
Article Not peer-reviewed version

Page Faults Minimization for Virtual

Memory Systems Using Working Set

Strategy

Aslanbek Murzakhmetov * , Gaukhar Borankulova , Arseniy Bapanov , Zhanna Sadirmekova , Gabit Altybaev

Posted Date: 7 July 2025

doi: 10.20944/preprints202507.0494.v1

Keywords: page fault; page replacement algorithms; working set; program behavior; memory management

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4548258
https://sciprofiles.com/profile/4621724
https://sciprofiles.com/profile/4670230
https://sciprofiles.com/profile/4571643

Article

Page Faults Minimization for Virtual Memory

Systems Using Working Set Strategy

Aslanbek Murzakhmetov 1,2,*, Gaukhar Borankulova 2, Arseniy Bapanov 2, Zhanna Sadirmekova 2

and Gabit Altybaev 3

1 School of Information Sciences, University of Illinois Urbana-Champaign, IL, 61820, USA
2 Department of Information Systems, Faculty of Technology, M.Kh. Dulaty Taraz University, Taraz, 080001, Kazakhstan
3 Department of Radio Engineering, Electronics and Telecommunications, International Information Technologies

University, Almaty 050040, Kazakhstan

* Correspondence: aslanbek@illinois.edu

Abstract

Poor code locality in virtual memory systems is one of the reasons for page faults and, consequently,

slow operation of an entire system. Despite the extensive body of research dedicated to minimizing

page faults, the proposed solutions, which are predominantly based on clustering techniques, fail to

provide approximation errors relative to an unknown optimal or near-optimal solution. We use

Working Set strategy and geometric interpretation of the computational process, which clarifies the

subtleties of optimization and facilitates the development of a mathematical model for minimization

of page faults. Our approach includes functionals and constraints that define a set of possible

solutions, which may be useful for future research aimed at developing an algorithm to achieve an

optimal or 𝜀-optimal solution. The results pave the way for researching and finding an efficient and

cost-effective replacement algorithm similar to the working set approach.

Keywords: page fault; page replacement algorithms; working set; program behavior; memory

management

1. Introduction

Virtual memory is a technique in memory management that allows a computer to use more

memory than is physically available by temporarily transferring data from Random Access Memory

(RAM) to disk storage. This is essential for running large programs or multiple applications

simultaneously without running out of physical memory [1]. Virtual memory allows processes to use

more memory than is physically available by swapping data between physical memory and

secondary storage. This is a key mechanism in systems with virtual memory, where memory is

divided into pages and the operating system dynamically manages their placement between RAM

and disk [2,3]. However, this can lead to page faults. It happens when a process tries to access a virtual

memory address for which there's currently no valid mapping in physical RAM and this is called

"minor fault".

Page faults can also be the result of poor code locality. Poor code locality directly affects the

frequency of page faults because it determines how often and in what order the program accesses

memory pages [4–6]. Poor code locality causes the program to switch between pages frequently and

can lead to thrashing (the system spends more time paging than executing code). The problem is how

to relocate blocks (or program segments) across pages of virtual memory to minimize page faults

[7,8]. Program code transformations, such as program restructuring [9–11] and refactoring [12–16],

as well as various forms of code reorganization, have a positive impact on page faults, particularly in

terms of locality. The absence of a definitive solution to this problem has sustained ongoing interest

and research in both past and present studies.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 13

Many formulations of page faults or program optimization problems lead to complex

combinatorial challenges, making it necessary in practice to rely on approximate or heuristic

approaches. Most existing research in this area is based on clustering techniques [17,18]. While these

techniques have shown improvements in experimental settings, they provide only approximate

solutions with unknown accuracy, i.e., the cluster approach does not estimate how the solutions are

obtained far or close to unknown exact (optimal) solutions [19,20]. The Working Set strategy,

proposed by P.Denning [21], aims to prevent thrashing (excessive swapping that slows down the

system) by ensuring that the pages a process needs are resident in memory. This strategy is

particularly relevant for optimizing performance in systems with limited RAM, as it balances the

degree of multiprogramming (running multiple processes) and CPU utilization. In [22] proposed

page replacement policy monitors the current working-set size and controls the deferring level of

dirty pages, preventing excessive preservation that could lead to increased page faults, thus

optimizing performance while minimizing write traffic to PCM. In [23] authors modified the

ballooning mechanism to enable memory allocation at huge page granularity. Next, they

developed and implemented a huge page working set estimation mechanism capable of precisely

assessing a virtual machine’s memory requirements in huge page-based environments. Integrating

these two mechanisms, they employed a dynamic programming algorithm to attain dynamic

memory balancing. Also, in [24–26] discussed working set size (WSS) estimation to predict memory

demand in virtual machines, which helps optimize memory management. By accurately estimating

WSS, the strategy minimizes page faults by ensuring sufficient memory allocation to meet actual

usage needs. The working set strategy solves the problem of page faults by preventing actively used

pages from being freed, even if the code is suboptimal. However, poor locality increases the size of

the working set and makes it too large to fit in RAM, which can negate the benefits of the strategy.

We propose an approach to optimize the working set size by using combinatorial space, in the form

of Hasse diagram. This problem is classified as NP-hard, meaning that finding the optimal solution

is computationally hard for large instances, as it would require checking an exponentially large

number of possibilities. Thus, the research has also a fundamental aspect [27–31] that has encouraged

us in our research efforts.

In this paper, we focus on the problem of page faults minimization for virtual memory systems.

Motivated by the need to achieve either an optimal or near-optimal solution, our goal is to construct

an approach based on identifing functional and corresponding constraints using the working set

swapping strategy to minimize page faults. We use the geometric interpretation of the computational

process because it offers a visual and analytical tool for solving a problem that is typically approached

through algorithmic or heuristic methods. This approach could potentially reveal patterns or

properties not evident in purely computational models.

