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Abstract: Ganoderma lucidum, a medicinal mushroom with a rich ethnobotanical history, was
investigated using wild specimens collected from high-altitude regions of Nepal. This study aimed
to identify key bioactive compounds and assess the influence of solvent type—water, ethanol,
methanol, and acetone —on extraction efficiency and biological activity. Extracts were evaluated for
antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas
chromatography—mass spectrometry (GC-MS). Solvent type significantly affected both yield and
bioactivity. Acetone yielded the highest crude extract (3.43 mg/g), while ethanol extract exhibited the
highest total phenolic (376.50 + 9.32 mg PGE/g) and flavonoid content (30.33 + 0.50 mg QEs/g).
Methanol extract was richest in lycopene (0.0670 + 0.001 mg/g) and -carotene (0.4536 + 0.000 mg/g).
Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide
radical scavenging activity, along with high reducing power. All extracts showed dose-dependent
cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65%
at 1000 pg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols,
terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as
hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the
therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that
high-altitude ecological conditions may influence its bioactive metabolite profile.

Keywords: Ganoderma lucidum; solvent extraction; antioxidant activity; cytotoxicity; high-altitude
fungi; DPPH; MTT assay; taxonomy; GC-MS

1. Introduction

Ganoderma lucidum, commonly known as Lingzhi in China, Reishi in Japan, and Dadu chyau in
Nepal, is a polypore mushroom with a long and storied history of use in East Asian medicine for
promoting health and longevity [1]. It is often referred to as the “King of Herbs” or the “Mushroom
of Immortality.” Its medicinal use dates back over 2,000 years, with its effects documented in ancient
scripts like the Shen Nong Ben Cao Jing from China’s Eastern Han dynasty (25-220 AD) [2].
Traditionally, it has been used to treat a variety of ailments and is believed to enhance stamina,
increase brain power, improve circulation, and strengthen the immune system [3].

Modern research has begun to validate these traditional claims, attributing the mushroom’s
medicinal properties to its rich and varied chemical composition. Bioactive compounds such as
polysaccharides, triterpenes, adenosine, organic germanium, phenolic compounds, flavonoids, and
ergosterol contribute to its therapeutic effects, which include antioxidant, anti-cancer, anti-
inflammatory, and antimicrobial activities [4-8]. For instance, triterpenic acids have demonstrated
significant anti-cancer effects, while polysaccharides have shown anti-diabetic and antibiotic
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properties [9-12]. The antioxidant properties of G. lucidum are particularly noteworthy, as they
neutralize reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are implicated
in the development of chronic diseases such as cancer, aging, diabetes, cardiovascular disorders, and
neurodegeneration [4,13]. Studies have shown that polysaccharides in G. lucidum exhibit potent ROS-
scavenging activity and can inhibit tumor growth through immunomodulation and the induction of
apoptosis [6,9,10]. Furthermore, its anti-inflammatory effects have been observed in animal models,
suggesting significant therapeutic potential [14].

Nepal, with its diverse geography ranging from the Terai plains to the high Himalayas, provides
a unique environment for a wide variety of mushrooms [15-19]. While approximately 1,300
mushroom species have been reported in Nepal, with 73 identified as having medicinal value, the
therapeutic potential of most, including native G. lucidum, remains largely unexplored [20,21].
Research on Nepalese mushrooms, initiated by the Nepal Agricultural Research Council (NARC) in
1974, has historically focused more on cultivation and taxonomy rather than on the detailed analysis
of their bioactive properties.

The unique environmental conditions of Nepal's high-altitude regions —characterized by lower
oxygen levels, intense UV radiation, and distinct soil compositions —may lead to the production of
G. lucidum strains with enhanced or novel bioactive profiles [22,23]. Despite Nepal’s rich biodiversity,
research on high-altitude G. lucidum is scarce, leaving a gap in our understanding of its full potential.
This study, therefore, aims to investigate the bioactive constituents, antioxidant activities, and
cytotoxic effects of wild G. lucidum collected from the high altitudes of Nepal, utilizing various
solvent extracts to comprehensively characterize its mycochemical composition and therapeutic
promise.
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Figure 1. Overview of the study workflow, from G. lucidum collection and solvent extraction to bioactive

compound screening, biological activity assays, and GC-MS profiling.

2. Materials and Methods

2.1. Collection and Identification

Fresh fruiting bodies of wild G. lucidum were collected from a dead trunk of Quercus lanata on
Chandragiri Hill, Nepal (elevation 7482 ft; latitude 27.67402; longitude 85.19874) (Figure. 2). The
specimens were identified based on detailed macro- and micro-morphological characteristics (Table
1).
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Figure 2. Map of Nepal in a global context (A), G. lucidum collection site (B) and its fruiting body growing on

Quercus lanata (C).

Table 1. Summary of the ecological, morphological, anatomical, and taxonomic characteristics of G. lucidum.

