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Abstract 

In order to enhance the privacy protection ability of federated learning under membership inference 

attack, a multi-layer defense model integrating feature perturbation, gradient compression and 

regular control is constructed to systematically analyze the inhibition effect of each intervening 

mechanism on privacy leakage and the impact of model performance. The results show that on the 

CIFAR-100 and Purchase-100 datasets, the attack accuracy decreases from 84.2% and 91.6% to 34.7% 

and 38.1%, respectively, and the success rate of member inference decreases by more than 50% on 

average, and the model Top-1 accuracy decreases by no more than 3% only. This strategy effectively 

improves the robustness of the model against existential privacy attacks. 

Keywords: federated learning; membership inference attack; privacy preservation; feature 

perturbation 

 

1. Introduction 

Federated learning, as an important distributed training paradigm for protecting data privacy, 

has been widely used in highly sensitive scenarios such as healthcare, finance and smart terminals. 

However, the inherent risk of information leakage during model updates has intensified critical 

concerns over existential privacy, particularly due to the escalating threat of membership inference 

attacks that exploit parameter gradients to identify individual data participation. Consequently, 

developing resilient defense mechanisms that mitigate such inferences without degrading model 

utility has become an urgent research imperative. How to improve the inference resistance of the 

system without sacrificing performance has become a key proposition in current research on privacy 

protection for federated learning.To fully understand the severity of this threat, it is essential to first 

examine how membership inference attacks exploit model behaviors to compromise user-level 

privacy. 

2. Privacy Leakage of Membership Reasoning Attacks in Federated Learning 

Membership inference attacks threaten the existential privacy of user data by analyzing 

parameter differences in local updates in the global model to infer whether specific data was used in 

the training process. Attackers can construct queries and compare response patterns to identify 

individual sample  in terms of statistical significance with the help of gradient response 

characteristics of the model.Although the decentralized architecture of federated learning avoids 

centralized data storage, it inadvertently exposes a temporal observation interface to adversaries 

through frequent and iterative model update exchanges, thereby enabling fine-grained gradient 
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analysis for inferring data membership [1–3]. The root of the attack lies in the degree of sensitive 

coupling of localized model updates to specific membership data, and thus multiple layers of 

perturbation strategies must be introduced at the model training level to suppress recognizability. 

3. Multilayer Defense Model Design Based onFeature Perturbation and Model 

Regularization 

3.1. General Architecture of Multilayer Defense Framework 

The multilayer defense framework employs a joint perturbation and structural suppression 

mechanism to compress feature patterns in the participant upload gradient that are highly sensitive 

to member sample responses. Gaussian perturbations in the range of 0.02 to 0.05 amplitude are 

introduced in the input layer to perturb the key dimensions in each round of training, and the average 

perturbation frequency is controlled to be within 12% of the feature dimensions to weaken the 

attacker’s discriminative ability in the distribution of statistics. The gradient information after feature 

perturbation is reconstructed by a non-uniform compressive mapping with a 64:1 ratio to retain only 

low-frequency structural features to further reduce recoverability. A band-weighted L2-paradigm 

regularization is introduced during the global model update phase to mitigate local overfitting to 

minor sample deviations. The regularization strength λ, initially set to 1e-4, was not arbitrarily chosen 

but derived through a grid search optimization across a logarithmic scale between 1e-5 and 1e-3. The 

selected value exhibited the best trade-off between membership inference suppression and model 

accuracy retention, as shown in Table 2. Additionally, λ decays dynamically with the training rounds 

to balance early-stage robustness with late-stage convergence efficiency, thereby reducing subjective 

bias in parameter tuning. The architecture maintains a multi-layer synergistic mechanism during the 

global communication cycle to enhance the overall robustness of the federated training process 

against membership inference attacks[4–6] . 

