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Abstract

We study uncertainty models built from interval families over a finite universe. An interval set collects
all subsets bounded between a designated lower and upper set. A HyperInterval set assigns to each
base interval a nonempty family of admissible refinements, while a SuperHyperInterval set of order n
maps elements of the n-fold iterated powerset to (n−1)-nested families, enabling hierarchical evidence
organization. On the numeric side, an interval-valued fuzzy set attaches to each element an interval
of admissible memberships, and an interval-valued neutrosophic set assigns independent intervals
for truth, indeterminacy, and falsity. Building on these primitives, we introduce HyperInterval- and
SuperHyperInterval-valued fuzzy/neutrosophic sets, define conjunctive “core” (intersection) and
disjunctive “hull” semantics, and prove embedding theorems showing that classical interval, fuzzy,
and neutrosophic models appear as singleton or degenerate cases. Realistic examples from commute
planning, delivery scheduling, and clinical assessment illustrate the methodology. The framework
unifies multi-source and hierarchical evidence, offering transparent bounds for conservative and
exploratory decision policies.

Keywords: interval set; HyperInterval set; SuperHyperInterval set; interval-valued fuzzy set; interval-
valued neutrosophic set

1. Preliminaries
We collect the basic terminology and notation used in what follows. The definitions in this paper

are assumed to be finite.

1.1. Interval Set, HyperInterval Set, and SuperHyperInterval Set

An interval set collects subsets A with lower bound Aℓ and upper bound Au, requiring Aℓ ⊆ A ⊆
Au [1–5]. A HyperInterval set assigns each base interval [Aℓ, Au] a nonempty family of admissible
interval sets, satisfying Aℓ ⊆ Bℓ ⊆ Bu ⊆ Au [6]. A SuperHyperInterval set of order n maps elements
of Pn(U) to (n−1)-nested families of interval sets, supporting hierarchical interval evidence [6].

Definition 1 (Universe). Let U be a nonempty finite set, called the universe or base set. All subsequent
powerset constructions are formed relative to U.

Definition 2 (Powerset [7]). The powerset of a set S, denoted P(S), is the family of all subsets of S, including
both the empty set and S itself:

P(S) = { A | A ⊆ S }.

Definition 3 (n-th Powerset [8–11]). For a nonempty set H and integer n ≥ 1, the n-th powerset is defined
recursively by

P1(H) := P(H), Pn+1(H) := P
(
Pn(H)

)
.
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Analogously, the n-th nonempty powerset, denoted P∗
n (H), is constructed by

P∗
1 (H) := P∗(H), P∗

n+1(H) := P∗(P∗
n (H)

)
,

where P∗(H) := P(H) \ {∅}.

Example 1 (n-th Powerset for Menu Planning Across Horizons). Let the base set (“atomic choices”) be
H = {Salad, Soup, Pasta}. First powerset P1(H) = P(H) lists all meal options as sets of dishes (e.g., ∅,
{Salad}, {Soup, Pasta}, {Salad, Soup, Pasta}). A Second powerset element is a collection of such options;
interpret each as a daily plan with admissible alternatives. For instance,

D =
{
{Salad}, {Soup, Pasta}

}
∈ P2(H)

means “one acceptable meal is just Salad, another acceptable choice is Soup together with Pasta.” A Third
powerset element bundles multiple daily plans into a weekly (or multi-day) template; for example

W =
{

D, { {Soup}, {Pasta} }
}

∈ P3(H)

encodes a set of admissible daily-plan choices (e.g., day one uses D, day two allows either only Soup or only
Pasta).

Thus, moving from P1(H) to P2(H) to P3(H) adds planning layers: from sets of dishes (meal options),
to sets of meal options (daily plans with alternatives), to sets of daily plans (weekly templates). In everyday
terms, the n-th powerset models a hierarchy of “choices of choices” across n decision horizons (dish → day →
week → . . . ).

Definition 4 (Interval set). (cf. [1]) Let U be a nonempty universe and let P(U) be its powerset, ordered by
⊆. For any two subsets Aℓ, Au ⊆ U with Aℓ ⊆ Au, the interval set determined by (Aℓ, Au) is

[Aℓ, Au] := { A ⊆ U | Aℓ ⊆ A ⊆ Au }.

We call Aℓ the lower bound and Au the upper bound. The class of all (closed) interval sets on U is

I
(
P(U)

)
:= { [Aℓ, Au] : Aℓ, Au ⊆ U, Aℓ ⊆ Au }.

Remark 1. Each [Aℓ, Au] is a complete sublattice of (P(U),⊆) with bottom Aℓ and top Au. Degenerate cases:
[A, A] = {A} (a crisp set) and [∅, U] = P(U) (the largest interval set).

Example 2 (Interval set for a Shopping List Envelope). Let the universe of items be

U = {milk, bread, eggs, apples, cheese}

. Suppose the must–buy core is Aℓ = {milk, eggs} and the may–buy superset is Au = {milk, bread, eggs, apples}
(cheese is excluded today). The interval set

[Aℓ, Au] = { A ⊆ U | Aℓ ⊆ A ⊆ Au }

collects all acceptable shopping lists between these bounds. Since |Au \ Aℓ| = 2 (bread, apples), the members are
exactly the 22 = 4 sets

{milk, eggs}, {milk, eggs, bread}, {milk, eggs, apples}, {milk, eggs, bread, apples}.

For instance, {milk, eggs, bread} ∈ [Aℓ, Au] while {milk, eggs, cheese} /∈ [Aℓ, Au] (cheese /∈ Au).
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Definition 5 (HyperInterval set). Let I(P(U)) be as in Definition 4. A HyperInterval set on U is a map

HI : I
(
P(U)

)
−→ P∗(I(P(U))

)
,

assigning to each base interval set I = [Aℓ, Au] a nonempty family HI(I) ⊆ I(P(U)) of admissible interval
sets. (Refinement semantics, optional.) If, moreover, every [Bℓ, Bu] ∈ HI([Aℓ, Au]) satisfies Aℓ ⊆ Bℓ ⊆
Bu ⊆ Au, we call HI a refinement HyperInterval set.

