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Article 

Investigating the Possibility of Integrating Quantum 

Mechanics with General Relativity Through a Novel 

Way of Treating Time 

Georgios I. Alamanos 

Department of Physics, National Technical University of Athens, Zografou campus, 15780 Athens, Greece; 

alamanos.i.george@gmail.com   

Abstract 

In physics, the two most successful theories, quantum mechanics and general relativity, appear to be 

incompatible with each other. Many theorists believe that the reason behind this, is that these theories 

treat space and time very differently, thus focus their attempts on finding a new way of modelling 

our universe and more specifically of modelling time [1]. In this paper we take a different approach 

to modelling the time dimension. We do not treat time as a fixed dimension which is experienced the 

same way for every field or interaction of any dimensionality. Instead, we model time to always be 

the plus one (+1) dimension relative to the dimensions through which a given phenomenon (field or 

disturbance of this field) propagates and interacts. This means that time for one phenomenon (field 

or disturbance of this field) can behave as space for a higher dimensional phenomenon whose time 

is a different +1 dimension. Through this dynamic modelling of time, we aim to integrate some of the 

mathematical tools of both quantum mechanics and general relativity such as Operators, Complex 

Functions  (Wavefunctions),  Probabilistic  Behaviour,  the Metric  Tensor  and  the  Einstein  Energy 

Equation. Finally, we investigate the compatibility of our results with other theories and the possible 

testability of our framework. 

Keywords: space; time; framework; higher dimensions; dynamic time; dynamic higher dimensional 

spacetime; quantum mechanics; general relativity; special relativity; complex numbers;  imaginary 

unit; Klein Gordon equation; gravity – induced quantum interference experiments; mass; emergent 

time; imaginary time 

 

1. Introduction 

In  the present work we will explore a new approach  to modelling  time  in reference to space 

which diverges from the usual approaches. In our approach, time is not a fixed dimension which is 

experienced in the same way for all other dimensions, which are spatial. We model time by making 

it ʺdynamicalʺ in nature, in the sense that it is neither fixed nor the same for different dimensional 

fields, their disturbances and how they interact. Our time will always be the plus one dimension to 

the spatial dimensions our phenomena (fields and their disturbances) interact and propagate. For a 

phenomenon that propagates and interacts in 3 dimensions, time is the usual 4th dimension. For a 

phenomenon that propagates and interacts in 4 dimensions, time will be an extra 5th dimension and 

for  this  phenomenon  the  4th  dimension will  behave  as  space  together with  the  other  3  spatial 

dimensions of the lower dimensional phenomena. All spatial dimensions are indistinguishable from 

each other and behave in the exact same way (no spatial dimension is more important or different 

than the other). The important parameter is not the dimension we are studying (for example the 4th 

or the 5th) but the number of dimensions. In such an approach, time for one phenomenon can act as 

space for a higher dimensional one. This may appear confusing at first and may seem prone to chaotic 

behaviors,  but when  a  set  of  rules  is  applied  to  such  a  dynamic multi‐dimensional  spacetime 

framework we observe that some of the predictions of both quantum mechanics and general relativity 
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seem to arise naturally, which in turn gives us a means to integrate mathematical tools from both 

theories which previously were considered incompatible with each other.   

In the following sections we will try to clarify the key characteristics of a time dimension for the 

purpose of generalizing those characteristics according to our framework. Following that, we will 

focus on how a higher dimensional wave would propagate  in  this framework and explore how a 

mass term arises from such a wave, the connection with the Einstein Energy Equation, how the metric 

tensor seems to integrate in our framework and a potential pathway for the emergence of gravity in 

it. Then, we will investigate the possible ways such a wave may interact or interfere with itself and 

other waves and how this would appear to us, the 3 + 1 dimensional observer. Through this we will 

understand why observables as operators, a Hilbert space of complex functions, expectation values 

through integration and discontinues updates (analogous to measurements in quantum mechanics) 

of the 3 + 1 dimensional complex functions would be necessary for describing such waves in the 3 + 

1 observers reference frame and why the results would appear probabilistic, with the observer being 

able only to describe correlations between them. Furthermore, we will try to derive our first most 

simple equation for a wave of a non‐interactive scalar 4 + 1 dimensional field and compare our results 

with the Klein – Gordon equation and the mass term derived earlier. Lastly, we will investigate the 

testability of our framework by exploring possible implications it would have in our 3 + 1 dimensional 

frame of  reference,  compare  some our  assumptions with  experimental  results  and  examine how 

further experiments may validate some crucial aspects of our framework. 