Parameter

Description

Collection month
Location
Elevation
Coordinates
Ecosystem type
Substrate

Host tree

Rot type
Surrounding trees (20 ft radius)
Basidiocarp size
Texture

Stipe

Pileus shape
Upper surface
Margin

Pore surface
Tube layer
Context

Cutis type

Hyphal system

Basidiospores
Identification authority

September—October

Chandragiri Hill, Kathmandu, Nepal

7482 ft (2280 m) above sea level

Latitude: 27.67402° N; Longitude: 85.19874° E

Solitary

Wood, stump, log, stick, base of tree, bark

Quercus lanata

White-rot

Predominantly hardwoods

7-12x11-19 x 1.5 cm

Woody to corky

Sub-sessile to laterally stipitate, 2-3 cm

Reniform

Laccate, dark reddish to purplish, yellowish at margins; brittle, soft
Blunt, rounded, brown-white

Creamy to milky coffee; ~5 pores/mm

2-9 mm long, white turning brown when brushed or aged

9 mm thick, brown, without horny deposition

Thick-walled claviform with diverticula; 35-42 x 6-8.5 um
Trimitic: Generative (3.3 um, hyaline, thin-walled, with clamp);
Skeletal (5.8-7.5 pm, brown, thick); Binding (5-7.5 um, brown)
8.3-10 x 6.6 um; yellowish-brown

Prof. Mahesh Kumar Adhikari, Dept. of Plant Resources, Kathmandu
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2.2. Sample Preparation and Extraction

The samples were cleaned and oven-dried gradually from 45 °C to 60 °C for 3 days until a
constant weight was attained. The dried mushroom was milled into a fine powder and stored in
airtight containers for future use. 10 gm of G. lucidum were subjected for extraction. Solvent extraction
was performed for 10 hrs in a Soxhlet apparatus with 250 mL each of water (GWE, 100 °C), 70%
ethanol (GEE, 60 °C), 80% methanol (GME, 70 °C), and 50% acetone (GAE, 50 °C). Extracts were
concentrated under vacuum in a rotary evaporator (50 °C) and stored in dark vials at 4 °C. The

calculation of the % yield was done for each solvent using the formula,

% Yield = weight of the G.lucidum powder before extraction (gm) X 100
o Held = weight of the obtained extract (gm)

2.3. Estimation of Total Phenolic, Flavonoid, B-carotene and Lycopene

2.3.1. Total Phenolic Content

Total phenolic content was determined using the Folin-Ciocalteu method with pyrogallol as the
standard [24]. A calibration curve was established by measuring the absorbance of pyrogallol
standards (10-100 pg/mL) at 760 nm. Sample solutions (1 mL) were reacted with 5 mL of 10% Folin-
Ciocalteu reagent for 5 minutes at room temperature. Subsequently, 4 mL of Na2COs solution was
added, and samples were vigorously mixed and incubated in the dark for 2 hours at room
temperature. Absorbance was read at 760 nm, and results were expressed as pyrogallol equivalents
(mg/g dry extract).

2.3.2. Total Flavonoid Content

Total flavonoid content was determined using the aluminum chloride colorimetric method,
adapted from Shraim et al., 2021[25]. Quercetin standard curve was prepared by diluting a 10 mg
quercetin stock in 50% methanol to concentrations ranging from 10-100 ug/mL, with absorbance
measured at 415 nm. Sample aliquots (1.0 mL) were mixed with 0.5 mL of 1.2% aluminum chloride,
0.5 mL of 120 mM potassium acetate, and 1 mL of distilled water. After 30 minutes of incubation at
room temperature, absorbance was read at 415 nm. Results were expressed as mg quercetin
equivalents per gram of dry extract (mg QE/g dry weight).

2.3.3. Estimation of 3-Carotene and Lycopene Content

[3-carotene and lycopene were determined as per Prakash et al., 2016 [26]. Dried extracts (100
mg) were extracted with 10 mL of acetone-hexane (4:6) for 1 min, then filtered. Filtrate absorbance
was measured at 453, 505, 645, and 663 nm. Carotenoid concentrations (mg/100 mL) were calculated
using the following equations:

Lycopene = (-0.0458 x Ags3) + (0.372 x Asos) + (0.0806 x Ass3)
[-carotene = (0.216 x Aess) — (0.304 x Asos) + (0.452 x Aus3)
Results are presented as mg carotenoid per gram of dry extract (mg carotenoid/g dry extract)

2.4. Determination of In Vitro Antioxidant Activities

2.4.1. DPPH (2, 2-diphenyl-1-picryl-hydrazyl) Assay

Different concentrations of extracts (20-100 pug/mL) were prepared. To 1 mL of each extract
concentration, 2 mL of ice-cold 0.1 mM DPPH solution was added. The mixtures were incubated in
the dark at room temperature for 30 min. Absorbance was then measured at 517 nm against a
methanol blank [27]. A 3 mL DPPH solution was used as the control. Percentage inhibition was
calculated using the formula:

% inhibition = [(Ao-A1)/(Ag)] x 100
where Ao is the absorbance of the control and A1 is the absorbance of the sample.
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2.4.2. Nitric Oxide Radical Scavenging Assay

Nitric oxide radical scavenging activity was determined with slight modification from Alam et
al., 2013 [28]. Samples or ascorbic acid (20-100 pg/mL, 1 mL) were mixed with 2 mL of 10 mM sodium
nitroprusside in phosphate buffer and incubated at 25°C for 2.5 hours. To 3 mL of the incubated
solution, 3 mL of Griess reagent (1% sulfanilamide, 0.1% naphthylethylenediamine dihydrochloride
in 2% H3PO3) was added. Absorbance of the pink color was measured at 540 nm against a blank.
Ascorbic acid served as a positive control. Percentage inhibition was calculated using;:

% inhibition = [(A-A1)/(Ao)] x 100
where Ao is the absorbance of the control and Ai is the absorbance of the sample.

