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Abstract: Accurate modelling of lithium-ion battery degradation is a complex problem, dependent on
multiple internal mechanisms that can be affected by a multitude of external conditions. In this study,
a transformer-based approach, capable of leveraging historical conditions and known-future inputs is
introduced. The model can make predictions from as few as 100 input cycles, and compared to other
state-of-the-art techniques our approach shows an increase in accuracy. The model utilises specialised
components within its architecture to provide interpretable results, introducing the possibility of
understanding path-dependency in Li-Ion battery degradation. The ability to incorporate static
metadata opens the door for a foundational deep-learning model for battery degradation forecasting.
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1. Introduction

Lithium-ion batteries have emerged as a cornerstone technology across multiple industries
worldwide. Notably, they play a crucial role in the rapid advancement of electric vehicles (EV) and
large-scale battery energy storage systems (BESS), two sectors that are pivotal to the transition towards
sustainable energy solutions. For both of these applications, the associated Battery Management
System (BMS) is responsible for optimising battery performance by managing parameters such as
voltage, current, and temperature [1]. There is considerable motivation from researchers globally to
improve the performance of BMSs [2], as they can extend battery life, reduce failure risks, and mitigate
thermal runaway.

EVs rely heavily on efficient battery management to operate safely. The BMS is responsible for
several critical functions, including temperature control, cell equalisation, charging and discharging
management, and fault analysis. Effective battery state estimation, encompassing the State of Charge
(SoC), State of Health (SoH), and Remaining Useful Life (RUL), is vital for ensuring EV safety and
performance [3]. Traditional estimation methods, such as the Kalman filter, often lack the adaptability
needed to account for battery ageing effects, potentially compromising BMS performance [4].

In addition, BESS are increasingly crucial in efforts to decarbonise the power sector. By facilitating
the integration of renewable energy sources into the power grid, BESS also contribute to grid stability
and reliability. The BMS is vital to the viability of BESS projects. It is responsible for safety, efficient
management of performance, and determining the SoH of batteries. SoH predictions provide crucial
information for the maintenance and replacement of batteries. Furthermore, trading strategies for
BESS must consider and optimise SoH to balance short-term gains and long-term battery life.

However, the gains generated by BESS through providing flexibility services can be offset by
the degradation cost of the lithium-ion batteries. In addition to lifetime and number of cycles, this
degradation is sensitive to energy throughput, temperature, SoC, depth of discharge (DoD) and
charge/discharge rate (C-rate) [5]. Furthermore, accurate state of health (SoH) estimation is crucial
as it dictates the energy throughput, which determines the energy available for trading. This directly
impacts the revenue generated from BESS projects and influences key financial metrics such as
Levelised Cost of Storage (LCOS) and Internal Rate of Return (IRR), ultimately governing the economic
viability of these projects.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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A major difficulty for SoH predictions in both EV and BESS applications is the inherent path
dependency [6], i.e. the impact of the precise chronological usage of the battery on the SoH. Accounting
for path dependency is not inherent to model-based methods — whether they are based on funda-
mental electrochemical equations [7-9] or circuit based equivalent models combined with filtering
techniques [10] — because path dependency is still not well understood. Moreover, capturing long-term
SoH dependencies on the degradation stress-factors mentioned previously within such frameworks
require a large amount of data to be collected over long periods of time, as demonstrated in Ref. [11].

A more efficient approach to SoH prediction is to employ data-driven methods [12] that can store
and update key information from degradation data as it becomes available. Traditional data-driven
methods for SoH prediction often involve handcrafted feature extraction followed by regression
techniques. For instance, Feng et al. [13] used Gaussian process regression (GPR) and polynomial
regression to predict SoH and RUL, extracting health indicators from charging current. These methods,
while effective, can be time-consuming and labour-intensive, requiring expertise in feature design.
Additionally, kernel methods, like support vector machines (SVMs), have been applied for SoH
estimation [14]. However, selecting dominant data points can dilute path dependency and reduce
prediction accuracy. Neural network (NN) based techniques can be effective because they have an
internal state that can represent path information.

