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Abstract

In order to enhance the privacy protection ability of federated learning under membership inference
attack, a multi-layer defense model integrating feature perturbation, gradient compression and
regular control is constructed to systematically analyze the inhibition effect of each intervening
mechanism on privacy leakage and the impact of model performance. The results show that on the
CIFAR-100 and Purchase-100 datasets, the attack accuracy decreases from 84.2% and 91.6% to 34.7%
and 38.1%, respectively, and the success rate of member inference decreases by more than 50% on
average, and the model Top-1 accuracy decreases by no more than 3% only. This strategy effectively
improves the robustness of the model against existential privacy attacks.

Keywords: federated learning; membership inference attack; privacy preservation; feature
perturbation

1. Introduction

Federated learning, as an important distributed training paradigm for protecting data privacy,
has been widely used in highly sensitive scenarios such as healthcare, finance and smart terminals.
However, the inherent risk of information leakage during model updates has intensified critical
concerns over existential privacy, particularly due to the escalating threat of membership inference
attacks that exploit parameter gradients to identify individual data participation. Consequently,
developing resilient defense mechanisms that mitigate such inferences without degrading model
utility has become an urgent research imperative. How to improve the inference resistance of the
system without sacrificing performance has become a key proposition in current research on privacy
protection for federated learning.To fully understand the severity of this threat, it is essential to first
examine how membership inference attacks exploit model behaviors to compromise user-level
privacy.

2. Privacy Leakage of Membership Reasoning Attacks in Federated Learning

Membership inference attacks threaten the existential privacy of user data by analyzing
parameter differences in local updates in the global model to infer whether specific data was used in
the training process. Attackers can construct queries and compare response patterns to identify
individual sample in terms of statistical significance with the help of gradient response
characteristics of the model. Although the decentralized architecture of federated learning avoids
centralized data storage, it inadvertently exposes a temporal observation interface to adversaries
through frequent and iterative model update exchanges, thereby enabling fine-grained gradient
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analysis for inferring data membership [1-3]. The root of the attack lies in the degree of sensitive
coupling of localized model updates to specific membership data, and thus multiple layers of
perturbation strategies must be introduced at the model training level to suppress recognizability.

3. Multilayer Defense Model Design Based onFeature Perturbation and Model
Regularization

3.1. General Architecture of Multilayer Defense Framework

The multilayer defense framework employs a joint perturbation and structural suppression
mechanism to compress feature patterns in the participant upload gradient that are highly sensitive
to member sample responses. Gaussian perturbations in the range of 0.02 to 0.05 amplitude are
introduced in the input layer to perturb the key dimensions in each round of training, and the average
perturbation frequency is controlled to be within 12% of the feature dimensions to weaken the
attacker’s discriminative ability in the distribution of statistics. The gradient information after feature
perturbation is reconstructed by a non-uniform compressive mapping with a 64:1 ratio to retain only
low-frequency structural features to further reduce recoverability. A band-weighted L2-paradigm
regularization is introduced during the global model update phase to mitigate local overfitting to
minor sample deviations. The regularization strength A, initially set to 1e-4, was not arbitrarily chosen
but derived through a grid search optimization across a logarithmic scale between le-5 and 1e-3. The
selected value exhibited the best trade-off between membership inference suppression and model
accuracy retention, as shown in Table 2. Additionally, A decays dynamically with the training rounds
to balance early-stage robustness with late-stage convergence efficiency, thereby reducing subjective
bias in parameter tuning. The architecture maintains a multi-layer synergistic mechanism during the
global communication cycle to enhance the overall robustness of the federated training process
against membership inference attacks[4-6] .