Remark 2. Via pointwise union and intersection, (HI1 ⊔HI2)(I) := HI1(I)∪HI2(I) and (HI1 ⊓HI2)(I) :=
HI1(I) ∩ HI2(I), the set of all HyperInterval sets on U inherits a natural (hyper)structure.

Example 3 (HyperInterval set refining an Envelope by Store Policies). Let I0 = [Aℓ, Au] be as in
Example 2. Define a HyperInterval set HI by assigning to I0 two refinements coming from different stores’
policies:

HI(I0) =
{

I1 = [{milk, eggs}, {milk, eggs, bread, apples}], I2 = [{milk, eggs, bread}, {milk, eggs, bread, apples}]
}

.

Both satisfy Aℓ ⊆ Bℓ ⊆ Bu ⊆ Au. The conjunctive core (intersection in the lattice P(U)) is

⋂2

k=1
Ik

=
[
{milk, eggs} ∪ {milk, eggs, bread}︸ ︷︷ ︸

={milk,eggs,bread}

, {milk, eggs, bread, apples} ∩ {milk, eggs, bread, apples}︸ ︷︷ ︸
={milk,eggs,bread,apples}

]

= [{milk, eggs, bread}, {milk, eggs, bread, apples}],

which is feasible since the lower bound is contained in the upper bound. The disjunctive hull (least interval
containing I1 ∪ I2) equals[

{milk, eggs} ∩ {milk, eggs, bread}, {milk, eggs, bread, apples} ∪ {milk, eggs, bread, apples}
]
= [Aℓ, Au] = I0.

Thus the hyper-interval captures store–specific refinements without changing the global hull.

Definition 6 (SuperHyperInterval set of order n). For n ≥ 0 define the iterated powersets by P0(U) = U
and Pn+1(U) = P

(
Pn(U)

)
. Also write P r(I(P(U))

)
for iterated powersets of the interval–set universe. A

SuperHyperInterval set of order n ≥ 1 on U is a map

SHI(n) : Pn(U) −→ P n−1( I(P(U))
)
.

Thus, to each n–nested subset A ∈ Pn(U) the map assigns an (n−1)–nested family of interval sets. (When
a refinement discipline is desired, one can require that the interval bounds appearing at the leaves are chosen
compatibly with the subsets occurring in A.)

Example 4 (SuperHyperInterval set (order n=2) for Two Scenarios of a Dinner Plan). Keep

U = {milk, bread, eggs, apples, cheese}

. Consider two scenario sets (elements of P(U)):

Sfamily = {milk, eggs, bread},

Sguests = {bread, cheese}.
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Form the nested input A = {Sfamily, Sguests} ∈ P2(U). Define the SuperHyperInterval map of order 2 by

SHI(2)(A) =
{

Ifamily = [{milk, eggs}, {milk, eggs, bread}],

Iguests = [{bread}, {milk, eggs, bread}]
}

∈ P
(
I(P(U))

)
.

Here the family scenario insists on milk and eggs; the guest scenario insists on bread but allows the same upper
bound to keep cooking logistics unified.

If one demands a list acceptable to both scenarios, the core is

Ifamily ∩ Iguests =
[
{milk, eggs} ∪ {bread}, {milk, eggs, bread} ∩ {milk, eggs, bread}

]
= [{milk, eggs, bread}, {milk, eggs, bread}],

a crisp recommendation {milk, eggs, bread}. If instead one allows either scenario, the hull is[
{milk, eggs} ∩ {bread}, {milk, eggs, bread} ∪ {milk, eggs, bread}

]
= [∅, {milk, eggs, bread}],

recording every intermediate list up to the common upper bound. This illustrates how order-2 nesting organizes
scenario families before interval selection.

1.2. Interval-Valued Fuzzy Set

A fuzzy set assigns each element a membership degree between zero and one, modeling belonging
and vagueness beyond crisp classification [12,13]. An interval-valued fuzzy set assigns to each element
u an interval [α, β] ⊆ [0, 1] of admissible membership degrees, modeling imprecision about exact values
[14–19]. As related concepts, interval-valued intuitionistic fuzzy sets [20–22], interval-valued picture
fuzzy sets [23,24], and interval-valued hesitant fuzzy sets [25–27] have also been studied in the
literature.

Definition 7 (Interval-valued fuzzy set). [14–16] Let U ̸= ∅ be a universe. Write

L([0, 1]) = { [α, β] | 0 ≤ α ≤ β ≤ 1 },

the set of all closed subintervals of [0, 1]. An interval-valued fuzzy set (IVFS) on U is a mapping

A : U −→ L([0, 1]),

so that each u ∈ U is assigned an interval A(u) = [A(u), A(u)] ∈ L([0, 1]) of admissible membership degrees.
We denote the class of all IVFSs on U by IVFS(U).

Example 5 (IVFS for Fruit Ripeness in a Grocery Store). Let U = {A1, A2, A3} be three avocados on
display. Consider the interval-valued fuzzy set A : U → L([0, 1]) where A(u) is the degree to which u is “ripe
enough to eat tonight.” Sensor readings (color, firmness) and staff judgment are summarized as

A(A1) = [0.65, 0.82], A(A2) = [0.30, 0.50], A(A3) = [0.75, 0.90].

A conservative customer requires membership at least α = 0.70 under the necessary view (use lower bounds),
yielding the α-cut

N0.70 = { u ∈ U | A(u) ≥ 0.70 } = {A3}.
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An optimistic customer accepts if it is possible to meet α = 0.70 (use upper bounds), giving

P0.70 = { u ∈ U | A(u) ≥ 0.70 } = {A1, A3}.

(Optionally) the IVFS complement A∁(u) = [ 1 − A(u), 1 − A(u) ] quantifies “not ripe tonight”: for A1,
A∁(A1) = [0.18, 0.35].