2.4.3. Hydroxyl Radical Scavenging Assay

Hydroxyl radical scavenging activity was assessed by measuring the inhibition of salicylic acid
hydroxylation [29]. The 7 mL reaction mixture contained 1 mL of sample/standard (100-500 pg/mL),
2 mL of 6 mM FeSOs, 2 mL of 6 mM H202, and 2 mL of 6 mM salicylic acid. After incubation at 37 °C
for 1 hour, absorbance was measured at 510 nm due to the color change of salicylic acid. Scavenging
activity was calculated as follows:

% inhibition = [(A¢-A1)/(Ao)] x 100
Where Ao is the absorbance of the control and A1 is the absorbance of the sample.

2.4.4. Superoxide Radical Scavenging Assay

Superoxide radical scavenging activity was assessed by a modified pyrogallol auto-oxidation
method [29]. The reaction mixture contained 4.5 mL of 50 mM Tris-HCl buffer (pH 8.2), 0.4 mL of 25
mM pyrogallol, and 1 mL of sample (0.1-0.5 mg/mL). After 5 min incubation at 25°C, the reaction was
terminated by adding 1 mL of 8 mM HCI. Absorbance was measured at 420 nm. Ascorbic acid served
as the positive control. Superoxide radical scavenging activity was calculated using the formula:

% inhibition = [(Ao-A1)/(Ao)] x 100
Where Ao is the absorbance of the control and A1 is the absorbance of the sample.

2.4.5. Reducing Power Assay

The reducing power of samples was assessed via the ferric reducing antioxidant power (FRAP)
assay [30]. One mL of sample or standard (20-100 pg/mL) was combined with 2.5 mL of 0.2 M
phosphate buffer (pH 6.6) and 2.5 mL of 1% (w/v) KsFe(CN)s. After 20 min incubation at 50 °C in a
water bath, 2.5 mL of 10% (w/v) trichloroacetic acid was added to terminate the reaction. The mixture
was centrifuged at 3000 rpm for 10 min. A 2.5 mL aliquot of the supernatant was then mixed with 2.5
mL distilled water and 0.5 mL of 0.1% (w/v) FeCls. Absorbance was measured at 700 nm against a
blank.

2.5. Cytotoxicity Assay

HeLa cells were seeded in a 96-well plate. After 24 hours, cells were treated with
dimethylsulfoxide or various extract concentrations for 48 hrs. Post-treatment, media were removed
and replaced with 100 uL fresh medium containing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) reagent (final concentration 0.4 mg/mL). Plates were incubated at 37
°C for 3 hrs, during which intracellular purple formazan was observed. Next, 100 uL of solubilization
solution (4 mM HCI, 0.1% NP40 in isopropanol) was added, and plates were kept in the dark for 15
minutes at room temperature. Absorbance was measured at 570 nm using a microplate reader [31].

2.6. Gas Chromatography—Mass Spectrometry (GC-MS) Analysis

GC-MS analysis of G. lucidum extracts was conducted using a GCMS-QP2010 Ultra (Shimadzu,
Kyoto, Japan) equipped with an Rtx-5 M5 capillary column (30 m x 0.02 mm id., 0.25 pm film

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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thickness; Restek, Bellefonte, PA, USA). The operating conditions, including solvent cut-off,
temperature program, and MS scan parameters, were identical to those described by Tiwari et al.
2023 [32]. Compounds were identified using NIST libraries (NIST 14, Gaithersburg, MD, USA).

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 10 (GraphPad Software, San Diego,
CA, USA). Experiments were conducted in triplicate, expressed as mean + SD. One-way ANOVA
with Tukey’s post-hoc test compared extracts (p < 0.05).

3. Results

3.1. Extraction Yield

Extraction efficiency is affected by the chemical nature of bioactive compounds, the extraction
method used, sample particle size, the solvent used, as well as the presence of interfering substances
[33,34]. The yield of extraction depends on the solvent with varying polarity, temperature, pH,
extraction time, and composition of the sample [33,34]. Extraction efficiency (% yield) varied
significantly (p < 0.05) among solvents, with acetone yielding the highest crude extract (GAE; 5.01%),
followed by ethanol (GEE; 3.43%), methanol (GME; 2.98%), and water (GWE; 2.29%) (Table 2).

Table 2. Percentage yield of various solvent extracts.

Extract Weight of Sflmple before Weight ob.tained after % Yield value
extraction (gm) extraction (gm)
Water 10 0.229 2.294
Ethanol 10 0.343 3.43¢b
Methanol 10 0.298 298¢
Acetone 10 0.501 5.01a

Values with the same letter (a-d) are not significantly different; different letters indicate significant differences

between solvents (p < 0.05).

