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Abstract 

The detection of astronomical transient events—such as supernovae, gamma-ray bursts, and stellar 
flares—has become increasingly vital in astrophysics due to their association with extreme cosmic 
processes. However, identifying these short-lived phenomena within massive sky survey datasets, 
like those from the GOTO project, poses major challenges for traditional analysis methods. This study 
proposes a Deep Learning approach using Convolutional Neural Networks (CNNs) to improve 
transient classification. Drawing inspiration from the structure and function of biological vision 
systems, CNNs mimic the hierarchical processing of visual stimuli seen in animal brains, enabling 
the automated identification of complex spatial patterns in astronomical images. Transfer Learning 
and Fine-Tuning on pre-trained ImageNet models are leveraged to simulate adaptive learning found 
in biological organisms, rapidly adjusting to new tasks with limited data. Data Augmentation 
techniques—including rotation, flipping, and noise injection—emulate environmental variability to 
enhance model generalization, while Dropout and varied Batch Sizes are applied to prevent 
overfitting, akin to the biological principle of redundancy and noise tolerance. Ensemble Learning 
strategies, including Soft Voting and Weighted Voting, are inspired by collective intelligence in 
biological systems, combining multiple CNN models for robust decision-making. Results show that 
this bio-inspired framework significantly enhances the accuracy and reliability of transient detection, 
offering a scalable solution for real-time applications in large-sky surveys like GOTO. 

Keywords: astronomical transients; convolutional neural networks (CNNs); transfer learning; fine-
tuning; ensemble learning; optical transient detection; biomimetics; bio-inspired computing 
 

1. Introduction 

The discovery of astronomical transient events—such as supernovae, gamma-ray bursts, and 
stellar flares—has become a central focus in modern astrophysics. These phenomena are signatures 
of high-energy cosmic processes, including neutron star mergers, black hole collisions, and the 
collapse of massive stars. These signals not only reveal the mechanisms behind the origin of matter 
and energy but also reflect fundamental physical laws that cannot be replicated in terrestrial 
laboratories[1,2]. However, identifying and classifying such events in practice poses considerable 
challenges, especially in the face of large volumes of observational data continuously collected by 
autonomous telescopes. For example, the Gravitational-wave Optical Transient Observer (GOTO) 
project captures over 400 sky images per night, with each image containing more than 20,000 celestial 
objects. Analyzing such massive datasets has become infeasible through manual classification by 
astronomers alone, thus necessitating artificial intelligence systems that mimic biological learning 
and decision-making processes with high efficiency. 

Biomimetics has become a foundational principle in the development of modern artificial 
intelligence, particularly in areas such as image processing, pattern recognition, and decision-making 
under uncertainty. Convolutional Neural Networks (CNNs), widely used in deep learning, are 
directly inspired by findings in neurobiology, especially the seminal work of Hubel and Wiesel 
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(1962), who discovered that neurons in the visual cortex of mammals respond to stimuli in 
hierarchical layers, from edges to complex shapes and objects. CNNs replicate this structure via 
convolution and pooling layers that automatically extract multi-scale image features with increasing 
complexity. Moreover, the human brain exhibits a remarkable ability to transfer knowledge from past 
experiences to new and unfamiliar situations. This concept is echoed in the technique of Transfer 
Learning, widely adopted in astronomy. Pre-trained models such as VGGNet, ResNet, Inception, and 
Xception—originally trained on the ImageNet dataset—can be fine-tuned and adapted to the unique 
characteristics of astronomical data, even in cases of small or imbalanced datasets [3]. This mirrors 
the brain’s ability to recognize familiar patterns in different contexts, such as identifying a face under 
different lighting conditions or viewing angles. Adaptation to environmental variability is also 
reflected in Data Augmentation techniques, which simulate the biological necessity of recognizing 
objects under diverse viewing conditions. In this study, rotation, horizontal and vertical flipping, and 
noise injection were applied to increase the diversity of the underrepresented “real” class. These 
techniques enhance model generalization and robustness, particularly in scenarios where class 
imbalance is severe, as often observed in astronomical images such as those from GOTO[4]. Fault 
tolerance—an essential trait of biological neural systems—is another property embedded in the 
framework through Dropout regularization, which randomly deactivates neurons during training. 
This mimics the biological principle of redundancy and minimizes overfitting by preventing reliance 
on specific units[5]. Furthermore, collective decision-making, a hallmark of swarm intelligence in 
natural systems such as ant colonies, fish schools, and bird flocks, inspired the ensemble learning 
approach adopted in this study. Rather than relying on a single model, multiple CNN architectures 
are combined using Soft Voting and Weighted Voting mechanisms. These ensemble methods 
enhance prediction stability and reduce variance, particularly in the presence of noise or 
morphological variability[6]. The results of this bio-inspired approach demonstrate high accuracy in 
classifying transient astronomical events, simultaneously improving both precision and recall. 
Moreover, the framework scales effectively to real-time applications, such as live alert systems for 
GOTO and other synoptic surveys. Looking ahead, the study may be extended using Generative 
Adversarial Networks (GANs) to synthetically generate examples for underrepresented classes—
analogous to the imaginative capacity of the human brain to simulate scenarios when direct 
experience is limited.[7] showed that GAN-generated light curves substantially improved 
classification accuracy for rare variable star classes. 

Overall, this study presents a biologically inspired framework that integrates multiple strategies 
observed in nature—from visual learning, adaptive generalization, decision fusion, to synthetic data 
generation—into a unified system. The result is a resilient, scalable, and accurate transient detection 
system well-suited to the data-rich environment of next-generation astronomical surveys. 