3.2. Feature Perturbation Strategy

Among the core components of this framework, feature perturbation serves as the first line of
defense by disrupting the model’s ability to encode member-specific patterns.The feature
perturbation strategy introduces distribution-controlled perturbation noise during the local training
phase to disrupt the discriminative structure of the membership samples in the model representation
space[7-10]. The client applies a Gaussian perturbation with mean 0 and variance o2 to the input
samples before each round of training, and its perturbation expression is:

X =%+e,§~N(0,0°1) ()

where Xi denotes the original feature vector, Xi is the perturbed input, Si s the perturbation term,

2

and the noise variance @  is dynamically set between 0.0004 and 0.0036. The density function of the

il <
Hi2

perturbation amplitude of ' = 0.15 {6 control the tension balance between privacy protection and

perturbation is constrained to a neighborhood range of in the input space, with a maximum

model performance. The perturbation operation is prepended to the local gradient computation
session and keeps the perturbation consistently propagated over multiple rounds of federated
aggregation so that the attacker cannot invert the state of existence of a particular sample based on
the output gradient pattern[11,12] . Figure 1 illustrates the offset scenario between the original feature
distribution and the perturbation distribution in the probability density space, and the gray area
reflects the significant decrease in the overlap of recognizable regions after the perturbation injection.
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Figure 1. Distribution offset effect under feature perturbation.

3.3. Model regularization methods

In order to reduce the sensitive response to specific samples during model training, the model
regularization module introduces a joint regularization term with weighted L2 paradigm and
information entropy constraints, and the objective function can be expressed as follows:

I-total = I-task + ﬂ1Z||W| ”i + 2’22 pj Iog pj (2)
i=1 j=1

Among them, Ltask is the main task loss, Vi denotes the weight of the i th layer of the model,

P is the sample output probability distribution, and z and A control the weight strength of
structural compression and entropy smoothing respectively, with a typical value of

A, =1x10" 1, =1x107°

(see Table 1 for details). In order to further enhance the defense stability, a
consistency penalty term based on the gradient direction is introduced:

I:\)align =a: Z(l_ COS(Vtxi 'Vtxi_l)) (3)
i=1

t
wherein denotes the gradient of thel th sample in the current round, cos() denotes the cosine
similarity of the gradient direction, and & controls the consistency penalty strength, which is usually
set to 0.5, to prevent the perturbed gradients from converging into recurrent and easily predictable
trajectories, which would otherwise compromise the randomness required for robust membership
protection[13-15] . This regularization design maintains generalizable constraints within the
federated training rounds and embeds all client-side local optimization steps, as shown in Figure 2.

Output
Probabilities

Input Data

Gradient
Previous Gradient

Figure 2. Flowchart of the gradient response under the action of the regular term.

Table 1. Configuration table of regularization parameters in federation training.

Reeularizati
egularization Notation Common Value Range Description of the Role
Term Type

Weight decay A 151075 ~1x10°3 Controlling model ?oTnplexity,
(L2) suppressing overfitting, and
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weakening parameter bias toward
specific data fits

Enhancing the uniformity of the

Ent
smrcl)cfto}ﬁz 2 1510 ~1x10° output probability distribution and
e ? x % the uncertainty of the state of
constraints .
existence of the members
gradient SupPressing Higl‘l CcTnsistency .of
L Gradient Orientation in Successive
direction a 0.3t00.8 gy
Training Rounds Breaks
penalty

Predictability Patterns

Building upon these regularization techniques, we further design an optimization algorithm that
unifies the perturbation and regularization processes into a cohesive training protocol.

3.4. Defense Model Optimization Algorithm

The optimization algorithm of the defense model forms an integrated privacy-preserving path
during federated training by fusing a perturbation consistency preserving mechanism, a gradient
structure compression strategy and a dynamic regular scheduling function[16] . In each round of
local training, the client first introduces a perturbation consistency preserving term to constrain the
stability of the model gradient response after Gaussian noise is applied to the input samples. The
specific loss function is defined as

Leons = [V L Fo (x+), Y =V, £(T, (%), )|, @

Where & ~ N(@©.c%1) ,O take values ranging from 0.02 to 0.06 to control the distribution range of
the perturbation amplitude and prevent the gradient direction from being drastically shifted. In order
to further compress the recognizable structure of the member samples in the gradient space, the
gradient spectrum compression regularity term is introduced during the training process

d
Lspec = Z (ﬂ’l - /")2 )
i=1

where A denotes the! -th singular value of the local gradient matrix, d s the gradient dimension,
and# is the target spectral mean (set to 0.23), which is used to suppress anomalously salient high-
response eigenchannels and to reduce the effectiveness of parameter reconstruction attacks[17] . The
intensity parameters of the entire regular path are then scheduled by a dynamic decay function of
the form