2. Characteristics of a Time Dimension and How to Generalize Them According 

to Our Framework 

In order to better comprehend the role that a time dimension plays in our understanding and 

modelling  of  the  physical world  around  us, we will  start  by  examining  the  effects  that  a  time 

dimension has on a periodic function. 

We start with the usual 3 ‐ dimensional wave of the form:   

Ψ = Asinሺ𝜔𝑡 െ 𝑘௫𝑥 െ 𝑘௬𝑦 െ 𝑘௭𝑧ሻ                                                      (1) 

where      𝑘ሬ⃗   = ቎
𝑘௫
𝑘௬
𝑘௭
቏                (1A) ,       

ఠ

ටሺ௞ೣ
మା௞೤

మା௞೥
మሻ

 =  𝑢          (1B) 

(A  is  the amplitude of  the wave, ω  is  the angular  frequency,  𝑘ሬ⃗   is  the wave vector,  𝑢 is  the 
velocity of the wave) 

In such a wave the time dimension (symbolized by t) is vital for performing two functions: 

1) It propagates the wave (or more accurately the wave front) in space with speed  𝑢  in the direction 

of    𝑘ሬ⃗ .   

2) If we focus on a specific point in space (for example  𝑥⃗  = (𝑥1, 𝑦1, 𝑧1ሻ  ), the amplitude A of that 

point oscillates with time with frequency f = ω/2π as shown in Figure 1.   

 

Figure 1. How the Amplitude of a 3‐dimensional wave changes with time (Max Amplitude = 1, T = period of the 

wave) for a specific point in space  𝑥⃗  = (𝑥ଵ, 𝑦ଵ, 𝑧ଵሻ. 
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Every wave function corresponds to a wave equation which typically takes the form [2]:   

డ2ఝ

డ௧2
  =  𝑢2(

డ2ఝ

డ௫2
൅

డ2ఝ

డ௬2
൅

డ2ఝ

డ௭2
ሻ                                                                                    (2) 

The link between the two is the equation: 

𝑢  = f  ∗  λ                                                                                                                                              (3) 

(λ is the wavelength of the wave, k = 2π / λ) 

In order to model time in a dynamic way, as we mentioned in Section 1, we will focus on both 

of the characteristics shown above and try to generalize them together with a relation that connects 

the spatial dimensions with the temporal dimension, such as (3). 

Regarding the first one, we are interested in propagation through space. In our framework, the 

time dimension of a  lower dimensional phenomenon  (field or disturbance of  that  field) acts as a 

spatial  dimension  for  a  higher  dimensional  one.  This  means  that  we  must  always  know  the 

dimensionality of what we are trying to model and the dimensionality of the reference frame we are 

interested to model it in. For example, modelling a 4 + 1 dimensional wave in a 3 + 1 dimensional 

frame  of  reference.  This  is  one  of  the  things  that  sets  apart  our  framework  from  other 

multidimensional frameworks.   

This means: 

- we should always define the propagation vector with the right number of components – one for 

every dimension of space (for example 4 components for the 4 + 1 dimensional wave)   

- define  a  relation  between  these  components  that  applies  for  the  reference  frame  we  are 

modelling it in. For a lower dimensional reference frame one of these components will behave 

as  a  time  dimension,  so  it must  both  be  expressed  in  the  same  units  as  the  other  spatial 

dimensions and be connected to the other spatial dimensions through a relation that preserves 

causality and invariance. 

- define relations that connect the time dimension of the phenomenon (field or the disturbances 

of that field) we would like to model with the propagation vector. These relations are crucial for 

our  framework  because  they  are  the  link  that  connects  spatial  dimensions  with  the  time 

dimension. Without them our framework would be prone to chaotic behaviors and results that 

do not correlate with our physical reality. 

Focusing on the second characteristic, we turn our attention to a specific point in space. Here we 

should  also  be  very  careful  of  the  dimensionality  of  what  we  are  trying  to  model  and  the 

dimensionality of the reference frame we are interested to model it in. We must always take the same 

spatial dimensions as the spatial dimensions our interacting phenomenon (field or disturbances of 

that  field) has  and  examine how  a  specific value  of  this  space  changes with  respect  to  the  time 

dimension of the interacting phenomenon. For example, for a 4 + 1 dimensional wave the specific 

point  in  space we would  study  should  also have  4  components  and  a  specific value  of  this  4  – 

dimensional point should change in relation to the 5th dimension. 

