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Abstract

In this paper, we have established a theorem concerning the degree of approximation of functions f ∈ 
Lipα by means of the product summability method (E.1)(N.p.q) applied to the Fourier series associated 
with a function. The result offers new insights into the convergence behavior and approximation 
properties of such summation techniques within the Lipschitz class, highlighting the effectiveness of 
product summability in Fourier analysis.

Keywords: degree of approximation; lipschitz class functions; (E, 1) mean; (N.p.q) mean; (E, 1).(N.p.q) 
product summability; fourier series; lebesgue integrable functions; big O; small O

1. Introduction
In mathematical analysis, the degree of approximation is crucial for understanding how infinite

series behave. This concept goes beyond standard convergence theory, providing a more detailed
understanding of series that might diverge or converge conditionally. Through this method, mathe-
maticians can establish meaningful limits for such series, uncovering inherent patterns and order in
what would otherwise seem complex or unsolvable expressions.

A vibrant area where these ideas find resonance is in the study of the Fourier series. These series
provide elegant representations of periodic functions as infinite sums of sines and cosines, bridging the
gap between pure mathematical theory and practical applications. From solving differential equations
to signal processing and acoustics to quantum mechanics and electrical engineering, Fourier analysis
plays a central role. However, the classical theory of the Fourier series is not without its limitations.
Functions with discontinuities or irregular behavior often resist uniform convergence, presenting
challenges that call for more nuanced analysis methods.

This is where the interplay between Banach summability and the Fourier series becomes both
natural and fruitful. The framework of Banach summability offers powerful tools to investigate the
convergence properties of Fourier series, especially in cases where classical convergence fails. By
broadening the notion of limits, Banach summability methods allow for a deeper understanding of the
behavior of series and open pathways to new applications in both theoretical and applied contexts.

The origins of summability theory can be traced back to the seminal work of Godfrey Harold
Hardy [1], whose famous evergreen book “Divergent Series" (1970) laid the foundation for a rigorous
treatment of divergent series. Hardy’s work inspired future generations of mathematicians, including
Stefan Banach [2], Salomon Bochner [3], Ram Chandran [4], and Shyam Lal Singh [5], among others.
Of particular significance is the contribution of Stefan Banach [6], whose introduction of Banach limits
and summability revolutionized the analysis of convergence and divergence in infinite series.

Building upon these foundations, researchers have developed more sophisticated summability
methods tailored to specific mathematical contexts. For instance, S.K. Paikray et al. [6] introduced the
notion of absolute indexed summability factors using quasi-monotone sequences. In contrast, R.K. Jati
et al. [7] employed absolute indexed matrix summability to study infinite series in a more generalized
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setting. Further contributions by J.K. Mishra & M. Mishra [8], G.D. Dikshit [9], L. McFadden [10], and T.
Pati [11] have advanced the field by extending various methods of absolute summability and exploring
their applications to Fourier series. H.K. Nigam [12] found the way to the degree of approximation of
product means. E.C. Titchmarch [13] contributed to the development of trigonometric theory, and A.
Zygmund [14] revealed the development of trigonometric series.

This convergence of ideas from classical analysis to modern summability techniques underscores
the evolving nature of mathematical inquiry. By integrating the tools of Banach summability with the
rich structure of Fourier analysis, we not only deepen our theoretical understanding but also enhance
our ability to address practical challenges in science and engineering.

2. Definitions
Definition 1. Let (an) be a sequence of real or complex numbers. The Euler mean of order 1 is denoted (E, 1)
and defined by

(E, 1) =
1
2n

n

∑
k=0

(
n
k

)
ak (1)

Further, if limn→∞(E, 1) = s, a finite number, then we say an is Euler summable of order 1 to s and written
Σan = s(E, 1).

Definition 2. Let ∑ an be a sequence of real or complex numbers and sn denotes its nth partial sums. For two
sequences {pn} and {qn}, define {tn} by

tn =
1
rn

n

∑
v=0

pn−vqvsv (2)

where rn = p0qn + p1qn−1 + ... + pnq0. If limn→∞ tn = S, a finite number, then we say ∑ an is said to be
(N, p, q) summable to s and written Σan = s(N, p, q).