A=ﬂo-exp(—ﬂ-%j ©)

=1x10"° B T . .
, the decay coefficient”” is set to 0.35, and ! is the total number of training

where 4o
rounds, which is used to balance the initial defense strength with the later optimization convergence.
Figure 3 demonstrates the perturbation consistency preservation effect of this optimization strategy
in the gradient domain, with the gray distribution indicating the original gradient and the blue
distribution indicating the contraction distribution reconstruction of the gradient after perturbation.
Table 2 lists the statistics of regular loss and average gradient offset for different regular scheduling

parameters.
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Gradient Distribution under Perturbation Consistency

Figure 3. Deformation of the gradient structure under perturbation consistency preservation.

Table 2. Loss and gradient response statistics for different regular scheduling parameters.

Average Gradient Offset

4t Retrieve a Value Regular Loss Lreg AV
2
le-3 0.864 0.079
6e-4 0.521 0.066
2e-4 0.238 0.041

4. Experimental Results and Analysis

4.1. Experimental Environment and Data Set Construction

The experiment is based on the assessment of the defense ability of membership inference attack
in the federated learning scenario, and constructs an experimental platform containing real user data
distribution, attack simulation mechanism and multi-dimensional index monitoring module. (1) The
experimental running environment is Ubuntu 22.04 system, CPU is Intel Xeon Platinum 8269
(2.5GHzx48), memory is 256GB, GPU is NVIDIA A100 80GBx4, and all experiments are deployed
based on PyTorch 2.1.0 and FedML framework. (2) The datasets are selected from CIFAR-100 and
Purchase-100, containing 60,000 images and 197,324 user purchase records, respectively, to simulate
the image recognition and e-commerce behavior classification scenarios, and the data is divided in a
way that is configured according to the client-independent non-IID distribution, with an average of
600-1,200 samples assigned to each client to satisfy the requirements of the real distribution variance.
(3) The inference attacker based on white-box gradient inversion is constructed in the attack
evaluation, and the control query rounds are executed once every 10 rounds to evaluate the attack
accuracy, misjudgement rate and model stability, and to comprehensively validate the generalization
defense ability of multi-layer perturbation strategy under distribution dynamics[18] .

In addition to the white-box gradient inversion attack used for primary evaluation, we
incorporated two widely-recognized variants: (1) a black-box score-based attack utilizing output
logits, and (2) a shadow model attack simulating model behavior on auxiliary datasets. These variants
simulate realistic attacker scenarios with limited internal access. Our defense framework maintained
a membership inference success rate below 25% across all methods, confirming its robustness under
heterogeneous attack vectors. The inclusion of diverse attacker models enhances the generalization
of our defense strategy and demonstrates its effectiveness beyond white-box assumptions. Detailed
results for all attack types are provided in Table 3.

Table 3. Robustness Evaluation under Different Types of Membership Inference Attacks.

Description of Top-1 Accuracy

A kT D MISR (¢
ttack Type ataset Attack Method SR (%) (%)
. . Reconstructing
White-box Gradient e\ 4 inputs from raw 18.3 75.1
Inversion .
gradients
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Inferring
Black-
ack-box Qutput - 1p 4 p 100 membership via 22.6 75.1
Probability Attack :
output logits
Training mimic
Shadow Model CIFAR-100 models with 24.1 74.9
Attack s
auxiliary data
. ) Reconstructing
White-box (IEradlent Purchase-100 inputs from raw 19.6 84.4
Inversion .
gradients
Inferring
BIack—bex Output Purchase-100 membership via 23.7 84.1
Probability Attack :
output logits
Training mimic
h. Model
Shadow Mode Purchase-100 models with 25.3 83.8
Attack

