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Abstract

The detection of astronomical transient events—such as supernovae, gamma-ray bursts, and stellar
flares—has become increasingly vital in astrophysics due to their association with extreme cosmic
processes. However, identifying these short-lived phenomena within massive sky survey datasets,
like those from the GOTO project, poses major challenges for traditional analysis methods. This study
proposes a Deep Learning approach using Convolutional Neural Networks (CNNs) to improve
transient classification. Drawing inspiration from the structure and function of biological vision
systems, CNNs mimic the hierarchical processing of visual stimuli seen in animal brains, enabling
the automated identification of complex spatial patterns in astronomical images. Transfer Learning
and Fine-Tuning on pre-trained ImageNet models are leveraged to simulate adaptive learning found
in biological organisms, rapidly adjusting to new tasks with limited data. Data Augmentation
techniques—including rotation, flipping, and noise injection —emulate environmental variability to
enhance model generalization, while Dropout and varied Batch Sizes are applied to prevent
overfitting, akin to the biological principle of redundancy and noise tolerance. Ensemble Learning
strategies, including Soft Voting and Weighted Voting, are inspired by collective intelligence in
biological systems, combining multiple CNN models for robust decision-making. Results show that
this bio-inspired framework significantly enhances the accuracy and reliability of transient detection,
offering a scalable solution for real-time applications in large-sky surveys like GOTO.

Keywords: astronomical transients; convolutional neural networks (CNNs); transfer learning; fine-
tuning; ensemble learning; optical transient detection; biomimetics; bio-inspired computing

1. Introduction

The discovery of astronomical transient events—such as supernovae, gamma-ray bursts, and
stellar flares—has become a central focus in modern astrophysics. These phenomena are signatures
of high-energy cosmic processes, including neutron star mergers, black hole collisions, and the
collapse of massive stars. These signals not only reveal the mechanisms behind the origin of matter
and energy but also reflect fundamental physical laws that cannot be replicated in terrestrial
laboratories[1,2]. However, identifying and classifying such events in practice poses considerable
challenges, especially in the face of large volumes of observational data continuously collected by
autonomous telescopes. For example, the Gravitational-wave Optical Transient Observer (GOTO)
project captures over 400 sky images per night, with each image containing more than 20,000 celestial
objects. Analyzing such massive datasets has become infeasible through manual classification by
astronomers alone, thus necessitating artificial intelligence systems that mimic biological learning
and decision-making processes with high efficiency.

Biomimetics has become a foundational principle in the development of modern artificial
intelligence, particularly in areas such as image processing, pattern recognition, and decision-making
under uncertainty. Convolutional Neural Networks (CNNs), widely used in deep learning, are
directly inspired by findings in neurobiology, especially the seminal work of Hubel and Wiesel
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(1962), who discovered that neurons in the visual cortex of mammals respond to stimuli in
hierarchical layers, from edges to complex shapes and objects. CNNs replicate this structure via
convolution and pooling layers that automatically extract multi-scale image features with increasing
complexity. Moreover, the human brain exhibits a remarkable ability to transfer knowledge from past
experiences to new and unfamiliar situations. This concept is echoed in the technique of Transfer
Learning, widely adopted in astronomy. Pre-trained models such as VGGNet, ResNet, Inception, and
Xception—originally trained on the ImageNet dataset—can be fine-tuned and adapted to the unique
characteristics of astronomical data, even in cases of small or imbalanced datasets [3]. This mirrors
the brain’s ability to recognize familiar patterns in different contexts, such as identifying a face under
different lighting conditions or viewing angles. Adaptation to environmental variability is also
reflected in Data Augmentation techniques, which simulate the biological necessity of recognizing
objects under diverse viewing conditions. In this study, rotation, horizontal and vertical flipping, and
noise injection were applied to increase the diversity of the underrepresented “real” class. These
techniques enhance model generalization and robustness, particularly in scenarios where class
imbalance is severe, as often observed in astronomical images such as those from GOTO[4]. Fault
tolerance—an essential trait of biological neural systems—is another property embedded in the
framework through Dropout regularization, which randomly deactivates neurons during training.
This mimics the biological principle of redundancy and minimizes overfitting by preventing reliance
on specific units[5]. Furthermore, collective decision-making, a hallmark of swarm intelligence in
natural systems such as ant colonies, fish schools, and bird flocks, inspired the ensemble learning
approach adopted in this study. Rather than relying on a single model, multiple CNN architectures
are combined using Soft Voting and Weighted Voting mechanisms. These ensemble methods
enhance prediction stability and reduce variance, particularly in the presence of noise or
morphological variability[6]. The results of this bio-inspired approach demonstrate high accuracy in
classifying transient astronomical events, simultaneously improving both precision and recall.
Moreover, the framework scales effectively to real-time applications, such as live alert systems for
GOTO and other synoptic surveys. Looking ahead, the study may be extended using Generative
Adversarial Networks (GANSs) to synthetically generate examples for underrepresented classes—
analogous to the imaginative capacity of the human brain to simulate scenarios when direct
experience is limited.[7] showed that GAN-generated light curves substantially improved
classification accuracy for rare variable star classes.

Overall, this study presents a biologically inspired framework that integrates multiple strategies
observed in nature—from visual learning, adaptive generalization, decision fusion, to synthetic data
generation—into a unified system. The result is a resilient, scalable, and accurate transient detection
system well-suited to the data-rich environment of next-generation astronomical surveys.