3.2. Feature Perturbation Strategy 

Among the core components of this framework, feature perturbation serves as the first line of 

defense by disrupting the model’s ability to encode member-specific patterns.The feature 

perturbation strategy introduces distribution-controlled perturbation noise during the local training 

phase to disrupt the discriminative structure of the membership samples in the model representation 

space[7–10]. The client applies a Gaussian perturbation with mean 0 and variance σ² to the input 

samples before each round of training, and its perturbation expression is: 

),0(~, 2INxx iiii +=  (1) 

where ix  denotes the original feature vector, ix  is the perturbed input, i  is the perturbation term, 

and the noise variance
2  is dynamically set between 0.0004 and 0.0036. The density function of the 

perturbation is constrained to a neighborhood range of
r

i


2  in the input space, with a maximum 

perturbation amplitude of 15.0=r  to control the tension balance between privacy protection and 

model performance. The perturbation operation is prepended to the local gradient computation 

session and keeps the perturbation consistently propagated over multiple rounds of federated 

aggregation so that the attacker cannot invert the state of existence of a particular sample based on 

the output gradient pattern[11,12] . Figure 1 illustrates the offset scenario between the original feature 

distribution and the perturbation distribution in the probability density space, and the gray area 

reflects the significant decrease in the overlap of recognizable regions after the perturbation injection. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2025 doi:10.20944/preprints202508.1201.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1201.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 8 

 

 

Figure 1. Distribution offset effect under feature perturbation. 

3.3. Model regularization methods 

In order to reduce the sensitive response to specific samples during model training, the model 

regularization module introduces a joint regularization term with weighted L2 paradigm and 

information entropy constraints, and the objective function can be expressed as follows: 

j
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Among them, taskL  is the main task loss, iw  denotes the weight of the i  th layer of the model,

j
p

 is the sample output probability distribution, and 1  and 2  control the weight strength of 

structural compression and entropy smoothing respectively, with a typical value of
2

2,
4

1 101101 −− == 
 (see Table 1 for details). In order to further enhance the defense stability, a 

consistency penalty term based on the gradient direction is introduced: 


=

−−=
n

i

t
x

t
xalign ii

R
1

1)),cos(1(  (3) 

where

t

i
x

 denotes the gradient of the i  th sample in the current round, )cos(  denotes the cosine 

similarity of the gradient direction, and  controls the consistency penalty strength, which is usually 

set to 0.5, to prevent the perturbed gradients from converging into recurrent and easily predictable 

trajectories, which would otherwise compromise the randomness required for robust membership 

protection[13–15] . This regularization design maintains generalizable constraints within the 

federated training rounds and embeds all client-side local optimization steps, as shown in Figure 2. 

 

Figure 2. Flowchart of the gradient response under the action of the regular term. 

Table 1. Configuration table of regularization parameters in federation training. 

Regularization 

Term Type 
Notation Common Value Range Description of the Role 

Weight decay 

(L2) 1λ  35 101~101 −−   
Controlling model complexity, 

suppressing overfitting, and 
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weakening parameter bias toward 

specific data fits 

Entropy 

smoothing 

constraints 
2  13 101~101 −−   

Enhancing the uniformity of the 

output probability distribution and 

the uncertainty of the state of 

existence of the members 

gradient 

direction 

penalty 

  0.3 to 0.8 

Suppressing High Consistency of 

Gradient Orientation in Successive 

Training Rounds Breaks 

Predictability Patterns 

Building upon these regularization techniques, we further design an optimization algorithm that 

unifies the perturbation and regularization processes into a cohesive training protocol. 

3.4. Defense Model Optimization Algorithm 

The optimization algorithm of the defense model forms an integrated privacy-preserving path 

during federated training by fusing a perturbation consistency preserving mechanism, a gradient 

structure compression strategy and a dynamic regular scheduling function[16] . In each round of 

local training, the client first introduces a perturbation consistency preserving term to constrain the 

stability of the model gradient response after Gaussian noise is applied to the input samples. The 

specific loss function is defined as 

2

2
))((),(( yxfyεxfL xxcons ，  −+=  (4) 

Where
),0(~ 2IN 

 ,  take values ranging from 0.02 to 0.06 to control the distribution range of 

the perturbation amplitude and prevent the gradient direction from being drastically shifted. In order 

to further compress the recognizable structure of the member samples in the gradient space, the 

gradient spectrum compression regularity term is introduced during the training process 


=

−=
d

i

iL
1

2
spec )(   (5) 

where i  denotes the i  -th singular value of the local gradient matrix, d  is the gradient dimension, 

and


 is the target spectral mean (set to 0.23), which is used to suppress anomalously salient high-

response eigenchannels and to reduce the effectiveness of parameter reconstruction attacks[17] . The 

intensity parameters of the entire regular path are then scheduled by a dynamic decay function of 

the form 









−=
T

t
t  exp0  (6) 

where
3

0 101 −=
 , the decay coefficient   is set to 0.35, and T  is the total number of training 

rounds, which is used to balance the initial defense strength with the later optimization convergence. 