2. Materials and Methods 

2.1. System Overflow 

In Figure 1, nine Deep Learning models were selected for evaluation, including Dense 
Convolutional Network 121 (DenseNet121), Inception Convolutional Neural Network (InceptionV3), 
MobileNet, MobileNetV2, Deep Residual Networks 101 and 50 (ResNet101, ResNet50), and Very 
Deep Convolutional Networks for Large-Scale Image Recognition models 16 and 19 (VGG16, 
VGG19). The image dataset was initially converted from the FITS file format to JPG to facilitate 
further analysis. Following this, the dataset was augmented using four data augmentation 
techniques: Noise, Rotation, Vertical Flip (VFlip), and Horizontal Flip (HFlip), applied to the original 
images to increase data diversity and enhance model generalization. These augmented datasets, 
along with the original images, were then used to train each of the selected models using the Transfer 
Learning approach, which involved loading pre-trained weights from the ImageNet dataset. After 
completing the initial Transfer Learning phase, each model underwent a Fine-Tuning process to 
further adjust the internal structure and optimize deeper layers beyond those affected by the transfer 
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learning stage. Once the training and fine-tuning processes were completed, the performance of each 
model under each augmentation type was evaluated using the validation set. The best-performing 
model from each augmentation category was then selected for the subsequent Ensemble Deep 
Learning phase. In this final phase, two ensemble strategies—Soft Voting and Weighted Voting—
were implemented to combine the selected models and identify the most effective ensemble 
configuration, aiming to further improve classification accuracy and robustness. 

 
Figure 1. This is a figure. Show the overall methods. 

2.2. Dataset 

In Figure 2,the dataset we use a transient discovery image, divided into two parts: Real and 
Bogus, divided by astronomy experts, and both real and bogus images are 21x21 pixels. Real images 
are 523. Bogus are 3,598 images 
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Figure 2. This is a figure. Show the overall methods 

2.2. Data Preprocessing 

The images in the dataset were converted from the Flexible Image Transport System (FITS) 
format to JPEG (JPG) format to facilitate the modeling process, as FITS files are often less convenient 
for direct use in deep learning pipelines. This conversion was performed prior to model development. 
Given the limited number of samples available per class—a critical concern in deep learning—the 
Transfer Learning approach was employed to enhance both the standardization and the accuracy of 
the resulting models. Moreover, the dataset exhibited a pronounced class imbalance, with the number 
of "real" images significantly lower than that of "bogus" images at an approximate ratio of 1:7, as 
illustrated in Table 1. To address this issue, oversampling techniques were applied to increase the 
number of training samples in both classes using Data Augmentation. Each augmentation method 
(e.g., noise injection, image rotation, horizontal flipping, vertical flipping) was implemented 
independently to avoid the confounding effects of combined transformations. All images were 
resized to 224×224 pixels to ensure compatibility with the input requirements of ImageNet-based 
architectures during the Transfer Learning process. 

Table 1. Training data before and after oversampling. 

Training data Bogus Real 
Before Oversampling 2,862 418 
After Oversampling 4,000 4,000 

2.3. Data Augmentation 

Data augmentation is a well-established technique in deep learning, commonly used to 
artificially expand the training dataset by applying various transformations to existing images. This 
process helps improve the generalization capability of the model by exposing it to diverse variations 
of the data, thereby reducing the risk of overfitting and enhancing final classification accuracy [7].In 
line with findings from previous studies, we incorporate data augmentation into our training pipeline 
to increase robustness and improve performance on unseen data. Augmentations such as horizontal 
flips, rotations, and noise injection are applied to simulate real-world distortions and observational 
variability. This strategy aims to help the network learn invariant features and become more resilient 
to subtle differences in transient images. 
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Figure 3. An example of data augmentation. 

2.4. Modeling 

In deep learning for image classification, Convolutional Neural Networks (CNNs) have been 
widely recognized as powerful tools due to their ability to learn hierarchical representations of spatial 
features. This capability makes CNNs particularly suitable for image data, especially in the field of 
astronomy, where precise spatial structure and light distribution are crucial for identifying celestial 
objects. Over the past decade, a wide range of CNN architectures has been developed, each offering 
different advantages in terms of network depth, number of parameters, and computational efficiency. 
In this study, we selected nine CNN architectures to evaluate and compare their performance in 
classifying astronomical transient images. These architectures include:  

• DenseNet121 [8]: Utilizes a dense connectivity mechanism, where each layer receives input from 
all preceding layers. This promotes feature reuse and alleviates the vanishing gradient problem. 

• InceptionV3 [9]: Employs factorized convolutions and efficient dimensionality reduction, 
enabling deeper networks with lower computational cost. 

• MobileNet [10]: Designed for mobile and embedded systems, this architecture uses depthwise 
separable convolutions to significantly reduce computational complexity. 

• MobileNetV2 [11]: An extension of MobileNet, this version introduces inverted residual blocks, 
enhancing learning capacity while maintaining model compactness. 

• ResNet50 and ResNet101 [12]: Implement shortcut connections or identity mappings to combat 
the vanishing gradient issue and enable effective training of very deep networks. 

• VGG16 and VGG19 [13]: Feature a simple and sequential architecture composed of stacked 
convolutional layers with fixed kernel sizes, known for their consistency and reliability. 

• Xception [14]: Evolved from the Inception architecture by replacing all modules with depthwise 
separable convolutions, offering improved efficiency in extracting fine-grained features. 

All nine CNN architectures selected for this study were trained and fine-tuned using consistent 
hyperparameters as outlined in Table 2. Specifically, we experimented with four different batch sizes (32, 
64, 128, and 256) to evaluate their impact on model convergence and generalization. Previous studies have 
shown that smaller batch sizes (e.g., 32) can lead to better generalization by converging toward flatter 
minima, while larger batches may reach sharper minima and overfit to training data [15,16]. The number 
of training epochs was set to a maximum of 100, with Early Stopping applied (patience = 3) to prevent 
overfitting, a technique widely used in deep learning to halt training once the validation loss no longer 
improves [17]. For optimization, we employed the Adam optimizer due to its adaptive learning rate, fast 
convergence, and robustness in noisy gradient settings, which has been demonstrated effective across 
many neural network architectures [18]. The binary crossentropy loss function was selected, as the 
classification task involves distinguishing between two classes: real and bogus. 

For the transfer learning phase, the initial learning rate was set to 0.001, while during fine-tuning, 
a significantly smaller learning rate of 0.00001 was used to allow more stable updates in the deeper 
layers, following best practices that recommend reduced learning rates during fine-tuning to 
preserve previously learned features and avoid destructive updates [19,20]. In the fine-tuning stage, 
only the top 30% of convolutional layers were unfrozen and retrained to adapt domain-specific 
features from astronomical transient images, aligning with guidelines suggesting that selectively 
unfreezing higher layers is effective, especially when domain shift is moderate and dataset size is 
limited [21,22] . These hyperparameter settings were uniformly applied across all models to ensure 
consistency in performance comparisons. 