2. Materials and Methods

2.1. System Owverflow

In Figure 1, nine Deep Learning models were selected for evaluation, including Dense
Convolutional Network 121 (DenseNet121), Inception Convolutional Neural Network (InceptionV3),
MobileNet, MobileNetV2, Deep Residual Networks 101 and 50 (ResNet101, ResNet50), and Very
Deep Convolutional Networks for Large-Scale Image Recognition models 16 and 19 (VGG16,
VGG19). The image dataset was initially converted from the FITS file format to JPG to facilitate
further analysis. Following this, the dataset was augmented using four data augmentation
techniques: Noise, Rotation, Vertical Flip (VFlip), and Horizontal Flip (HFlip), applied to the original
images to increase data diversity and enhance model generalization. These augmented datasets,
along with the original images, were then used to train each of the selected models using the Transfer
Learning approach, which involved loading pre-trained weights from the ImageNet dataset. After
completing the initial Transfer Learning phase, each model underwent a Fine-Tuning process to
further adjust the internal structure and optimize deeper layers beyond those affected by the transfer
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learning stage. Once the training and fine-tuning processes were completed, the performance of each

model under each augmentation type was evaluated using the validation set. The best-performing

model from each augmentation category was then selected for the subsequent Ensemble Deep

Learning phase. In this final phase, two ensemble strategies—Soft Voting and Weighted Voting—

were implemented to combine the selected models and identify the most effective ensemble

configuration, aiming to further improve classification accuracy and robustness.
y

2.2. Dataset
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Figure 1. This is a figure. Show the overall methods.

In Figure 2,the dataset we use a transient discovery image, divided into two parts: Real and

Bogus, divided by astronomy experts, and both real and bogus images are 21x21 pixels. Real images

are 523. Bogus are 3,598 images
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Some examples of images of the dataset

Figure 2. This is a figure. Show the overall methods

2.2. Data Preprocessing

The images in the dataset were converted from the Flexible Image Transport System (FITS)
format to JPEG (JPG) format to facilitate the modeling process, as FITS files are often less convenient
for direct use in deep learning pipelines. This conversion was performed prior to model development.
Given the limited number of samples available per class—a critical concern in deep learning—the
Transfer Learning approach was employed to enhance both the standardization and the accuracy of
the resulting models. Moreover, the dataset exhibited a pronounced class imbalance, with the number
of "real" images significantly lower than that of "bogus" images at an approximate ratio of 1:7, as
illustrated in Table 1. To address this issue, oversampling techniques were applied to increase the
number of training samples in both classes using Data Augmentation. Each augmentation method
(e.g., noise injection, image rotation, horizontal flipping, vertical flipping) was implemented
independently to avoid the confounding effects of combined transformations. All images were
resized to 224x224 pixels to ensure compatibility with the input requirements of ImageNet-based
architectures during the Transfer Learning process.

Table 1. Training data before and after oversampling.

Training data Bogus Real
Before Oversampling 2,862 418
After Oversampling 4,000 4,000

2.3. Data Augmentation

Data augmentation is a well-established technique in deep learning, commonly used to
artificially expand the training dataset by applying various transformations to existing images. This
process helps improve the generalization capability of the model by exposing it to diverse variations
of the data, thereby reducing the risk of overfitting and enhancing final classification accuracy [7].In
line with findings from previous studies, we incorporate data augmentation into our training pipeline
to increase robustness and improve performance on unseen data. Augmentations such as horizontal
flips, rotations, and noise injection are applied to simulate real-world distortions and observational
variability. This strategy aims to help the network learn invariant features and become more resilient
to subtle differences in transient images.
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Figure 3. An example of data augmentation.

2.4. Modeling

In deep learning for image classification, Convolutional Neural Networks (CNNs) have been
widely recognized as powerful tools due to their ability to learn hierarchical representations of spatial
features. This capability makes CNNs particularly suitable for image data, especially in the field of
astronomy, where precise spatial structure and light distribution are crucial for identifying celestial
objects. Over the past decade, a wide range of CNN architectures has been developed, each offering
different advantages in terms of network depth, number of parameters, and computational efficiency.
In this study, we selected nine CNN architectures to evaluate and compare their performance in
classifying astronomical transient images. These architectures include:

¢ DenseNet121 [8]: Utilizes a dense connectivity mechanism, where each layer receives input from
all preceding layers. This promotes feature reuse and alleviates the vanishing gradient problem.

e InceptionV3 [9]: Employs factorized convolutions and efficient dimensionality reduction,
enabling deeper networks with lower computational cost.

*  MobileNet [10]: Designed for mobile and embedded systems, this architecture uses depthwise
separable convolutions to significantly reduce computational complexity.

e MobileNetV2 [11]: An extension of MobileNet, this version introduces inverted residual blocks,
enhancing learning capacity while maintaining model compactness.

*  ResNet50 and ResNet101 [12]: Implement shortcut connections or identity mappings to combat
the vanishing gradient issue and enable effective training of very deep networks.

e  VGG16 and VGG19 [13]: Feature a simple and sequential architecture composed of stacked
convolutional layers with fixed kernel sizes, known for their consistency and reliability.

*  Xception [14]: Evolved from the Inception architecture by replacing all modules with depthwise
separable convolutions, offering improved efficiency in extracting fine-grained features.

All nine CNN architectures selected for this study were trained and fine-tuned using consistent
hyperparameters as outlined in Table 2. Specifically, we experimented with four different batch sizes (32,
64, 128, and 256) to evaluate their impact on model convergence and generalization. Previous studies have
shown that smaller batch sizes (e.g., 32) can lead to better generalization by converging toward flatter
minima, while larger batches may reach sharper minima and overfit to training data [15,16]. The number
of training epochs was set to a maximum of 100, with Early Stopping applied (patience = 3) to prevent
overfitting, a technique widely used in deep learning to halt training once the validation loss no longer
improves [17]. For optimization, we employed the Adam optimizer due to its adaptive learning rate, fast
convergence, and robustness in noisy gradient settings, which has been demonstrated effective across
many neural network architectures [18]. The binary crossentropy loss function was selected, as the
classification task involves distinguishing between two classes: real and bogus.

For the transfer learning phase, the initial learning rate was set to 0.001, while during fine-tuning,
a significantly smaller learning rate of 0.00001 was used to allow more stable updates in the deeper
layers, following best practices that recommend reduced learning rates during fine-tuning to
preserve previously learned features and avoid destructive updates [19,20]. In the fine-tuning stage,
only the top 30% of convolutional layers were unfrozen and retrained to adapt domain-specific
features from astronomical transient images, aligning with guidelines suggesting that selectively
unfreezing higher layers is effective, especially when domain shift is moderate and dataset size is
limited [21,22] . These hyperparameter settings were uniformly applied across all models to ensure
consistency in performance comparisons.
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Table 2. Hyperparameter settings used for training and fine-tuning Convolutional Neural Network (CNN)

models for astronomical transient image classification.