The long short-term memory (LSTM) neural network architecture is a popular approach for
time-series forecasting due to its ability to capture some long-term dependencies. Zhang et al. [15]
studied LSTM based neural networks for SoH predictions. Their results indicated that LSTMs were
generally more accurate and precise the SVM based models. More recent studies have focused on end-
to-end deep learning approaches using measurement data such as voltage, current, and temperature.
Li et al. [16] combined LSTM and CNN networks to separately predict SoH and remaining useful
life (RUL) in an end-to-end mode. LSTM models are well-suited for time-series data and can capture
some long-term dependencies, which are essential for battery SoH predictions. However, they have
limitations such as long training times and a restricted ability to capture very long-term dependencies,
which can affect their practical application. This is particularly relevant for SoH prediction as accurate
modelling over a large number of cycles is desirable.

Recognising the limitations of LSTM models, researchers have explored more advanced archi-
tectures. Cai et al. [17] demonstrated that transformers, when combined with deep neural networks
(DNNs), are more effective for battery SoH prediction. The attention mechanism in transformers allows
them to assign importance to specific timesteps, thereby capturing long-term dependencies more
efficiently than LSTM models. Song et al. [18] further enhanced prediction accuracy by incorporating
positional and temporal encoding in transformers to predict battery RUL, addressing the challenge of
capturing sequence information.

Zhang et al. [19] integrated an attention layer into a gated residual unit (GRU) architecture, com-
bining it with particle filter information to make accurate RUL predictions. This approach leverages the
strengths of both attention mechanisms and traditional filtering techniques, enhancing the robustness
of the predictions.

Fan et al. [20] designed a gated recurrent unit-convolutional neural network (GRU-CNN) for direct
SoH prediction, which combines the temporal processing capabilities of GRUs with the spatial feature
extraction power of CNNs. Gu et al. [21] created a model by combining a CNN and transformer for
SoH prediction. The CNN was used to incorporate time-dependent features, whereas the transformer
modelled time-independent features. This hybrid approach effectively utilises different neural network
architectures to enhance prediction accuracy.

Despite these advancements, previous approaches often struggled with capturing complex depen-
dencies and require extensive computational resources for training. This study presents a novel method
for modelling battery degradation and thus sheds light on a critical component of understanding
this capability - interpretability of underlying stress factors - using a Temporal Fusion Transformer
(TFT) [22]. The TFT model has proven to be more accurate than standard deep-learning approaches
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for various sequence lengths. It leverages historical conditions and known future inputs to make
predictions from as few as 100 input cycles. The model integrates specialised components to provide
interpretability, offering insights into path-dependent degradation processes. By incorporating static
metadata, our approach provides a robust solution applicable to various battery chemistries and
operating conditions. This work aims to enhance the reliability and safety of BMS SoH estimation
for EV and BESS applications, providing valuable insights into battery degradation processes and
informing optimal management strategies.

In this study, we outline our approach, apply it to a dataset comprising over 100 cells, evalu-
ate its performance relative to other standard neural networks, and demonstrate its potential for
interpretability.

2. Framework
2.1. Dataset Description

Severson et al. [23] generated a comprehensive dataset consisting of 124 LFP/graphite cells that
were cycled under fast-charging conditions, as shown in Figure 1. The experiments were stopped
when the batteries reached end-of-life (EOL) criteria. EOL cycle number ranged from 150 to 2300. This
will subsequently be referred to as the “Severson dataset”. The dataset comprises three batches: batch
“2017-05-12”, batch “2017-06-30", and batch “2018-04-12".

Capacity/Ah
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SN 2 N 2

o
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Figure 1. Capacity curves for the cells in the Severson dataset.