3.1. Estimation of Total Phenolic and Flavonoid Content

Phenolic compounds are recognized as potent chain-breaking antioxidants due to the radical-
scavenging capabilities of their hydroxyl groups [35]. The total phenolic content (TPC) exhibited
significant variation among the tested solvents (Figure 3A). Ethanol extract (GEE) demonstrated the
highest TPC (376.5 + 9.3 mg PGE/g), which was significantly greater (p < 0.05) than that of methanol
extract (GME; 97.3 + 2.8 mg PGE/g), water extract (GWE; 96.6 + 2.6 mg PGE/g), and acetone extract
(GAE; 60.5 + 7.4 mg PGE/g). Notably, the TPC of GEE exceeded values previously reported for 62
wild mushrooms from Nepal, including other Ganoderma species, and 29 other diverse mushroom
species [16,17,36].

Flavonoids were quantified using the aluminum chloride method. GEE and GWE exhibited
significantly higher TFCs, with values of 30.33 + 0.5 mg QEs/g extract and 26.73 + 0.6 mg QEs/g
extract, respectively (Figure 3B). The low flavonoid content was observed in GME; 6.34 + 0.4 mg
QEs/g dry extract and GAE; 7.95 + 0.23 mg QEs/g extract. Notably, GEE contained approximately 4.7-
fold higher total flavonoids compared to GME.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Total phenolic content (A) and Total Flavonoid Content (B) expressed as pyrogallol and quercetin
equivalents (mg/g dry extract), respectively. Values with the same letter (a-d) are not significantly different;

different letters indicate significant differences between solvents (p < 0.05).

3.2. Estimation of p-Carotene and Lycopene

The concentrations of lycopene and [-carotene in G. lucidum extracts were estimated
spectrophotometrically. Carotenoid analysis demonstrated limited solvent efficacy. (-carotene
content was highest in GME (0.4536 + 0.000 mg/g), followed by GEE (0.1982 + 0.006 mg/g), GWE
(0.1595 + 0.001 mg/g), and GAE (0.0944 + 0.001 mg/g) (Figure 4A).

Al p-carotens B. Lycopens
0.5 a 0.08 =
a
E 047 B 006
MLES E
E by —E' 0.044 b
e 024 g
S d 4 = d
2 514 % D.02
0.0 0.00 -
GWE GEE GME GAE GWE GEE GME GAE

Figure 4. 3-carotene (A) and lycopene (B) content as mg/100 mL extract in various solvent extract. Values with
the same letter (a-d) are not significantly different; different letters indicate significant differences between
solvents (p <0.05).

Similarly, lycopene content varied considerably among the extracts, ranging from 0.0163 + 0.000
to 0.0670 + 0.001 mg/g of dry extract (Figure 4B). The highest lycopene content was found in the
methanolic extract (GME; 0.0670 + 0.001 mg/g), followed by the ethanolic extract (GEE; 0.0308 + 0.004
mg/g), water extract (GWE; 0.0175 + 0.002 mg/g), and acetone extract (GAE; 0.0163 + 0.000 mg/g).
However, overall (3-carotene and lycopene contents were comparatively low when contrasted with
the phenolic and flavonoid contents of the same extracts.
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3.3. Comparative In-Vitro Antioxidant Activities

Antioxidant activity cannot be definitively concluded from a single assay due to the diverse
mechanisms involved and variations between in vitro test models. These diverse mechanims include
free radical scavenging, metal ion chelation, reducing power, single electron transfer, and others
[37,38]. Therefore, this study employed multiple in vitro antioxidant assays (DPPH radical
scavenging, superoxide radical scavenging, hydroxyl radical scavenging, nitric oxide radical
scavenging, and reducing power) to comprehensively evaluate and compare the antioxidant
potential of G. lucidum solvent extracts.

3.3.1. DPPH Radical Scavenging Activity

The DPPH radical scavenging activity of the extracts (at 100 pg/mL) ranged from 86.58 + 4.65%
to 95.59 + 0.17% (Figure 5). Methanolic extract (GME) exhibited the highest activity (95.59 + 0.17%),
followed by acetone extract (GAE; 92.13 + 0.34%), ethanolic extract (GEE; 90.91 + 0.06%), and water
extract (GWE; 86.58 + 4.65%). Ascorbic acid, as a standard, showed 97.26 + 0.69% inhibition. All
extracts demonstrated high antioxidant activity, scavenging over 80% of the DPPH radical even at 80
pg/mL. These findings indicate better scavenging activity compared to some previously reported
wild mushrooms from Nepal, including G. lucidum [16,17,36].

DFPH radical scavanging assay
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Figure 5. DPPH radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents,

compared to the standard antioxidant ascorbic acid.