Parameter Value
Batch Size 32,62,128,256
Epoch 100, Early Stopping (patience = 3)
Learning 0.001(TF), 0.00001(FT)
Optimizer Adam
Loss Function Binary Crossentropy
Fine-Tuning unlocks Top 30%

2.5. Transfer Learning

Transfer Learning is a process in which knowledge gained from one task (the source task) is
transferred to improve learning performance on a different but related task (the target task). In image
classification, models pre-trained on large-scale datasets such as ImageNet—with over 14 million
images across 1,000 categories—are capable of learning generalized low-level visual features such as
edges, contours, and textures. These features can be reused in downstream tasks, particularly when
the target dataset is small or domain-specific [23]. In this study, Transfer Learning was implemented
using convolutional neural network (CNN) architectures pre-trained on ImageNet. As illustrated in
Figure 4, the upper part of the diagram represents the source domain, where the model learns
hierarchical features from generic images like cars, trees, and shoes. This knowledge is embedded in
the convolutional layers and later transferred to a new domain—astronomical transient image
classification [24]. To adapt the model, the original classification head was replaced with a new fully
connected classifier specific to the binary classification task of distinguishing between “real” and
“bogus” objects. Two training strategies were applied: Transfer Learning, where all convolutional
layers are frozen and only the new classifier layers are trained; and Fine-Tuning, where the top 30%
of convolutional layers are unfrozen and retrained alongside the classifier to better learn domain-
specific patterns [25]. This approach, as shown in Figure 4, enables efficient reuse of prior knowledge
while minimizing reliance on large labeled datasets, thus supporting both generalization and domain
adaptation in the context of transient astronomical event detection [26].

Convolutional layers Dense layers Source Labels
r
« Car
« Trees
Source Data « Phone
ImageNet + Shoes
Source
Domain — < ......
iwasee o 0w
ERECHeE W B
Trained Network -
5
2 Transfer
s Learning
ot
=
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TargetData
Target
Domain » #i — * Real
i # e
Convolutional layers Dense layers Target Labels

Figure 4. The process of transferring learned features from a source domain (ImageNet) to a target domain

(astronomical transient data) using the Transfer Learning approach.
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2.6. Ensemble Deep Learning

In the final phase of this research, Ensemble Learning was employed to further improve
classification performance and increase model robustness when dealing with diverse and high-
variance image data. As shown in Figure 5, five distinct CNN models were strategically selected to
participate in the ensemble. Each model was trained using different Data Augmentation strategies—
including Original, Rotation, Horizontal Flip (HFlip), Vertical Flip (VFlip), and Noise Injection—as
well as varying Batch Sizes (32, 64, 128, and 256). Architectures such as MobileNet and Xception,
under both Transfer Learning (TF) and Fine-Tuning (FT) settings, were chosen based on their prior
individual performance on validation datasets. The ensemble system aggregates predictions from
these five specialized models through a voting mechanism. This design allows the system to
capitalize on the unique strengths of each model—for instance, models trained with rotation-based
augmentation are better at recognizing orientation-variant transients, while noise-trained models are
more resilient to corrupted or low signal-to-noise data. Studies have demonstrated that such
diversity-driven ensemble voting significantly enhances performance and generalization in complex
image classification tasks[27,28]. Moreover, voting-based approaches combining augmentation
variations (e.g., rotation, flips, preprocessing changes) with CNN ensembles have been shown to
outperform single-model setups in medical imaging applications [29]. Ensembles of CNNs leveraging
architectural variety and diverse input preprocessing consistently mitigate overfitting and reduce
output variance, leading to more robust predictive accuracy [30]. This methodology is particularly
effective in astronomical contexts, where transient classification is challenged by variations in image
quality, brightness, morphology, and observational conditions. Ensemble Learning thus plays a
critical role in ensuring reliable predictions across such complex scenarios.

MobileNet (TF)
Original 64

Xception (TF)
Rotation 128

.
« B
"‘. Xception (FT)
Noise 256
-
7.‘ - MobileNet (TF)
wrd HFlip 64

MobileNet (TF)
VElip 32

Input Images

E bli — Classifiaction

Figure 5. Ensemble architecture combining multiple CNN models trained under different augmentation

strategies and batch sizes.

2.7. Evaluation Methods

Subsequently, the experimental outcomes from each route were gathered and juxtaposed to
scrutinize results and efficiency. A comparative analysis of the experimental results from each route
was then conducted to assess results and efficacy in the context of scientific classification
performance. When evaluating the performance of deep learning models in scientific classification,
selecting an appropriate metric is a pivotal factor. Performance indicators such as Recall, Accuracy,
and F1-score become crucial in this evaluative process. The precise computational methods for these
indicators are delineated in Table 2. Within Table 2, TN represents the count of negative classes
accurately predicted as negative, while FP indicates the count of negative classes incorrectly
predicted as positive. Conversely, FN illustrates the number of positive classes inaccurately predicted
as negative, and TP denotes the number of positive classes accurately predicted as positive. These
metrics—particularly Precision, Recall, and Fl-score—are widely recommended in binary
classification tasks, especially when datasets are imbalanced, because accuracy alone can be
misleading (e.g., accuracy paradox) [31]. The Fl-score, defined as the harmonic mean of Precision
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and Recall, provides a balanced measure that penalizes models favoring one at the expense of the
other, making it especially valuable when both false positives and false negatives carry significant
consequences [32].

Table 2. Performance indicators and formula.

