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Abstract

In this paper, we have established a theorem concerning the degree of approximation of functions f €
Lipa by means of the product summability method (E.1)(N.p.q) applied to the Fourier series associated
with a function. The result offers new insights into the convergence behavior and approximation
properties of such summation techniques within the Lipschitz class, highlighting the effectiveness of
product summability in Fourier analysis.
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1. Introduction

In mathematical analysis, the degree of approximation is crucial for understanding how infinite
series behave. This concept goes beyond standard convergence theory, providing a more detailed
understanding of series that might diverge or converge conditionally. Through this method, mathe-
maticians can establish meaningful limits for such series, uncovering inherent patterns and order in
what would otherwise seem complex or unsolvable expressions.

A vibrant area where these ideas find resonance is in the study of the Fourier series. These series
provide elegant representations of periodic functions as infinite sums of sines and cosines, bridging the
gap between pure mathematical theory and practical applications. From solving differential equations
to signal processing and acoustics to quantum mechanics and electrical engineering, Fourier analysis
plays a central role. However, the classical theory of the Fourier series is not without its limitations.
Functions with discontinuities or irregular behavior often resist uniform convergence, presenting
challenges that call for more nuanced analysis methods.

This is where the interplay between Banach summability and the Fourier series becomes both
natural and fruitful. The framework of Banach summability offers powerful tools to investigate the
convergence properties of Fourier series, especially in cases where classical convergence fails. By
broadening the notion of limits, Banach summability methods allow for a deeper understanding of the
behavior of series and open pathways to new applications in both theoretical and applied contexts.

The origins of summability theory can be traced back to the seminal work of Godfrey Harold
Hardy [1], whose famous evergreen book “Divergent Series" (1970) laid the foundation for a rigorous
treatment of divergent series. Hardy’s work inspired future generations of mathematicians, including
Stefan Banach [2], Salomon Bochner [3], Ram Chandran [4], and Shyam Lal Singh [5], among others.
Of particular significance is the contribution of Stefan Banach [6], whose introduction of Banach limits
and summability revolutionized the analysis of convergence and divergence in infinite series.

Building upon these foundations, researchers have developed more sophisticated summability
methods tailored to specific mathematical contexts. For instance, S.K. Paikray et al. [6] introduced the
notion of absolute indexed summability factors using quasi-monotone sequences. In contrast, R.K. Jati
et al. [7] employed absolute indexed matrix summability to study infinite series in a more generalized
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setting. Further contributions by ].K. Mishra & M. Mishra [8], G.D. Dikshit [9], L. McFadden [10], and T.
Pati [11] have advanced the field by extending various methods of absolute summability and exploring
their applications to Fourier series. H.K. Nigam [12] found the way to the degree of approximation of
product means. E.C. Titchmarch [13] contributed to the development of trigonometric theory, and A.
Zygmund [14] revealed the development of trigonometric series.

This convergence of ideas from classical analysis to modern summability techniques underscores
the evolving nature of mathematical inquiry. By integrating the tools of Banach summability with the
rich structure of Fourier analysis, we not only deepen our theoretical understanding but also enhance
our ability to address practical challenges in science and engineering.

2. Definitions

Definition 1. Let (a,) be a sequence of real or complex numbers. The Euler mean of order 1 is denoted (E, 1)
and defined by

(E1) = Zin f (Z) oy (1)

k=0

Further, if lim,_,0(E, 1) = s, a finite number, then we say ay is Euler summable of order 1 to s and written
Xa, =s(E,1).

Definition 2. Let Y a, be a sequence of real or complex numbers and s,, denotes its n'"* partial sums. For two
sequences {py } and {qy, }, define {t,} by

_1

n
th = 2 Prn—ovqovSv ()

"n 5=0

where 1y = poqn + P19n—1 + - + Pugo. If imu oty = S, a finite number, then we say Y a, is said to be
(N, p,q) summable to s and written Xa, = s(N, p,q).
Further, if the (E, 1) transform of the (N, p, q) transform {s, } is defined by 7, = (E,1).(N, p.q), then

1y 1y
o (5 0 (2 )

If T, — s when n — oo, then we say Y_ ay is said to be (E, 1).(N, p, q) summable to a finite number s.

Definition 3. When we express f(n) = O(g(n)), it signifies that there exists a positive constant C and a
threshold value ng such that for all n exceeding n the relationship holds true:

[f(n)] < Cg(n), (4)

where big ‘O’ notation stands for an upper limit on the growth of a function.