1.3. Interval-Valued Neutrosophic Set

A neutrosophic set assigns independent truth, indeterminacy, and falsity degrees to each element,
capturing inconsistency and uncertainty beyond fuzzy membership [28–30]. An interval-valued neu-
trosophic set assigns each element intervals for truth, indeterminacy, and falsity, allowing independent
bounded ranges for all three [31–35].

Definition 8 (Interval-valued neutrosophic set (IVNS)). Let U be a nonempty universe. An interval-
valued neutrosophic set A on U is specified by three maps

TA, IA, FA : U −→ Int([0, 1]),

assigning to each u ∈ U closed intervals

TA(u) = [T−
A (u), T+

A (u)], IA(u) = [I−A (u), I+A (u)], FA(u) = [F−
A (u), F+

A (u)]

interpreted respectively as the truth, indeterminacy, and falsity membership degrees of u. These components
are independent; the only numeric bound required is

0 ≤ T+
A (u) + I+A (u) + F+

A (u) ≤ 3, ∀ u ∈ U.

Equivalently, one writes
A =

{
⟨TA(u), IA(u), FA(u)⟩ / u ∈ U

}
.

Example 6 (IVNS for Spam Detection of a Single Email). Let U = {e} where e is an incoming email.
Define an IVNS S = (T, I, F) for the statement “e is spam.” From sender reputation, content filters, and user
history we obtain

T(e) = [0.72, 0.86], I(e) = [0.10, 0.20], F(e) = [0.04, 0.12].

The numeric constraint holds:

T+(e) + I+(e) + F+(e) = 0.86 + 0.20 + 0.12 = 1.18 ≤ 3.

A conservative rule declares spam when T−(e) ≥ 0.70 and F+(e) ≤ 0.20. Here T−(e) = 0.72 (≥ 0.70) and
F+(e) = 0.12 (≤ 0.20), so e is classified as spam. The interval T(e) = [0.72, 0.86] captures admissible truth,
I(e) = [0.10, 0.20] the uncertainty due to weak indicators, and F(e) = [0.04, 0.12] the bounded counter-evidence
(e.g., some benign content).

1.4. Multistructure

MultiStructure is a carrier set equipped with indexed multi-operations mapping tuples to sets of
outcomes, enabling nondeterministic, multi-arity algebraic computation [36,37].

Definition 9 (MultiOperation). Fix an integer m ≥ 1 and let H be a nonempty set. An m-ary multi-
operation on H is a map

#(m) : Hm −→ M(H), (x1, . . . , xm) 7→ #(m)(x1, . . . , xm),

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2025 doi:10.20944/preprints202509.2600.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2600.v1
http://creativecommons.org/licenses/by/4.0/


6 of 20

assigning to each m-tuple (x1, . . . , xm) a finite multiset of elements of H rather than a single element.

Definition 10 (MultiStructure). A MultiStructure is a pair

MS =
(

H, {#(m) : Hm → M(H)}m∈I
)
,

where H is a nonempty carrier set and I ⊆ Z>0 indexes a family of multi-operations of various arities. No
further axioms are imposed unless explicitly stated.

Example 7 (MultiStructure on Interval Sets for Aggregating Requirements). Let H = I(P(U)) with U as
above, and take M(H) = P(H). Define two multi-operations for any m ≥ 1 and intervals Ir = [Lr, Ur] ∈ H:

#(m)
∧ (I1, . . . , Im) =

{[ ⋃m
r=1 Lr,

⋂m
r=1 Ur ]}, if

⋃
r Lr ⊆

⋂
r Ur,

∅, otherwise,

#(m)
∨hull(I1, . . . , Im) = {[

m⋂
r=1

Lr,
m⋃

r=1

Ur ]}.

Then MS = (H, {#(m)
∧ , #(m)

∨hull}m≥1) is a MultiStructure.

Concrete computation (two requirements). Let

I1 = [{milk}, {milk, bread, eggs}],

I2 = [{bread}, {milk, bread, eggs}].

Then
#(2)∧ (I1, I2) =

{ [
{milk} ∪ {bread}, {milk, bread, eggs} ∩ {milk, bread, eggs}

]}
=

{
[{milk, bread}, {milk, bread, eggs}]

}
,

while
#(2)∨hull(I1, I2) =

{ [
{milk} ∩ {bread}, {milk, bread, eggs} ∪ {milk, bread, eggs}

]}
=

{
[∅, {milk, bread, eggs}]

}
.

Thus, the ∧–operation returns the jointly acceptable envelope, and the ∨–hull returns the least envelope
containing both requirements—illustrating multi-arity, set-valued outputs in a real aggregation workflow.

2. Main Results
In this section, we present the main results of this paper.

2.1. MultiInterval-Valued Fuzzy Set

A MultiInterval-valued Fuzzy Set assigns each element a finite family of membership intervals,
aggregating evidence using intersection cores and hulls.

Definition 11 (MultiInterval). Let U ̸= ∅ and let J be a finite, nonempty index set. A MultiInterval on U is
a family

I =
{
[A(j)

ℓ , A(j)
u ]

∣∣ j ∈ J, A(j)
ℓ ⊆ A(j)

u ⊆ U
}

∈ P∗(I(P(U))
)
.

Its conjunctive semantics (feasible core) is the set

JIK∧ :=
⋂
j∈J

[A(j)
ℓ , A(j)

u ] =
{

A ⊆ U
∣∣∣ ∀j ∈ J : A(j)

ℓ ⊆ A ⊆ A(j)
u

}
.
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Its disjunctive hull is the smallest interval set containing
⋃

j∈J [A
(j)
ℓ , A(j)

u ]:

JIKhull
∨ :=

[ ⋂
j∈J

A(j)
ℓ ,

⋃
j∈J

A(j)
u

]
.

Lemma 1 (Exact formula for the conjunctive core). Let I be as in Definition 11 and set

L∧ :=
⋃
j∈J

A(j)
ℓ , U∧ :=

⋂
j∈J

A(j)
u .

Then ⋂
j∈J

[A(j)
ℓ , A(j)

u ] =

 [L∧, U∧], if L∧ ⊆ U∧,

∅, otherwise.