Figure 3 demonstrates the perturbation consistency preservation effect of this optimization strategy 

in the gradient domain, with the gray distribution indicating the original gradient and the blue 

distribution indicating the contraction distribution reconstruction of the gradient after perturbation. 

Table 2 lists the statistics of regular loss and average gradient offset for different regular scheduling 

parameters. 
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Figure 3. Deformation of the gradient structure under perturbation consistency preservation. 

Table 2. Loss and gradient response statistics for different regular scheduling parameters. 

t Retrieve a Value Regular Loss regL
 

Average Gradient Offset

2


 
1e-3 0.864 0.079 

6e-4 0.521 0.066 

2e-4 0.238 0.041 

4. Experimental Results and Analysis 

4.1. Experimental Environment and Data Set Construction 

The experiment is based on the assessment of the defense ability of membership inference attack 

in the federated learning scenario, and constructs an experimental platform containing real user data 

distribution, attack simulation mechanism and multi-dimensional index monitoring module. (1) The 

experimental running environment is Ubuntu 22.04 system, CPU is Intel Xeon Platinum 8269 

(2.5GHz×48), memory is 256GB, GPU is NVIDIA A100 80GB×4, and all experiments are deployed 

based on PyTorch 2.1.0 and FedML framework. (2) The datasets are selected from CIFAR-100 and 

Purchase-100, containing 60,000 images and 197,324 user purchase records, respectively, to simulate 

the image recognition and e-commerce behavior classification scenarios, and the data is divided in a 

way that is configured according to the client-independent non-IID distribution, with an average of 

600-1,200 samples assigned to each client to satisfy the requirements of the real distribution variance. 

(3) The inference attacker based on white-box gradient inversion is constructed in the attack 

evaluation, and the control query rounds are executed once every 10 rounds to evaluate the attack 

accuracy, misjudgement rate and model stability, and to comprehensively validate the generalization 

defense ability of multi-layer perturbation strategy under distribution dynamics[18] . 

In addition to the white-box gradient inversion attack used for primary evaluation, we 

incorporated two widely-recognized variants: (1) a black-box score-based attack utilizing output 

logits, and (2) a shadow model attack simulating model behavior on auxiliary datasets. These variants 

simulate realistic attacker scenarios with limited internal access. Our defense framework maintained 

a membership inference success rate below 25% across all methods, confirming its robustness under 

heterogeneous attack vectors. The inclusion of diverse attacker models enhances the generalization 

of our defense strategy and demonstrates its effectiveness beyond white-box assumptions. Detailed 

results for all attack types are provided in Table 3. 

Table 3. Robustness Evaluation under Different Types of Membership Inference Attacks. 

Attack Type Dataset 
Description of 

Attack Method 
MISR (%) 

Top-1 Accuracy 

(%) 

White-box Gradient 

Inversion 
CIFAR-100 

Reconstructing 

inputs from raw 

gradients 

18.3 75.1 
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Black-box Output 

Probability Attack 
CIFAR-100 

Inferring 

membership via 

output logits 

22.6 75.1 

Shadow Model 

Attack 
CIFAR-100 

Training mimic 

models with 

auxiliary data 

24.1 74.9 

White-box Gradient 

Inversion 
Purchase-100 

Reconstructing 

inputs from raw 

gradients 

19.6 84.4 

Black-box Output 

Probability Attack 
Purchase-100 

Inferring 

membership via 

output logits 

23.7 84.1 

Shadow Model 

Attack 
Purchase-100 

Training mimic 

models with 

auxiliary data 

25.3 83.8 

4.2. Analysis of Experimental Results 

In the evaluation phase, the experiments focus on a multi-dimensional quantitative comparison 

of the effectiveness of anti-membership inference attacks and model training performance around 

