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Abstract: Ganoderma lucidum, a medicinal mushroom with a rich ethnobotanical history, was 

investigated using wild specimens collected from high-altitude regions of Nepal. This study aimed 

to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, 

methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for 

antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas 

chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and 

bioactivity. Acetone yielded the highest crude extract (3.43 mg/g), while ethanol extract exhibited the 

highest total phenolic (376.50 ± 9.32 mg PGE/g) and flavonoid content (30.33 ± 0.50 mg QEs/g). 

Methanol extract was richest in lycopene (0.0670 ± 0.001 mg/g) and β-carotene (0.4536 ± 0.000 mg/g). 

Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide 

radical scavenging activity, along with high reducing power. All extracts showed dose-dependent 

cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% 

at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, 

terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as 

hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the 

therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that 

high-altitude ecological conditions may influence its bioactive metabolite profile. 

Keywords: Ganoderma lucidum; solvent extraction; antioxidant activity; cytotoxicity; high-altitude 

fungi; DPPH; MTT assay; taxonomy; GC-MS 

 

1. Introduction 

Ganoderma lucidum, commonly known as Lingzhi in China, Reishi in Japan, and Dadu chyau in 

Nepal, is a polypore mushroom with a long and storied history of use in East Asian medicine for 

promoting health and longevity [1]. It is often referred to as the “King of Herbs” or the “Mushroom 

of Immortality.” Its medicinal use dates back over 2,000 years, with its effects documented in ancient 

scripts like the Shen Nong Ben Cao Jing from China’s Eastern Han dynasty (25-220 AD) [2]. 

Traditionally, it has been used to treat a variety of ailments and is believed to enhance stamina, 

increase brain power, improve circulation, and strengthen the immune system [3]. 

Modern research has begun to validate these traditional claims, attributing the mushroom’s 

medicinal properties to its rich and varied chemical composition. Bioactive compounds such as 

polysaccharides, triterpenes, adenosine, organic germanium, phenolic compounds, flavonoids, and 

ergosterol contribute to its therapeutic effects, which include antioxidant, anti-cancer, anti-

inflammatory, and antimicrobial activities [4–8]. For instance, triterpenic acids have demonstrated 

significant anti-cancer effects, while polysaccharides have shown anti-diabetic and antibiotic 
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properties [9–12]. The antioxidant properties of G. lucidum are particularly noteworthy, as they 

neutralize reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are implicated 

in the development of chronic diseases such as cancer, aging, diabetes, cardiovascular disorders, and 

neurodegeneration [4,13]. Studies have shown that polysaccharides in G. lucidum exhibit potent ROS-

scavenging activity and can inhibit tumor growth through immunomodulation and the induction of 

apoptosis [6,9,10]. Furthermore, its anti-inflammatory effects have been observed in animal models, 

suggesting significant therapeutic potential [14]. 

Nepal, with its diverse geography ranging from the Terai plains to the high Himalayas, provides 

a unique environment for a wide variety of mushrooms [15–19]. While approximately 1,300 

mushroom species have been reported in Nepal, with 73 identified as having medicinal value, the 

therapeutic potential of most, including native G. lucidum, remains largely unexplored [20,21]. 

Research on Nepalese mushrooms, initiated by the Nepal Agricultural Research Council (NARC) in 

1974, has historically focused more on cultivation and taxonomy rather than on the detailed analysis 

of their bioactive properties. 

The unique environmental conditions of Nepal’s high-altitude regions—characterized by lower 

oxygen levels, intense UV radiation, and distinct soil compositions—may lead to the production of 

G. lucidum strains with enhanced or novel bioactive profiles [22,23]. Despite Nepal’s rich biodiversity, 

research on high-altitude G. lucidum is scarce, leaving a gap in our understanding of its full potential. 

This study, therefore, aims to investigate the bioactive constituents, antioxidant activities, and 

cytotoxic effects of wild G. lucidum collected from the high altitudes of Nepal, utilizing various 

solvent extracts to comprehensively characterize its mycochemical composition and therapeutic 

promise. 

 

Figure 1. Overview of the study workflow, from G. lucidum collection and solvent extraction to bioactive 

compound screening, biological activity assays, and GC-MS profiling. 

2. Materials and Methods 

2.1. Collection and Identification 

Fresh fruiting bodies of wild G. lucidum were collected from a dead trunk of Quercus lanata on 

Chandragiri Hill, Nepal (elevation 7482 ft; latitude 27.67402; longitude 85.19874) (Figure. 2). The 

specimens were identified based on detailed macro- and micro-morphological characteristics (Table 

1). 
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Figure 2. Map of Nepal in a global context (A), G. lucidum collection site (B) and its fruiting body growing on 

Quercus lanata (C). 

Table 1. Summary of the ecological, morphological, anatomical, and taxonomic characteristics of G. lucidum. 

