Analytics. ACM Comput. Surv. 2021, 53, 1-36, d0i:10.1145/3399709.

33. Dyusembaev, A. E. Correct models of program segmenting. Journal of pattern recognition and image,
Analises USA, vol. 3, no. 6, 1993, pp.187-204.

34. Church, A. Garrett Birkhoff. Lattice Theory. Revised Edition. American Mathematical Society Colloquium
Publications, Vol. 25. American Mathematical Society, New York1948, Xiii + 283 Pp.]. symb. log. 1950, 15,
59-60, doi:10.2307/2268441.

35. Mrena, M.; Kvassay, M. Generating Monotone Boolean Functions Using Hasse Diagram. In Proceedings of
the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS); IEEE: Dortmund, Germany, September 7 2023; pp. 793-
797.

36. Kochetov, Yu.; Pljasunov, A.V. Genetic local search for the graph partitioning problem under cardinality
constraints, Zh. Vychisl. Mat. Mat. Fiz., vol. 52, no. 1, pp. 164-176, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