2. Methods

In computing systems with page-based organization of the virtual memory, programs generate

a sequence of references (accesses) to their pages during execution, which we will call as “control

state”. At any moment of program execution, the physical memory (RAM) does not contain all pages

of the program, but only a part of them (the resident set). Figure 1 shows an example of virtual and

physical memory. Virtual memory contains blocks of different sizes divided into pages. The physical

memory contains copies of the virtual memory pages and here the blocks are restructured. The size

of the physical memory at any moment of the computational process is much smaller than the size of

the virtual memory. Let the program code with poor locality that requires segmentation consist of 𝑛

blocks with numbers 𝑖1, 𝑖2, … , 𝑖𝑛 which are singled out in advance and scattered over 𝑝 pages

𝑆1, 𝑆2, … , 𝑆𝑝 of a virtual memory.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 13

Figure 1. Swapping process.

The code execution causes a problem because of generating a redundant number of page faults,

which can be greatly affected by the reason of poorly structured program code and that reduces

performances both of the program code and a system itself. Let 𝑣𝑟 , be a length of r-th page, 𝑟 =

1,2, … , 𝑝 and 𝑙𝑖 be a length of block 𝑖, 𝑖 = 1,2, … , 𝑛. Thus the system supports multidimensional size

of pages [32]. As blocks we mean a part of the code such as subroutines, linear segments of a code,

separate interacting programs, data blocks and etc. Distribution of blocks 𝑖1, 𝑖2, … , 𝑖𝑛 over pages

𝑆1, 𝑆2, … , 𝑆𝑝 is assigned, for example via Boolean matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛, where an element 𝑥𝑟𝑖 = 1, if

the block with number 𝑖 belongs to the page with number 𝑟 and 𝑥𝑟𝑖 = 0, otherwise. All of such kind

matrices we denote via 𝑋.

In our case, working set 𝑅(𝑞, 𝑥) is generated by control state 𝑞 and matrix 𝑥. As corresponding

denotation for control state, we will use 𝑞. The control state 𝑞𝑡 of the program at moment 𝑡, it is a

sequence of program references to their pages for the last 𝑘 moments before moment 𝑡. Figure 1

indicated that control state 𝑞 is 𝑞 = (𝑖1, 𝑖2, … , 𝑖𝑚(𝑞)) where 𝑖𝑗 is block number (𝑗 = 1,2, … , 𝑚(𝑞)) ,

which belongs to 𝑞 and any of them marked as 〇. Another one symbol ⨂ in Figure 1 means blocks

(or its numbers) which does not belong to 𝑞 but belong to corresponding page of working set 𝑅(𝑞, 𝑥)

and present in the physical memory. In other words, all elements 〇 are blocks that are often

referenced and they form the working set, other elements ⨂ are also blocks that do not form the

working set, but they can be present in physical memory at any moment of the computational

process. For the matrix 𝑥 ∈ 𝑋, there are constraints (a)-(c) [33], which are described below:

Functional: As a functional of the main problem, we will take a mathematical expectation of

number of page faults for one run of the program code. As a functional of the auxiliary problem, we

will take a mean value of page faults for ℎ ≥ 1 runs of the program code.

Constraint (a): Total length of the blocks belong to any page does not exceed the length of this

page.

Constraint (b): Any block of the program code belongs only one page of the program code.

Constraint (c): Total length of any working set generated while execution of the program code

does not exceed some system constant that known in advance.

Constraints (a)-(c) have to be assigned by a matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛 , which defines distribution of

the blocks 𝑖1, 𝑖2, … , 𝑖𝑛 over pages 𝑆1, 𝑆2, … , 𝑆𝑝 . An important role for our consideration plays a

Boolean matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛 which determines the structure of a program, i.e., distribution blocks

𝑏1, 𝑏2, … , 𝑏𝑛 of a program over pages 𝑆1, 𝑆2, … , 𝑆𝑝 . For 𝑥 it has to hold constraints (a)-(c), and all of

such kind of matrices form the set 𝑋. Next, we present an example of the structure of matrix 𝑥 =

(𝑥𝑟𝑖)𝑝×𝑛 with control state 𝑞 = (𝑖1, 𝑖2, … , 𝑖𝑚(𝑞𝑡)) singled out among columns of matrix 𝑥 =

(𝑥𝑟𝑖)𝑝×𝑛. The matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛 helps to calculate the function 𝛿𝑞𝑖(𝑥):

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 13

2.1. Geometric Interpretation of the Computational Process

We consider the geometric interpretation of the computational process using the Hasse diagram,

a graphical representation of a partially ordered set [34]. Each element of the set is represented by a

node. A line (edge) exists between each pair of nodes 𝑏 and 𝑐 such that 𝑏 ≤ 𝑐 and there is no d such

that 𝑏 ≤ 𝑑 ≤ 𝑐 , i.e., we say that 𝑐 covers 𝑏 [35]. In combinatorial space the control state 𝑞0 may

happen at latter moments when our program unexpectedly offloads from the physical memory and

after a while the program activates as if it runs from the start (cold start). Another way to start is a

warm start when the system is trying to continue the computing process from level 1 or 2. Further,

we propose that any such event should restore as a warm start (restart) and treat it as one additional

page fault, which we will take into account in additional expressions (1), (2) for functionals of main

and auxiliary problems.

Let the set of control state 𝑞 be denoted as 𝑄. When the set 𝑄 is formed we have to find the

subset of the 𝑄, which we denote as 𝑄̂, and which will be useful for us under the constraint (c). Any

element 𝑞̂ ∈ 𝑄̂ has the property, namely, in the 𝑄 there is no element 𝑞 such as 𝑞̂ ⊊ 𝑞 .