3.3.2. Superoxide Radical Scavenging Activity

Superoxide radical scavenging activity was positively correlated with increasing extract
concentrations (p < 0.05) (Figure 6). At 500 ug/mL, GEE exhibited the highest scavenging activity
(72.24 + 0.61%), followed by GME (54.84 + 1.72%), GAE (39.37 + 1.70%), and GWE (38.70 + 0.65%).
Ascorbic acid showed 98.80 + 0.15% scavenging. The observed order of activity was: GEE > GME >
GAE > GWE. These results suggest the extracts’ ability to scavenge superoxide anion radicals,
potentially preventing oxidative damage, likely attributed to the electron-donating capacity of their
phenolic hydroxyl groups [39].
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Figure 6. Superoxide radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents,

compared to the standard antioxidant ascorbic acid. .

3.3.3. Hydroxyl Radical Scavenging Activity

All samples exhibited significant dose-dependent hydroxyl radical scavenging activity. At tested
concentrations, GME showed the highest activity (77.88 + 0.15%), followed by GEE (76.62 + 0.28%),
and GWE (65.72 £ 0.13%), with GAE showing comparatively lower activity (42.12 + 1.59%) (Figure 7).
Ascorbic acid (47.73 £ 0.13%) served as a standard. Notably, the ICso values for GWE, GEE, and GME
were lower than that of ascorbic acid, indicating their superior hydroxyl radical scavenging potential.
The potent hydroxyl radical scavenging capacity of G. lucidum extracts suggests a preventive role
against lipid peroxidation initiation and protection against DNA damage, mutagenesis, and
cytotoxicity [40-43].
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Figure 7. Hydroxyl radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents,

compared to the standard antioxidant ascorbic acid.

3.3.4. Nitric Oxide Radical Scavenging Activity

The extracts demonstrated good inhibition of nitric oxide radicals. At 100 ug/mL, GEE exhibited
the highest scavenging potential (81.51%), followed by GME (63.81%), GAE (41.88%), and GWE
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(41.62%) (Figire 8). Ascorbic acid showed 97.02% inhibition. The order of activity was GEE > GME >
GAE = GWE. The ability of the extracts to scavenge nitric oxide suggests a potential to prevent
peroxynitrite formation and a protective role against nitrosamine-mediated carcinogenesis in the
digestive tract [44].

Mitric oxlde radical seavanging b say
W= —M Water (GWE]
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Figure 8. Nitric oxide radical scavenging activity (%) of G. lucidum extracts prepared with four different

solvents, compared to the standard antioxidant ascorbic acid. .

3.3.5. Reducing Power Assay

The reducing power assay (electron-donating capacity) further confirmed ethanol’s dominance
(0.353 £ 0.003 at 100 ug/mL), aligning with radical scavenging trends (Figure 9). The reducing power
of the extracts at 100 pg/mL followed the order: GEE (0.353 + 0.002) > GME (0.176 + 0.002) > GWE
(0.164 +0.005) > GAE (0.158 + 0.001). Standard ascorbic acid showed a reducing power of 0.493 + 0.001
at the same concentration. The reducing powers of the ethanolic extracts were notably higher than
those reported for other G. lucidum, Boletus edulis, and Pleurotus ostreatus [45-48]. This reducing
capacity is likely due to their hydrogen-donating ability of the compounds present in the extracts,
which can halt peroxide formation and terminate radical chain reactions [49,50].
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i | = - _.-'.---
" P e Mot {CME)
T
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Figure 9. Reducing power assay of G. lucidum extracts prepared with four different solvents, compared to the

standard antioxidant ascorbic acid.
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3.4. MTT-Based Cytotoxicity Assay in HeLa Cells

Following the characterization of bioactive compounds and antioxidant activities, the cytotoxic
potential of G. lucidum extracts was evaluated against human cervical cancer (HeLa) cells via MTT
assay. Extracts were tested at concentrations of 100, 500, and 1000 pg/mL, and results are presented
in Figure 10. All extracts exhibited a dose-dependent inhibition of HeLa cell viability. At the highest
concentration tested (1000 pg/mL), GEE and GWE extracts demonstrated significantly higher (p <
0.05) cytotoxicity, suppressing cell proliferation by >65%. Specifically, GEE achieved 82.53 + 1.46%
inhibition and GWE 67.28 + 1.39% inhibition. In comparison, GME and GAE showed more moderate
inhibition at 1000 pg/mL, with 51.87 +2.1% and 34.78 + 4.69 % inhibition, respectively.

MTT asszay
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Figure 10. Cytotoxic activity of G. lucidum extracts against HeLa cervical cancer cell lines at varying
concentration. For each concentration, values with the same letter (a-e) are not significantly different; different

letters indicate significant differences between solvent extracts (p < 0.05).