2.2. Evaluation Metrics

For predicting the battery capacity curve, the average mean squared error (MSE) and mean
absolute percentage error (MAPE) are calculated across the output sequence. They are defined as:

1¢ 5

MSE = - ) (vi — 9%, M
i=1
L -y — i

MAPE = — } | &2}, (2)
n z; Yi

where y; and #); are the true and predicted capacities at the i-th output point, respectively and # is the
number of timesteps in the prediction.
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2.2.1. Attention

Transformer networks make use of attention, which can be described as mapping vectors con-
sisting of queries (Q) and key-value pairs (K, V) to an output. To achieve this, the dot product of
query, dimension dj, is computed with query, dimension d;. The output of this divided by dj, before a
softmax function is applied to obtain the weights of the values, determining the importance of each
value in the input. The matrix of outputs is given by:

Attention(Q,K, V) = softmax(QKT) 174 3)
o Vi)
To improve the learning capacity of the model, multi-head attention is employed to increase represen-

tational power:
MultiHead(Q, K, V) = Concat[head;; heady; ...; headh]Wo , 4)

where
head; = Attention(QW<, KWK, VW) . (5)

2.2.2. LSTM Layers

In time-series problems, the location of the data points within the sequence is significant. The
TFT leverages local context within sequences through use of an LSTM model, leading to performance
improvement in attention-based architectures. This also serves as a replacement for more traditional
positional encoding — which makes use of sine and cosine functions which produce a higher dimen-
sional vector that includes information on the location of data within the sequence — by providing an
inductive bias for the time ordering of the inputs.

The LSTM encoder is made up of cells that contain the current hidden state. As the information
moves through the chain of cells, the hidden state is updated. This is controlled by three internal gates,
commonly denoted as input (i), output (0), and forget (f) gates. Each gate multiples the inputs by a
weight matrix, adds a bias term, and then applies a sigmoid activation function (cg). The gates allow
the LSTM to effectively either remember or forget different aspects of the input sequence. At time ¢,
the equations describing the LSTM cell and gates are:

ft = 0g(Wrxt + Uys hyq + by)
it = g (Wi x¢ + U hy—1 + b;)

0r = 0g(Wo x¢ + Up hy—1 + bo)

¢ = tanh (Wexy + Uc hyq + be)
= fiOc1+i OF

ht = 0y @ tanhcy ,

(6)

where c is the cell state, / is the hidden state, W and U are weight matrices, b is the bias term. The
hidden state of the final encoder cell is passed to the next layer in the model.

2.2.3. Variable Selection

The model uses three types of input: past inputs, known future inputs, and static metadata. Each
input is initially passed through a variable selection network. This involves transforming the inputs
before passing them through a Gated Residual Network (GRN) [22]. Linear transformations are used
for continuous variables and entity embeddings [24] are used for the categorical variables. The GRN
allows some inputs to skip layers of the network. This enhances the model’s ability to deal with noisy
inputs, and prevents the network from becoming too complex. Specifically, the GRN operation is given
by:

GRN,,(a,c) = LayerNorm(a + GLUy (1)) , )
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with the intermediate dense layers #; and 7, given by:

m = Wl,w’iz + bl,w

8)
1]2 = ELU(WZ,wﬂ + ngwC + bzrw) ,

where a is the primary input, c¢ is a context vector, ELU is the the Exponential Linear Unit activation
function [25].

T T, T
The variable selection network takes the transformed inputs, represented by &; = [Cfl) Sy Ct(mx ) ] ,

where gft(] ) is the transformed input of the jth variable at time . Z; is passed into the variable selection
network along with an external context vector ¢s and the result is multiplied by a softmax function:

Vyt = Softmax(GRNVX(Et, cs)) . )

vyt is the resulting vector of variable selection weights. This is then used to combine the variables at
each time step, by calculating the weighted sum. In this way, the model learns to allocate different
importance to each variable. Analysing the learned variable selection weights allows the importance
of each variable to be quantified during inference. This is explored further in Section 2.3.

2.3. Interpretability
2.3.1. Temperature Effect

A study of the model’s interpretability is presented in Section 3.4. To do this, test cells which
have irregular behaviour in a particular variable are used. Then, the variable importance scores are
measured to assess whether the model accounts for that variable’s impact on the degradation. The
most obvious choice for this variable is temperature.