Proof. (⊆) Let A ∈ ⋂
j[A

(j)
ℓ , A(j)

u ]. Then A(j)
ℓ ⊆ A ⊆ A(j)

u for all j. Taking unions of the left bounds

gives L∧ =
⋃

j A(j)
ℓ ⊆ A, and taking intersections of the right bounds gives A ⊆ ⋂

j A(j)
u = U∧. Hence

A ∈ [L∧, U∧], which already forces L∧ ⊆ U∧ whenever the intersection is nonempty.
(⊇) Conversely, if L∧ ⊆ U∧ and A ∈ [L∧, U∧], then A(j)

ℓ ⊆ L∧ ⊆ A and A ⊆ U∧ ⊆ A(j)
u for each j, so

A ∈ [A(j)
ℓ , A(j)

u ]. Therefore A lies in the intersection.

Remark 3 (Order and feasibility). Define a preorder ⪯ on MultiIntervals by I1 ⪯ I2 iff JI1K∧ ⊆ JI2K∧. By
Lemma 1, feasibility of I is equivalent to the numeric inequality

⋃
j A(j)

ℓ ⊆ ⋂
j A(j)

u .

Let H := I(P(U)). We define two canonical multi-operations on H.

Definition 12 (Meet and hull multi-operations on H). For m ≥ 1 and (I1, . . . , Im) ∈ Hm with Ir =

[Lr, Ur], set

#(m)
∧ (I1, . . . , Im) :=


{
[
⋃m

r=1 Lr ,
⋂m

r=1 Ur ]
}

, if
⋃

Lr ⊆
⋂

Ur,

∅, otherwise,

and

#(m)
∨hull(I1, . . . , Im) :=

{
[

m⋂
r=1

Lr ,
m⋃

r=1

Ur ]
}

.

Then MSU := (H, {#(m)
∧ , #(m)

∨hull}m≥1) is a MultiStructure in the sense of Definition 10.

Proposition 1 (MultiInterval as a MultiStructure computation). Let I = {Ij}j∈J be a MultiInterval on U

with Ij = [A(j)
ℓ , A(j)

u ]. Then

JIK∧ =
⋂
j∈J

Ij =

 I⋆, if #(|J|)∧
(
(Ij)j∈J

)
= {I⋆},

∅, otherwise,

with I⋆ =
[⋃

j A(j)
ℓ ,

⋂
j A(j)

u
]
. Moreover, the hull semantics satisfies

JIKhull
∨ = #(|J|)∨hull

(
(Ij)j∈J

)
.

Proof. Immediate from Definition 12 and Lemma 1, by expanding unions and intersections of bounds
elementwise.
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Definition 13 (Singleton embedding). Define ι : I(P(U)) → P∗(I(P(U))) by

ι
(
[Aℓ, Au]

)
:=

{
[Aℓ, Au]

}
.

We identify ι([Aℓ, Au]) with a MultiInterval having index set J = {1}.

Theorem 1 (MultiInterval generalizes Interval). For every interval set I = [Aℓ, Au] ∈ I(P(U)),

J ι(I) K∧ = I and J ι(I) Khull
∨ = I.

Hence the map ι is an order-embedding from (I(P(U)),⊆) into the preorder of MultiIntervals under ⪯, and
MultiIntervals strictly generalize intervals.

Proof. Let J = {1} and I = [Aℓ, Au]. By Lemma 1,

Jι(I)K∧ =
⋂
j∈J

[A(j)
ℓ , A(j)

u ] =
[ ⋃

j∈J
A(j)
ℓ ,

⋂
j∈J

A(j)
u

]
= [Aℓ, Au] = I,

since the union and intersection over a singleton index set return Aℓ and Au respectively. The hull
equality is analogous:

Jι(I)Khull
∨ =

[ ⋂
j∈J

A(j)
ℓ ,

⋃
j∈J

A(j)
u

]
= [Aℓ, Au] = I.

Monotonicity of ι with respect to ⊆ and ⪯ follows directly from these equalities.

Definition 14 (MultiInterval-valued fuzzy set (MIVFS)). Let U ̸= ∅ and L([0, 1]) as above. A MIVFS on
U assigns to each u ∈ U a finite nonempty family of numeric intervals

A(u) =
{
[αj(u), β j(u)] ∈ L([0, 1])

∣∣ j ∈ J(u) finite, nonempty
}

.

Its conjunctive (intersection) semantics and disjunctive (hull) semantics are

r
A(u)

z

∧
=

 [maxj αj(u) , minj β j(u) ], if maxj αj(u) ≤ minj β j(u),

∅, otherwise,

r
A(u)

zhull

∨
= [min

j
αj(u) , max

j
β j(u) ].

Example 8 (MIVFS for Software Release Readiness Today). Let U = {ν}, where ν denotes the proposition

“Version v1.2 is ready for production today.”

As a MultiInterval-valued fuzzy set, we assign to ν multiple membership intervals from independent engineering
sources:

A(ν) = {I1, I2, I3, I4} ⊆ L([0, 1]),

with
I1 = [0.78, 0.88] (unit + integration test trends),

I2 = [0.72, 0.85] (QA exploratory testing outcomes),

I3 = [0.80, 0.90] (SRE load/performance confidence),

I4 = [0.75, 0.83] (security/compliance quick audit).
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By Definition (MIVFS), the conjunctive (intersection) semantics and the disjunctive (hull) semantics are

r
A(ν)

z

∧
=

[maxj αj, minj β j ], if maxj αj ≤ minj β j,

∅, otherwise,

r
A(ν)

zhull

∨
= [min

j
αj, max

j
β j ],

where Ij = [αj, β j].
We compute the bounds explicitly.

Lower endpoints:

α1 = 0.78, α2 = 0.72, α3 = 0.80, α4 = 0.75 =⇒ max
j

αj = max{0.78, 0.72, 0.80, 0.75} = 0.80.

Upper endpoints:

β1 = 0.88, β2 = 0.85, β3 = 0.90, β4 = 0.83 =⇒ min
j

β j = min{0.88, 0.85, 0.90, 0.83} = 0.83.