Conceptually looking at the Hasse diagram, as shown in Figure 2, the element 𝑞̂ is a node which is

a peak-node under any random walk path over nodes of the Hasse diagram. Following our approach

for any sequence of control state already from 𝑄 along the axis 𝑡 with fixed 𝜃 ∈ 𝐷 is a

corresponding random walk path over nodes of the combinatorial space. Thus, the computational

process is a random walk path through the nodes of the combinatorial space, for which we use the

Hasse diagram.

A Hasse diagram is a two poles combinatorial space with a number of blocks 𝑛 = 6, 𝑛 + 1 and

several levels. The down pole, located at the zero level (0) corresponds to the empty set 𝑞0 = ∅ for

starting any process. The upper pole corresponds to a number of blocks of the program code, i.e.,

𝑛 = 6 . Elements of the set 𝑄 correspond to appropriate nodes of the combinatorial space. Any

control state 𝑞 = (𝑖1, 𝑖2, … , 𝑖𝑚) ∈ 𝑄 that corresponds to the intermediate node (𝑖1, 𝑖2, … , 𝑖𝑚) . For

example, at level 𝑙(1 ≤ 𝑙 < 𝑛), is an ordered record, such that 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚 and connects with

𝑚 nodes of the level 𝑙 − 1 and with 𝑛 − 𝑚 nodes of the level 𝑙 + 1. And, node (2,3) of the level 2,

connects with two nodes at level 1, namely, (2) and (3) and connects also with four nodes at level

3, namely, (1,2,3), (2,3,4), (2,3,5) (2,3,6). Among nodes of the singled out path, black nodes are:

(2,3), (1,2.4), (1,3,4,5), (3,6) and are needed for us to optimize nodes 𝑞̅, which are down nodes of the

edges (𝑞,̅ 𝑞̂), namely: (2,4), (1,4,5) (3).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 13

Figure 2. Hasse diagram.

Figure 3 indicates a dedicated random walk path along nodes under 𝑘 = 4, that correspond to

a working set and singled out path with 𝑞̂ and 𝑞̅ nodes on it. Eventually, we have a random walk

path over nodes with 𝑞̂ and 𝑞̅. Under multiple runs nodes 𝑞̂ and 𝑞̅ can be changed but at all times

they are existing in the computional process, including the final situation, when the set 𝑄 is

determined. The only point to note for description of an algorithm to determine 𝑄̂ is very simple

and consists of sequentially sorting out elements of the 𝑄 and comparison to a current 𝑞. First, it

takes removal of the current element 𝑞 from 𝑄. If yes, i.e., then 𝑞 has to be crossed out of

consideration as the candidate for 𝑞̂. If no then we have to continue the check of an inclusion into the

next 𝑞 from 𝑄. If we cannot find such 𝑞 from 𝑄 and the set 𝑄 already is exhausted then 𝑞

becomes 𝑞̂ and we add 𝑞̂ into 𝑄̂. We repeat the process with the next elements of 𝑄 as 𝑞 until the

set 𝑄 is exhausted and we form the set 𝑄̂. It has to be noted that any run of the program takes finite

time.

Figure 3. A dedicated random walk path along nodes.

2.2. Functionals 𝐹0(𝑥) and 𝐹(ℎ)(𝑥). Constraints for 𝑥 ∈ 𝑋.

In this subsection we describe functionals and constrains of the main and auxiliary problems.

We will start by finding expressions of the functional of both the main and auxiliary problem and

expressions for corresponding constrains for matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛. As well, it is useful to determine

the connection between the calculation that will be done and its geometric interpretation. Using

information given above, we introduce a random variable 𝜉𝑞𝑖 which is a number of references to

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 13

block 𝑖 under the execution of control state 𝑞 for one run of the program. Let random variable 𝜉𝑞𝑖
𝑗

be the same as 𝜉𝑞𝑖 but in j-th run of the program 𝑗 = 1,2, … , ℎ. Let expected value of 𝜉𝑞𝑖 and 𝜉𝑞𝑖
𝑗 be:

𝐸(𝜉𝑞𝑖) = 𝐸(𝜉𝑞𝑖
𝑗

) = 𝐸𝑞𝑖 , 𝑗 = 1,2, … , ℎ

and a mean value:

𝐸𝑞𝑖
(ℎ)

= (1 ℎ⁄) ∑ 𝜉𝑞𝑖
(𝑗)ℎ

𝑗=1 , for any 𝑞 ∈ 𝑄, 𝑖 = 1,2, … , 𝑛.

Calculation of the 𝛿𝑞𝑖(𝑥) can be done in the following way:

𝛿𝑞𝑖(𝑥) = {

0, if block 𝑖 ∈ 𝑆 ∈ 𝑅(𝑞, 𝑥)

1, otherwise

In other words, the value 𝛿𝑞𝑖(𝑥) = 0 is corresponding to the absence of the page fault under event

𝑞 → 𝑖 , the value 𝛿𝑞𝑖(𝑥) = 0, if block 𝑖 belongs to some page 𝑆 from 𝑅(𝑞, 𝑥). Otherwise the value

𝛿𝑞𝑖(𝑥) = 1 is corresponding to the page fault. If block 𝑖 ∈ 𝑞 then it has to be 𝛿𝑞𝑖(𝑥) ≡ 0 for any 𝑥 ∈

𝑋. Next, we can remove the control state 𝑞0 from 𝑄, then a total number of page faults for one run

of the program will be:

𝜉 = ∑ ∑ 𝜉𝑞𝑖

𝑛

𝑖=1
𝑞∈𝑄.

∙ 𝛿𝑞𝑖(𝑥) + ∑ 𝜉𝑞0𝑖

𝑛

𝑖=1

and for the functional of the main problem which has to be minimized we have:

𝐹0(𝑥) = ∑ ∑ 𝐸𝑞𝑖

𝑛

𝑖=1
𝑞∈𝑄.