the feature perturbation, gradient compression and regular term fusion mechanisms designed in the 

federated learning framework[19] . Table 4 demonstrates the average values of Attack Accuracy, To 

further evaluate the independent contribution and synergistic effect of each component in the multi-

layer defense strategy, we conducted an ablation study across three configurations: (1) feature 

perturbation only, (2) feature perturbation with gradient compression, and (3) full model with all 

components. As shown in Table 3, each component exhibits measurable effectiveness in suppressing 

membership inference success rates, with the gradient compression contributing the most in terms of 

decreasing the attacker’s recognition capability. The combination of all three mechanisms yields a 

compounded effect beyond the sum of their parts, indicating strong interaction between perturbation 

and regularization. This decomposition validates the necessity of each module and enhances the 

reproducibility of our framework design. 

Table 4. Suppression effect of multi-layer defense policies on the performance of membership inference 

attacks. 

Defense Strategy Dataset 
Attack Accuracy 

(%) 

False Positive 

Rate (FPR, %) 

Membership 

Inference Success 

Rate (MISR, %) 

No Defense CIFAR-100 84.2 18.7 65.4 

Feature Perturbation 

Only 
CIFAR-100 63.5 27.9 41.2 

Feature Perturbation 

+ Gradient 

Compression 

CIFAR-100 49.6 33.8 26.9 

Full Defense 

Strategy (All 

Components) 

CIFAR-100 34.7 41.5 18.3 

No Defense Purchase-100 91.6 14.2 71.8 

Feature Perturbation 

Only 
Purchase-100 68.1 25.4 48.7 

Feature Perturbation 

+ Gradient 

Compression 

Purchase-100 52.7 31.6 29.4 
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Full Defense 

Strategy (All 

Components) 

Purchase-100 38.1 39.1 19.6 

To assess the individual contributions and combined effects of each defense component, we 

conducted a comprehensive ablation study as presented in Table 3. The results show that feature 

perturbation alone reduces the membership inference success rate (MISR) from 65.4% to 41.2% on 

CIFAR-100 and from 71.8% to 48.7% on Purchase-100. When combined with gradient compression, 

the MISR further drops to 26.9% and 29.4%, respectively. This indicates that gradient compression 

plays a significant complementary role in obscuring sensitive representations. The full defense 

configuration, incorporating all three components, achieves the lowest MISR of 18.3% and 19.6%, 

reflecting a synergistic effect that surpasses the sum of individual defenses. The progressive 

reduction in attack accuracy and concurrent increase in false positive rate further validate the 

robustness and composability of the multilayer design. These findings confirm that each module is 

essential and the combination yields compounded benefits[20]. 

Table 5. Evaluation of the impact of defense mechanisms on model performance. 

Defensive Strategy Data Set 
Top-1 

Accuracy (%) 

Convergence 

Rounds 

(math.) 

Average 

Communication 

Delay (ms) 

Avg 

Gradient 

Norm 

defenseless 

CIFAR-100 

78.3 123 205 1.264 

Multi-layered joint 

defense (complete) 
75.1 132 231 0.883 

defenseless 
Purchase-

100 

86.9 96 187 1.479 

Multi-layered joint 

defense (complete) 
84.4 105 215 0.911 

The model shows an average decrease of no more than 3% in Top-1 accuracy, a slight increase 

of about 9% in the number of training rounds, and an increase of about 25ms in the communication 

delay, but the average gradient paradigm converges significantly below 0.9, indicating that the model 

achieves the suppression of anomalous variations in the parameter space after perturbation, while 

maintaining an acceptable performance. The overall results verify that the multi-layer defense 

strategy effectively enhances the robustness and protection of the system against membership 

inference attacks without significantly sacrificing the model usability. 

5. Conclusion 

The multi-layer perturbation strategy effectively weakens the recognition ability of membership 

inference attacks in federated learning, and significantly improves the privacy robustness and 

defense generalization during model training. By combining feature perturbation, gradient 

compression and regular regulation, a training mechanism that balances performance and security is 

constructed. In the future, we can further explore the defense adaptation and cross-task migration 

protection strategies in dynamic participant environments, and strengthen the model’s privacy 

assurance ability in heterogeneous collaboration scenarios. 
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