3.5. ICso Comparison of Extraction Solvents for Antioxidant and Cytotoxicity Activities

The extraction efficiency and bioactive potential of G. lucidum were solvent-dependent, with
GEE having the highest total phenolic (376.50 + 9.32 PGE/g) and flavonoid (30.33 + 0.50 QE/g) content,
while GME showed higher carotenoids (lycopene: 0.067 + 0.001 mg/g; -carotene: 0.454 + 0.000 mg/g)
(Figure 11). Similarly, antioxidant assays revealed solvent-specific efficacy: GWE, GEE, GME, GAE
exhibited an exceptional DPPH radical scavenging comparable to ascorbic acid, ICso: 5.82 pg/mL),
whereas GEE dominated in superoxide (ICso: 328.95 pg/mL), nitric oxide (ICso: 57.67 pg/mL), and
reducing power (ICso: 78.04 pg/mL) assays (Figure 11). Hydroxyl radical inhibition was strongest in
GWE (ICso: 237.89 ug/mL), closely followed by GEE (274.34 ug/mL). Cytotoxicity via MTT assay
demonstrated dose-dependent inhibition, with GEE (ICso: 520.19 pg/mL) and GWE (702.41 ug/mL)
exhibiting moderate activity (Figure 11). Collectively, ethanol was found to be superior in extracting
phenolic and flavonoid-rich fractions with high antioxidant capacity, despite GWE’s exceptional
DPPH activity, likely due to ethanol extracting polar bioactive compounds with higher antioxidant
capacity [51-53]. The correlation between ethanol’s high phenolic/flavonoid content and multi-target
bioactivity positions it as the optimal solvent for extracting compounds with therapeutic potential
against oxidative stress and cancer.
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Figure 11. Heatmap of ICso values obtained from various antioxidant and cytotoxic assays. Values are expressed
in pg/mL. Within each assay, values with the same letter (a-e) are not significantly different; however, different

letters indicate significant differences between solvents (p < 0.05). Ascorbic acid: AA.

3.6. Solvent-Dependent Variation in Bioactive Compounds via GC-MS Profiling

GC-MS analysis of G. lucidum extracts showed solvent-dependent profiles of bioactive
compounds, including sterols, triterpenoids, terpenoids, and polyphenols (Table 3). Fatty acids
dominated ethanol (53.18%) and methanol (48.57%) extracts, with 9,12-octadecadienoic acid (linoleic
derivative: 20.60% in ethanol, 14.05% in methanol) and pentadecanoic acid (14.52% in ethanol) as
major constituents. Acetone exhibited the lowest fatty acid content (5.64%) but uniquely contained
ergosterol (Vitamin D2 precursor) and retinoic acid. Polar protic solvents (ethanol, methanol)
efficiently extracted free fatty acids and esters, including (E)-9-octadecenoic acid ethyl ester (oleic
derivative: 3.86% in ethanol), while acetone’s mid-polarity favored sterols (7,22-ergostadienone,
9(11)-dehydroergosteryl benzoate) and triterpenoids (ergosta-4,6,8(14),22-tetraen-3-one). Similarly,
Hinokione, an abietene diterpene, was detected across solvent extracts (0.9% in GAE, 2.9% in GEE,
and 5.5% in GME) (Table 3).

Pharmacologically significant compounds included ferruginol (exclusive to ethanol), nerolidol
acetate (methanol-specific), geranylgeraniol (anti-inflammatory terpenoid), and Hinokione (anti-
inflammatory and anticancer) (Table 3). Ethanol and methanol extracts had the highest polyphenol,
diterpenoid, and fatty acid content, whereas acetone had higher sterols and triterpenoids,
demonstrating solvent polarity as a critical determinant of bioactive compound selectivity. These
findings show G. lucidum’s diverse phytochemical composition and the impact of solvent choice in
optimizing targeted metabolite extraction.
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Table 3. Summary of key compounds detected by the GC-MS analysis in various solvents and their reported

pharmacological relevance.

Solvent Extracts (% area) Compound

Compound Name GEE GME GAE  class Key pharmacological relevance Reference
Antithrombotic activity with cardiovascular benefit;
. antidiabetic, anticancer, and neuroprotective effects; Pro-
7,22-Ergostadienone 3.54 2.90 2.55 Sterol . . L. K [51,54-57]
inflammatory properties (activating Toll-like receptors,
cytokines, and chemokines)
11)-Deh; 1 Anti-infl ; anti ial (MRSA X ;
9( ). e ydroergostery 290 313 270 Sterol conjugate nti-in am.matory, ar}hbacterla (MRSA and S. aureus); [58,59]
3,5-dinitrobenzoate and cytotoxic properties
Antioxidant; anti-inflammatory (primarily via inhibiting
8-Tocopherol 213 391 075 Tocopherol protein kinase C and reducing eicosanoid production); [60,61]

anticancer (both in vitro and in vivo prostate xenograft
models); cvardiovascular and neuroprotective
Anticancer (potentially via targeting Topoisomerase 11
relaxation activity); antibacterial; anti-inflammatory; [62-66]
analgesic properties; antioxidant

4-[5-(2-bromophenyl)-
1,2,4-oxadiazol-3-yl]- - - 0.35
1,2,5-oxadiazol-3-amine

Synthetic
heterocycle

Anticancer (via G2/M arrest and apoptosis induction);
Ergosta-tetraenone 3.86 - 1.67 Sterol derivative nephroprotection (mitigation of renal damage in mouse  [67-69]
model); anti-inflammatory
Vitamin D2 precursor; lipid soluble antioxidant;
anticancer effects (cell cycle arrest and modulates