∙ 𝛿𝑞𝑖(𝑥) + ∑ 𝐸𝑞0𝑖

𝑛

𝑖=1
⟶ min

𝑥∈X
 (1)

It is worth noting that in the expression for 𝜉 the any value 𝜉𝑞𝑖 does not depend on matrix 𝑥 ∈ X

and quite the opposite the function 𝛿𝑞𝑖(𝑥) depends on given 𝑞 ∈ 𝑄 and 𝑖 and 𝑥 ∈ X and does not

depend on random event 𝑞 → 𝑖 and where it happens. For the functional 𝐹(ℎ)(𝑥) of the auxiliary

problem holds:

𝐹(ℎ)(𝑥) = ∑ ∑ 𝐸𝑞𝑖
(ℎ)

𝑛

𝑖=1
𝑞∈𝑄.

𝛿𝑞𝑖(𝑥) + ∑ 𝐸𝑞0𝑖
(ℎ)

𝑛

𝑖=1
⟶ min

𝑥∈X
 (2)

It is interesting to note that value 𝐸𝑞𝑖
(ℎ)

 from (2) can be assigned to the edge that connects the

node 𝑞 and the node 𝑞 ∪ 𝑖 in the Hasse diagram, where the function 𝛿𝑞𝑖(𝑥) = 1 and otherwise.

This edge has to be weighted as zero if the function 𝛿𝑞𝑖(𝑥) = 0. It may help to calculate the value of

the functional 𝐹(ℎ)(𝑥) for fixed 𝑥 ∈ X. It will be sufficient to determine whether the weight of any

edge in question is 1 or 0, which means whether a page error has occurred or not. The system of

constraints (a) - (c) setting the set of 𝑋 of admissible solutions for both the main problem (1) and for

auxiliary problem (2) registers in the form:

∑ 𝑙𝑖

𝑛

𝑖=1

⋅ 𝑥𝑟𝑖 ≤ 𝑣𝑟 , 𝑟 = 1,2, … , 𝑝; (3)

 ∑ 𝑥𝑟𝑖

𝑝

𝑟=1

= 1, 𝑖 = 1,2, … , 𝑛; (4)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 13

 ∑ 𝑣𝑟

𝑝

𝑟=1

⋅ 𝐻𝑞𝑟(𝑥) ≤ 𝑁𝑞 , 𝑞 ∈ 𝑄; (5)

 𝑥𝑟𝑖 ∈ {0,1}, 𝑟 = 1,2, … , 𝑝; 𝑖 = 1,2, … , 𝑛 (6)

where in (5) the value 𝑣𝑟 is length of page 𝑟, 𝑟 = 1,2, … , 𝑝. The system (3)-(6) contains 𝑝 + 𝑛 + |𝑄|

non-trivial correlations. Note that constraints (3)-(5) correspond to constraints (a)-(c) respectively.

The function 𝐻𝑞𝑟(𝑥): 𝐻𝑞𝑟(𝑥) = 1 , if page 𝑆𝑟 ∈ 𝑅(𝑞, 𝑥) and 𝐻𝑞𝑟(𝑥) = 0 , otherwise, i.e., the function

𝐻𝑞𝑟(𝑥) is the characteristic function of the 𝑅(𝑞, 𝑥) . Under given 𝑞 and 𝑟 it is easy to calculate

𝐻𝑞𝑟(𝑥) via elements of the matrix 𝑥, namely if q= (𝑖1, 𝑖2, … , 𝑖𝑚(𝑞)) ∈ 𝑄 then:

𝐻𝑞𝑟(𝑥) = 𝑚𝑎𝑥
1≤𝑗≤𝑚(𝑞)

𝑥𝑟𝑖𝑗
.

2.3. Reduction in a Number of Inequalities of the Control State in Working Set 𝑅(𝑞, 𝑥)

Constraint (5) contains |Q| inequalities and probably there are a lot. Here is an opportunity to

reduce essentially a number of inequalities in (5). As already mentioned, from a practical point of

view, we may propose that there exists a system constant, let it be 𝑁, which limits the dimension of

any working set 𝑅(𝑞, 𝑥) and which is known in advance. It is necessary to note the set 𝑄̂ and then

we can substitute system (5) for:

∑ 𝑣𝑟

𝑝

𝑟=1

⋅ 𝐻𝑞̂𝑟(𝑥) ≤ 𝑁, 𝑞̂ ∈ 𝑄̂; (7)

but first we must put in (5) for all 𝑁𝑞 = 𝑁 , 𝑞 ∈ 𝑄. Let |𝑅(𝑞, 𝑥)| be the length of the working set

𝑅(𝑞, 𝑥) 𝑞 ∈ 𝑄, and 𝑥 ∈ 𝑋. To give a ground for substitution it is worth paying attention to Figure 2

and Figure 3 with black nodes on them corresponding to control state 𝑞̂ ∈ 𝑄̂ and nodes 𝑞 ∈ 𝑄, such

as 𝑞 ⊊ 𝑞̂. Then the next correlations hold: if 𝑞 ⊆ 𝑞̂ then 𝑅(𝑞, 𝑥) ⊆ 𝑅(𝑞̂, 𝑥) and |𝑅(𝑞, 𝑥)| ≤, where

𝑞 ∈ 𝑄, 𝑞̂ ∈ 𝑄̂ and if inequality (7) holds for some 𝑞̂ ∈ 𝑄̂ then it also holds for any 𝑞 ∈ 𝑄 which 𝑞 ⊆

𝑞̂. Here it is taken into account that any 𝑞 ∈ 𝑄 belongs to at least one 𝑞̂ from 𝑄̂ as shown in Figure

3, node (3). Evidently, the set 𝑋 of admissible solutions is non empty since an initial distribution

block 𝑖1, 𝑖2, … , 𝑖𝑛 over pages 𝑆𝑔1
, 𝑆𝑔2

, … , 𝑆𝑔𝑝
 satisfies constraints (3)-(6).