Original Noise Rotation VFlip HFlip 
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Table 2. Hyperparameter settings used for training and fine-tuning Convolutional Neural Network (CNN) 
models for astronomical transient image classification. 

Parameter Value 
Batch Size 32,62,128,256 

Epoch 100, Early Stopping (patience = 3) 
Learning 0.001(TF), 0.00001(FT) 

Optimizer Adam 
Loss Function Binary Crossentropy 

Fine-Tuning unlocks Top 30% 

2.5. Transfer Learning 

Transfer Learning is a process in which knowledge gained from one task (the source task) is 
transferred to improve learning performance on a different but related task (the target task). In image 
classification, models pre-trained on large-scale datasets such as ImageNet—with over 14 million 
images across 1,000 categories—are capable of learning generalized low-level visual features such as 
edges, contours, and textures. These features can be reused in downstream tasks, particularly when 
the target dataset is small or domain-specific [23]. In this study, Transfer Learning was implemented 
using convolutional neural network (CNN) architectures pre-trained on ImageNet. As illustrated in 
Figure 4, the upper part of the diagram represents the source domain, where the model learns 
hierarchical features from generic images like cars, trees, and shoes. This knowledge is embedded in 
the convolutional layers and later transferred to a new domain—astronomical transient image 
classification [24]. To adapt the model, the original classification head was replaced with a new fully 
connected classifier specific to the binary classification task of distinguishing between “real” and 
“bogus” objects. Two training strategies were applied: Transfer Learning, where all convolutional 
layers are frozen and only the new classifier layers are trained; and Fine-Tuning, where the top 30% 
of convolutional layers are unfrozen and retrained alongside the classifier to better learn domain-
specific patterns [25]. This approach, as shown in Figure 4, enables efficient reuse of prior knowledge 
while minimizing reliance on large labeled datasets, thus supporting both generalization and domain 
adaptation in the context of transient astronomical event detection [26]. 

 

Figure 4. The process of transferring learned features from a source domain (ImageNet) to a target domain 
(astronomical transient data) using the Transfer Learning approach. 
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2.6. Ensemble Deep Learning 

In the final phase of this research, Ensemble Learning was employed to further improve 
classification performance and increase model robustness when dealing with diverse and high-
variance image data. As shown in Figure 5, five distinct CNN models were strategically selected to 
participate in the ensemble. Each model was trained using different Data Augmentation strategies—
including Original, Rotation, Horizontal Flip (HFlip), Vertical Flip (VFlip), and Noise Injection—as 
well as varying Batch Sizes (32, 64, 128, and 256). Architectures such as MobileNet and Xception, 
under both Transfer Learning (TF) and Fine-Tuning (FT) settings, were chosen based on their prior 
individual performance on validation datasets. The ensemble system aggregates predictions from 
these five specialized models through a voting mechanism. This design allows the system to 
capitalize on the unique strengths of each model—for instance, models trained with rotation-based 
augmentation are better at recognizing orientation-variant transients, while noise-trained models are 
more resilient to corrupted or low signal-to-noise data. Studies have demonstrated that such 
diversity-driven ensemble voting significantly enhances performance and generalization in complex 
image classification tasks[27,28]. Moreover, voting-based approaches combining augmentation 
variations (e.g., rotation, flips, preprocessing changes) with CNN ensembles have been shown to 
outperform single-model setups in medical imaging applications [29]. Ensembles of CNNs leveraging 
architectural variety and diverse input preprocessing consistently mitigate overfitting and reduce 
output variance, leading to more robust predictive accuracy [30]. This methodology is particularly 
effective in astronomical contexts, where transient classification is challenged by variations in image 
quality, brightness, morphology, and observational conditions. Ensemble Learning thus plays a 
critical role in ensuring reliable predictions across such complex scenarios. 

 

Figure 5. Ensemble architecture combining multiple CNN models trained under different augmentation 
strategies and batch sizes. 

2.7. Evaluation Methods 

Subsequently, the experimental outcomes from each route were gathered and juxtaposed to 
scrutinize results and efficiency. A comparative analysis of the experimental results from each route 
was then conducted to assess results and efficacy in the context of scientific classification 
performance. When evaluating the performance of deep learning models in scientific classification, 
selecting an appropriate metric is a pivotal factor. Performance indicators such as Recall, Accuracy, 
and F1-score become crucial in this evaluative process. The precise computational methods for these 
indicators are delineated in Table 2. Within Table 2, TN represents the count of negative classes 
accurately predicted as negative, while FP indicates the count of negative classes incorrectly 
predicted as positive. Conversely, FN illustrates the number of positive classes inaccurately predicted 
as negative, and TP denotes the number of positive classes accurately predicted as positive. These 
metrics—particularly Precision, Recall, and F1-score—are widely recommended in binary 
classification tasks, especially when datasets are imbalanced, because accuracy alone can be 
misleading (e.g., accuracy paradox) [31]. The F1-score, defined as the harmonic mean of Precision 
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and Recall, provides a balanced measure that penalizes models favoring one at the expense of the 
other, making it especially valuable when both false positives and false negatives carry significant 
consequences [32]. 

Table 2. Performance indicators and formula. 

Performance indicators formula 
Precision (P) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

Recall (R) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 

F1-score 2 ∗ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑅𝑒𝑐𝑎𝑙𝑙  

Performance indicators formula 
Precision (P) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

Recall (R) 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 

3. Results 

3.1. The Classification Performance of Each Model on Each Data Augmentation 

In this experiment, the training data consisted entirely of astronomical images augmented using 
Rotation, with the objective of enhancing the diversity of object orientations and improving the 
model’s ability to learn from rotationally varied perspectives. A total of nine Convolutional Neural 
Network (CNN) architectures were tested—DenseNet121, InceptionV3, MobileNet, MobileNetV2, 
ResNet50, ResNet101, VGG16, VGG19, and Xception—under different batch sizes (32, 64, 128, and 
256) and two training strategies: Transfer Learning (TL) and Fine-Tuning (FT). 