Parameter Description 

Collection month September–October 

Location Chandragiri Hill, Kathmandu, Nepal 

Elevation 7482 ft (2280 m) above sea level 

Coordinates Latitude: 27.67402° N; Longitude: 85.19874° E 

Ecosystem type Solitary 

Substrate Wood, stump, log, stick, base of tree, bark 

Host tree Quercus lanata 

Rot type White-rot 

Surrounding trees (20 ft radius) Predominantly hardwoods 

Basidiocarp size 

Texture 

7–12 × 11–19 × 1.5 cm 

Woody to corky 

Stipe Sub-sessile to laterally stipitate, 2–3 cm 

Pileus shape Reniform 

Upper surface Laccate, dark reddish to purplish, yellowish at margins; brittle, soft 

Margin Blunt, rounded, brown-white 

Pore surface Creamy to milky coffee; ~5 pores/mm 

Tube layer 2–9 mm long, white turning brown when brushed or aged 

Context 9 mm thick, brown, without horny deposition 

Cutis type Thick-walled claviform with diverticula; 35–42 × 6–8.5 µm 

Hyphal system 
Trimitic: Generative (3.3 µm, hyaline, thin-walled, with clamp); 

Skeletal (5.8–7.5 µm, brown, thick); Binding (5–7.5 µm, brown) 

Basidiospores 8.3–10 × 6.6 µm; yellowish-brown 

Identification authority 

 
Prof. Mahesh Kumar Adhikari, Dept. of Plant Resources, Kathmandu 
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2.2. Sample Preparation and Extraction 

The samples were cleaned and oven-dried gradually from 45 °C to 60 °C for 3 days until a 

constant weight was attained. The dried mushroom was milled into a fine powder and stored in 

airtight containers for future use. 10 gm of G. lucidum were subjected for extraction. Solvent extraction 

was performed for 10 hrs in a Soxhlet apparatus with 250 mL each of water (GWE, 100 °C), 70% 

ethanol (GEE, 60 °C), 80% methanol (GME, 70 °C), and 50% acetone (GAE, 50 °C). Extracts were 

concentrated under vacuum in a rotary evaporator (50 °C) and stored in dark vials at 4 °C. The 

calculation of the % yield was done for each solvent using the formula, 

% Yield =  
weight of the G. lucidum powder before extraction (gm) 

weight of the obtained extract (gm)
 X 100 

2.3. Estimation of Total Phenolic, Flavonoid, β-carotene and Lycopene 

2.3.1. Total Phenolic Content 

Total phenolic content was determined using the Folin-Ciocalteu method with pyrogallol as the 

standard [24]. A calibration curve was established by measuring the absorbance of pyrogallol 

standards (10-100 µg/mL) at 760 nm. Sample solutions (1 mL) were reacted with 5 mL of 10% Folin-

Ciocalteu reagent for 5 minutes at room temperature. Subsequently, 4 mL of Na2CO3 solution was 

added, and samples were vigorously mixed and incubated in the dark for 2 hours at room 

temperature. Absorbance was read at 760 nm, and results were expressed as pyrogallol equivalents 

(mg/g dry extract). 

2.3.2. Total Flavonoid Content 

Total flavonoid content was determined using the aluminum chloride colorimetric method, 

adapted from Shraim et al., 2021[25]. Quercetin standard curve was prepared by diluting a 10 mg 

quercetin stock in 50% methanol to concentrations ranging from 10-100 µg/mL, with absorbance 

measured at 415 nm. Sample aliquots (1.0 mL) were mixed with 0.5 mL of 1.2% aluminum chloride, 

0.5 mL of 120 mM potassium acetate, and 1 mL of distilled water. After 30 minutes of incubation at 

room temperature, absorbance was read at 415 nm. Results were expressed as mg quercetin 

equivalents per gram of dry extract (mg QE/g dry weight). 

2.3.3. Estimation of β-Carotene and Lycopene Content 

β-carotene and lycopene were determined as per Prakash et al., 2016 [26]. Dried extracts (100 

mg) were extracted with 10 mL of acetone-hexane (4:6) for 1 min, then filtered. Filtrate absorbance 

was measured at 453, 505, 645, and 663 nm. Carotenoid concentrations (mg/100 mL) were calculated 

using the following equations: 

Lycopene = (−0.0458 × A663) + (0.372 × A505) + (0.0806 × A453) 

β-carotene = (0.216 × A663) − (0.304 × A505) + (0.452 × A453) 

Results are presented as mg carotenoid per gram of dry extract (mg carotenoid/g dry extract) 

2.4. Determination of In Vitro Antioxidant Activities 

2.4.1. DPPH (2, 2-diphenyl-1-picryl-hydrazyl) Assay 

Different concentrations of extracts (20-100 µg/mL) were prepared. To 1 mL of each extract 

concentration, 2 mL of ice-cold 0.1 mM DPPH solution was added. The mixtures were incubated in 

the dark at room temperature for 30 min. Absorbance was then measured at 517 nm against a 

methanol blank [27]. A 3 mL DPPH solution was used as the control. Percentage inhibition was 

calculated using the formula: 

% inhibition = [(A₀-A₁)/(A₀)] x 100 

where A0 is the absorbance of the control and A1 is the absorbance of the sample. 
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2.4.2. Nitric Oxide Radical Scavenging Assay 

Nitric oxide radical scavenging activity was determined with slight modification from Alam et 

al., 2013 [28]. Samples or ascorbic acid (20-100 µg/mL, 1 mL) were mixed with 2 mL of 10 mM sodium 

nitroprusside in phosphate buffer and incubated at 25°C for 2.5 hours. To 3 mL of the incubated 

solution, 3 mL of Griess reagent (1% sulfanilamide, 0.1% naphthylethylenediamine dihydrochloride 

in 2% H3PO3) was added. Absorbance of the pink color was measured at 540 nm against a blank. 