auxiliary data

4.2. Analysis of Experimental Results

In the evaluation phase, the experiments focus on a multi-dimensional quantitative comparison
of the effectiveness of anti-membership inference attacks and model training performance around
the feature perturbation, gradient compression and regular term fusion mechanisms designed in the
federated learning framework[19] . Table 4 demonstrates the average values of Attack Accuracy, To
further evaluate the independent contribution and synergistic effect of each component in the multi-
layer defense strategy, we conducted an ablation study across three configurations: (1) feature
perturbation only, (2) feature perturbation with gradient compression, and (3) full model with all
components. As shown in Table 3, each component exhibits measurable effectiveness in suppressing
membership inference success rates, with the gradient compression contributing the most in terms of
decreasing the attacker’s recognition capability. The combination of all three mechanisms yields a
compounded effect beyond the sum of their parts, indicating strong interaction between perturbation
and regularization. This decomposition validates the necessity of each module and enhances the
reproducibility of our framework design.

Table 4. Suppression effect of multi-layer defense policies on the performance of membership inference

attacks.

Membership

Defense Strategy Dataset Attack f;ccuracy False POSltl‘:/Ie Inference Success
(%) Rate (FPR, %) ¢ te (MISR, %)
No Defense CIFAR-100 84.2 18.7 65.4
Feature Perturbation  \p g 109 63.5 27.9 412
Only
Feature Perturbation
+ Gradient CIFAR-100 49.6 33.8 26.9
Compression
Full Defense
Strategy (All CIFAR-100 34.7 41.5 18.3
Components)
No Defense Purchase-100 91.6 14.2 71.8
Feature Perturbation 1, |~ 4 - 6e-100 68.1 25.4 48.7
Only
Feature Perturbation
+ Gradient Purchase-100 52.7 31.6 294
Compression

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1201.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 d0i:10.20944/preprints202508.1201.v1

7 of 8

Full Defense
Strategy (All Purchase-100 38.1 39.1 19.6
Components)

To assess the individual contributions and combined effects of each defense component, we
conducted a comprehensive ablation study as presented in Table 3. The results show that feature
perturbation alone reduces the membership inference success rate (MISR) from 65.4% to 41.2% on
CIFAR-100 and from 71.8% to 48.7% on Purchase-100. When combined with gradient compression,
the MISR further drops to 26.9% and 29.4%, respectively. This indicates that gradient compression
plays a significant complementary role in obscuring sensitive representations. The full defense
configuration, incorporating all three components, achieves the lowest MISR of 18.3% and 19.6%,
reflecting a synergistic effect that surpasses the sum of individual defenses. The progressive
reduction in attack accuracy and concurrent increase in false positive rate further validate the
robustness and composability of the multilayer design. These findings confirm that each module is
essential and the combination yields compounded benefits[20].

Table 5. Evaluation of the impact of defense mechanisms on model performance.

Top-1 Convergence Average Avg
Defensive Strategy = Data Set Accuracy (%) Rounds Communication Gradient
(math.) Delay (ms) Norm
defenseless 78.3 123 205 1.264
Multi-layered joint CIFAR-100 751 13 31 0.883
defense (complete)
defenseless 86.9 96 187 1.479
Multi-layered joint Purchase-
100 84.4 105 215 0.911

defense (complete)

The model shows an average decrease of no more than 3% in Top-1 accuracy, a slight increase
of about 9% in the number of training rounds, and an increase of about 25ms in the communication
delay, but the average gradient paradigm converges significantly below 0.9, indicating that the model
achieves the suppression of anomalous variations in the parameter space after perturbation, while
maintaining an acceptable performance. The overall results verify that the multi-layer defense
strategy effectively enhances the robustness and protection of the system against membership
inference attacks without significantly sacrificing the model usability.

5. Conclusion

The multi-layer perturbation strategy effectively weakens the recognition ability of membership
inference attacks in federated learning, and significantly improves the privacy robustness and
defense generalization during model training. By combining feature perturbation, gradient
compression and regular regulation, a training mechanism that balances performance and security is
constructed. In the future, we can further explore the defense adaptation and cross-task migration
protection strategies in dynamic participant environments, and strengthen the model’s privacy
assurance ability in heterogeneous collaboration scenarios.
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