Table 2. Comparison of classification results of different deep learning with original dataset. 

Rank Model Method Batch size Accuracy F1 Score 
(bogus) 

F1 Score 
(real) 

1 MobileNet fine_tuned 64 0.98938 0.99393 0.95758 

2 ResNet50 fine_tuned 32 0.98634 0.99222 0.94410 

3 VGG16 fine_tuned 32 0.98634 0.99221 0.94479 

4 VGG19 fine_tuned 256 0.98331 0.99049 0.93168 

5 MobileNet transfer 32 0.98483 0.99130 0.94048 

Table 2. Comparison of classification results of different deep learning with rotation dataset. 

Rank Model Method Batch size Accuracy F1 Score 
(bogus) 

F1 Score 
(real) 

1 Xception transfer 128 0.97750 0.97739 0.97761 
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2 Xception transfer 256 0.97375 0.97352 0.97398 

3 VGG16 fine_tuned 128 0.97500 0.97497 0.97503 

4 VGG19 fine_tuned 256 0.97188 0.97168 0.97207 

5 Xception fine_tuned 32 0.97188 0.97146 0.97227 

The results indicated that Xception consistently outperformed other models, particularly in 
Transfer Learning at batch size 128, where it achieved an accuracy of 0.97750 and an F1-score (real) 
of 0.97761, demonstrating exceptional capability in learning rotational patterns. Even in Fine-Tuning 
with batch size 256, Xception maintained excellent performance, with accuracy of 0.96938 and F1-
score (real) of 0.96981, reflecting both high accuracy and stability. Another standout model was 
VGG16 (Fine-Tuned), which achieved accuracy of 0.97500 and F1-score (real) of 0.97503 at batch size 
128, closely matching Xception’s performance and surpassing many other models. 

MobileNet, known for its computational efficiency and compact architecture, also performed 
well in Transfer Learning at batch size 128, with accuracy of 0.96250 and F1-score (real) of 0.96245. 
However, when fine-tuned, MobileNet displayed signs of overfitting or class imbalance, particularly 
at batch size 128, where despite a high precision of 0.99826, the recall dropped to 0.71875, resulting 
in a reduced F1-score of 0.87610. This suggests that additional regularization or balancing techniques 
may be necessary when applying Rotation to lightweight models like MobileNet. 

ResNet50 and ResNet101 exhibited greater variability. For example, ResNet50 fine-tuned at 
batch size 256 failed completely, with accuracy of 0.5 and F1-score of 0, indicating poor compatibility 
between deep ResNet architectures and Rotation augmentation without appropriate tuning. On the 
other hand, ResNet101 fine-tuned at batch size 32 performed well, achieving accuracy of 0.96438 and 
F1-score (real) of 0.96497, suggesting that smaller batch sizes may be more suitable for deep ResNet 
models under this augmentation strategy. 

MobileNetV2 also demonstrated strong performance, with Transfer Learning at batch size 256 
yielding accuracy of 0.96812 and F1-score (real) of 0.96854, which is impressive given the model’s 
lightweight and energy-efficient design. Similarly, VGG19 showed notable consistency in both 
Transfer and Fine-Tuned settings, with Fine-Tuned VGG19 at batch size 256 reaching accuracy of 
0.97188 and F1-score (real) of 0.97207—among the highest in the experiment. 

In conclusion, the results suggest that Xception (Transfer, batch size 128), VGG16 (Fine-Tuned, 
batch size 128), and VGG19 (Fine-Tuned, batch size 256) were the top three performers under 
Rotation-based augmentation, maintaining high accuracy and F1-scores across both “bogus” and 
“real” classes. Meanwhile, models like ResNet50 and MobileNet, in some configurations showed 
issues with performance imbalance or overfitting, highlighting the need for careful selection, 
hyperparameter tuning, and possibly the application of additional regularization methods. 
Ultimately, these findings demonstrate that Rotation alone can be a highly effective augmentation 
technique, provided that the model architecture and batch size are appropriately matched to the 
nature of the data. 

Table 2. Comparison of classification results of different deep learning with noise dataset. 

Rank Model Method Batch size Accuracy F1 Score 
(bogus) 

F1 Score 
(real) 

1 Xception transfer 128 0.97750 0.97739 0.97761 
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2 Xception transfer 256 0.97375 0.97352 0.97398 

3 VGG16 fine_tuned 128 0.97500 0.97497 0.97503 

4 VGG19 fine_tuned 256 0.97188 0.97168 0.97207 

5 Xception fine_tuned 32 0.97188 0.97146 0.97227 

In this experiment, all models were trained using astronomical image data augmented with 
Noise, which involves injecting random disturbances into images to simulate the imperfections 
commonly found in real-world astronomical observations—such as blurring, sensor artifacts, or low-
light conditions. The study compared the performance of nine Convolutional Neural Network (CNN) 
architectures—DenseNet121, InceptionV3, MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16, 
VGG19, and Xception—under two training strategies: Transfer Learning and Fine-Tuning, across a 
range of batch sizes (32, 64, 128, and 256). 

Overall results indicate that most models failed to effectively learn from noise-augmented data, 
especially MobileNet, MobileNetV2, VGG16, VGG19, ResNet50, and ResNet101, all of which 
consistently yielded an accuracy of 0.50000 under all combinations of training strategy and batch size. 
This strongly suggests a failure in learning or a complete inability to distinguish between classes. 
Notably, the F1-score for the “real” class was 0.00000, indicating that these models failed to correctly 
classify any true instances or were severely biased toward the “bogus” (negative) class. 

The few models that demonstrated some resilience to the effects of noise were Xception and 
InceptionV3, which still managed to achieve accuracy and F1-score values above random chance. The 
Xception model fine-tuned at batch size 256 was the best-performing model in this experiment, 
achieving an accuracy of 0.72625, precision (bogus) = 0.66667, recall (bogus) = 0.90500, and F1-score 
(bogus) = 0.76776, with a real-class F1-score of 0.66667—not exceptionally high but significantly better 
than all other models. Another model with relatively promising results was ResNet50 fine-tuned at 
batch size 256, which achieved accuracy = 0.85000 and F1-score (real) = 0.83827. While precision and 
recall were still lower than those observed in non-noise settings, the performance remained 
reasonably usable. 