The effect of temperature on battery degradation is well studied. The exact implications of
operating temperature depend on the dominant ageing mechanism, however, temperatures over
25°C generally leads to accelerated ageing, due to increased reaction rates within the cell [26]. The
description of temperature dependency of chemical reactions is given by the Arrhenius equation:

r=A exp(—kEa ) , (10)
B

where E, is the activation energy, kg is the Boltzmann constant, T is the absolute temperature, and A is
a pre-exponential factor.

3. Results

To evaluate the model’s performance, a prediction of the cell’s capacity curve was performed. The
results are shown in Table 4.

3.1. Variables

The training variables for the model were intentionally selected for ease of calculation, with all
continuous variables determined on a per-cycle basis. This approach simplifies the model’s deployment
in real-world scenarios. The variables are listed in Table 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Variable Description Name Type
Cycle number Cycle Timestep
Current capacity QD Continuous, input
Future capacity QD_target Continuous, target
Battery Battery Categorical, input
Average charging voltage vV_c_mean Continuous, input
Average discharging voltage v_d_mean Continuous, input
Standard deviation of charging v_c_std Continuous, input
voltage

S;?if%&??g;&%gf v_d_std Continuous, input
Depth of discharge dod Continuous, input

Average charging current
Average discharging current
Standard deviation of charging

cur_c_mean

cur_d_mean

Continuous, input
Continuous, input

cur_c_std Continuous, input
current
Sta.ndard Fiev1at10r1 of cur_d_std Continuous, input
discharging current
Average charging temperature T_c_mean Continuous, input
A i i . .
verage discharging T_d_mean Continuous, input
temperature
Standard deviation of charging T c std Continuous, input
temperature
.Standal-‘d deviation of T_d_std Continuous, input
discharging temperature
Mini hargi . .
fimuth chatging T_c_min Continuous, input
temperature
Mini dischargi . .
fimum discharging T_d_min Continuous, input
temperature
Maximum charging . .
T_c_max Continuous, input
temperature
i dischargi . .
Maximum discharging T_d_max Continuous, input

temperature

3.2. Training Procedure

For the experiments, the dataset was partitioned into training, test and validation splits, with five

cells reserved for testing, five for validation, and the rest for training. All experiments were run on

a single Nvidia V100 GPU. Each epoch took approximately 50 seconds to train and each model was

trained for a maximum of 30 epochs. Hyperparameter optimisation was conducted via random search,
scanning over a grid of predefined parameters as defined in Table 2:

Table 2. Search values for each hyperparameter used in the optimisation.

Hyperparameter Values
Dropout rate [0.1,0.2,0.3,0.4,0.5,0.7,0.9]
Hidden Layer Size [10, 20, 40, 80]
Minibatch size [64, 128, 256]
Learning rate [0.0001, 0.001, 0.01]

Max. gradient norm [0.01, 1.0, 100.0]
Num. heads [1,4]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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One test condition is displayed in Section 3.3. Further testing conditions (different permutations
of train/test/validation splits) are displayed in Appendix B.

3.3. Model Accuracy Results

The proposed method is compared to a range of conventional data-driven techniques to provide
accuracy benchmarks. To do this, the data was split up into the standard train/test/validation
groupings. 18 cells were reserved for testing, 18 for validation, and the remainder were used for training.
Early stopping was used to avoid overtraining. Three different permutations of train/test/validation
were tested in total (results for the last two are presented in Appendix B). To assess the ability of
the model to perform over a variety of context windows, three different combinations of varying
input/output length were chosen. The details of each experiment are summarised in Table 3.