Ascorbic acid served as a positive control. Percentage inhibition was calculated using: 

% inhibition = [(A₀-A₁)/(A₀)] x 100 

where A0 is the absorbance of the control and A1 is the absorbance of the sample. 

2.4.3. Hydroxyl Radical Scavenging Assay 

Hydroxyl radical scavenging activity was assessed by measuring the inhibition of salicylic acid 

hydroxylation [29]. The 7 mL reaction mixture contained 1 mL of sample/standard (100-500 µg/mL), 

2 mL of 6 mM FeSO4, 2 mL of 6 mM H2O2, and 2 mL of 6 mM salicylic acid. After incubation at 37 °C 

for 1 hour, absorbance was measured at 510 nm due to the color change of salicylic acid. Scavenging 

activity was calculated as follows: 

% inhibition = [(A₀-A₁)/(A₀)] x 100 

Where A0 is the absorbance of the control and A1 is the absorbance of the sample. 

2.4.4. Superoxide Radical Scavenging Assay 

Superoxide radical scavenging activity was assessed by a modified pyrogallol auto-oxidation 

method [29]. The reaction mixture contained 4.5 mL of 50 mM Tris-HCl buffer (pH 8.2), 0.4 mL of 25 

mM pyrogallol, and 1 mL of sample (0.1-0.5 mg/mL). After 5 min incubation at 25°C, the reaction was 

terminated by adding 1 mL of 8 mM HCl. Absorbance was measured at 420 nm. Ascorbic acid served 

as the positive control. Superoxide radical scavenging activity was calculated using the formula: 

% inhibition = [(A₀-A₁)/(A₀)] x 100 

Where A0 is the absorbance of the control and A1 is the absorbance of the sample. 

2.4.5. Reducing Power Assay 

The reducing power of samples was assessed via the ferric reducing antioxidant power (FRAP) 

assay [30]. One mL of sample or standard (20-100 µg/mL) was combined with 2.5 mL of 0.2 M 

phosphate buffer (pH 6.6) and 2.5 mL of 1% (w/v) K3Fe(CN)6. After 20 min incubation at 50 °C in a 

water bath, 2.5 mL of 10% (w/v) trichloroacetic acid was added to terminate the reaction. The mixture 

was centrifuged at 3000 rpm for 10 min. A 2.5 mL aliquot of the supernatant was then mixed with 2.5 

mL distilled water and 0.5 mL of 0.1% (w/v) FeCl3. Absorbance was measured at 700 nm against a 

blank. 

2.5. Cytotoxicity Assay 

HeLa cells were seeded in a 96-well plate. After 24 hours, cells were treated with 

dimethylsulfoxide or various extract concentrations for 48 hrs. Post-treatment, media were removed 

and replaced with 100 µL fresh medium containing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) reagent (final concentration 0.4 mg/mL). Plates were incubated at 37 

°C for 3 hrs, during which intracellular purple formazan was observed. Next, 100 µL of solubilization 

solution (4 mM HCl, 0.1% NP40 in isopropanol) was added, and plates were kept in the dark for 15 

minutes at room temperature. Absorbance was measured at 570 nm using a microplate reader [31]. 

2.6. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis 

GC-MS analysis of G. lucidum extracts was conducted using a GCMS-QP2010 Ultra (Shimadzu, 

Kyoto, Japan) equipped with an Rtx-5 M5 capillary column (30 m × 0.02 mm i.d., 0.25 µm film 
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thickness; Restek, Bellefonte, PA, USA). The operating conditions, including solvent cut-off, 

temperature program, and MS scan parameters, were identical to those described by Tiwari et al. 

2023 [32]. Compounds were identified using NIST libraries (NIST 14, Gaithersburg, MD, USA). 

2.7. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 10 (GraphPad Software, San Diego, 

CA, USA). Experiments were conducted in triplicate, expressed as mean ± SD. One-way ANOVA 

with Tukey’s post-hoc test compared extracts (p < 0.05). 

3. Results 

3.1. Extraction Yield 

Extraction efficiency is affected by the chemical nature of bioactive compounds, the extraction 

method used, sample particle size, the solvent used, as well as the presence of interfering substances 

[33,34]. The yield of extraction depends on the solvent with varying polarity, temperature, pH, 

extraction time, and composition of the sample [33,34]. Extraction efficiency (% yield) varied 

significantly (p < 0.05) among solvents, with acetone yielding the highest crude extract (GAE; 5.01%), 

followed by ethanol (GEE; 3.43%), methanol (GME; 2.98%), and water (GWE; 2.29%) (Table 2). 

Table 2. Percentage yield of various solvent extracts. 

Extract 
Weight of sample before 

extraction (gm) 

Weight obtained after 

extraction (gm) 
% Yield value 

Water 10 0.229 2.29 d 

Ethanol 10 0.343 3.43 b 

Methanol 10 0.298 2.98 c 

Acetone 10 0.501 5.01 a 

Values with the same letter (a-d) are not significantly different; different letters indicate significant differences 

between solvents (p < 0.05). 