Since 0.80 ≤ 0.83, the intersection is feasible and hence

r
A(ν)

z

∧
= [0.80, 0.83] .

Hull:

min
j

αj = min{0.78, 0.72, 0.80, 0.75} = 0.72, max
j

β j = max{0.88, 0.85, 0.90, 0.83} = 0.90,

so r
A(ν)

zhull

∨
= [0.72, 0.90] .

The interval [0.80, 0.83] is the conservative consensus range endorsed by all engineering evidence streams,
suited to a strict release gate. The hull [0.72, 0.90] captures the full plausible readiness reported by at least one
stream, useful for exploratory planning and risk negotiation.

Proposition 2 (Reduction to IVFS). If each J(u) is a singleton, say J(u) = {1} with A(u) =

{[α1(u), β1(u)]}, then
r
A(u)

z

∧
=

r
A(u)

zhull

∨
= [ α1(u), β1(u) ],

so every IVFS is a special case of a MIVFS.

Proof. Compute maxj αj(u) = minj β j(u) over a singleton index set.

2.2. MultiInterval-Valued Neutrosophic Set

A MultiInterval-valued Neutrosophic Set assigns each element interval families for truth, indeter-
minacy, and falsity, aggregated componentwise by cores and hulls.

Definition 15 (MIVNS). A MultiInterval-valued neutrosophic set (MIVNS) on U is a triple

A = (T , I ,F ),

where for each u ∈ U, T (u), I(u),F (u) are finite nonempty families of numeric intervals in L([0, 1]).
Conjunctive semantics are computed componentwise by interval intersection:

JT (u)K∧ = [max
j

T−
j (u), min

j
T+

j (u) ], JI(u)K∧ = [max
j

I−j (u), min
j

I+j (u) ], JF (u)K∧ = [max
j

F−
j (u), min

j
F+

j (u) ],

with the usual feasibility conditions max ≤ min in each component; hull semantics take [min, max] componen-
twise.
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Example 9 (MIVNS for a Clinical Decision: “Pneumonia Present Today?”). Let U = {p}, where p
denotes a particular patient. We assess the statement

“p has community–acquired pneumonia (CAP) today.”

as a MultiInterval–valued neutrosophic set A = (T , I ,F ). Here T (p) collects supporting evidence intervals
(truth), I(p) collects uncertainty intervals (indeterminacy), and F (p) collects counter–evidence intervals
(falsity). Each interval [α, β] ⊆ [0, 1] encodes an admissible range for the corresponding degree.

Concrete (illustrative) sources and intervals:

T (p) =
{
[0.72, 0.88] (chest X–ray report), [0.65, 0.80] (clinical score), [0.70, 0.90] (C–reactive protein model)

}
,

I(p) =
{
[0.10, 0.25] (equivocal imaging), [0.15, 0.30] (atypical symptom onset), [0.05, 0.20] (comorbidity confounding)

}
,

F (p) =
{
[0.08, 0.22] (normal WBC), [0.12, 0.18] (viral/bacterial panel result), [0.05, 0.15] (stable oxygenation)

}
.

By the MIVNS semantics, the conjunctive core and disjunctive hull are computed componentwise
using interval intersection and least–containing–interval, respectively.

Truth component.

max T (p) = max{0.72, 0.65, 0.70} = 0.72,

min T (p) = min{0.88, 0.80, 0.90} = 0.80 =⇒ JT (p)K∧ = [0.72, 0.80] (feasible since 0.72 ≤ 0.80),

min T (p) = min{0.72, 0.65, 0.70} = 0.65, max T (p) = max{0.88, 0.80, 0.90} = 0.90

⇒ JT (p)Khull
∨ = [0.65, 0.90].

Indeterminacy component.

max I(p) = max{0.10, 0.15, 0.05} = 0.15,

min I(p) = min{0.25, 0.30, 0.20} = 0.20 =⇒ JI(p)K∧ = [0.15, 0.20],

min I(p) = min{0.10, 0.15, 0.05} = 0.05, max I(p) = max{0.25, 0.30, 0.20} = 0.30

⇒ JI(p)Khull
∨ = [0.05, 0.30].

Falsity component.

maxF (p) = max{0.08, 0.12, 0.05} = 0.12,

minF (p) = min{0.22, 0.18, 0.15} = 0.15 =⇒ JF (p)K∧ = [0.12, 0.15],

minF (p) = min{0.08, 0.12, 0.05} = 0.05, maxF (p) = max{0.22, 0.18, 0.15} = 0.22

⇒ JF (p)Khull
∨ = [0.05, 0.22].

Vector–valued result.

core∧
(
A
)
(p) =

(
[0.72, 0.80], [0.15, 0.20], [0.12, 0.15]

)
,

hull∨
(
A
)
(p) =

(
[0.65, 0.90], [0.05, 0.30], [0.05, 0.22]

)
.

The conjunctive core gives the consensus ranges simultaneously supported by all sources in each component
(truth, indeterminacy, falsity). The hulls summarize the full plausible spans reported by at least one source. A
conservative decision maker would consult the core; exploratory or safety–margin assessments can reference the
hulls.

Theorem 2 (MIVNS generalizes IVNS). Define the embedding

ι :
(

L([0, 1])
)3 −→

(
P∗(L([0, 1])

))3
, ι

(
[a, b], [c, d], [e, f ]

)
:=

(
{[a, b]}, {[c, d]}, {[e, f ]}

)
.
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If A = (T, I, F) is an IVNS on U, then A := ι ◦ A is a MIVNS and, for every u ∈ U,

core∧(A)(u) = (T(u), I(u), F(u)) and hull∨(A)(u) = (T(u), I(u), F(u)).

Hence every IVNS is a (canonically embedded) special case of a MIVNS.

Proof. Fix u ∈ U and write T(u) = [t−(u), t+(u)], I(u) = [i−(u), i+(u)], F(u) = [ f−(u), f+(u)]. By
definition of ι,

T (u) = {[t−(u), t+(u)]}, I(u) = {[i−(u), i+(u)]}, F (u) = {[ f−(u), f+(u)]}.