3. Results

The nonlinear model of the reorganization of the program code which is constructed above,

contains nonlinear functional (1) and/or (2) and both linear inequalities (3), (4) and nonlinear system

of constraints in (5). The power of the set 𝑄̂ in (7) is not too large in contrast with the power of 𝑄 in

(5). The constraints (5), (7) show instead of controlling a size of any 𝑅(𝑞, 𝑥) with totally |𝑄|

inequalities, after substitution (7) instead of (5) we have in (7) only |𝑄̂| inequalities. As for functional

(1) or (2) it can be reduced to a number of addends in (1) or (2) on the basis of the idea that if block 𝑖 ∈

𝑞 then 𝛿𝑞𝑖(𝑥) ≡ 0 for any 𝑥 ∈ 𝑋 and second sum in (1) or (2) has instead of 𝑖 = 1,2, … , 𝑛, only the

indexes 𝑖 ∈ 𝐼(𝑞) , where the set 𝐼(𝑞) does not contain such 𝑖 belongs to 𝑞. Under given

𝑞 = (𝑖1, 𝑖2, … , 𝑖𝑚(𝑞)) and 𝑖 and under the event 𝑞 → 𝑖, if 𝑖1 ∉ (𝑖2, 𝑖3, … , 𝑖𝑚(𝑞)) and 𝑖 ∈

(𝑖2, 𝑖3, … , 𝑖𝑚(𝑞)) then there will be no page fault. If 𝑖1 ∈ (𝑖2, 𝑖3, … , 𝑖𝑚(𝑞)) and 𝑖 ∈

(𝑖2, 𝑖3, … , 𝑖𝑚(𝑞)) then there will also be no page fault. It is important to note that some methods of

discrete optimization, based on construction of valuation function, in our case, for the problem (2) on

the basis of geometric interpretation of the computational process, it is the lower valuation function,

which is written on the left side of (8):

∑ ∑ 𝐸𝑞̅𝑖𝑞̂∖𝑞̅

(ℎ)

𝑞̅∈𝑄𝑞̂𝑞̂∈𝑄̂

⋅ 𝛿𝑞̅𝑖𝑞̂∖𝑞̅
(𝑥) ≤ ∑ ∑ 𝐸𝑞𝑖

(ℎ)
𝑛

𝑖=1
𝑞∈𝑄.

∙ 𝛿𝑞𝑖(𝑥) (8)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 13

From [19,36] it follows that, if it is possible to solve the problem with valuation function, which

has been written also in (9)

∑ ∑ 𝐸𝑞̅𝑖𝑞̂∖𝑞̅

(ℎ)

𝑞̅∈𝑄𝑞̂𝑞̂∈𝑄̂

⋅ 𝛿𝑞̅𝑖𝑞̂∖𝑞̅
(𝑥) ⟶ min

𝑥∈X
 (9)

then it gives the opportunity, with appropriate complexity, to get an exact (optimal) solution of the

problem (2) with functional on the right side of (8). The set 𝑄𝑞̂ on the left part of (8) is a subset of 𝑄,

which is defined by a separate 𝑞̂ and consists of a number of 𝑞̅ ∈ 𝑄. If we look to Figure 3, a

node 𝑞̅ has to be connected with node 𝑞̂ by the edge, i.e., (𝑞̅, 𝑞̂) which is the oriented edge with

nodes 𝑞̅ and 𝑞̂. Meanwhile it is not necessary to take into account both on the left side of (8) and (9)

the edge (𝑞̂, 𝑞̅), since the weight of the (𝑞̂, 𝑞̅) equals 0. On the left side of (8) for any 𝑞̂ ∈ 𝑄̂ a node 𝑞̅

is running for edge (𝑞̅, 𝑞̂) until the set 𝑄𝑞̂ is exhausted. We include a node 𝑞̅ into 𝑄𝑞̂ if there is at

least one reference, while h runs of the program, from node 𝑞̅ to the node 𝑞.̂ The number 𝑖 on the

left part of (8) is defined as 𝑞̂ ∖ 𝑞̅, i.e., 𝑖 = 𝑞̂ ∖ 𝑞̅, let it be a denotation 𝑖𝑞̂∖𝑞̅. The left part of (8) contains

a lesser number of addends than the right side of (8). The same we may say about the functional of

the problem (1), i.e., about 𝐹0(𝑥). As for optimal solution of (1) it is interesting to point out conditions

for initial data when the optimal solution of problem (2), let it be the matrix 𝑥ℎ
∗ , will be an 𝜀 -

optimal solution of the problem (1) in sense:

𝑃𝑟{|𝐹0(𝑥∗) − F0(𝑥ℎ
∗)| ≤ 𝜀} ≥ 1 − 𝜂, 𝜀 > 0, 𝜂 ∈ (0,1) (10)

where the matrix 𝑥∗ is an unknown optimal solution of the problem (1). Those conditions first of all

imply, to determine common properties of the distribution laws for the variables 𝜉𝑞𝑖 , 𝑖 = 1,2, … , 𝑛; 𝑞 ∈

𝑄 and lower bound for the number h of executions (runs) of the code, under which inequality (10)

holds.