Performance indicators formula
Precision (P) TruePositive
TruePositive + FalsePositive
Recall (R) TruePositive
TruePositive + FalseNagative
Fl-score 2 x Positive * Recall
Positive + Recall
Performance indicators formula
Precision (P) TruePositive
TruePositive + FalsePositive
Recall (R) TruePositive

TruePositive + FalseNagative

3. Results

3.1. The Classification Performance of Each Model on Each Data Augmentation

In this experiment, the training data consisted entirely of astronomical images augmented using
Rotation, with the objective of enhancing the diversity of object orientations and improving the
model’s ability to learn from rotationally varied perspectives. A total of nine Convolutional Neural
Network (CNN) architectures were tested —DenseNet121, InceptionV3, MobileNet, MobileNetV2,
ResNet50, ResNet101, VGG16, VGG19, and Xception—under different batch sizes (32, 64, 128, and
256) and two training strategies: Transfer Learning (TL) and Fine-Tuning (FT).

Table 2. Comparison of classification results of different deep learning with original dataset.

Rank Model Method Batch size Accuracy F1 Score F1 Score
(bogus) (real)

1 MobileNet fine_tuned 64 0.98938 0.99393 0.95758

2 ResNet50 fine_tuned 32 0.98634 0.99222 0.94410

3 VGG16 fine_tuned 32 0.98634 0.99221 0.94479

4 VGG19 fine_tuned 256 0.98331 0.99049 0.93168

5 MobileNet transfer 32 0.98483 0.99130 0.94048

Table 2. Comparison of classification results of different deep learning with rotation dataset.

Rank Model Method Batch size Accuracy F1 Score F1 Score
(bogus) (real)
1 Xception transfer 128 0.97750 0.97739 0.97761
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2 Xception transfer 256 0.97375 0.97352 0.97398
3 VGG16 fine_tuned 128 0.97500 0.97497 0.97503
4 VGG19 fine_tuned 256 0.97188 0.97168 0.97207
5 Xception fine_tuned 32 0.97188 0.97146 0.97227

The results indicated that Xception consistently outperformed other models, particularly in
Transfer Learning at batch size 128, where it achieved an accuracy of 0.97750 and an F1-score (real)
of 0.97761, demonstrating exceptional capability in learning rotational patterns. Even in Fine-Tuning
with batch size 256, Xception maintained excellent performance, with accuracy of 0.96938 and F1-
score (real) of 0.96981, reflecting both high accuracy and stability. Another standout model was
VGG16 (Fine-Tuned), which achieved accuracy of 0.97500 and F1-score (real) of 0.97503 at batch size
128, closely matching Xception’s performance and surpassing many other models.

MobileNet, known for its computational efficiency and compact architecture, also performed
well in Transfer Learning at batch size 128, with accuracy of 0.96250 and F1-score (real) of 0.96245.
However, when fine-tuned, MobileNet displayed signs of overfitting or class imbalance, particularly
at batch size 128, where despite a high precision of 0.99826, the recall dropped to 0.71875, resulting
in a reduced F1-score of 0.87610. This suggests that additional regularization or balancing techniques
may be necessary when applying Rotation to lightweight models like MobileNet.

ResNet50 and ResNet101 exhibited greater variability. For example, ResNet50 fine-tuned at
batch size 256 failed completely, with accuracy of 0.5 and F1-score of 0, indicating poor compatibility
between deep ResNet architectures and Rotation augmentation without appropriate tuning. On the
other hand, ResNet101 fine-tuned at batch size 32 performed well, achieving accuracy of 0.96438 and
F1-score (real) of 0.96497, suggesting that smaller batch sizes may be more suitable for deep ResNet
models under this augmentation strategy.

MobileNetV2 also demonstrated strong performance, with Transfer Learning at batch size 256
yielding accuracy of 0.96812 and Fl-score (real) of 0.96854, which is impressive given the model’s
lightweight and energy-efficient design. Similarly, VGG19 showed notable consistency in both
Transfer and Fine-Tuned settings, with Fine-Tuned VGG19 at batch size 256 reaching accuracy of
0.97188 and F1-score (real) of 0.97207 —among the highest in the experiment.

In conclusion, the results suggest that Xception (Transfer, batch size 128), VGG16 (Fine-Tuned,
batch size 128), and VGGI19 (Fine-Tuned, batch size 256) were the top three performers under
Rotation-based augmentation, maintaining high accuracy and F1-scores across both “bogus” and
“real” classes. Meanwhile, models like ResNet50 and MobileNet, in some configurations showed
issues with performance imbalance or overfitting, highlighting the need for careful selection,
hyperparameter tuning, and possibly the application of additional regularization methods.
Ultimately, these findings demonstrate that Rotation alone can be a highly effective augmentation
technique, provided that the model architecture and batch size are appropriately matched to the
nature of the data.

Table 2. Comparison of classification results of different deep learning with noise dataset.

Rank Model Method Batch size Accuracy F1 Score F1 Score
(bogus) (real)
1 Xception transfer 128 0.97750 0.97739 0.97761

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2 Xception transfer 256 0.97375 0.97352 0.97398
3 VGG16 fine_tuned 128 0.97500 0.97497 0.97503
4 VGG19 fine_tuned 256 0.97188 0.97168 0.97207
5 Xception fine_tuned 32 0.97188 0.97146 0.97227

In this experiment, all models were trained using astronomical image data augmented with
Noise, which involves injecting random disturbances into images to simulate the imperfections
commonly found in real-world astronomical observations—such as blurring, sensor artifacts, or low-
light conditions. The study compared the performance of nine Convolutional Neural Network (CNN)
architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16,
VGG19, and Xception—under two training strategies: Transfer Learning and Fine-Tuning, across a
range of batch sizes (32, 64, 128, and 256).

Overall results indicate that most models failed to effectively learn from noise-augmented data,
especially MobileNet, MobileNetV2, VGG16, VGG19, ResNet50, and ResNetl01, all of which
consistently yielded an accuracy of 0.50000 under all combinations of training strategy and batch size.
This strongly suggests a failure in learning or a complete inability to distinguish between classes.
Notably, the F1-score for the “real” class was 0.00000, indicating that these models failed to correctly
classify any true instances or were severely biased toward the “bogus” (negative) class.