Evaluating maxima/minima over a singleton gives, componentwise,

max
[α,β]∈T (u)

α = t−(u), min
[α,β]∈T (u)

β = t+(u) =⇒ core∧(T (u)) = [t−(u), t+(u)] = T(u),

and similarly core∧(I(u)) = I(u), core∧(F (u)) = F(u). The hull equalities follow analo-
gously: hull∨(T (u)) = [t−(u), t+(u)] = T(u), etc. Thus core∧(A)(u) = hull∨(A)(u) =

(T(u), I(u), F(u)).

Theorem 3 (MIVNS generalizes MIVFS). Let AF be a MIVFS on U. Define Φ(AF) to be the MIVNS(
T , I ,F

)
given by

T (u) := AF(u), I(u) := { [0, 0] }, F (u) := { [0, 0] }, for each u ∈ U.

Then, for every u ∈ U,

core∧
(
T (u)

)
= core∧

(
AF(u)

)
, hull∨

(
T (u)

)
= hull∨

(
AF(u)

)
,

and
core∧

(
I(u)

)
= hull∨

(
I(u)

)
= [0, 0], core∧

(
F (u)

)
= hull∨

(
F (u)

)
= [0, 0].

Consequently, projecting the MIVNS Φ(AF) onto its truth component recovers exactly the original MIVFS
semantics (both core and hull), so MIVNS strictly extends MIVFS.

Proof. Fix u ∈ U and write AF(u) = {[αj(u), β j(u)]}j∈J(u) with J(u) finite nonempty. By definition of
MIVNS core/hull, applied to T (u) = AF(u),

core∧
(
T (u)

)
=

[maxj∈J(u) αj(u), minj∈J(u) β j(u)], if max αj ≤ min β j,

∅, otherwise,

hull∨
(
T (u)

)
= [ min

j∈J(u)
αj(u), max

j∈J(u)
β j(u)],

which are exactly the MIVFS core/hull for AF(u). For the neutrosophic indeterminacy and falsity
components, each is the singleton family {[0, 0]}; hence

max
[α,β]∈{[0,0]}

α = 0, min
[α,β]∈{[0,0]}

β = 0 =⇒ core∧({[0, 0]}) = [0, 0],

and trivially hull∨({[0, 0]}) = [0, 0]. Therefore the truth-component of Φ(AF) reproduces the MIVFS,
while the neutrosophic extras are neutralized at [0, 0].

2.3. HyperInterval-Valued Fuzzy Set

A HyperInterval-Valued Fuzzy Set permits arbitrary sets of membership intervals per element,
deriving intersection cores and minimal containing hulls afterward.
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Definition 16 (HyperInterval-valued fuzzy set (HIVFS)). A HIVFS on U assigns to each u ∈ U a nonempty
family H(u) ⊆ L([0, 1]). Its conjunctive core and hull are, respectively,

JH(u)K∧ =
⋂

I∈H(u)

I =

[ supI∈H(u) inf I, infI∈H(u) sup I ], if feasible,

∅, otherwise,

JH(u)Khull
∨ = [ inf

I∈H(u)
inf I, sup

I∈H(u)
sup I ].

Example 10 (HIVFS in a Morning Commute Decision). Let U be the set of candidate routes for today’s
commute. For the proposition “Arrive on time via route r1”, define the HyperInterval-valued fuzzy set

H(r1) =
{

I1, I2, I3
}
⊆ L([0, 1]),

where each interval encodes an admissible membership range (probability-like confidence) from an independent
source:

I1 = [0.62, 0.78] (live traffic app),

I2 = [0.55, 0.72] (weather-adjusted model),

I3 = [0.68, 0.80] (historical punctuality).

By Definition (HIVFS), the conjunctive core and disjunctive hull at r1 are

JH(r1)K∧ =
⋂

I∈H(r1)

I =


[

supI∈H(r1)
inf I, infI∈H(r1)

sup I
]
, if feasible,

∅, otherwise,

JH(r1)Khull
∨ =

[
inf

I∈H(r1)
inf I, sup

I∈H(r1)

sup I
]
.

We compute these bounds explicitly. First the lower endpoints:

inf I1 = 0.62, inf I2 = 0.55, inf I3 = 0.68 =⇒ sup
I∈H(r1)

inf I = max{0.62, 0.55, 0.68} = 0.68.

Then the upper endpoints:

sup I1 = 0.78, sup I2 = 0.72, sup I3 = 0.80 =⇒ inf
I∈H(r1)

sup I = min{0.78, 0.72, 0.80} = 0.72.

Therefore the conjunctive core is feasible and equals

JH(r1)K∧ = [0.68, 0.72].

The disjunctive hull aggregates the most permissive range:

inf
I∈H(r1)

inf I = min{0.62, 0.55, 0.68} = 0.55, sup
I∈H(r1)

sup I = max{0.78, 0.72, 0.80} = 0.80,

so
JH(r1)Khull

∨ = [0.55, 0.80].

The interval [0.68, 0.72] is the consensus range supported simultaneously by all sources for “arrive on
time via r1”. The hull [0.55, 0.80] captures the full plausible spectrum reported by at least one source. Decision
makers can require the core (conservative) or consult the hull (exploratory) depending on risk tolerance.
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2.4. SuperHyperInterval-Valued Fuzzy Set

A SuperHyperInterval-Valued Fuzzy Set assigns nested families of membership intervals via
iterated powersets, flattened to compute intersection cores and hulls.

Definition 17 (SuperHyperInterval-valued fuzzy set (order n)). Fix n ≥ 1. A SuperHyperInterval-
valued fuzzy set of order n on U is a map

SH(n) : U −→ P n−1(L([0, 1])
)
,

assigning to each u an (n−1)–nested family of numeric intervals. Conjunctive cores and hulls are computed by
iterated application of intersection and hull at the leaves.