Under the known values 𝐸𝑞𝑖 in (1) i.e., the distribution law of each random variable 𝜉𝑞𝑖 , 𝑖 =

1,2, … , 𝑛; 𝑞 ∈ 𝑄 is known, the algorithm of the solution, both the initial problem (1), and the problem

(2) can be based on valuation function (see (8)) and the property of the function 𝛿𝑞𝑖(𝑥):

𝛿𝑞̅′𝑖(𝑥) + 𝛿𝑞̅′′𝑖(𝑥) ≤ 𝛿𝑞̅′∩𝑞̅′′𝑖(𝑥) + 𝛿𝑞̅′∪𝑞̅′′𝑖(𝑥),

which takes place for any 𝑞̅′, 𝑞̅′′ ∈ 𝑄̂ ⊂ 𝑄 and represents a special case of the property of

supermodularity. In the case of unknown values 𝐸𝑞𝑖 (the distribution law of the random variables

𝜉𝑞𝑖 , 𝑖 = 1,2, … , 𝑛; 𝑞 ∈ 𝑄 is unknown) the situation for solution of problem (1) becomes more

complicated. In this case the problem (2) could be used as an auxiliary problem for (1) and optimal

solution of (2), i.e., 𝑥ℎ
∗ can be taken as the solution of (1) in the sense of the inequality (10).

We used a heatmap technique to visualize page faults and different working set sizes as shown

in Figure 4(a), (b) and (c), where are shown the number of page faults with a different working set

size and a fixed Physical Memory Size. Figure 4(d) indicates a comparison result of page faults

simulation in different algorithms like Working Set, LRU (Least Recently Used) and FIFO (First In,

First Out). Experiments were performed with different parameters: Virtual Memory Size, Physical

Memory Size, Working Set Size, Access Sequence Length, Locality Factor. The Working Set algorithm

tries to keep only actively used pages in memory. If the working set size is smaller than the physical

memory size, the number of page faults will be low, if working set size increases, then page faults

also increase accordingly. The LRU algorithm unloads the page that has not been used for the longest

time. It performs well, especially when there is locality in the order of accesses.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 13

 (a) (b)

 (c) (d)

Figure 4. Comparing simulation results of page faults with different working set size in (a), (b), (c) and

algorithms in (d).

The FIFO algorithm unloads the page that was loaded first. It shows worse results compared to

LRU and working set, especially in the presence of cyclic access patterns. The simulation results on

page fault optimization show that in the fixed size of physical memory, there are fewer page faults

for all algorithms. This is because more pages can be loaded simultaneously, reducing the need for

paging. When the physical memory size is small, the number of faults increases because the

algorithms are forced to offload pages more frequently. The heatmap shows that for a given algorithm

and physical memory size, if the cell color is light, it indicates a large number of page faults. For

example, a FIFO with a small physical memory size may have a high number of page faults. If the

cell color is dark, it indicates a low number of page faults. For example, an LRU with a large physical

memory size may have low page fault values.

Table 1 presents that Working Set is the most effective when there is locality in the order of

accesses, especially when the physical memory size is large. LRU performs consistently well and is a

compromise between implementation complexity and efficiency. This algorithm effectively

minimizes the number of page faults. FIFO is the least efficient, especially when the physical memory

size is small, because it does not consider locality and may discard pages that will be used soon.

Table 1. Average page faults for different algorithms.

Algorithm
Average

Page Faults

Average

Locality Factor

Working Set 4352 0.72

LRU

FIFO

4371

4397

0.72

0.72

We conducted two more experimental studies using a 10-node FPGA-based system arranged in

a ring topology. These experiments extend the original analysis by comparing caching algorithms

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 13

and exploring the impact of varying cache sizes, using a random memory access workload to simulate

a worst-case scenario. We evaluated WS, LRU and FIFO caching algorithms with a cache size of 5%

allocated from free memory. Each of the 10 nodes performed 100,000 operations, with 80% accessing

local memory and 20% requesting remote data. Performance was assessed through average page fault

time, page fault frequency, and total execution time. Table 2 shows the results indicate that the WS

algorithm consistently outperformed the alternatives. WS reduced the average page fault time to 6

µs and the fault frequency to 35%, yielding a total execution time of 13 seconds. LRU and FIFO

showed similar performance, with average fault times of 7 µs and frequencies around 38%, resulting

in execution times of 14.5 seconds. Random Replacement performed the worst, with a fault time of 8

µs, a frequency of 40%, and an execution time of 15 seconds.

Table 2. Performance Metrics for Caching Algorithms.

Algorithm
Av. Page Fault Time

(µs)

Page Fault

Frequency (%)

Total Execution

Time (s)

WS 6 35 13

LRU 7 38 14.5

FIFO 7 38 14.5

The superior performance of WS likely stems from its ability to maintain a set of actively used

pages, adapting even to random access patterns. LRU and FIFO, while effective in workloads with

locality, offer little advantage here, and RR’s lack of pattern consideration makes it the least efficient.

We varied the cache size—1%, 5%, 10%, and 20% of total memory—using the Working Set algorithm,

sourcing memory from both free reserves and data memory (overflow). The same workload and

system configuration were applied. As cache size increased from 1% to 10%, page fault frequency

dropped from 39% to 33%, and total execution time decreased from 14.8 seconds to 12.8 seconds as

shown in Figure 5a. Beyond 10%, at 20%, the frequency stabilized at 32%, and execution time

plateaued at 12.7 seconds, indicating diminishing returns. Average page fault time remained steady

at around 6 µs across all sizes. With data memory caching, fault frequency decreased from 38% at 1%

to 30% at 10%, with execution time improving from 14.5 seconds to 13.5 seconds. However, at 20%,

execution time rose to 14 seconds despite a frequency of 29%, as reduced data memory led to more

frequent evictions and reloads as shown Figure 5b.

(a) (b)

Figure 5. (a) Execution Time vs. Cache Size (Free Memory); (b) Execution Time vs. Cache Size (Data Memory).

These experiments reaffirm the efficacy of RAM page caching, with the Working Set algorithm

proving optimal for random workloads. The choice of algorithm significantly impacts performance,

with WS reducing execution time by up to 14% compared to no caching (15 seconds).