Example 1. Let f(n) = 5n% + 3n — 3. We can say that f(n) = O(n?). For sufficiently large values of n, the
expression 3n* + 2n + 1 is bounded above by Cn? for some constant C. In the context of asymptotic notation,
the small 0" notation, denoted f(n) = o(g(n)), signifies that f(n) grows strictly slower than ¢(n) as n — oo. .
Formally, this is defined by the limit:

) _
A, g(n) 0 ®)
Example 2. If f(n) = nand g(n) = n?, then f(n) = o(g(n)) because n becomes insignificant compared to
n? as n increases.
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30f6
Let f(t) be a periodic function Lebesgue integrable in (—7t, 7v). Then the series
ao (o) ] 00
flx) = > + ngl(an cos nx + b, sinnx) = nZO An(x) (6)
is referred to as the Fourier series of f(t), where
L7 f 7
w0 =— | fita @)
1 T
== / f(t) cos ntdt 8)
T J—m
1 T
S / F(t) sinntdt )
T J—m
Let {s,} be the n'" partial sum of ¥_ay. Then Lo norm of a function R — R is defined by
[Iflleo = sup{|f(x) : x € R} (10)
The Ly-norm is defined by
1
27 v
1l = { [ 7 x| an
The degree of approximation f : R — R defined by polynomial p,(x) of degree n under norm ||.|| is defined
by
[1pn = flleo = sup{|pn(x) = f(x)| : x € R} (12)
Also, the degree of approximation of a function f € L, is defined by
En(f) = inf{|[pn(x) — fllo : x € R}. (13)
A function f is said to be in the class Lipa if
[f(x+p)— f(x)| =0O(|p|*) where 0 < a < 1. (14)
We use the following notation throughout this paper:
¢(t) = flx+1) + flx =) = 2f(x). (15)
1 & sin(v + %)t
Ki(t) = —=——— 1
nlt) 2n+1n;<){1’n;pn TG sn2 } (16)

3. Known Result

Theorem 1. If f be a 27t periodic function of Lipa, the degree of approximation by the product (E.q)(N.Py,)

summability means on its Fourier series (6) is given by ||ty — f||eo = { (E5)E } where 0 < a < 1and T, is
defined by (3).

Theorem 2. If f is a periodic function of period 27t and class of Lipa, then the degree of approximation by

}whereO<zx<1.

product Euler & Cesaro summability of its Fourier series (6) is given by O{ (I

4. Principal theorem

In this paper, we have proved the degree of approximation by product mean (E,1)(N, p, q) of the
Fourier series of a function of class Lipa.
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Theorem 3. If f is a periodic function of period 27t of the class Lip(«, 1) then the degree of approximation by

(n+11)“} where 0 < o < 1.

product (E,1)(N, p,q) summability its Fourier series is given by O{

5. Required Lemmas

We require the following Lemma to prove the theorem.

Lemma 1. |K,(f)| = O(%)for nlﬂ <t<m

Proof. Proof: Since for n+_1 <t<msin(t/2) > L = Land |sin(nt)| < 1.
1 | &\ [1 & sin(v + 1/2)¢
K, (1) = — - I e Gt eV A
Ka®)l =~ ,g)(k){rk Ug’”k o 5in(t/2)
1| (n) 1 ¢
< — _
Fon+1 I;) k {Vk Z;)Pk v
1 n . k
= o Y ' (assuming Y pr_ofo = k)
: k=0 v=0
— 1 n+1
T opontl

O

Lemma 2. For0 <t < n%rl, Ky (t) = O(n).

Proof.
1 o\ [ 1 sin(v +1/2)t
Kal) = o L;O (k) {ﬁgpk“/qv sin(t/2)
1 (&)1 ¢ t
< T kgo (k) P Z;)pk_qu(v + 1/2)t/_2 (since sinx ~ x for small x)
1 (&)1 ¢
_— — _ 2 1
< T.on+1 k;() (k) {rk 7};Opk o0 (20 + )}
1 " n . k
< o ) (k) (2k+1)| (assuming Y pr_ogo(204+1) ~ (2k + 1)ry)
7. k=0 v=0
1 " n " n
et £G)
r2nH I\ = \k) =\
= 7'(21""'1 202" 1 —1—2”)
1
= W(rﬁ" +2i’l)
_2"(n+1)
T gpontl
= O(n)
O
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6. Proof of Principal Theorem

From Riemann-Lebesgue theorem for the n" partial sum of Fourier series of f(x) and the follow-
ing Titchmarch [13], we get

o) = 1) = 5 [ oo

Using (1), the (N, p, q) transform of |t, — f| is

1 qn n sin(v +1/2)t
27trn/() ¢(t)vgopn—v% sin(£/2) at

Denoting the product summability by (E,1)(N, p,q), we have

"ot EO () {Vl_ké e }dt
_ /”¢(t)1<n(t)df
= (/ +/n+1> .

=L+ (say)

B0 = fl = ta(f, %) = f(x) =

1
| f| 2n+1

Using Lemma 2 and the property of Lipa class, ¢(t) = O(t*):

1 = 1 sin(v+1/2)t
|Il| T ogontl /0 4)(t k;() ( ) { 2 Pek—vdv—— 7777 sm(t/2) }dt (17)

<om| [ ¢ (18)

— O(n) /O gy (19)
toﬁ-l n+1

~ o |y @)

1

= O G Dy e -
1

~o(G ) =
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60f6
Using Lemma 1 and the property of the Lipa class:

b= [ oK) 23)
< [} 1o)lKn(0)]de )

T " 1
< /L O(t )O(t)dt (25)
< /T gt (26)

e
- [fx] 1 7
" 1
1

-0 (1) @)

Combining Equation (17) and Equation (23), we get the required result: |7, — f| = O (m)

Therefore, ||ty — f||o = O{%}

(n+1)
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