3.1. Estimation of Total Phenolic and Flavonoid Content 

Phenolic compounds are recognized as potent chain-breaking antioxidants due to the radical-

scavenging capabilities of their hydroxyl groups [35]. The total phenolic content (TPC) exhibited 

significant variation among the tested solvents (Figure 3A). Ethanol extract (GEE) demonstrated the 

highest TPC (376.5 ± 9.3 mg PGE/g), which was significantly greater (p < 0.05) than that of methanol 

extract (GME; 97.3 ± 2.8 mg PGE/g), water extract (GWE; 96.6 ± 2.6 mg PGE/g), and acetone extract 

(GAE; 60.5 ± 7.4 mg PGE/g). Notably, the TPC of GEE exceeded values previously reported for 62 

wild mushrooms from Nepal, including other Ganoderma species, and 29 other diverse mushroom 

species [16,17,36]. 

Flavonoids were quantified using the aluminum chloride method. GEE and GWE exhibited 

significantly higher TFCs, with values of 30.33 ± 0.5 mg QEs/g extract and 26.73 ± 0.6 mg QEs/g 

extract, respectively (Figure 3B). The low flavonoid content was observed in GME; 6.34 ± 0.4 mg 

QEs/g dry extract and GAE; 7.95 ± 0.23 mg QEs/g extract. Notably, GEE contained approximately 4.7-

fold higher total flavonoids compared to GME. 
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Figure 3. Total phenolic content (A) and Total Flavonoid Content (B) expressed as pyrogallol and quercetin 

equivalents (mg/g dry extract), respectively. Values with the same letter (a-d) are not significantly different; 

different letters indicate significant differences between solvents (p < 0.05). 

3.2. Estimation of β-Carotene and Lycopene 

The concentrations of lycopene and β-carotene in G. lucidum extracts were estimated 

spectrophotometrically. Carotenoid analysis demonstrated limited solvent efficacy. β-carotene 

content was highest in GME (0.4536 ± 0.000 mg/g), followed by GEE (0.1982 ± 0.006 mg/g), GWE 

(0.1595 ± 0.001 mg/g), and GAE (0.0944 ± 0.001 mg/g) (Figure 4A). 

 

Figure 4. β-carotene (A) and lycopene (B) content as mg/100 mL extract in various solvent extract. Values with 

the same letter (a-d) are not significantly different; different letters indicate significant differences between 

solvents (p < 0.05). 

Similarly, lycopene content varied considerably among the extracts, ranging from 0.0163 ± 0.000 

to 0.0670 ± 0.001 mg/g of dry extract (Figure 4B). The highest lycopene content was found in the 

methanolic extract (GME; 0.0670 ± 0.001 mg/g), followed by the ethanolic extract (GEE; 0.0308 ± 0.004 

mg/g), water extract (GWE; 0.0175 ± 0.002 mg/g), and acetone extract (GAE; 0.0163 ± 0.000 mg/g). 

However, overall β-carotene and lycopene contents were comparatively low when contrasted with 

the phenolic and flavonoid contents of the same extracts. 
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3.3. Comparative In-Vitro Antioxidant Activities 

Antioxidant activity cannot be definitively concluded from a single assay due to the diverse 

mechanisms involved and variations between in vitro test models. These diverse mechanims include 

free radical scavenging, metal ion chelation, reducing power, single electron transfer, and others 

[37,38]. Therefore, this study employed multiple in vitro antioxidant assays (DPPH radical 

scavenging, superoxide radical scavenging, hydroxyl radical scavenging, nitric oxide radical 

scavenging, and reducing power) to comprehensively evaluate and compare the antioxidant 

potential of G. lucidum solvent extracts. 

3.3.1. DPPH Radical Scavenging Activity 

The DPPH radical scavenging activity of the extracts (at 100 µg/mL) ranged from 86.58 ± 4.65% 

to 95.59 ± 0.17% (Figure 5). Methanolic extract (GME) exhibited the highest activity (95.59 ± 0.17%), 

followed by acetone extract (GAE; 92.13 ± 0.34%), ethanolic extract (GEE; 90.91 ± 0.06%), and water 

extract (GWE; 86.58 ± 4.65%). Ascorbic acid, as a standard, showed 97.26 ± 0.69% inhibition. All 

extracts demonstrated high antioxidant activity, scavenging over 80% of the DPPH radical even at 80 

µg/mL. These findings indicate better scavenging activity compared to some previously reported 

wild mushrooms from Nepal, including G. lucidum [16,17,36]. 

 

Figure 5. DPPH radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents, 

compared to the standard antioxidant ascorbic acid. 

3.3.2. Superoxide Radical Scavenging Activity 

Superoxide radical scavenging activity was positively correlated with increasing extract 

concentrations (p < 0.05) (Figure 6). At 500 µg/mL, GEE exhibited the highest scavenging activity 

(72.24 ± 0.61%), followed by GME (54.84 ± 1.72%), GAE (39.37 ± 1.70%), and GWE (38.70 ± 0.65%). 