Example 11 (SHIVFS (order n=3) for a Same-Day Delivery Promise). Let U = {τ}, where τ denotes
today’s task “Deliver the parcel by 6 pm”. Fix n = 3. A SuperHyperInterval-valued fuzzy set of order 3 maps τ

to a two-level nested family of numeric intervals (elements of L([0, 1])), grouped by evidence sources:

SH(3)(τ) =
{

Slogistics, Sconditions, Srecipient
}
∈ P2(L([0, 1])

)
,

where each S• is a finite set of closed intervals [α, β] ⊆ [0, 1].
We instantiate concretely (all numbers are unit-free confidence levels):

Slogistics =
{

I1 = [0.78, 0.90] (Carrier A dispatch+capacity), I2 = [0.80, 0.88] (Carrier B historical on-time)
}

,

Sconditions =
{

I3 = [0.75, 0.92] (traffic nowcast), I4 = [0.77, 0.89] (weather-adjusted travel time)
}

,

Srecipient =
{

I5 = [0.76, 0.93] (recipient availability window), I6 = [0.82, 0.87] (building access constraints)
}

.

By definition, conjunctive cores and hulls are computed at the leaves. Flatten the nesting by taking the
union of groups:

Leaves(τ) := Slogistics ∪ Sconditions ∪ Srecipient = {I1, I2, I3, I4, I5, I6} ⊆ L([0, 1]).

Conjunctive core (intersection of all leaf intervals) is

JSH(3)(τ)K∧ =
6⋂

k=1

Ik

=
[

sup
1≤k≤6

inf Ik, inf
1≤k≤6

sup Ik

]
,

provided feasibility sup inf ≤ inf sup holds. We compute explicitly:

inf I1 = 0.78, inf I2 = 0.80, inf I3 = 0.75, inf I4 = 0.77, inf I5 = 0.76, inf I6 = 0.82

=⇒ sup
k

inf Ik = max{0.78, 0.80, 0.75, 0.77, 0.76, 0.82} = 0.82,

sup I1 = 0.90, sup I2 = 0.88, sup I3 = 0.92, sup I4 = 0.89, sup I5 = 0.93, sup I6 = 0.87

=⇒ inf
k

sup Ik = min{0.90, 0.88, 0.92, 0.89, 0.93, 0.87} = 0.87.

Since 0.82 ≤ 0.87, the intersection is feasible and

JSH(3)(τ)K∧ = [0.82, 0.87] .
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Disjunctive hull (least interval containing all leaf intervals) is

JSH(3)(τ)Khull
∨ =

[
inf

k
inf Ik, sup

k
sup Ik

]

=
[

min{0.78, 0.80, 0.75, 0.77, 0.76, 0.82}, max{0.90, 0.88, 0.92, 0.89, 0.93, 0.87}
]
= [0.75, 0.93].

The nested structure records hierarchical evidence: logistics providers, external conditions, and recipient
constraints. Flattening aggregates every leaf interval; the core [0.82, 0.87] captures the consensus range
simultaneously supported by all groups and sources, while the hull [0.75, 0.93] captures the full plausible
spectrum reported by at least one leaf source. A planner requiring high reliability would use the core; exploratory
planning or contingency analysis may reference the hull.

2.5. HyperInterval-Valued Neutrosophic Set

A HyperInterval-Valued Neutrosophic Set uses sets of intervals for truth, indeterminacy, and
falsity, yielding componentwise intersection cores and hulls semantics.

Definition 18 (HyperInterval-Valued Neutrosophic Set (HIVNS)). Let U ̸= ∅ be a universe, and let

L([0, 1]) :=
{
[α, β] ⊆ [0, 1]

∣∣ 0 ≤ α ≤ β ≤ 1
}

be the set of all closed numeric intervals in [0, 1]. A HyperInterval-Valued Neutrosophic Set (HIVNS) on U
is a triple of maps

A = (T , I ,F ),

T , I ,F : U −→ P∗(L([0, 1])
)
,

such that for each u ∈ U the sets T (u), I(u), and F (u) are finite, nonempty families of intervals in L([0, 1]).
For a finite family S = {[αj, β j]}j∈J ⊆ L([0, 1]), define the conjunctive core and the disjunctive hull by

core∧(S) =


[
maxj∈J αj, minj∈J β j

]
, if maxj αj ≤ minj β j,

∅, otherwise,

hull∨(S) =
[
min
j∈J

αj, max
j∈J

β j
]
.

We interpret core∧(S) as the precise admissible range under all hyper-interval declarations, and hull∨(S) as
the least interval containing some declaration.

The conjunctive semantics and hull semantics of A at u ∈ U are then given componentwise by

core∧(A)(u) :=
(
core∧(T (u)), core∧(I(u)), core∧(F (u))

)
,

hull∨(A)(u) :=
(
hull∨(T (u)), hull∨(I(u)), hull∨(F (u))

)
,

with feasibility of the conjunctive semantics requiring, for each component,

max
[α,β]∈T (u)

α ≤ min
[α,β]∈T (u)

β,

max
[α,β]∈I(u)

α ≤ min
[α,β]∈I(u)

β,

max
[α,β]∈F (u)

α ≤ min
[α,β]∈F (u)

β.
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Theorem 4 (HIVNS generalizes IVNS). Let an Interval-Valued Neutrosophic Set (IVNS) be given by
three maps

T, I, F : U −→ L([0, 1]), T(u) = [t−(u), t+(u)], I(u) = [i−(u), i+(u)], F(u) = [ f−(u), f+(u)].

Define the embedding

ι :
(

L([0, 1])
)3 −→

(
P∗(L([0, 1])

))3
,

ι
(
[a, b], [c, d], [e, f ]

)
:=

(
{[a, b]}, {[c, d]}, {[e, f ]}

)
.

Then A := ι(T, I, F) is a HIVNS and, for every u ∈ U,

core∧(A)(u) =
(
T(u), I(u), F(u)

)
= hull∨(A)(u).

Consequently, every IVNS is (canonically) a special case of a HIVNS.