InceptionV3 showed mixed results, especially under Transfer Learning, where it achieved 
accuracy of 0.63187 and F1-score (real) = 0.43092 at batch size 32. Although not particularly high, this 
still indicates some degree of meaningful learning beyond random prediction. However, Fine-Tuning 
of InceptionV3 across several batch sizes often resulted in F1-scores for the real class dropping below 
0.2—or even 0.1—which may indicate overfitting or over-adaptation to the noise, thereby degrading 
its ability to generalize to true class features. 

Interestingly, several models—such as MobileNetV2 (transfer, batch 256)—showed high 
precision for the “real” class (e.g., 0.75) but extremely low F1-scores (e.g., 0.00746). This disparity 
suggests that while a few correct predictions may have occurred, the number of predictions for the 
“real” class was extremely low, leading to very poor recall and severely penalized F1-scores. This 
reinforces the conclusion that most models failed to cope with noise unless specifically adapted to 
handle such data. 

In summary, the experiment demonstrates that Noise-based Data Augmentation significantly 
degrades model accuracy across most architectures and training strategies. The most noise-resilient 
model was Xception (fine-tuned, batch 256), followed by ResNet50 (fine-tuned, batch 256) and 
InceptionV3 (transfer, batch 32), all of which performed noticeably better than random baselines. 
However, these findings also underscore the need for advanced techniques—such as denoising 
preprocessing, noise-aware training strategies, or mixed augmentation pipelines—to enhance model 
robustness and generalization when training on noisy astronomical data 
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Table 2. Comparison of classification results of different deep learning with hflip dataset. 

Rank Model Method Batch 
size 

Accuracy F1 Score 
(bogus) 

F1 Score 
(real) 

1 MobileNet transfer 64 0.99875 0.99875 0.99875 

2 Xception transfer 32 / 64 0.99875 0.99875 0.99875 

3 VGG19 fine_tuned 32 / 64 0.99875 0.99875 0.99875 

4 VGG16 fine_tuned 64 / 256 0.99687 0.99688 0.99688 

5 MobileNetV2 transfer 256 0.99375 0.99379 0.99379 

In this experiment, all data were trained using Horizontal Flip (HFlip) as a Data Augmentation 
technique. This method reflects the images horizontally to increase the diversity of object orientation 
in astronomical data. The objective was to enhance the capacity of Convolutional Neural Networks 
(CNNs) to learn object features that may appear flipped when captured by telescopes from different 
directions. The study involved nine CNN architectures: DenseNet121, InceptionV3, MobileNet, 
MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and Xception, evaluated under both Transfer 
Learning and Fine-Tuning strategies, and across varying Batch Sizes (32, 64, 128, 256). 

The results clearly demonstrated that most models performed consistently well, particularly 
Xception, MobileNet, InceptionV3, VGG16, and VGG19. These models frequently achieved Accuracy 
near 100% and high F1-scores for both “bogus” and “real” classes. For example, Xception (both 
transfer and fine-tuned) at batch sizes 64, 128, and 256 achieved Accuracy ranging from 0.99750 to 
0.99813, with F1-scores for both classes between 0.99688 and 0.99875. This reflects the model’s deep 
and precise learning of flipped image characteristics—among the highest-performing results in the 
experiment. 

Similarly, MobileNet (both transfer and fine-tuned) yielded outstanding performance. Notably, 
MobileNet (transfer, batch 128) achieved Accuracy = 0.99875 and F1-score (real) = 0.99875, comparable 
to Xception and VGG19 (fine-tuned) under several conditions. InceptionV3 also showed consistently 
strong results, with transfer models at batch sizes 64, 128, and 256 achieving Accuracy values between 
0.99625 and 0.99750, and very high F1-scores across both classes. It is notable that F1-score (real) for 
these models never dropped below 0.99000 under optimal conditions. 

VGG16 and VGG19 also performed remarkably well, especially in fine-tuned mode at batch sizes 
64 and 256, achieving Accuracy between 0.99687 and 0.99813, with near-perfect F1-scores in both 
classes. DenseNet121, particularly in transfer learning mode at batch sizes 128 and 256, consistently 
produced F1-score (real) > 0.99315, demonstrating the architecture's robustness in learning from 
horizontally flipped images. 

However, some models showed performance degradation. For example, MobileNetV2 (fine-
tuned) at batch sizes 32, 64, and 128 exhibited Accuracy between 0.91 and 0.92, with F1-score (real) 
dropping to approximately 0.91–0.93. Additionally, ResNet101 and ResNet50 under certain 
conditions—particularly fine-tuned at batch sizes 128 or 256—completely failed to generalize, with 
Accuracy = 0.50000 and F1-score (real) = 0.00000, indicating an inability to learn or severe overfitting 
to one class. 

In conclusion, Horizontal Flip was found to significantly enhance model performance in 
learning symmetrical or directionally inverted objects, especially when paired with well-designed 
deep architectures like Xception, MobileNet, and InceptionV3. While Fine-Tuning generally 
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produced strong results, Transfer Learning also proved capable of generating powerful models—
offering an efficient training strategy under limited computational resources. Therefore, HFlip can be 
considered a highly effective augmentation technique for improving classification accuracy in 
astronomical image analysis. 

Table 2. Comparison of classification results of different deep learning with vflip dataset. 