4. Discussion

The results of the simulation experiments show that the locality of accesses to memory pages is

a key factor for increasing the efficiency of paging algorithms. We see that Working Set and LRU are

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 13

the most efficient paging algorithms, while FIFO is inferior to them in all parameters. Cache size

optimization reveals a sweet spot around 10% for both free and data memory caching. Beyond this,

free memory caching yields minimal gains, while overflow caching introduces trade-offs due to

limited data space. This suggests a need for careful memory allocation to balance caching benefits

and data availability. Future research could investigate dynamic cache sizing algorithms that adapt

to workload changes or explore realistic application-specific workloads to broaden the applicability

of these findings.

5. Conclusions

Poor code locality encourages the study of program restructuring and optimization strategies,

such as the working set strategy, to minimize page faults in[virtual memory systems. This paper

proposes a combinatorial approach to optimize working set size, and aims at obtaining near optimal

solutions using geometric interpretation and functional constraints. In order to optimize the

calculations, a valuation function was found which includes the empirical average of the experiments

and a system of constraints. Our proposed geometric interpretation of the computational process in

the form of a Hasse diagram helps to reduce the dimensionality of the page faults minimization

problem. The approach outlined in the paper provides a basis for finding the optimal solution to the

main problem, i.e., to page faults minimization, if the minimum distribution of random variables is

known in advance. Otherwise, with an unknown minimum of the random variable distribution, the

constructed approach provides the basis for finding an accurate solution to the auxiliary problem,

i.e., the experimental average of page faults.

Currently, the working set strategy is usually used as a theoretical research base, either for

comparison or for auxiliary purposes, as it is considered expensive to implement. However, in our

case, if the program code has a block structure, then the results obtained can be used to build a fast,

accessible and affordable swap algorithm.

Author Contributions: Conceptualization, A.M., G.B. and Z.S.; methodology, A.M.; software, A.M. and A.B;

validation, Z.S., A.B. and G.A.; formal analysis, G.B., G.A.; investigation, G.A.; resources, A.M.; data curation,

A.B. and Z.S.; writing—original draft preparation, A.M., G.A. and G.B.; writing—review and editing, A.M. and

Z.S.; visualization, A.B. and A.M.; supervision, A.M.; project administration, G.B.; All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by a grant from the Science Committee of the Ministry of Science and Higher

Education of the Republic of Kazakhstan, grant number “AP19174930”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can certainly be provided upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Allen, T.; Cooper, B.; Ge, R. Fine-Grain Quantitative Analysis of Demand Paging in Unified Virtual

Memory. ACM Trans. Archit. Code Optim. 2024, 21, 1–24, doi:10.1145/3632953.

2. Nestor, J.; Yin, Z. Work in Progress: A Visualization Aid for Learning Virtual Memory Concepts, in

Proceedings of ASEE Annual Conference and Exposition: Excellence Through Diversity (ASEE),

Minneapolis, 2022.

3. Lian, Z.; Li, Y.; Chen, Z.; Shan, S.; Han, B.; Su, Y. EBPF-Based Working Set Size Estimation in Memory

Management. In Proceedings of the 2022 International Conference on Service Science (ICSS); IEEE: Zhuhai,

China, 2022; pp. 188–195.

4. Chen, Y.-C.; Wu, C.-F.; Chang, Y.-H.; Kuo, T.-W. Exploring Synchronous Page Fault Handling. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2022, 41, 3791–3802, doi:10.1109/TCAD.2022.3197517.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 13

5. Doron-Arad, I.; Naor, J. (Seffi) Non-Linear Paging. LIPIcs, Volume 297, ICALP 2024 2024, 297, 57:1-57:19,

doi:10.4230/LIPICS.ICALP.2024.57.

6. Wood, C.; Fernandez, E.B.; Lang, T. Minimization of Demand Paging for the LRU Stack Model of Program

Behavior. Information Processing Letters 1983, 16, 99–104, doi:10.1016/0020-0190(83)90034-0.

7. Dyusembaev, A. E. On one approach to the problem of segmenting programs, Doklady Akademii Nauk,

vol. 329, no. 6, pp. 712-723, 1993.

8. Teabe, B.; Yuhala, P.; Tchana, A.; Hermenier, F.; Hagimont, D.; Muller, G. Memory Virtualization in

Virtualized Systems: Segmentation Is Better than Paging 2020.

9. Ngetich, M.K.Y.; Otieno, C.; Kimwele, M.; Gitahi, S. Advancements in Code Restructuring: Enhancing

System Quality through Object-Oriented Coding Practices. In Proceedings of the 2023 IEEE 27th

International Conference on Intelligent Engineering Systems (INES); IEEE: Nairobi, Kenya, July 26 2023;

pp. 000125–000130.

10. Yegon Ngetich, M.K.; Otieno, D.C.; Kimwele, D.M. A Model for Code Restructuring, A Tool for Improving

Systems Quality In Compliance With Object Oriented Coding Practice. IJCATR 2019, 8, 196–200,

doi:10.7753/IJCATR0805.1010.

11. Peachey, J.B.; Bunt, R.B.; Colbourn, C.J. Some Empirical Observations on Program Behavior with

Applications to Program Restructuring. IIEEE Trans. Software Eng. 1985, SE-11, 188–193,

doi:10.1109/TSE.1985.232193.

12. D.B. Roberts, Practical Analysis for Refactoring (1999). (Ph.D. thesis) University of Illinois

13. Cedrim, D.; Garcia, A.; Mongiovi, M.; Gheyi, R.; Sousa, L.; De Mello, R.; Fonseca, B.; Ribeiro, M.; Chávez,

A. Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23 Software Projects. In

Proceedings of the Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering;

ACM: Paderborn Germany, August 21 2017; pp. 465–475.

14. Agnihotri, M.; Chug, A. Severity Factor (SF): An Aid to Developers for Application of Refactoring

Operations to Improve Software Quality. J Software Evolu Process 2024, 36, e2590, doi:10.1002/smr.2590.