Proof. Fix u ∈ U. By construction,

T (u) = {[t−(u), t+(u)]},

I(u) = {[i−(u), i+(u)]},

F (u) = {[ f−(u), f+(u)]}.

Evaluating the maxima/minima over a singleton set gives

max
[α,β]∈T (u)

α = t−(u),

min
[α,β]∈T (u)

β = t+(u),

and analogously for the I and F components. Hence

core∧(T (u)) = [t−(u), t+(u)],

hull∨(T (u)) = [t−(u), t+(u)],

with identical equalities for I(u) and F (u). Therefore

core∧(A)(u) = hull∨(A)(u) = (T(u), I(u), F(u)).

Example 12 (Concrete computation at a point). Let T (u) = {[0.6, 0.9], [0.7, 0.8]}, I(u) = {[0.1, 0.3]},
F (u) = {[0.05, 0.2], [0.0, 0.15]}. Then

core∧(T (u)) = [max{0.6, 0.7}, min{0.9, 0.8}] = [0.7, 0.8],

hull∨(T (u)) = [min{0.6, 0.7}, max{0.9, 0.8}] = [0.6, 0.9],

core∧(I(u)) = hull∨(I(u)) = [0.1, 0.3],

core∧(F (u)) = [max{0.05, 0.0}, min{0.2, 0.15}] = [0.05, 0.15],

hull∨(F (u)) = [min{0.05, 0.0}, max{0.2, 0.15}] = [0.0, 0.2].

Thus core∧(A)(u) =
(
[0.7, 0.8], [0.1, 0.3], [0.05, 0.15]

)
and hull∨(A)(u) =

(
[0.6, 0.9], [0.1, 0.3], [0.0, 0.2]

)
.
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2.6. SuperHyperInterval-Valued Neutrosophic Set

A SuperHyperInterval-Valued Neutrosophic Set organizes nested interval families for truth,
indeterminacy, and falsity, flattening to compute componentwise cores and hulls.

Definition 19 (Flattening operator on iterated powersets). For a base set X and k ≥ 0, define Flatk :
P k(X) → P(X) recursively by

Flat0(S) := S ⊆ X, Flatk+1(S) :=
⋃

S∈S
Flatk(S) (S ⊆ P k(X)).

Definition 20 (SuperHyperInterval-Valued Neutrosophic Set (order n)). Fix n ≥ 1. A
SuperHyperInterval-Valued Neutrosophic Set (SHIVNS) of order n on U is a triple

S (n) =
(
T(n), I(n),F(n)

)
, T(n), I(n),F(n) : U −→ P n−1(L([0, 1])

)
,

with the requirement that for each u ∈ U the sets T(n)(u), I(n)(u), F(n)(u) are finite at every nesting level.
Write the leaf families at u as

Tleaf(u) := Flatn−1
(
T(n)(u)

)
⊆ L([0, 1]), Ileaf(u) := Flatn−1

(
I(n)(u)

)
, Fleaf(u) := Flatn−1

(
F(n)(u)

)
.

The conjunctive semantics and hull semantics of S (n) are defined by applying Definition 18 to these leaf
families:

core∧
(
S (n))(u) :=

(
core∧

(
Tleaf(u)

)
, core∧

(
Ileaf(u)

)
, core∧

(
Fleaf(u)

))
,

hull∨
(
S (n))(u) :=

(
hull∨

(
Tleaf(u)

)
, hull∨

(
Ileaf(u)

)
, hull∨

(
Fleaf(u)

))
.

Definition 21 (Canonical nesting). For any set S and k ≥ 0, define Nest0(S) := S and Nestk+1(S) :=
{Nestk(S)}. Then Nestk(S) ∈ P k(S) and, crucially,

Flatk
(
Nestk(S)

)
= S for all k ≥ 0. (1)

Lemma 2 (Flattening a canonical nest). Equality (1) holds by induction on k.

Proof. For k = 0 the claim is Flat0(S) = S, true by definition. If Flatk(Nestk(S)) = S, then

Flatk+1
(
Nestk+1(S)

)
= Flatk+1

(
{Nestk(S)}

)
= Flatk

(
Nestk(S)

)
= S.

Theorem 5 (SHIVNS generalizes HIVNS). Let A = (T , I ,F ) be a HIVNS on U (Definition 18). For any
n ≥ 1, define the embedding

ȷn :
(
P∗(L([0, 1]))

)3 −→
(
P n−1(L([0, 1]))

)3

by (
T (u), I(u),F (u)

)
7−→

(
Nestn−1(T (u)), Nestn−1(I(u)), Nestn−1(F (u))

)
.

Then S (n) := ȷn(A) is a SHIVNS of order n and, for every u ∈ U,

core∧
(
S (n))(u) = core∧(A)(u), hull∨

(
S (n))(u) = hull∨(A)(u).

Hence every HIVNS is (canonically) a special case of a SHIVNS (for any n ≥ 1).
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Proof. Fix u ∈ U. By Lemma 2 with S = T (u) (and similarly for I ,F ),

Tleaf(u) = Flatn−1
(
Nestn−1(T (u))

)
= T (u).

Therefore the leaf families of S (n) coincide with the original hyper-interval families of A:

Tleaf(u) = T (u), Ileaf(u) = I(u), Fleaf(u) = F (u).

Since both core∧ and hull∨ depend only on the sets of leaf intervals via max / min and min / max, it
follows immediately that

core∧
(
S (n))(u) = core∧(A)(u), hull∨

(
S (n))(u) = hull∨(A)(u).

3. Conclusion
In this paper, we introduced HyperInterval- and SuperHyperInterval-valued fuzzy/neutrosophic

sets, defined conjunctive “core” (intersection) and disjunctive “hull” semantics, and proved embedding
theorems showing that classical interval, fuzzy, and neutrosophic models appear as singleton or
degenerate cases. For future work, we plan to investigate extended concepts using HyperFuzzy
Sets[38–42], HyperNeutrosophic Sets[43,44], Plithogenic Sets [45–47], as well as structural frameworks
such as Graphs[48], HyperGraphs[49–51], and SuperHyperGraphs[52–55].
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