Rank Model Method Batch 
size 

Accuracy F1 Score 
(bogus) 

F1 Score 
(real) 

1 MobileNet transfer 64 0.99875 0.99875 0.99875 

2 Xception transfer 32 / 64 0.99875 0.99875 0.99875 

3 VGG19 fine_tuned 32 / 64 0.99875 0.99875 0.99875 

4 VGG16 fine_tuned 64 / 256 0.99687 0.99688 0.99688 

5 MobileNetV2 transfer 256 0.99375 0.99379 0.99379 

In this experiment, the dataset was augmented using Vertical Flip (VFlip)—a technique that 
mirrors astronomical images along the vertical axis—to enhance the model's ability to learn features 
from objects captured in reversed vertical orientations. This method is particularly valuable in 
astronomical image analysis, where object positions and orientations can vary across different 
observations. The experiment involved nine CNN architectures—DenseNet121, InceptionV3, 
MobileNet, MobileNetV2, ResNet50, ResNet101, VGG16, VGG19, and Xception—under both 
Transfer Learning and Fine-Tuning strategies, and across various Batch Sizes (32, 64, 128, and 256). 
  The overall results demonstrated that deeper and structurally efficient models effectively 
handled the vertical flipping transformation. Specifically, models such as MobileNet, Xception, 
InceptionV3, VGG19, and VGG16 achieved consistently high performance across all key evaluation 
metrics—Accuracy, Precision, Recall, and F1-score—for both “bogus” and “real” classes. Notably, 
MobileNet (transfer) and VGG19 (fine-tuned) at batch sizes of 32, 64, and 128 achieved Accuracy and 
F1-score as high as 0.99875, indicating near-perfect classification of vertically flipped images. 

Similarly, Xception (transfer) at batch size 256 reached Accuracy = 0.99813 and identical F1-
scores of 0.99813 for both classes. Xception consistently maintained high performance across all batch 
sizes and training strategies. However, in some cases, such as Xception fine-tuned at batch 256, 
Accuracy slightly decreased to 0.98000 and F1-score (real) = 0.98039, which remains remarkably high 
and commendable. 

Other models like DenseNet121 also showed excellent results, with transfer learning at batch 
sizes 32 or 64 yielding Accuracy between 0.99125 and 0.99313 and F1-score (real) exceeding 0.991. 
Similarly, InceptionV3 (transfer) at batch sizes 64 and 128 achieved Accuracy up to 0.99687 and F1-
score (real) > 0.99688, reflecting robust and consistent performance. Despite their older architecture, 
VGG16 and VGG19 maintained outstanding accuracy—VGG16 fine-tuned at batch 256 achieved 
Accuracy = 0.99687 and F1-score (real) = 0.99688, comparable to top-performing models like Xception 
and MobileNet. 

In contrast, models such as ResNet50 and ResNet101 exhibited more volatile performance. 
Specifically, ResNet101 fine-tuned at batch sizes 128 and 256 showed Accuracy = 0.50000 and F1-score 
(real) = 0.00000, indicating potential overfitting or heightened sensitivity to vertical flipping 
transformations. However, ResNet101 (transfer) at batch sizes 64 and 256 still produced Accuracy 
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values around 0.92–0.93 and F1-score (real) > 0.92, suggesting that transfer learning may help mitigate 
VFlip's impact on ResNet's performance. 

In summary, the experiment clearly shows that Vertical Flip (VFlip) augmentation significantly 
enhances model performance when applied with the right architectures particularly Xception, 
MobileNet, InceptionV3, VGG19, and VGG16. Fine-Tuning with moderate batch sizes (e.g., 64 or 128) 
consistently yielded very high evaluation scores. Moreover, Transfer Learning proved sufficient for 
models like MobileNet and Xception, achieving high performance without full retraining. Thus, 
VFlip stands out as a highly effective augmentation technique, especially in real-world systems 
requiring robustness and accuracy in scenarios with unpredictable image orientation. 

3.2. The Classification Performance of Ensemble Deep Learning 

In the previous section, various Convolutional Neural Network (CNN) architectures were 
trained and evaluated under different conditions using techniques such as Data Augmentation and 
parameter tuning, including the application of Transfer Learning and Fine-Tuning, alongside 
adjustments to the Batch Size. These experiments aimed to investigate how different training 
strategies affect the model's ability to classify astronomical images in complex and uncertain 
scenarios. Preliminary results revealed that several models—particularly Xception, MobileNet, 
InceptionV3, VGG16, and VGG19—consistently maintained strong performance across a range of 
augmented datasets, including Original, Vertical Flip, Horizontal Flip, and Rotation. These models 
sustained high levels of Accuracy, Precision, Recall, and F1-score across most experimental settings 
under both Transfer Learning and Fine-Tuning approaches. This demonstrates the flexibility and 
structural robustness of these architectures in handling spatial transformations and symmetrical 
variations commonly found in astronomical image data. However, a significant limitation that 
warrants special attention for future development is the models' vulnerability to noise-augmented 
data. Noise augmentation was used to simulate real-world imperfections in astronomical imagery, 
such as sensor interference or unfavorable environmental conditions. Under these conditions, most 
models showed a noticeable drop in performance, with Accuracy and F1-score falling below usable 
thresholds in many cases—especially in the “real” class, where some models recorded an F1-score of 
0.00000, indicating a complete failure to identify true astronomical objects. These results highlight 
the presence of bias and a lack of generalization capability when dealing with high levels of noise. 

The models with the best performance for each type of data transformation (as identified in the 
previous experimental sections) were selected based on both Accuracy and F1-score, considering the 
most effective Batch Size for each case, as follows: 

Table 2. Selected Models for Ensemble Based on Best Performance by Augmentation Type. 

Model Method Augmentation Batch Size 

MobileNet Fine-Tuned Original 64 

Xception Transfer Rotation 128 

Xception Fine-Tuned Noise 256 

MobileNet Transfer HFlip 64 

MobileNet Transfer VFlip 32 
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3.1.1. Experimental Results of Model Combination Using Soft Voting Ensemble Technique 