100 Input
Real output
Prediction
951
©
S, 901
2
53
O 851
801 MAE = 0.23%
751
0 100 200 300 400 500
Cycle
102.51
Input
100.0 1 Real output
97.51 Prediction
95.0
S
2 9254
2
& 90.0-
87.51
85.01 MAE = 0.13%
82.51
0 100 200 300 400 500 600

Cycle

Figure 2. Predicted capacity from the trained TFT for 400 cycles of one cell, using 100 input cycles. The mean
absolute error for the prediction is displayed.
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Table 3. Input and output sequence length configurations for each permutation setting

Permutation Input Length Output Length
1 100 400
2 100 400
3 100 400
1 200 400
2 200 400
3 200 400
1 200 600
2 200 600
3 200 600

Table 4. Performance comparison of different models using 100 Input Cycles and 400 Output Cycles

Model MAPE MSE
CNN 1.12 2.82
LSTM 1.38 3.84

Transformer 1.43 3.95
Our model 0.67 1.52

Table 5. Performance comparison of different models using 200 Input Cycles and 400 Output Cycles

Model MAPE MSE
CNN 0.87 1.73
LSTM 0.87 2.07

Transformer 1.02 2.54
Our model 0.37 0.41

Table 6. Performance comparison of different models using 200 Input Cycles and 600 Output Cycles

Model MAPE MSE
CNN 0.89 1.86
LSTM 1.02 2.07

Transformer 1.40 3.35
Our model 0.68 1.83

When evaluated using the Severson dataset, the model demonstrates substantial performance

improvements. Unlike purely physics-based methods, the model does not require any prior electro-

chemical knowledge of the battery cell. Additionally, by incorporating battery type and capacity as

static inputs (metadata), the model enables the training of a generalized model on datasets that include

degradation data from various cells. This allows the model to leverage shared knowledge from similar

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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degradation patterns across different cells. An example of the model’s capacity prediction for one cell
is shown in Figure 2.

Interestingly, as the input length increased from 100 cycles to 200 cycles (while keeping the
output length fixed at 400), both the MAPE and MSE worsened, indicating a decrease in performance.
Several factors may explain this. First, the LSTM input encoder and self-attention layers, which have a
complexity of O(n?) with respect to input length [27], may cause bottlenecks during training. Second,
this suggests that the most recent input timesteps are generally more influential. The model may
become “distracted” by earlier timesteps, leading to overfitting and decreased accuracy as the input
length grows.

However, as shown in Table 5, when the output length was increased to 600 cycles, the model
outputs remained accurate compared to the benchmarks.

Table 7. Performance comparison of different models

Model 1001, 4000 200I, 4000 2001, 6000
MAPE MAE MAPE MAE MAPE MAE
CNN 1.12 2.82 0.87 1.73 0.89 1.86
LST™M 1.38 3.84 0.87 2.07 1.02 2.07
Transformer 143 3.95 1.02 2.54 1.40 3.35
Our model 0.67 1.52 0.37 0.41 0.68 1.83

3.4. Interpretability

Having established the accuracy of the model, we now demonstrate how relationships between
the data that lead to predictions can be interpreted. While some conventional data-driven techniques
can produce accurate results, the relative contributions of each the potentially many features to the
overall degradation remain unknown. Variable selection networks on both static and time-dependent
covariates, quantifying the impact of each feature per instance and filtering out unnecessary, noisy
inputs.

The Severson dataset can be used to investigate the usefulness of the model’s variable importance
scores. To do this, outlier cells in specific variables were used. For example, a cell with a relatively
high charging temperature could be used as it is expected that the degradation of this cell would be
more strongly affected by the charging temperature compared with an average cell. By calculating the
variable importance score for this cell and comparing it with the average scores across the dataset, we
can assess the model’s ability to make realistic estimates. If the charging temperature’s importance
score for the test cell exceeds the average, it suggests that the model accurately reflects the relative
importance of this variable.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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v_c_std

Importance in %

Figure 3. Average variable importance weights for all cells.

Figure 3 shows the variable importance weights for the whole Severson dataset. As expected, the
cycle number, i.e. the age of the cell, is the most important factor affecting the degradation. The 2nd
and 3rd most important variables are both temperature variables, which is also sensible.