Ergosterol - - 73.99 Sterol L. . . . 70-72
& Wnt/p-catenin signaling pathway); antimicrobial; [ I
antidiabetic; immunomodulatory effects
Anticancer (apoptosis induction in melanoma, prostate,
. lung, and ovarian cancer cells); neuroprotective (reduces
Abietane & ) P (

Ferruginol 3.18 - - a-synuclein toxicity and restores LTP in Alzheimer’s [73-80]

diterpene models); cardioprotective (both invitro and in vivo
models); antimicrobial and antiviral
Anti-inflammatory (NF-«B inhibition; | IL-18, TNF-a,
. . IL-6, COX-2); pain relief; bone and muscle support
) Diterpenoid . .
Geranylgeraniol 5.26 - 0.89 alcohol (muscle regeneration and prevents bisphosphonate- [81-84]
related bone damage); antimicrobial activity; hormonal
balance; glucose homeostasis
Anticancer; anti-inflammatory; hypoglycemic & (3-Cell
Hinokione 29 55 0.9 A.bietane regef’lerative propertie's (Promote§ [-cell c.liffereriltiation [85-87]
diterpene and improved glycemia in zebrafish); antibacterial;
antioxidant
Nerolidol acetate . 1.70 ) Sesquiterpene AnFiCéncerf anti-irllﬂammator'y; r}europrotective; [88-90]
ester antimicrobial; antifungal; antioxidant
Acne and photoaging (promotes cell differentiation and
. SN . i ‘ation of
Retinoic acid ) ) 0.50 Retinoid skin repair); anti-cancer (induces differentiation o [91-93]

malignant promyelocytes in acute promyeloid leukemia);
neuroprotective

4. Discussion

This study demonstrated the solvent-dependent extraction of bioactive compounds from G.
lucidum collected from high-altitude regions of Nepal, supporting our initial hypothesis that unique
environmental factors at these altitudes influence the mushroom’s secondary metabolite profile. The
observed variability in extraction yield across different solvents, with acetone yielding the highest,
followed by ethanol, methanol, and water, demonstrates the role of solvent polarity in determining
extraction efficiency. This observation aligns with established principles of phytochemistry, where
solvent polarity dictates the solubilization and subsequent extraction of specific compound classes
[33,94-101].

GEE displayed the highest TPC and TFC, correlating strongly with its superior antioxidant and
cytotoxic performance (Figure 4-10). GEE’s TPC exceeded that of 62 wild mushrooms previously
reported in Nepal and outperformed other Ganoderma species and various commercial mushrooms
[16,17,36]. GEE also contained approximately 4.7 times more flavonoids than GME, with flavonoid
levels surpassing those reported in G. applanatum and G. resinaceum [36,102]. This suggests that
flavonoids likely constitute a significant portion of the total phenolic content in the tested extracts.
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Collectively, these findings support the efficacy of ethanol in extracting phenolic and flavonoid-rich
fractions with potential nutraceutical value.

Carotenoid extraction with methanol proved to be most effective among the tested solvents due
to its polar nature, disrupting the cellular matrix to release hydrophobic carotenoids, consistent with
previous reports of carotenoid content in G. lucidum [94]. Nevertheless, overall carotenoid yields were
relatively low compared to the phenolic and flavonoid content (Figure 4, 5). The values obtained for
GME were higher than those previously reported in Turkish mushrooms [103] and some Indian
strains of G. lucidum, but still lower than those observed in wild Portuguese mushrooms [47]. This
reinforces the role of solvent polarity in selective compound recovery.

Multiple in vitro antioxidant assays, including DPPH, superoxide, hydroxyl, nitric oxide radical
scavenging, and reducing power assays, confirmed the strong antioxidant potential of the extracts.
All extracts scavenged over 80% of DPPH radicals at 80-100 pg/mL, with GEE and GME showing the
strongest activity, likely due to their higher phenolic content. Superoxide scavenging was highest in
GEE (72.24 + 0.61%), suggesting strong potential to neutralize ROS via electron donation [39].
Hydroxyl radical ICs, values for GWE, GEE, and GME were lower than that of ascorbic acid,
indicating a potent ability to counter lipid peroxidation and DNA damage [40—42]. Nitric oxide
scavenging by GEE (81.51%) indicates its role in mitigating nitrosative stress and possible prevention
of nitrosamine-mediated carcinogenesis. Reducing power, another key antioxidant indicator, was
highest in GEE and significantly exceeded values for Boletus edulis and Pleurotus ostreatus [45-48].
This capacity is linked to the hydrogen-donating ability of flavonoids and phenolics [49,50].