The experimental results using the Soft Voting Ensemble technique, which combined multiple 
models trained with various data augmentation strategies, demonstrated a promising level of 
performance in astronomical image classification. The ensemble model achieved strong results in the 
“bogus” class, with a precision of 0.7513, a remarkably high recall of 0.9957, and an F1-score of 0.8564. 
However, in the “real” class, while precision remained very high at 0.9922, the recall dropped 
significantly to 0.62143, resulting in an F1-score of 0.764. This indicates that the model performed 
well in identifying negative instances but struggled to detect true astronomical objects accurately. 
The overall accuracy of the ensemble was 0.8215, reflecting moderate general performance across 
mixed data conditions. The confusion matrix further supports these observations: the model correctly 
identified 4,696 bogus instances out of 4,716, while it misclassified 1,554 real instances as bogus out 
of a total of 4,105 real samples. This substantial number of false negatives in the real class explains 
the low recall and highlights a critical limitation in the ensemble’s generalization when encountering 
real, often more complex, image structures. When evaluating performance by augmentation type, 
both HFlip and VFlip produced excellent results, with HFlip achieving a precision of 0.995, recall of 
0.986, and an F1-score of 0.9905—demonstrating the model’s ability to learn symmetrical spatial 
features effectively. Rotation-based augmentation also performed relatively well, with an F1-score of 
0.6936, although its slightly lower recall suggests challenges in recognizing rotated features. The 
original dataset without augmentation yielded a high F1-score of 0.972, indicating the model's strong 
capacity to classify undistorted data. However, the model performed poorly on noise-augmented 
data, where the F1-score plummeted to 0.002, driven by an extremely low recall of 0.001. This 
suggests a nearly complete inability to detect real objects in the presence of signal distortion, 
underscoring the model’s vulnerability to noisy environments. In conclusion, the Soft Voting 
ensemble strategy enhances classification accuracy in scenarios involving symmetrical or 
geometrically transformed images. Nonetheless, the model’s performance deteriorates under high-
noise conditions, indicating a need for further improvements. Future work may consider employing 
Weighted Voting strategies that give greater influence to noise-trained models or implementing 
preprocessing techniques to reduce noise before model training. Such enhancements could 
significantly improve model robustness and applicability in real-world astronomical imaging, where 
imperfect and noisy data are often unavoidable. 

Table 2. Test with data. 

Model Accuracy Precision 
(bogus) 

Recall 
(bogus) 

F1 Score 
(bogus) 

Precision 
(real) 

Recall 
(real) 

F1 
Score 
(real) 

Ensemble 0.8215 0.7513 0.9957 0.8564 0.9922 0.62143 0.764 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 4696 20 

True: real 1554 2551 
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Table 2. Experimental Results of Model Combination Using Soft Voting Ensemble Technique pre data 
augmentation. 

Augmentation TP TN FP FN Precision Recall F1-Score 

HFlip 986 995 5 14 0.995 0.986 0.9905 

Noise 1 1000 0 999 1 0.001 0.002 

Rotation 473 994 6 527 0.9875 0.473 0.6396 

VFlip 987 996 4 13 0.996 0.987 0.9915 

original 104 711 5 1 0.9541 0.9905 0.972 

3.1.1. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique 

From the experiments comparing Soft Voting and Weighted Voting techniques, it was observed 
that Soft Voting yielded the lowest overall accuracy, and the issue of Noise remained a major 
challenge in astronomical image classification. To address this, the strategy was shifted to Weighted 
Voting, where model weights were adjusted based on their training configurations. In particular, 
greater emphasis was placed on the model trained with Noise-augmented data in an attempt to 
improve the system’s resilience to signal distortions. In the first Weighted Voting experiment, the 
weight assigned to the Noise-based model was set at 0.3. However, the results indicated that this 
adjustment was insufficient, as the accuracy remained low and the confusion matrix revealed a high 
rate of misclassification, especially in the real class. Subsequently, the weight for the Noise-trained 
model was increased to 0.5 in the second experiment. The performance showed notable 
improvement, especially in handling noisy data, suggesting a positive trend whereby increasing the 
weight of the Noise model could enhance overall robustness. Building upon this trend, the third 
experiment assigned a weight of 0.8 to the Noise model, resulting in the best performance across all 
tests. The ensemble achieved an overall accuracy of 0.972, significantly outperforming previous 
configurations. These results highlight the importance of strategic weight allocation in Weighted 
Voting ensembles and demonstrate that increasing the influence of models trained to handle 
challenging conditions—such as Noise—can substantially improve classification performance in 
complex and imperfect data environments. 

Table 2. Parameter in first ensemble. 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.2 

Xception transfer 128 Rotation 0.2 

Xception fine_tuned 256 Noise 0.3 

MobileNet transfer 64 HFlip 0.15 
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MobileNet Transfer 32 VFlip 0.15 

Table 2. Test with data. 

Model Accuracy Precision 
(bogus) 

Recall 
(bogus) 

F1 Score 
(bogus) 

Precision 
(real) 

Recall 
(real) 

F1 
Score 
(real) 

Ensemble 0.8204 0.7512 0.993 0.855 0.987 0.6221 0.763 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 4683 33 

True: real 1551 2554 

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data 
augmentation. 

Augmentation TP TN FP FN Precision Recall F1-Score 

HFlip 966 990 10 34 0.9898 0.966 0.9777 

Noise 5 1000 0 995 1 0.001 0.0100 

Rotation 509 992 8 491 0.9845 0.509 0.6711 

VFlip 969 991 9 31 0.9908 0.969 0.9798 

original 105 710 6 0 0.9459 1.00 0.9722 

Table 2. Parameter in second ensemble. 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.2 

Xception transfer 128 Rotation 0.2 

Xception fine_tuned 256 Noise 0.50 

MobileNet transfer 64 HFlip 0.15 
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MobileNet Transfer 32 VFlip 0.15 

Table 2. Test with data. 

Model Accuracy Precision 
(bogus) 

Recall 
(bogus) 

F1 Score 
(bogus) 

Precision 
(real) 

Recall 
(real) 

F1 
Score 
(real) 

Ensemble 0.8852 0.830 0.9866 0.901 0.980 0.7688 0.861 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 4653 63 

True: real 949 3156 

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data 
augmentation. 

Augmentation TP TN FP FN Precision Recall F1-Score 

HFlip 962 962 13 38 0.9867 0.962 0.9742 

Noise 277 985 15 723 0.9486 0.277 0.4288 

Rotation 845 986 14 155 0.9837 0.845 0.9097 

VFlip 967 987 13 33 0.9867 0.967 0.9768 

original 105 708 8 0 0.9292 1.00 0.9633 

Table 2. Parameter in third ensemble. 