15. Agnihotri, M.; Chug, A. Understanding the Effect of Batch Refactoring on Software Quality. Int J Syst Assur

Eng Manag 2024, 15, 2328–2336, doi:10.1007/s13198-023-02247-x.

16. Coelho, F.; Massoni, T.; L.G. Alves, E. Refactoring-Aware Code Review: A Systematic Mapping Study. In

Proceedings of the 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR); May 2019; pp. 63–

66.

17. Arasteh, B.; Ghanbarzadeh, R.; Gharehchopogh, F.S.; Hosseinalipour, A. Generating the Structural Graph-

based Model from a Program Source-code Using Chaotic Forrest Optimization Algorithm. Expert Systems

2023, 40, e13228, doi:10.1111/exsy.13228.

18. Arasteh, B.; Abdi, M.; Bouyer, A. Program Source Code Comprehension by Module Clustering Using

Combination of Discretized Gray Wolf and Genetic Algorithms. Advances in Engineering Software 2022, 173,

103252, doi:10.1016/j.advengsoft.2022.103252.

19. A. E. Dyusembaev, “Mathematical models of program segmentation,” M: Fizmatlit (Nauka, MAIK), 2001.

20. Cheng, W.; Wu, C.-F.; Chang, Y.-H.; Lin, I.-C. GraphRC: Accelerating Graph Processing on Dual-

Addressing Memory with Vertex Merging. In Proceedings of the Proceedings of the 41st IEEE/ACM

International Conference on Computer-Aided Design; ACM: San Diego California, October 30 2022; pp. 1–

9.

21. Denning, P.J. The Working Set Model for Program Behavior. In Proceedings of the Proceedings of the ACM

symposium on Operating System Principles - SOSP ’67; ACM Press: Not Known, 1967; p. 15.1-15.12.

22. Park, Y.; Bahn, H. A Working-Set Sensitive Page Replacement Policy for PCM-Based Swap Systems.

JSTS:Journal of Semiconductor Technology and Science 2017, 17, 7–14, doi:10.5573/JSTS.2017.17.1.007.

23. Sha, S.; Hu, J.-Y.; Luo, Y.-W.; Wang, X.-L.; Wang, Z. Huge Page Friendly Virtualized Memory Management.

J. Comput. Sci. Technol. 2020, 35, 433–452, doi:10.1007/s11390-020-9693-0.

24. Hu, J.; Bai, X.; Sha, S.; Luo, Y.; Wang, X.; Wang, Z. Working Set Size Estimation with Hugepages in

Virtualization. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with

Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 13

Computing & Networking, Sustainable Computing & Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom); IEEE: Melbourne, Australia, 2018; pp. 501–508.

25. Nitu, V.; Kocharyan, A.; Yaya, H.; Tchana, A.; Hagimont, D.; Astsatryan, H. Working Set Size Estimation

Techniques in Virtualized Environments: One Size Does Not Fit All. In Proceedings of the Abstracts of the

2018 ACM International Conference on Measurement and Modeling of Computer Systems; ACM: Irvine

CA USA, June 12 2018; pp. 62–63.

26. Verbart, A.; Stolpe, M. A Working-Set Approach for Sizing Optimization of Frame-Structures Subjected to

Time-Dependent Constraints. Struct Multidisc Optim 2018, 58, 1367–1382, doi:10.1007/s00158-018-2063-7.

27. Dyusembaev, A.E. On the Correctness of Algebraic Closures of Recognition Algorithms of the “Tests”

Type. USSR Computational Mathematics and Mathematical Physics 1982, 22, 217–226, doi:10.1016/0041-

5553(82)90111-2.

28. Alanko, T.O.; Haikala, I.J.; Kutvonen, P.H. Program Restructing in Segmented Virtual Memory. Performance

Evaluation 1981, 1, 153–169, doi:10.1016/0166-5316(81)90017-1.

29. Pâris, J.-F.; Ferrari, D. An Analytical Study of Strategy-Oriented Restructuring Algorithms. Performance

Evaluation 1984, 4, 117–132, doi:10.1016/0166-5316(84)90006-3.

30. Ghosal, D.; Serazzi, G.; Tripathi, S.K. The Processor Working Set and Its Use in Scheduling Multiprocessor

Systems. IIEEE Trans. Software Eng. 1991, 17, 443–453, doi:10.1109/32.90447.

31. Marshall, W.T.; Nute, C.T. Analytic Modelling of “Working Set like” Replacement Algorithms. In

Proceedings of the Proceedings of the 1979 ACM SIGMETRICS conference on Simulation, measurement

and modeling of computer systems - SIGMETRICS ’79; ACM Press: Boulder, Colorado, United States, 1979;

pp. 65–72.

32. Denning, P.J. Working Set Analytics. ACM Comput. Surv. 2021, 53, 1–36, doi:10.1145/3399709.

33. Dyusembaev, A. E. Correct models of program segmenting. Journal of pattern recognition and image,

Analises USA, vol. 3, no. 6, 1993, pp.187-204.

34. Church, A. Garrett Birkhoff. Lattice Theory. Revised Edition. American Mathematical Society Colloquium

Publications, Vol. 25. American Mathematical Society, New York1948, Xiii + 283 Pp. J. symb. log. 1950, 15,

59–60, doi:10.2307/2268441.

35. Mrena, M.; Kvassay, M. Generating Monotone Boolean Functions Using Hasse Diagram. In Proceedings of

the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications (IDAACS); IEEE: Dortmund, Germany, September 7 2023; pp. 793–

797.

36. Kochetov, Yu.; Pljasunov, A.V. Genetic local search for the graph partitioning problem under cardinality

constraints, Zh. Vychisl. Mat. Mat. Fiz., vol. 52, no. 1, pp. 164-176, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2025 doi:10.20944/preprints202507.0494.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0494.v1
http://creativecommons.org/licenses/by/4.0/