Several test cases have been identified for studying the variable importances. Here we present
test cell 1 as an example and others are shown in the Appendix. The charging temperature for this
cell is much higher than average, as shown in Figure 4. The corresponding attention scores for this
cell are shown in Figure 5. Comparing this with Figure 3 demonstrates that the test cell has a higher
attention score for the mean charging temperature (labelled T_c_mean) than the average score for the
whole dataset. The cell’s attention score for this variable was 5.48%, making it the 5th most important
variable; whereas the average score was 4.79%, which ranks as the 8th most important variable. In this
way, the model can correctly assign a higher importance where a particular feature plays a greater role
in the cell’s degradation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 4. Minimum charging temperature for cell test cell 2 (red line) compared with all other cells in the dataset,
showing that the chosen cell is higher than average in this variable.
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T d max
QD

v_c_std

Importance in %

Figure 5. Variable importance weights for test cell 2

4. Conclusions

This study has presented a novel approach for modelling battery degradation using a Temporal
Fusion Transformer. The proposed model has demonstrated superior accuracy compared to standard
deep-learning methods across various sequence lengths. The mean absolute error for the predicted
capacity curve was found to be between 0.67% and 0.85%, compared with 0.87% — 1.40% for the
benchmark models.
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The model effectively integrates both continuous and categorical inputs, which can be either static
or time-varying. In addition, it offers interpretable outputs, yielding valuable insights into specific
factors that impact a given battery’s degradation. This could enable a user to extend the life of a battery
during operation. Moreover, the model is capable of accurately forecasting degradation curves with as
few as 100 input cycles.

The model presented in this study has great potential to enhance the reliability and safety of
lithium-ion batteries in electric vehicles or energy storage systems.
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Appendix A. Additional Variable Importance Results

Figure 3 shows the average attention weights over the whole dataset. Section 3.4 showed an
example of a cell with a high charging temperature and a correspondingly high attention score for that
variable. Other examples are shown below:

Table Al. Additional test cells for variable importance study. The importance score for the chosen variable is
shown along with the average importance score for that variable over the whole dataset.
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Figure Al. The six test cells used for the variable importance study are shown. For each cell, the particular
variable is plotted with the test cell shown as a red line and the other cells in the sample shown as lighter coloured
lines. This demonstrates that each test cell is an outlier in its respective variable.

Appendix B. Additional Accuracy Results

Accuracy results from other permutations of train/test splits.

Appendix B.1. Test Condition 2

Table A2. Comparison of results of various approaches using 100 Input Cycles and 400 Output Cycles—Test

Condition 2
Model MAPE MSE
CNN 1.27 4.08
LSTM 1.81 5.94
Transformer 1.75 5.37
Our model 0.65 1.40
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Table A3. Comparison of results of various approaches using 200 Input Cycles and 400 Output Cycles—Test

Condition 2
Model MAPE MSE
CNN 1.01 2.36
LSTM 1.24 3.76
Transformer 1.22 3.74
Our model 0.75 1.49

Table A4. Comparison of results of various approaches using 200 Input Cycles and 600 Output Cycles—Test

Condition 2
Model MAPE MSE
CNN 1.10 2.99
LSTM 1.26 3.04
Transformer 1.43 3.25
Our model 0.67 0.71

Appendix B.2. Test Condition 3

Table A5. Comparison of results of various approaches using 100 Input Cycles and 400 Output Cycles—Test

Condition 3
Model MAPE MSE
CNN 1.29 421
LSTM 1.73 5.30
Transformer 1.21 3.40
Our model 0.84 1.46

Table A6. Comparison of results of various approaches using 200 Input Cycles and 400 Output Cycles—Test

Condition 3
Model MAPE MSE
CNN 1.14 3.52
LSTM 1.22 3.57
Transformer 1.17 2.32
Our model 0.57 1.29

Table A7. Comparison of results of various approaches using 200 Input Cycles and 600 Output Cycles—Test

Condition 3
Model MAPE MSE
CNN 1.16 3.11
LSTM 1.22 3.19
Transformer 1.13 2.90
Our model 0.71 2.62
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