Ascorbic acid showed 98.80 ± 0.15% scavenging. The observed order of activity was: GEE > GME > 

GAE > GWE. These results suggest the extracts’ ability to scavenge superoxide anion radicals, 

potentially preventing oxidative damage, likely attributed to the electron-donating capacity of their 

phenolic hydroxyl groups [39]. 
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Figure 6. Superoxide radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents, 

compared to the standard antioxidant ascorbic acid. . 

3.3.3. Hydroxyl Radical Scavenging Activity 

All samples exhibited significant dose-dependent hydroxyl radical scavenging activity. At tested 

concentrations, GME showed the highest activity (77.88 ± 0.15%), followed by GEE (76.62 ± 0.28%), 

and GWE (65.72 ± 0.13%), with GAE showing comparatively lower activity (42.12 ± 1.59%) (Figure 7). 

Ascorbic acid (47.73 ± 0.13%) served as a standard. Notably, the IC50 values for GWE, GEE, and GME 

were lower than that of ascorbic acid, indicating their superior hydroxyl radical scavenging potential. 

The potent hydroxyl radical scavenging capacity of G. lucidum extracts suggests a preventive role 

against lipid peroxidation initiation and protection against DNA damage, mutagenesis, and 

cytotoxicity [40–43]. 

 

Figure 7. Hydroxyl radical scavenging activity (%) of G. lucidum extracts prepared with four different solvents, 

compared to the standard antioxidant ascorbic acid. 

3.3.4. Nitric Oxide Radical Scavenging Activity 

The extracts demonstrated good inhibition of nitric oxide radicals. At 100 µg/mL, GEE exhibited 

the highest scavenging potential (81.51%), followed by GME (63.81%), GAE (41.88%), and GWE 
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(41.62%) (Figire 8). Ascorbic acid showed 97.02% inhibition. The order of activity was GEE > GME > 

GAE ≈ GWE. The ability of the extracts to scavenge nitric oxide suggests a potential to prevent 

peroxynitrite formation and a protective role against nitrosamine-mediated carcinogenesis in the 

digestive tract [44]. 

 

Figure 8. Nitric oxide radical scavenging activity (%) of G. lucidum extracts prepared with four different 

solvents, compared to the standard antioxidant ascorbic acid. . 

3.3.5. Reducing Power Assay 

The reducing power assay (electron-donating capacity) further confirmed ethanol’s dominance 

(0.353 ± 0.003 at 100 µg/mL), aligning with radical scavenging trends (Figure 9). The reducing power 

of the extracts at 100 µg/mL followed the order: GEE (0.353 ± 0.002) > GME (0.176 ± 0.002) > GWE 

(0.164 ± 0.005) > GAE (0.158 ± 0.001). Standard ascorbic acid showed a reducing power of 0.493 ± 0.001 

at the same concentration. The reducing powers of the ethanolic extracts were notably higher than 

those reported for other G. lucidum, Boletus edulis, and Pleurotus ostreatus [45–48]. This reducing 

capacity is likely due to their hydrogen-donating ability of the compounds present in the extracts, 

which can halt peroxide formation and terminate radical chain reactions [49,50]. 

 

Figure 9. Reducing power assay of G. lucidum extracts prepared with four different solvents, compared to the 

standard antioxidant ascorbic acid. 
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3.4. MTT-Based Cytotoxicity Assay in HeLa Cells 

Following the characterization of bioactive compounds and antioxidant activities, the cytotoxic 

potential of G. lucidum extracts was evaluated against human cervical cancer (HeLa) cells via MTT 

assay. Extracts were tested at concentrations of 100, 500, and 1000 µg/mL, and results are presented 

in Figure 10. All extracts exhibited a dose-dependent inhibition of HeLa cell viability. At the highest 

concentration tested (1000 µg/mL), GEE and GWE extracts demonstrated significantly higher (p < 

0.05) cytotoxicity, suppressing cell proliferation by >65%. Specifically, GEE achieved 82.53 ± 1.46% 

inhibition and GWE 67.28 ± 1.39% inhibition. In comparison, GME and GAE showed more moderate 

inhibition at 1000 µg/mL, with 51.87 ± 2.1% and 34.78 ± 4.69 % inhibition, respectively. 

 

Figure 10. Cytotoxic activity of G. lucidum extracts against HeLa cervical cancer cell lines at varying 

concentration. For each concentration, values with the same letter (a-e) are not significantly different; different 

letters indicate significant differences between solvent extracts (p < 0.05). 

3.5. IC50 Comparison of Extraction Solvents for Antioxidant and Cytotoxicity Activities 

The extraction efficiency and bioactive potential of G. lucidum were solvent-dependent, with 

GEE having the highest total phenolic (376.50 ± 9.32 PGE/g) and flavonoid (30.33 ± 0.50 QE/g) content, 

while GME showed higher carotenoids (lycopene: 0.067 ± 0.001 mg/g; β-carotene: 0.454 ± 0.000 mg/g) 

(Figure 11). Similarly, antioxidant assays revealed solvent-specific efficacy: GWE, GEE, GME, GAE 

exhibited an exceptional DPPH radical scavenging comparable to ascorbic acid, IC50: 5.82 µg/mL), 

whereas GEE dominated in superoxide (IC50: 328.95 µg/mL), nitric oxide (IC50: 57.67 µg/mL), and 

reducing power (IC50: 78.04 µg/mL) assays (Figure 11). Hydroxyl radical inhibition was strongest in 