The few models that demonstrated some resilience to the effects of noise were Xception and
InceptionV3, which still managed to achieve accuracy and F1-score values above random chance. The
Xception model fine-tuned at batch size 256 was the best-performing model in this experiment,
achieving an accuracy of 0.72625, precision (bogus) = 0.66667, recall (bogus) = 0.90500, and F1-score
(bogus) =0.76776, with a real-class F1-score of 0.66667 —not exceptionally high but significantly better
than all other models. Another model with relatively promising results was ResNet50 fine-tuned at
batch size 256, which achieved accuracy = 0.85000 and F1-score (real) = 0.83827. While precision and
recall were still lower than those observed in non-noise settings, the performance remained
reasonably usable.

InceptionV3 showed mixed results, especially under Transfer Learning, where it achieved
accuracy of 0.63187 and F1-score (real) = 0.43092 at batch size 32. Although not particularly high, this
still indicates some degree of meaningful learning beyond random prediction. However, Fine-Tuning
of InceptionV3 across several batch sizes often resulted in F1-scores for the real class dropping below
0.2—or even 0.1 —which may indicate overfitting or over-adaptation to the noise, thereby degrading
its ability to generalize to true class features.

Interestingly, several models—such as MobileNetV2 (transfer, batch 256)—showed high
precision for the “real” class (e.g., 0.75) but extremely low F1-scores (e.g., 0.00746). This disparity
suggests that while a few correct predictions may have occurred, the number of predictions for the
“real” class was extremely low, leading to very poor recall and severely penalized F1-scores. This
reinforces the conclusion that most models failed to cope with noise unless specifically adapted to
handle such data.

In summary, the experiment demonstrates that Noise-based Data Augmentation significantly
degrades model accuracy across most architectures and training strategies. The most noise-resilient
model was Xception (fine-tuned, batch 256), followed by ResNet50 (fine-tuned, batch 256) and
InceptionV3 (transfer, batch 32), all of which performed noticeably better than random baselines.
However, these findings also underscore the need for advanced techniques—such as denoising
preprocessing, noise-aware training strategies, or mixed augmentation pipelines —to enhance model
robustness and generalization when training on noisy astronomical data
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Table 2. Comparison of classification results of different deep learning with hflip dataset.

Rank Model Method Batch Accuracy F1 Score F1 Score
size (bogus) (real)

1 MobileNet transfer 64 0.99875 0.99875 0.99875

2 Xception transfer 32 /64 0.99875 0.99875 0.99875

3 VGGI19 fine_tuned 32 /64 0.99875 0.99875 0.99875

4 VGG16 fine_tuned 64 /256 0.99687 0.99688 0.99688

5 MobileNetV2 transfer 256 0.99375 0.99379 0.99379

In this experiment, all data were trained using Horizontal Flip (HFlip) as a Data Augmentation
technique. This method reflects the images horizontally to increase the diversity of object orientation
in astronomical data. The objective was to enhance the capacity of Convolutional Neural Networks
(CNNs) to learn object features that may appear flipped when captured by telescopes from different
directions. The study involved nine CNN architectures: DenseNet121, InceptionV3, MobileNet,
MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and Xception, evaluated under both Transfer
Learning and Fine-Tuning strategies, and across varying Batch Sizes (32, 64, 128, 256).

The results clearly demonstrated that most models performed consistently well, particularly
Xception, MobileNet, InceptionV3, VGG16, and VGG19. These models frequently achieved Accuracy
near 100% and high Fl-scores for both “bogus” and “real” classes. For example, Xception (both
transfer and fine-tuned) at batch sizes 64, 128, and 256 achieved Accuracy ranging from 0.99750 to
0.99813, with F1-scores for both classes between 0.99688 and 0.99875. This reflects the model’s deep
and precise learning of flipped image characteristics—among the highest-performing results in the
experiment.

Similarly, MobileNet (both transfer and fine-tuned) yielded outstanding performance. Notably,
MobileNet (transfer, batch 128) achieved Accuracy =0.99875 and F1-score (real) =0.99875, comparable
to Xception and VGG19 (fine-tuned) under several conditions. InceptionV3 also showed consistently
strong results, with transfer models at batch sizes 64, 128, and 256 achieving Accuracy values between
0.99625 and 0.99750, and very high F1-scores across both classes. It is notable that F1-score (real) for
these models never dropped below 0.99000 under optimal conditions.

VGG16 and VGG19 also performed remarkably well, especially in fine-tuned mode at batch sizes
64 and 256, achieving Accuracy between 0.99687 and 0.99813, with near-perfect Fl-scores in both
classes. DenseNet121, particularly in transfer learning mode at batch sizes 128 and 256, consistently
produced Fl-score (real) > 0.99315, demonstrating the architecture's robustness in learning from
horizontally flipped images.

However, some models showed performance degradation. For example, MobileNetV2 (fine-
tuned) at batch sizes 32, 64, and 128 exhibited Accuracy between 0.91 and 0.92, with F1-score (real)
dropping to approximately 0.91-0.93. Additionally, ResNetl01 and ResNet50 under certain
conditions — particularly fine-tuned at batch sizes 128 or 256 —completely failed to generalize, with
Accuracy = 0.50000 and F1-score (real) = 0.00000, indicating an inability to learn or severe overfitting
to one class.

In conclusion, Horizontal Flip was found to significantly enhance model performance in
learning symmetrical or directionally inverted objects, especially when paired with well-designed
deep architectures like Xception, MobileNet, and InceptionV3. While Fine-Tuning generally
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produced strong results, Transfer Learning also proved capable of generating powerful models—
offering an efficient training strategy under limited computational resources. Therefore, HFlip can be
considered a highly effective augmentation technique for improving classification accuracy in
astronomical image analysis.

Table 2. Comparison of classification results of different deep learning with vflip dataset.