Model Method Batch Size Augmentation Weight 

MobileNet fine_tuned 64 Original 0.20 

Xception transfer 128 Rotation 0.20 

Xception fine_tuned 256 Noise 0.80 

MobileNet transfer 64 HFlip 0.15 
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MobileNet Transfer 32 VFlip 0.15 

Table 2. Test with data. 

Model Accuracy Precision 
(bogus) 

Recall 
(bogus) 

F1 Score 
(bogus) 

Precision 
(real) 

Recall 
(real) 

F1 
Score 
(real) 

Ensemble 0.9348 0.951 0.925 0.938 0.916 0.945 0.931 

Confusion Matrix 

 Pred: bogus Pred: real 

True: bogus 4364 352 

True: real 223 3882 

Table 2. Experimental Results of Model Combination Using Weighted Voting Ensemble Technique pre data 
augmentation. 

Augmentation TP TN FP FN Precision Recall F1-Score 

HFlip 959 968 32 41 0.9677 0.959 0.9633 

Noise 1000 772 228 0 0.8143 1.00 0.8977 

Rotation 855 950 50 145 0.9448 0.855 0.8976 

VFlip 967 970 30 36 0.9698 0.9640 0.9669 

original 104 704 12 1 0.8966 0.9905 0.9412 

4. Discussion 

The experimental results clearly demonstrate the effectiveness of integrating advanced 
Convolutional Neural Network (CNN) architectures with strategic Data Augmentation, Transfer 
Learning, Fine-Tuning, and Ensemble Learning in the context of astronomical transient detection. 
Several critical insights can be drawn from these findings. 

4.1. Performance of Individual CNN Models 

Across all augmentation strategies, models such as Xception, MobileNet, and VGG16/19 
consistently outperformed others in both accuracy and F1-score. In particular, Xception with Transfer 
Learning and batch size 128 achieved the highest performance on rotation-augmented data, while 
MobileNet (Fine-Tuned) performed exceptionally on the original dataset. These results emphasize 
the flexibility and structural robustness of certain architectures in learning domain-specific patterns, 
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especially those involving spatial symmetry, orientation variations, and brightness inconsistencies 
commonly observed in transient astronomical imagery. 

However, not all architectures responded equally well to each augmentation technique. For 
instance, ResNet50 and ResNet101 displayed significant performance degradation under some 
configurations—most notably with noise-augmented data and larger batch sizes. This suggests that 
deeper architectures may require more sophisticated regularization or denoising techniques when 
handling corrupted or low-SNR images. 

4.2. Impact of Data Augmentation 

Among the augmentation strategies tested, Horizontal Flip (HFlip) and Vertical Flip (VFlip) 
yielded the most consistently high classification performance across all models, often resulting in F1-
scores above 0.99. This indicates that these transformations effectively simulate the positional 
variability of transient objects and assist CNNs in learning rotational-invariant features. 

In contrast, Noise augmentation proved to be the most challenging for nearly all models. Most 
architectures failed completely under noisy conditions, yielding F1-scores as low as 0.000, indicating 
severe overfitting or class bias. Only a few models, notably Xception and ResNet50, managed to retain 
marginal classification ability. This highlights a key vulnerability in current deep learning models 
applied to astronomical imagery: their sensitivity to image noise, which is a prevalent issue in real 
observational data. 

These findings emphasize the need for future research to focus on improving robustness against 
noise—either through preprocessing (e.g., denoising filters), adversarial training, or noise-aware 
model architectures. 

4.3. Effectiveness of Ensemble Learning 

To address the weaknesses of individual models—particularly under noise-augmented 
conditions—this study explored Soft Voting and Weighted Voting ensemble strategies. The Soft 
Voting ensemble offered moderate improvements in accuracy but remained limited by its uniform 
weighting scheme, which failed to sufficiently correct performance imbalance under noisy 
conditions. Specifically, recall in the “real” class was consistently low, indicating a failure to detect 
true transient events reliably. 

In contrast, Weighted Voting allowed more flexibility by assigning higher influence to noise-
trained models. A progressive tuning of weights in three ensemble configurations demonstrated that 
increasing the weight of the noise-robust model (up to 0.8) significantly improved overall 
performance, culminating in an F1-score (real) of 0.931 and an overall accuracy of 0.9348. This 
supports the hypothesis that ensemble strategies which explicitly compensate for weak conditions—
such as noise corruption—can substantially improve model generalization and classification balance. 

Notably, the final ensemble configuration not only corrected recall degradation but also 
maintained strong performance across other augmentation types, demonstrating its adaptability and 
robustness in complex, heterogeneous astronomical datasets. 

4.4. Generalization and Scalability 

The success of this ensemble approach illustrates the potential of combining multiple specialized 
models to form a unified system capable of handling the high variance and complexity of real-world 
astronomical data. The pipeline’s design—featuring modular training, augmentation-specific 
modeling, and intelligent voting—offers a scalable solution that can be extended to other sky surveys 
and transient detection projects. Furthermore, the system’s reliance on Transfer Learning and 
moderate fine-tuning suggests that this approach is computationally efficient and suitable for 
deployment in time-critical applications, such as real-time transient detection in large-scale surveys 
like GOTO. 
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5. Conclusions 

This study introduced an ensemble-based deep learning framework designed to classify real and 
bogus astronomical transients from sky survey images. By integrating Transfer Learning, Fine-
Tuning, multiple Data Augmentation strategies (such as Rotation, Horizontal Flip, Vertical Flip, and 
Noise), and Ensemble Learning techniques, the proposed system achieved substantial improvements 
in classification accuracy and robustness. Models like Xception, MobileNet, and VGG19 consistently 
outperformed others, particularly under augmentation strategies that introduced geometric 
variations. While most models struggled with noise-injected images, the Weighted Voting strategy—
especially when assigning higher weights to noise-trained models—greatly enhanced the system’s 
resilience to distortion and improved the F1-score of the “real” class to 0.931 with an overall accuracy 
of 93.48%. These results highlight the importance of model diversity and strategic ensemble 
configuration for addressing the challenges of real-world astronomical datasets. The proposed 
approach offers a scalable and practical solution for transient detection tasks in large-scale sky 
surveys and lays the groundwork for future research in noise-resilient deep learning for astronomy. 
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