This may appear very  confusing  since  a 3 +  1 dimensional observer would have no way of 

measuring the 5th dimension and in that observer’ s reference frame it would seem as a specific point 

in space in a specific point in time (4th dimension) has many values. This is why we need relations 

such as the ones mentioned above that connect the temporal with the spatial dimensions so that our 

results remain consistent. 

Finally, a crucial aspect of reality that our framework should uphold is causality and the speed 

of  light.  These  should  hold  true  for  every  reference  frame  of  any  dimensionality  no matter  the 

dimensionality of the phenomenon we are studying.   
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With all the above in mind, we will try to model a 4 + 1 dimensional wave in the reference frame 

of a 3 + 1 dimensional observer, with proper  relations  that connect  the  temporal with  the spatial 

dimensions and correspond to the rules mentioned above.   

3. Modelling the Propagation of 4+1 Dimensional Waves in Our Framework: 

Deriving a Mass Term, the Einstein Energy Relation and Integrating the Metric 

Tensor in Our Framework 

In this Section we will focus our attempts on modelling the propagation of a 4 + 1 dimensional 

wave in the reference frame of a 3 + 1 dimensional observer.   

As mentioned in the previous Section, we must always know the dimensionality of what we are 

trying to model and the dimensionality of the reference frame we are interested to model it in. This 

means that we should always define the propagation vector with the right number of components (4 

components for the 4 + 1 dimensional wave). Also, since we are modelling in the reference frame of 

a 3 + 1 dimensional observer, all quantities and relations must be modelled  in the observer’s time 

dimension and we should conserve all relationships that apply to the observer. 

Furthermore, the 3 + 1 dimensional observer cannot measure the 5th dimensional component of 

a higher dimensional quantity or measure changes in that dimension. However, that does not mean 

that the observer does not experience effects of the interactions that relate to these components. Also, 

there  are  quantities  that  relate  changes  in  the  higher  dimensional  components  to  the  lower 

dimensional  ones  (like  frequency which  expresses  changes  in  time  and  is  connected  to  spatial 

quantities  through  (3)).    Since  those  quantities  are  vital  to  the  lower  dimensional  observer  for 

describing higher dimensional phenomena, it would make sense for the observer to model them as 

quantities that are intrinsic to that phenomenon and do not change or in other words are invariant 

quantities. An  example  of  such  a  quantity may  be  a  quantity  that  encapsulates  the  energy  and 

momentum of a system which should  remain a  fundamental concept  for ensuring physical  lawsʹ 

consistency across all frames, analogous to invariant mass in general relativity [3]. 

Considering all the above, for a 4+1 dimensional wave, space is 4 dimensional (3 ‐ dimensional 

time is part of our spatial dimensions now) and all space dimensions are equivalent and treated the 

exact same way, meaning that our new wave vector  𝑘′ሬሬሬ⃗  must be 4 dimensional and have the form   

𝑘′ሬሬሬ⃗   =  

⎣
⎢
⎢
⎡
𝑘௧
𝑘௫
𝑘௬
𝑘௭⎦
⎥
⎥
⎤
 

𝑘′ሬሬሬ⃗  now has a 4 ‐ dimensional direction, which means that the rate of transmition of that wave  𝑢′ሬሬሬ⃗  will 

also have a 4 ‐ dimensional direction. 

(Propagation  is meaningless without time. How much space  is covered  in how much time  is 

expressed by velocity. Since in our framework time is not a fixed dimension from now on we will 

refer  to  the velocity of every wave  (or  field disturbance) of any dimensionality  in  relation  to  the 

wave’s  time  dimension  as  rate  of  transmition  in  order  to  avoid  confusion with what  the  3  +  1 

dimensional observer considers as velocity) 

Also, we should have a relation analogous to (3) which connects the 4 spatial dimensions with 

the 5th time dimension. This relation should also preserve the speed of light limit. 

Such a general relation could be the following: 

The magnitude  ቚ𝑢′ሬሬሬ⃗ ቚ  of the rate of transmition of all waves, no matter their dimensionality,  is 

equal to the same number c, which is equal to the speed of light for the 3 ‐ dimensional wave. 

Applying such a relation would give us: 

𝑐 ൌ
஺

ඨቀ௞′ሬሬሬሬ⃗ ቁ
2
                                                                                                                                          (4) 
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where  𝐴  is the wave’s angular frequency in the 5th dimension. 