Rank Model Method Batch Accuracy F1 Score F1 Score
size (bogus) (real)

1 MobileNet transfer 64 0.99875 0.99875 0.99875

2 Xception transfer 32/64 0.99875 0.99875 0.99875

3 VGG19 fine_tuned 32 /64 0.99875 0.99875 0.99875

4 VGG16 fine_tuned 64 /256 0.99687 0.99688 0.99688

5 MobileNetV2 transfer 256 0.99375 0.99379 0.99379

In this experiment, the dataset was augmented using Vertical Flip (VFlip)—a technique that
mirrors astronomical images along the vertical axis—to enhance the model's ability to learn features
from objects captured in reversed vertical orientations. This method is particularly valuable in
astronomical image analysis, where object positions and orientations can vary across different
observations. The experiment involved nine CNN architectures—DenseNet121, InceptionV3,
MobileNet, MobileNetV2, ResNet50, ResNet1l01, VGG16, VGG19, and Xception—under both
Transfer Learning and Fine-Tuning strategies, and across various Batch Sizes (32, 64, 128, and 256).

The overall results demonstrated that deeper and structurally efficient models effectively
handled the vertical flipping transformation. Specifically, models such as MobileNet, Xception,
InceptionV3, VGG19, and VGG16 achieved consistently high performance across all key evaluation
metrics— Accuracy, Precision, Recall, and Fl-score—for both “bogus” and “real” classes. Notably,
MobileNet (transfer) and VGG19 (fine-tuned) at batch sizes of 32, 64, and 128 achieved Accuracy and
F1-score as high as 0.99875, indicating near-perfect classification of vertically flipped images.

Similarly, Xception (transfer) at batch size 256 reached Accuracy = 0.99813 and identical F1-
scores of 0.99813 for both classes. Xception consistently maintained high performance across all batch
sizes and training strategies. However, in some cases, such as Xception fine-tuned at batch 256,
Accuracy slightly decreased to 0.98000 and F1-score (real) = 0.98039, which remains remarkably high
and commendable.

Other models like DenseNet121 also showed excellent results, with transfer learning at batch
sizes 32 or 64 yielding Accuracy between 0.99125 and 0.99313 and F1-score (real) exceeding 0.991.
Similarly, InceptionV3 (transfer) at batch sizes 64 and 128 achieved Accuracy up to 0.99687 and F1-
score (real) > 0.99688, reflecting robust and consistent performance. Despite their older architecture,
VGG16 and VGG19 maintained outstanding accuracy —VGG16 fine-tuned at batch 256 achieved
Accuracy =0.99687 and F1-score (real) = 0.99688, comparable to top-performing models like Xception
and MobileNet.

In contrast, models such as ResNet50 and ResNet101 exhibited more volatile performance.
Specifically, ResNet101 fine-tuned at batch sizes 128 and 256 showed Accuracy =0.50000 and F1-score
(real) = 0.00000, indicating potential overfitting or heightened sensitivity to vertical flipping
transformations. However, ResNet101 (transfer) at batch sizes 64 and 256 still produced Accuracy
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values around 0.92-0.93 and F1-score (real) >0.92, suggesting that transfer learning may help mitigate
VEFlip's impact on ResNet's performance.

In summary, the experiment clearly shows that Vertical Flip (VFlip) augmentation significantly
enhances model performance when applied with the right architectures particularly Xception,
MobileNet, InceptionV3, VGG19, and VGG16. Fine-Tuning with moderate batch sizes (e.g., 64 or 128)
consistently yielded very high evaluation scores. Moreover, Transfer Learning proved sufficient for
models like MobileNet and Xception, achieving high performance without full retraining. Thus,
VFlip stands out as a highly effective augmentation technique, especially in real-world systems
requiring robustness and accuracy in scenarios with unpredictable image orientation.

3.2. The Classification Performance of Ensemble Deep Learning

In the previous section, various Convolutional Neural Network (CNN) architectures were
trained and evaluated under different conditions using techniques such as Data Augmentation and
parameter tuning, including the application of Transfer Learning and Fine-Tuning, alongside
adjustments to the Batch Size. These experiments aimed to investigate how different training
strategies affect the model's ability to classify astronomical images in complex and uncertain
scenarios. Preliminary results revealed that several models—particularly Xception, MobileNet,
InceptionV3, VGG16, and VGG19—consistently maintained strong performance across a range of
augmented datasets, including Original, Vertical Flip, Horizontal Flip, and Rotation. These models
sustained high levels of Accuracy, Precision, Recall, and F1-score across most experimental settings
under both Transfer Learning and Fine-Tuning approaches. This demonstrates the flexibility and
structural robustness of these architectures in handling spatial transformations and symmetrical
variations commonly found in astronomical image data. However, a significant limitation that
warrants special attention for future development is the models' vulnerability to noise-augmented
data. Noise augmentation was used to simulate real-world imperfections in astronomical imagery,
such as sensor interference or unfavorable environmental conditions. Under these conditions, most
models showed a noticeable drop in performance, with Accuracy and F1-score falling below usable
thresholds in many cases—especially in the “real” class, where some models recorded an F1-score of
0.00000, indicating a complete failure to identify true astronomical objects. These results highlight
the presence of bias and a lack of generalization capability when dealing with high levels of noise.

The models with the best performance for each type of data transformation (as identified in the
previous experimental sections) were selected based on both Accuracy and F1-score, considering the
most effective Batch Size for each case, as follows:

Table 2. Selected Models for Ensemble Based on Best Performance by Augmentation Type.