GWE (IC50: 237.89 µg/mL), closely followed by GEE (274.34 µg/mL). Cytotoxicity via MTT assay 

demonstrated dose-dependent inhibition, with GEE (IC50: 520.19 µg/mL) and GWE (702.41 µg/mL) 

exhibiting moderate activity (Figure 11). Collectively, ethanol was found to be superior in extracting 

phenolic and flavonoid-rich fractions with high antioxidant capacity, despite GWE’s exceptional 

DPPH activity, likely due to ethanol extracting polar bioactive compounds with higher antioxidant 

capacity [51–53]. The correlation between ethanol’s high phenolic/flavonoid content and multi-target 

bioactivity positions it as the optimal solvent for extracting compounds with therapeutic potential 

against oxidative stress and cancer. 
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Figure 11. Heatmap of IC50 values obtained from various antioxidant and cytotoxic assays. Values are expressed 

in µg/mL. Within each assay, values with the same letter (a-e) are not significantly different; however, different 

letters indicate significant differences between solvents (p < 0.05). Ascorbic acid: AA. 

3.6. Solvent-Dependent Variation in Bioactive Compounds via GC-MS Profiling 

GC-MS analysis of G. lucidum extracts showed solvent-dependent profiles of bioactive 

compounds, including sterols, triterpenoids, terpenoids, and polyphenols (Table 3). Fatty acids 

dominated ethanol (53.18%) and methanol (48.57%) extracts, with 9,12-octadecadienoic acid (linoleic 

derivative: 20.60% in ethanol, 14.05% in methanol) and pentadecanoic acid (14.52% in ethanol) as 

major constituents. Acetone exhibited the lowest fatty acid content (5.64%) but uniquely contained 

ergosterol (Vitamin D2 precursor) and retinoic acid. Polar protic solvents (ethanol, methanol) 

efficiently extracted free fatty acids and esters, including (E)-9-octadecenoic acid ethyl ester (oleic 

derivative: 3.86% in ethanol), while acetone’s mid-polarity favored sterols (7,22-ergostadienone, 

9(11)-dehydroergosteryl benzoate) and triterpenoids (ergosta-4,6,8(14),22-tetraen-3-one). Similarly, 

Hinokione, an abietene diterpene, was detected across solvent extracts (0.9% in GAE, 2.9% in GEE, 

and 5.5% in GME) (Table 3). 

Pharmacologically significant compounds included ferruginol (exclusive to ethanol), nerolidol 

acetate (methanol-specific), geranylgeraniol (anti-inflammatory terpenoid), and Hinokione (anti-

inflammatory and anticancer) (Table 3). Ethanol and methanol extracts had the highest polyphenol, 

diterpenoid, and fatty acid content, whereas acetone had higher sterols and triterpenoids, 

demonstrating solvent polarity as a critical determinant of bioactive compound selectivity. These 

findings show G. lucidum’s diverse phytochemical composition and the impact of solvent choice in 

optimizing targeted metabolite extraction. 
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Table 3. Summary of key compounds detected by the GC-MS analysis in various solvents and their reported 

pharmacological relevance. 

Compound Name 
Solvent Extracts (% area) Compound 

class 
Key pharmacological relevance Reference 

GEE GME GAE 

7,22-Ergostadienone 3.54 2.90 2.55 Sterol 

Antithrombotic activity with cardiovascular benefit; 

antidiabetic, anticancer, and neuroprotective effects; Pro-

inflammatory properties (activating Toll-like receptors, 

cytokines, and chemokines) 

[51,54–57] 

9(11)-Dehydroergosteryl 

3,5-dinitrobenzoate 
2.90 3.13 2.70 Sterol conjugate 

Anti-inflammatory; antibacterial (MRSA and S. aureus); 

and cytotoxic properties 
[58,59] 

δ-Tocopherol 2.13 3.91 0.75 Tocopherol 

Antioxidant; anti-inflammatory (primarily via inhibiting 

protein kinase C and reducing eicosanoid production); 

anticancer (both in vitro and in vivo prostate xenograft 

models); cvardiovascular and neuroprotective 

[60,61] 

4-[5-(2-bromophenyl)-

1,2,4-oxadiazol-3-yl]-

1,2,5-oxadiazol-3-amine 

- - 0.35 
Synthetic 

heterocycle 

Anticancer (potentially via targeting Topoisomerase II 

relaxation activity); antibacterial; anti-inflammatory; 

analgesic properties; antioxidant  

[62–66] 

Ergosta-tetraenone 3.86 - 1.67 Sterol derivative 

Anticancer (via G2/M arrest and apoptosis induction); 

nephroprotection (mitigation of renal damage in mouse 

model); anti-inflammatory 

[67–69] 

Ergosterol - - 73.99 Sterol 

Vitamin D2 precursor; lipid soluble antioxidant; 

anticancer effects (cell cycle arrest and modulates 

Wnt/β-catenin signaling pathway); antimicrobial; 

antidiabetic; immunomodulatory effects  

[70–72] 