The cytotoxicity of the extracts was assessed against HeLa cells using the MTT assay. All extracts
demonstrated dose-dependent inhibition of cell viability. At 1000 pg/mL, GEE exhibited strongest
cytotoxic effect (82.53 + 1.46%), followed by GWE (Figure 10). These results are consistent with earlier
reports on the anticancer effects of G. lucidum, suggesting that ethanol and water extracts contain
compounds that may induce apoptosis, modulate immune responses, and arresting cell cycle
progression [48,94,104,105]. The anti-proliferative effects of G. lucidum extracts are well documented
in the literature and have been reported in a variety of cancer cell lines, including HeLa (cervical
cancer), A549 (lung cancer), L5174 (colon cancer), and MCF-7 (breast cancer) cells [105,106]. As
described in recent studies, including the work by Prabhu et al. (2023), these cytotoxic effects are
largely attributed to the presence of bioactive compounds such as pentadecanoic acid, 14-methyl
ester; hexanoic acid; (Z,Z)-9,12-octadecadienoic acid methyl ester; ergosta-4,6,8(14),22-tetraen-3-one
(ergosta-tetraenone); 7,22-ergostadienone; and various Ganoderma-derived polysaccharides [105].
Notably, our GC-MS profiling confirmed the presence of these compounds in the solvent extracts of
G. lucidum, providing mechanistic support for the observed cytotoxicity in HeLa cells and reinforcing
their potential therapeutic relevance in cancer treatment.

When ICs values were compared across assays, ethanol emerged as the most effective solvent
for extracting multifunctional bioactives (Figure 11). GEE had the lowest ICs, values in superoxide
(328.95 ug/mL), nitric oxide (57.67 ug/mL), and reducing power (78.04 ug/mL) assays. Although
GWE had stronger hydroxyl radical inhibition, GEE consistently performed across multiple assays
and demonstrated superior cytotoxicity (ICsp: 520.19 ug/mL). These findings highlight ethanol’s
extraction of polar antioxidant and anticancer agents with broad-spectrum activity.

GC-MS analysis confirmed solvent-specific extraction efficiency, identifying steroids,
terpenoids, diterpenoids, triterpenoids, polyphenols, and fatty acids. Polyunsaturated fatty acids
were most abundant in ethanol and methanol. One of the major bioactive constituents gaining a lot
of attention recently is found in all three extracts was Hinokione, an abietane-type diterpene known
for its significant anticancer and anti-inflammatory activities [85]. Hinokione, an abietane-type
diterpene with established anticancer and anti-inflammatory properties, was identified in all extracts.
Hinokione has been shown to exhibit cytotoxicity against MV-3 and MIAPaCa-2 human cancer cell
lines with ICso values of 34.1 and 17.9 uM, respectively, and has demonstrated [(3-cell regeneration
and hypoglycemic effects in zebrafish [85,107,108]. Ferruginol, another abietane diterpenoid with
neuroprotective and anticancer activity, was exclusively present in GEE. It has shown
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antiproliferative activity in melanoma (Sk-MEL28) and various cancer cell lines, including prostate,
lung, gastric, and breast cancers, as well as efficacy in CL1-5 xenograft mouse models [73,75,77,78].
Methanol extract contained nerolidol acetate, a sesquiterpene with antioxidant, antibacterial, anti-
biofilm, antifungal, and anticancer properties [88-90]. Geranylgeraniol, an anti-inflammatory
isoprenoid, was also detected in methanol and ethanol extracts, likely contributing to their
antioxidant activity [81-84]. GAE was rich in ergosterol and retinoic acid, with ergosterol comprising
more than two-thirds of the total extracted compounds. As a vitamin D precursor, ergosterol has
potential for addressing vitamin D deficiency-associated diseases, including cancers, rheumatoid
arthritis, and multiple sclerosis [109]. Estrogenic derivatives such as 7,22-ergostadienone and 9(11)-
dehydroergosteryl benzoate, known for their therapeutic applications, were found across all extracts
(Table 3).

Collectively, the GC-MS dataset underscores the profound impact of solvent choice on the
chemical profile of mushroom extracts and the types of bioactive molecules recovered. These solvent-
dependent metabolic signatures not only explain the variation in antioxidant and cytotoxic activities
observed across assays but also provide mechanistic insight into the functional contributions of
specific compound classes. The selective enrichment of fatty acids, sterols, and terpenoids by distinct
solvents offers a strategic basis for tailoring extraction protocols to maximize therapeutic yield.
Building upon these findings, future investigations should focused on isolating and functionally
characterizing the specific bioactive compounds responsible for the observed activities through
selective extraction and purification of bioactive candidate compounds. Testing these isolated
compounds will provide a clearer understanding of their therapeutic potential.

5. Conclusions

Our study aimed to investigate the therapeutic potential of G. lucidum from Nepal's high-altitude
regions, and our findings strongly confirms it as a key source of bioactive compounds. Through this
work, we have shown that the choice of extraction solvent is critical, significantly impacting not only
the yield but also the specific bioactive compounds obtained, and consequently, their biological
activities. While acetone yielded the most crude extract, ethanol and methanol extract showed higher
phenolic and flavonoid content, correlating with high antioxidant activity across a spectrum of in
vitro assays. The ethanol and water extracts also demonstrated a powerful ability to inhibit HeLa cell
growth. GC-MS analysis identified diverse array of beneficial compounds, including fatty acids,
sterols like ergosterol, and various terpenoids (diterpenoids, triterpenoids). The specific distribution
of these compounds varied depending on the extraction solvents, and they collectively contribute to
the observed health benefits. Future research should focus on optimizing extraction methods and
characterizing these individual compounds to maximize specific bioactivities, which will be critical
for bridging the gap between traditional use and modern applications.
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