Further, if the (E, 1) transform of the (N, p, q) transform {sn} is defined by τn = (E, 1).(N, p.q), then

τn =

(
1
2n

n

∑
k=0

(
n
k

)
ak

)(
1
rn

n

∑
v=0

pn−vqvSv

)
(3)

If τn → s when n → ∞, then we say ∑ an is said to be (E, 1).(N, p, q) summable to a finite number s.

Definition 3. When we express f (n) = O(g(n)), it signifies that there exists a positive constant C and a
threshold value n0 such that for all n exceeding n0 the relationship holds true:

| f (n)| ≤ Cg(n), (4)

where big ‘O′ notation stands for an upper limit on the growth of a function.

Example 1. Let f (n) = 5n2 + 3n − 3. We can say that f (n) = O(n2). For sufficiently large values of n, the
expression 3n2 + 2n + 1 is bounded above by Cn2 for some constant C. In the context of asymptotic notation,
the small ’o’ notation, denoted f (n) = o(g(n)), signifies that f (n) grows strictly slower than g(n) as n → ∞. .
Formally, this is defined by the limit:

lim
n→∞

f (n)
g(n)

= 0. (5)

Example 2. If f (n) = n and g(n) = n2, then f (n) = o(g(n)) because n becomes insignificant compared to
n2 as n increases.
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Let f (t) be a periodic function Lebesgue integrable in (−π, π). Then the series

f (x) =
a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) =
∞

∑
n=0

An(x) (6)

is referred to as the Fourier series of f (t), where

a0 =
1
π

∫ π

−π
f (t)dt (7)

an =
1
π

∫ π

−π
f (t) cos ntdt (8)

bn =
1
π

∫ π

−π
f (t) sin ntdt (9)

Let {sn} be the nth partial sum of ∑ an. Then L∞ norm of a function R → R is defined by

|| f ||∞ = sup{| f (x) : x ∈ R|} (10)

The Lv-norm is defined by

|| f ||v =

{∫ 2π

0
| f (x)|vdx

} 1
v

(11)

The degree of approximation f : R −→ R defined by polynomial pn(x) of degree n under norm ||.||∞ is defined
by

||pn − f ||∞ = sup{|pn(x)− f (x)| : x ∈ R} (12)

Also, the degree of approximation of a function f ∈ Lv is defined by

En( f ) = inf{||pn(x)− f ||v : x ∈ R}. (13)

A function f is said to be in the class Lipα if

| f (x + p)− f (x)| = O(|p|α) where 0 < α < 1. (14)

We use the following notation throughout this paper:

ϕ(t) = f (x + t) + f (x − t)− 2 f (x). (15)

Kn(t) =
1

2n+1π

n

∑
k=0

(
n
k

){
1
rn

k

∑
v=0

pn−vqv
sin(v + 1

2 )t
sin t

2

}
(16)

3. Known Result
Theorem 1. If f be a 2π periodic function of Lipα, the degree of approximation by the product (E.q)(N.Pn)

summability means on its Fourier series (6) is given by ||τn − f ||∞ = O
{

1
(n+1)α

}
where 0 < α < 1 and τn is

defined by (3).

Theorem 2. If f is a periodic function of period 2π and class of Lipα, then the degree of approximation by
product Euler & Cesaro summability of its Fourier series (6) is given by O

{
1

(n+1)α

}
where 0 < α < 1.

4. Principal theorem
In this paper, we have proved the degree of approximation by product mean (E, 1)(N, p, q) of the

Fourier series of a function of class Lipα.
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Theorem 3. If f is a periodic function of period 2π of the class Lip(α, 1) then the degree of approximation by
product (E, 1)(N, p, q) summability its Fourier series is given by O

{
1

(n+1)α

}
where 0 < α < 1.

5. Required Lemmas
We require the following Lemma to prove the theorem.

Lemma 1. |Kn(t)| = O
(

1
t

)
for 1

n+1 ≤ t ≤ π.

Proof. Proof: Since for 1
n+1 ≤ t ≤ π, sin(t/2) ≥ t

π = t
π and | sin(nt)| ≤ 1.

|Kn(t)| =
1

π2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

){
1
rk

k

∑
v=0

pk−vqv
sin(v + 1/2)t

sin(t/2)

}∣∣∣∣∣
≪ 1

t.2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

){
1
rk

k

∑
v=0

pk−vqv

}∣∣∣∣∣
=

1
t.2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

)∣∣∣∣∣ (assuming
k

∑
v=0

pk−vqv = rk)

=
1

t.2n+1 .2n+1

= O
(

1
t

)

Lemma 2. For 0 ≤ t < 1
n+1 , Kn(t) = O(n).