Ferruginol 3.18 - - 
Abietane 

diterpene 

Anticancer (apoptosis induction in melanoma, prostate, 

lung, and ovarian cancer cells); neuroprotective (reduces 

α-synuclein toxicity and restores LTP in Alzheimer’s 

models); cardioprotective (both invitro and in vivo 

models); antimicrobial and antiviral  

[73–80] 

Geranylgeraniol 5.26 - 0.89 
Diterpenoid 

alcohol 

Anti-inflammatory (NF-κB inhibition; ↓ IL-1β, TNF-α, 

IL-6, COX-2); pain relief; bone and muscle support 

(muscle regeneration and prevents bisphosphonate-

related bone damage); antimicrobial activity; hormonal 

balance; glucose homeostasis  

[81–84] 

Hinokione 2.9 5.5 0.9 
Abietane 

diterpene 

Anticancer; anti-inflammatory; hypoglycemic & β-Cell 

regenerative properties (promotes β-cell differentiation 

and improved glycemia in zebrafish); antibacterial; 

antioxidant  

[85–87] 

Nerolidol acetate - 1.70 - 
Sesquiterpene 

ester 

Anticancer; anti-inflammatory; neuroprotective; 

antimicrobial; antifungal; antioxidant 
[88–90] 

Retinoic acid - - 0.50 Retinoid 

Acne and photoaging (promotes cell differentiation and 

skin repair); anti-cancer (induces differentiation of 

malignant promyelocytes in acute promyeloid leukemia); 

neuroprotective  

[91–93] 

4. Discussion 

This study demonstrated the solvent-dependent extraction of bioactive compounds from G. 

lucidum collected from high-altitude regions of Nepal, supporting our initial hypothesis that unique 

environmental factors at these altitudes influence the mushroom’s secondary metabolite profile. The 

observed variability in extraction yield across different solvents, with acetone yielding the highest, 

followed by ethanol, methanol, and water, demonstrates the role of solvent polarity in determining 

extraction efficiency. This observation aligns with established principles of phytochemistry, where 

solvent polarity dictates the solubilization and subsequent extraction of specific compound classes 

[33,94–101]. 

GEE displayed the highest TPC and TFC, correlating strongly with its superior antioxidant and 

cytotoxic performance (Figure 4-10). GEE’s TPC exceeded that of 62 wild mushrooms previously 

reported in Nepal and outperformed other Ganoderma species and various commercial mushrooms 

[16,17,36]. GEE also contained approximately 4.7 times more flavonoids than GME, with flavonoid 

levels surpassing those reported in G. applanatum and G. resinaceum [36,102]. This suggests that 

flavonoids likely constitute a significant portion of the total phenolic content in the tested extracts. 
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Collectively, these findings support the efficacy of ethanol in extracting phenolic and flavonoid-rich 

fractions with potential nutraceutical value. 

Carotenoid extraction with methanol proved to be most effective among the tested solvents due 

to its polar nature, disrupting the cellular matrix to release hydrophobic carotenoids, consistent with 

previous reports of carotenoid content in G. lucidum [94]. Nevertheless, overall carotenoid yields were 

relatively low compared to the phenolic and flavonoid content (Figure 4, 5). The values obtained for 

GME were higher than those previously reported in Turkish mushrooms [103] and some Indian 

strains of G. lucidum, but still lower than those observed in wild Portuguese mushrooms [47]. This 

reinforces the role of solvent polarity in selective compound recovery. 

Multiple in vitro antioxidant assays, including DPPH, superoxide, hydroxyl, nitric oxide radical 

scavenging, and reducing power assays, confirmed the strong antioxidant potential of the extracts. 

All extracts scavenged over 80% of DPPH radicals at 80–100 µg/mL, with GEE and GME showing the 

strongest activity, likely due to their higher phenolic content. Superoxide scavenging was highest in 

GEE (72.24 ± 0.61%), suggesting strong potential to neutralize ROS via electron donation [39]. 

Hydroxyl radical IC₅₀ values for GWE, GEE, and GME were lower than that of ascorbic acid, 

indicating a potent ability to counter lipid peroxidation and DNA damage [40–42]. Nitric oxide 

scavenging by GEE (81.51%) indicates its role in mitigating nitrosative stress and possible prevention 

of nitrosamine-mediated carcinogenesis. Reducing power, another key antioxidant indicator, was 

highest in GEE and significantly exceeded values for Boletus edulis and Pleurotus ostreatus [45–48]. 

This capacity is linked to the hydrogen-donating ability of flavonoids and phenolics [49,50]. 

The cytotoxicity of the extracts was assessed against HeLa cells using the MTT assay. All extracts 

demonstrated dose-dependent inhibition of cell viability. At 1000 µg/mL, GEE exhibited strongest 

cytotoxic effect (82.53 ± 1.46%), followed by GWE (Figure 10). These results are consistent with earlier 

reports on the anticancer effects of G. lucidum, suggesting that ethanol and water extracts contain 

compounds that may induce apoptosis, modulate immune responses, and arresting cell cycle 

progression [48,94,104,105]. The anti-proliferative effects of G. lucidum extracts are well documented 

in the literature and have been reported in a variety of cancer cell lines, including HeLa (cervical 

cancer), A549 (lung cancer), LS174 (colon cancer), and MCF-7 (breast cancer) cells [105,106]. As 

described in recent studies, including the work by Prabhu et al. (2023), these cytotoxic effects are 

largely attributed to the presence of bioactive compounds such as pentadecanoic acid, 14-methyl 

ester; hexanoic acid; (Z,Z)-9,12-octadecadienoic acid methyl ester; ergosta-4,6,8(14),22-tetraen-3-one 

(ergosta-tetraenone); 7,22-ergostadienone; and various Ganoderma-derived polysaccharides [105]. 