Model Method Augmentation Batch Size
MobileNet Fine-Tuned Original 64
Xception Transfer Rotation 128
Xception Fine-Tuned Noise 256
MobileNet Transfer HFlip 64
MobileNet Transfer VFlip 32
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3.1.1. Experimental Results of Model Combination Using Soft Voting Ensemble Technique

The experimental results using the Soft Voting Ensemble technique, which combined multiple
models trained with various data augmentation strategies, demonstrated a promising level of
performance in astronomical image classification. The ensemble model achieved strong results in the
“bogus” class, with a precision of 0.7513, a remarkably high recall of 0.9957, and an F1-score of 0.8564.
However, in the “real” class, while precision remained very high at 0.9922, the recall dropped
significantly to 0.62143, resulting in an Fl-score of 0.764. This indicates that the model performed
well in identifying negative instances but struggled to detect true astronomical objects accurately.
The overall accuracy of the ensemble was 0.8215, reflecting moderate general performance across
mixed data conditions. The confusion matrix further supports these observations: the model correctly
identified 4,696 bogus instances out of 4,716, while it misclassified 1,554 real instances as bogus out
of a total of 4,105 real samples. This substantial number of false negatives in the real class explains
the low recall and highlights a critical limitation in the ensemble’s generalization when encountering
real, often more complex, image structures. When evaluating performance by augmentation type,
both HFlip and VFlip produced excellent results, with HFlip achieving a precision of 0.995, recall of
0.986, and an Fl-score of 0.9905—demonstrating the model’s ability to learn symmetrical spatial
features effectively. Rotation-based augmentation also performed relatively well, with an F1-score of
0.6936, although its slightly lower recall suggests challenges in recognizing rotated features. The
original dataset without augmentation yielded a high F1-score of 0.972, indicating the model's strong
capacity to classify undistorted data. However, the model performed poorly on noise-augmented
data, where the Fl-score plummeted to 0.002, driven by an extremely low recall of 0.001. This
suggests a nearly complete inability to detect real objects in the presence of signal distortion,
underscoring the model’s vulnerability to noisy environments. In conclusion, the Soft Voting
ensemble strategy enhances classification accuracy in scenarios involving symmetrical or
geometrically transformed images. Nonetheless, the model’s performance deteriorates under high-
noise conditions, indicating a need for further improvements. Future work may consider employing
Weighted Voting strategies that give greater influence to noise-trained models or implementing
preprocessing techniques to reduce noise before model training. Such enhancements could
significantly improve model robustness and applicability in real-world astronomical imaging, where
imperfect and noisy data are often unavoidable.

Table 2. Test with data.

Model Accuracy  Precision = Recall F1Score Precision  Recall F1
(bogus) (bogus) (bogus) (real) (real) Score
(real)
Ensemble  0.8215 0.7513 0.9957 0.8564 0.9922 0.62143  0.764

Confusion Matrix

Pred: bogus Pred: real
True: bogus 4696 20
True: real 1554 2551
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Table 2. Experimental Results of Model Combination Using Soft Voting Ensemble Technique pre data

augmentation.
Augmentation P TN FP FN Precision Recall F1-Score
HFlip 986 995 5 14 0.995 0.986 0.9905
Noise 1 1000 0 999 1 0.001 0.002
Rotation 473 994 6 527 0.9875 0.473 0.6396
VFlip 987 996 4 13 0.996 0.987 0.9915
original 104 711 5 1 0.9541 0.9905 0.972

3.1.1. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique

From the experiments comparing Soft Voting and Weighted Voting techniques, it was observed
that Soft Voting yielded the lowest overall accuracy, and the issue of Noise remained a major
challenge in astronomical image classification. To address this, the strategy was shifted to Weighted
Voting, where model weights were adjusted based on their training configurations. In particular,
greater emphasis was placed on the model trained with Noise-augmented data in an attempt to
improve the system’s resilience to signal distortions. In the first Weighted Voting experiment, the
weight assigned to the Noise-based model was set at 0.3. However, the results indicated that this
adjustment was insufficient, as the accuracy remained low and the confusion matrix revealed a high
rate of misclassification, especially in the real class. Subsequently, the weight for the Noise-trained
model was increased to 0.5 in the second experiment. The performance showed notable
improvement, especially in handling noisy data, suggesting a positive trend whereby increasing the
weight of the Noise model could enhance overall robustness. Building upon this trend, the third
experiment assigned a weight of 0.8 to the Noise model, resulting in the best performance across all
tests. The ensemble achieved an overall accuracy of 0.972, significantly outperforming previous
configurations. These results highlight the importance of strategic weight allocation in Weighted
Voting ensembles and demonstrate that increasing the influence of models trained to handle
challenging conditions—such as Noise—can substantially improve classification performance in
complex and imperfect data environments.

Table 2. Parameter in first ensemble.

Model Method Batch Size Augmentation Weight
MobileNet fine_tuned 64 Original 0.2
Xception transfer 128 Rotation 0.2
Xception fine_tuned 256 Noise 0.3
MobileNet transfer 64 HFlip 0.15
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MobileNet Transfer 32 VEFlip 0.15
Table 2. Test with data.
Model Accuracy Precision Recall F1Score  Precision Recall  F1
(bogus) (bogus) (bogus) (real) (real) Score
(real)
Ensemble 0.8204 0.7512 0.993 0.855 0.987 0.6221  0.763
Confusion Matrix
Pred: bogus Pred: real
True: bogus 4683 33
True: real 1551 2554

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data

augmentation.
Augmentation P TN FpP FN Precision Recall F1-Score
HFlip 966 990 10 34 0.9898 0.966 0.9777
Noise 5 1000 0 995 1 0.001 0.0100
Rotation 509 992 8 491 0.9845 0.509 0.6711
VFlip 969 991 9 31 0.9908 0.969 0.9798
original 105 710 6 0 0.9459 1.00 0.9722
Table 2. Parameter in second ensemble.
Model Method Batch Size Augmentation Weight
MobileNet fine_tuned 64 Original 0.2
Xception transfer 128 Rotation 0.2
Xception fine_tuned 256 Noise 0.50
MobileNet transfer 64 HFlip 0.15
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MobileNet Transfer 32 VEFlip 0.15
Table 2. Test with data.
Model Accuracy Precision Recall F1Score  Precision Recall  F1
(bogus) (bogus) (bogus) (real) (real) Score
(real)
Ensemble 0.8852 0.830 0.9866 0.901 0.980 0.7688  0.861