Proof.

Kn(t) =
1

π.2n+1

[
n

∑
k=0

(
n
k

){
1
rk

k

∑
ν=0

pk−νqν
sin(ν + 1/2)t

sin(t/2)

}]

≪ 1
π.2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

){
1
rk

k

∑
v=0

pk−vqv(v + 1/2)
t

t/2

}∣∣∣∣∣ (since sin x ≈ x for small x)

≪ 1
π.2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

){
1
rk

k

∑
v=0

pk−vqv(2v + 1)

}∣∣∣∣∣
≪ 1

π.2n+1

∣∣∣∣∣ n

∑
k=0

(
n
k

)
(2k + 1)

∣∣∣∣∣ (assuming
k

∑
v=0

pk−vqv(2v + 1) ≈ (2k + 1)rk)

=
1

π.2n+1

(
2

n

∑
k=0

k
(

n
k

)
+

n

∑
k=0

(
n
k

))

=
1

π.2n+1

(
2n2n−1 + 2n

)
=

1
π.2n+1 (n2n + 2n)

=
2n(n + 1)

π.2n+1

= O(n)
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6. Proof of Principal Theorem
From Riemann-Lebesgue theorem for the nth partial sum of Fourier series of f (x) and the follow-

ing Titchmarch [13], we get

sn( f , x)− f (x) =
1

2π

∫ π

0
ϕ(t)

sin(n + 1/2)t
sin(t/2)

dt

Using (1), the (N, p, q) transform of |tn − f | is

|tn − f | = tn( f , x)− f (x) =
1

2πrn

∫ π

0
ϕ(t)

n

∑
v=0

pn−vqv
sin(v + 1/2)t

sin(t/2)
dt

Denoting the product summability by (E, 1)(N, p, q), we have

|τn − f | = 1
π.2n+1

∣∣∣∣∣
∫ π

0
ϕ(t)

n

∑
k=0

(
n
k

){
1
rk

k

∑
ν=0

pk−νqν
sin(ν + 1/2)t

sin(t/2)

}
dt

∣∣∣∣∣
=
∫ π

0
ϕ(t)Kn(t)dt

=

(∫ 1
n+1

0
+
∫ π

1
n+1

)
ϕ(t)Kn(t)dt

= I1 + I2 (say)

Using Lemma 2 and the property of Lipα class, ϕ(t) = O(tα):

|I1| =
1

π.2n+1

∣∣∣∣∣
∫ 1

n+1

0
ϕ(t)

n

∑
k=0

(
n
k

){
1
rk

k

∑
ν=0

pk−νqν
sin(ν + 1/2)t

sin(t/2)

}
dt

∣∣∣∣∣ (17)

≤ O(n)

∣∣∣∣∣
∫ 1

n+1

0
ϕ(t)dt

∣∣∣∣∣ (18)

= O(n)
∫ 1

n+1

0
tαdt (19)

= O(n)
[

tα+1

α + 1

] 1
n+1

0
(20)

= O(n)
1

(α + 1)(n + 1)α+1 (21)

= O
(

1
(n + 1)α

)
(22)
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Using Lemma 1 and the property of the Lipα class:

|I2| =
∣∣∣∣∣
∫ π

1
n+1

ϕ(t)Kn(t)dt

∣∣∣∣∣ (23)

≤
∫ π

1
n+1

|ϕ(t)||Kn(t)|dt (24)

≤
∫ π

1
n+1

O(tα)O
(

1
t

)
dt (25)

≤
∫ π

1
n+1

tα−1dt (26)

=

[
tα

α

]π

1
n+1

(27)

= O(πα)− O
(

1
(n + 1)α

)
(28)

= O
(

1
(n + 1)α

)
(29)

Combining Equation (17) and Equation (23), we get the required result: |τn − f | = O
(

1
(n+1)α

)
.

Therefore, ||τn − f ||∞ = O
{

1
(n+1)α

}
.
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