Notably, our GC-MS profiling confirmed the presence of these compounds in the solvent extracts of 

G. lucidum, providing mechanistic support for the observed cytotoxicity in HeLa cells and reinforcing 

their potential therapeutic relevance in cancer treatment. 

When IC₅₀ values were compared across assays, ethanol emerged as the most effective solvent 

for extracting multifunctional bioactives (Figure 11). GEE had the lowest IC₅₀ values in superoxide 

(328.95 µg/mL), nitric oxide (57.67 µg/mL), and reducing power (78.04 µg/mL) assays. Although 

GWE had stronger hydroxyl radical inhibition, GEE consistently performed across multiple assays 

and demonstrated superior cytotoxicity (IC₅₀: 520.19 µg/mL). These findings highlight ethanol’s 

extraction of polar antioxidant and anticancer agents with broad-spectrum activity. 

GC-MS analysis confirmed solvent-specific extraction efficiency, identifying steroids, 

terpenoids, diterpenoids, triterpenoids, polyphenols, and fatty acids. Polyunsaturated fatty acids 

were most abundant in ethanol and methanol. One of the major bioactive constituents gaining a lot 

of attention recently is found in all three extracts was Hinokione, an abietane-type diterpene known 

for its significant anticancer and anti-inflammatory activities [85]. Hinokione, an abietane-type 

diterpene with established anticancer and anti-inflammatory properties, was identified in all extracts. 

Hinokione has been shown to exhibit cytotoxicity against MV-3 and MIAPaCa-2 human cancer cell 

lines with IC50 values of 34.1 and 17.9 µM, respectively, and has demonstrated β-cell regeneration 

and hypoglycemic effects in zebrafish [85,107,108]. Ferruginol, another abietane diterpenoid with 

neuroprotective and anticancer activity, was exclusively present in GEE. It has shown 
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antiproliferative activity in melanoma (Sk-MEL28) and various cancer cell lines, including prostate, 

lung, gastric, and breast cancers, as well as efficacy in CL1-5 xenograft mouse models [73,75,77,78]. 

Methanol extract contained nerolidol acetate, a sesquiterpene with antioxidant, antibacterial, anti-

biofilm, antifungal, and anticancer properties [88–90]. Geranylgeraniol, an anti-inflammatory 

isoprenoid, was also detected in methanol and ethanol extracts, likely contributing to their 

antioxidant activity [81–84]. GAE was rich in ergosterol and retinoic acid, with ergosterol comprising 

more than two-thirds of the total extracted compounds. As a vitamin D precursor, ergosterol has 

potential for addressing vitamin D deficiency-associated diseases, including cancers, rheumatoid 

arthritis, and multiple sclerosis [109]. Estrogenic derivatives such as 7,22-ergostadienone and 9(11)-

dehydroergosteryl benzoate, known for their therapeutic applications, were found across all extracts 

(Table 3). 

Collectively, the GC-MS dataset underscores the profound impact of solvent choice on the 

chemical profile of mushroom extracts and the types of bioactive molecules recovered. These solvent-

dependent metabolic signatures not only explain the variation in antioxidant and cytotoxic activities 

observed across assays but also provide mechanistic insight into the functional contributions of 

specific compound classes. The selective enrichment of fatty acids, sterols, and terpenoids by distinct 

solvents offers a strategic basis for tailoring extraction protocols to maximize therapeutic yield. 

Building upon these findings, future investigations should focused on isolating and functionally 

characterizing the specific bioactive compounds responsible for the observed activities through 

selective extraction and purification of bioactive candidate compounds. Testing these isolated 

compounds will provide a clearer understanding of their therapeutic potential. 

5. Conclusions 

Our study aimed to investigate the therapeutic potential of G. lucidum from Nepal’s high-altitude 

regions, and our findings strongly confirms it as a key source of bioactive compounds. Through this 

work, we have shown that the choice of extraction solvent is critical, significantly impacting not only 

the yield but also the specific bioactive compounds obtained, and consequently, their biological 

activities. While acetone yielded the most crude extract, ethanol and methanol extract showed higher 

phenolic and flavonoid content, correlating with high antioxidant activity across a spectrum of in 

vitro assays. The ethanol and water extracts also demonstrated a powerful ability to inhibit HeLa cell 

growth. GC-MS analysis identified diverse array of beneficial compounds, including fatty acids, 

sterols like ergosterol, and various terpenoids (diterpenoids, triterpenoids). The specific distribution 

of these compounds varied depending on the extraction solvents, and they collectively contribute to 

the observed health benefits. Future research should focus on optimizing extraction methods and 

characterizing these individual compounds to maximize specific bioactivities, which will be critical 

for bridging the gap between traditional use and modern applications. 
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