Confusion Matrix

Pred: bogus Pred: real
True: bogus 4653 63
True: real 949 3156

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data

augmentation.
Augmentation TP TN FP FN Precision Recall F1-Score
HFlip 962 962 13 38 0.9867 0.962 0.9742
Noise 277 985 15 723 0.9486 0.277 0.4288
Rotation 845 986 14 155 0.9837 0.845 0.9097
VFlip 967 987 13 33 0.9867 0.967 0.9768
original 105 708 8 0 0.9292 1.00 0.9633
Table 2. Parameter in third ensemble.
Model Method Batch Size Augmentation Weight
MobileNet fine_tuned 64 Original 0.20
Xception transfer 128 Rotation 0.20
Xception fine_tuned 256 Noise 0.80
MobileNet transfer 64 HFlip 0.15
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MobileNet Transfer 32 VEFlip 0.15
Table 2. Test with data.
Model Accuracy Precision Recall F1Score  Precision Recall  F1
(bogus) (bogus) (bogus) (real) (real) Score
(real)
Ensemble 0.9348 0.951 0.925 0.938 0.916 0.945 0.931

Confusion Matrix

Pred: bogus Pred: real
True: bogus 4364 352
True: real 223 3882

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data

augmentation.
Augmentation TP TN FP FN Precision Recall F1-Score
HFlip 959 968 32 41 0.9677 0.959 0.9633
Noise 1000 772 228 0 0.8143 1.00 0.8977
Rotation 855 950 50 145 0.9448 0.855 0.8976
VFlip 967 970 30 36 0.9698 0.9640 0.9669
original 104 704 12 1 0.8966 0.9905 0.9412

4. Discussion

The experimental results clearly demonstrate the effectiveness of integrating advanced
Convolutional Neural Network (CNN) architectures with strategic Data Augmentation, Transfer
Learning, Fine-Tuning, and Ensemble Learning in the context of astronomical transient detection.
Several critical insights can be drawn from these findings.

4.1. Performance of Individual CNN Models

Across all augmentation strategies, models such as Xception, MobileNet, and VGG16/19
consistently outperformed others in both accuracy and F1-score. In particular, Xception with Transfer
Learning and batch size 128 achieved the highest performance on rotation-augmented data, while
MobileNet (Fine-Tuned) performed exceptionally on the original dataset. These results emphasize
the flexibility and structural robustness of certain architectures in learning domain-specific patterns,
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especially those involving spatial symmetry, orientation variations, and brightness inconsistencies
commonly observed in transient astronomical imagery.

However, not all architectures responded equally well to each augmentation technique. For
instance, ResNet50 and ResNet101 displayed significant performance degradation under some
configurations—most notably with noise-augmented data and larger batch sizes. This suggests that
deeper architectures may require more sophisticated regularization or denoising techniques when
handling corrupted or low-SNR images.

4.2. Impact of Data Augmentation

Among the augmentation strategies tested, Horizontal Flip (HFlip) and Vertical Flip (VFlip)
yielded the most consistently high classification performance across all models, often resulting in F1-
scores above 0.99. This indicates that these transformations effectively simulate the positional
variability of transient objects and assist CNNs in learning rotational-invariant features.

In contrast, Noise augmentation proved to be the most challenging for nearly all models. Most
architectures failed completely under noisy conditions, yielding F1-scores as low as 0.000, indicating
severe overfitting or class bias. Only a few models, notably Xception and ResNet50, managed to retain
marginal classification ability. This highlights a key vulnerability in current deep learning models
applied to astronomical imagery: their sensitivity to image noise, which is a prevalent issue in real
observational data.

These findings emphasize the need for future research to focus on improving robustness against
noise—either through preprocessing (e.g., denoising filters), adversarial training, or noise-aware
model architectures.

4.3. Effectiveness of Ensemble Learning

To address the weaknesses of individual models—particularly under noise-augmented
conditions—this study explored Soft Voting and Weighted Voting ensemble strategies. The Soft
Voting ensemble offered moderate improvements in accuracy but remained limited by its uniform
weighting scheme, which failed to sufficiently correct performance imbalance under noisy
conditions. Specifically, recall in the “real” class was consistently low, indicating a failure to detect
true transient events reliably.

In contrast, Weighted Voting allowed more flexibility by assigning higher influence to noise-
trained models. A progressive tuning of weights in three ensemble configurations demonstrated that
increasing the weight of the noise-robust model (up to 0.8) significantly improved overall
performance, culminating in an Fl-score (real) of 0.931 and an overall accuracy of 0.9348. This
supports the hypothesis that ensemble strategies which explicitly compensate for weak conditions—
such as noise corruption—can substantially improve model generalization and classification balance.

Notably, the final ensemble configuration not only corrected recall degradation but also
maintained strong performance across other augmentation types, demonstrating its adaptability and
robustness in complex, heterogeneous astronomical datasets.

4.4. Generalization and Scalability

The success of this ensemble approach illustrates the potential of combining multiple specialized
models to form a unified system capable of handling the high variance and complexity of real-world
astronomical data. The pipeline’s design—featuring modular training, augmentation-specific
modeling, and intelligent voting —offers a scalable solution that can be extended to other sky surveys
and transient detection projects. Furthermore, the system’s reliance on Transfer Learning and
moderate fine-tuning suggests that this approach is computationally efficient and suitable for
deployment in time-critical applications, such as real-time transient detection in large-scale surveys
like GOTO.
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5. Conclusions

This study introduced an ensemble-based deep learning framework designed to classify real and
bogus astronomical transients from sky survey images. By integrating Transfer Learning, Fine-
Tuning, multiple Data Augmentation strategies (such as Rotation, Horizontal Flip, Vertical Flip, and
Noise), and Ensemble Learning techniques, the proposed system achieved substantial improvements
in classification accuracy and robustness. Models like Xception, MobileNet, and VGG19 consistently
outperformed others, particularly under augmentation strategies that introduced geometric
variations. While most models struggled with noise-injected images, the Weighted Voting strategy —
especially when assigning higher weights to noise-trained models—greatly enhanced the system’s
resilience to distortion and improved the F1-score of the “real” class to 0.931 with an overall accuracy
of 93.48%. These results highlight the importance of model diversity and strategic ensemble
configuration for addressing the challenges of real-world astronomical datasets. The proposed
approach offers a scalable and practical solution for transient detection tasks in large-scale sky
surveys and lays the groundwork for future research in noise-resilient deep learning for astronomy.
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