The  thing  that  remains  now  is  to  express  all  the  above  quantities  in  the  3  +  1 dimensional 

observer’s time (our time dimension) together with relations that apply to that observer (relations 

also expressed in our time dimension and preserve invariance). 

As we mentioned before, both quantities c and A express changes  in  the 5th dimension, so  it 

would make sense for the 3 + 1 dimensional observer to express them as invariant quantities.   

The new wave vector  𝑘′ሬሬሬ⃗   is a quantity  that has  real physical  significance  to  the observer but 
depend on the observer’s reference frame. It has 4 components, 3 corresponding to the observer’s 

spatial dimensions  and  1  corresponding  to  the  observerʹs  time dimension. However,  for  a  4  +  1 

dimensional phenomenon, the observer’s time dimension behaves as space. This means that we must 

express all the components of this vector with the same units and utilize the correct relations in order 

to express the magnitude of that vector. The solution is something that is very common in modern 

physics: 

ටሺ𝑘௧
ଶ ൅  𝑘௫

ଶ ൅  𝑘௬
ଶ ൅  𝑘௭

ଶሻ 

in the 4+1 dimensional frame of reference,   

would be modelled as   

ටఠమ

௖మ
െ  𝑘௫

ଶ െ  𝑘௬
ଶ െ  𝑘௭

ଶ                                             (5) 

in the 3 + 1 dimensional reference frame. 

The minus sign  is utilized because since both A and c  remain constant  in our approach,  the 

quantity ට൫𝑘ᇱሬሬሬ⃗ ൯
ଶ
  should also remain constant. This means that any change in magnitude of any of 

the components would correspond to an opposite change in some other component. Since the 3 + 1 

dimensional observer experiences the 4th dimension as time it would make sense to model the 4th 

dimension  differently  and    ̎group̎  those  changes  (that  should  always  cancel  each  other  out)  as 

changes in the observer’s space and changes in the observerʹs time.   

Alternatively, in the formalism of vector analysis all this can be expressed as: 

ห𝑘ᇱሬሬሬ⃗ ห ൌ ට൫𝑘ᇱሬሬሬ⃗ ൯
ଶ
 = 

ඥ𝑔ఓఔ𝑘ఓ𝑘ఔ = 

ඨ
𝜔ଶ

𝑐ଶ
െ  𝑘௫

ଶ െ  𝑘௬
ଶ െ  𝑘௭

ଶ 

At this point we see how the use of the metric tensor can be integrated in our framework. 

Combining (4) and (5) we get: 

𝑐 ൌ
஺

ටሺ
ഘమ

೎మ
 ି ௞ೣ

మି ௞೤
మି ௞೥

మሻ
                                              (6) 

Taking the square of (6) in order to get rid of the square root in the denominator we get   

𝑐ଶ  ൌ 
஺మ

ഘమ

೎మ
 ି ௞ೣ

మି ௞೤
మି ௞೥

మ 
                                                → 

𝑐ଶ ∗ ሺ
ఠమ

௖మ
െ  𝑘௫

ଶ െ  𝑘௬
ଶ െ  𝑘௭

ଶሻ  ൌ 𝐴ଶ                         → 
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𝜔ଶ െ 𝑐ଶ𝑘௫
ଶ െ  𝑐ଶ𝑘௬

ଶ െ 𝑐ଶ𝑘௭
ଶ  ൌ 𝐴ଶ                         → 

multiplying both sides with  ℏଶ  in order to get units of energy we get   

ሺℏ𝜔ሻଶ െ 𝑐ଶሺℏ𝑘௫ሻଶ െ  𝑐ଶሺℏ𝑘௬ሻଶ െ  𝑐ଶሺℏ𝑘௭ሻଶ ൌ ሺℏ𝐴ሻଶ 

ሺℎ𝑓ሻଶ െ 𝑐ଶሺ𝑝௫ሻଶ െ  𝑐ଶሺ𝑝௬ሻଶ െ  𝑐ଶሺ𝑝௭ሻଶ  ൌ ሺℏ𝐴ሻଶ     → 

𝐸ଶ െ 𝑐ଶሺ𝑝௫ሻଶ െ  𝑐ଶሺ𝑝௬ሻଶ െ 𝑐ଶሺ𝑝௭ሻଶ  ൌ ሺℏ𝐴ሻଶ          (7) 

For equation (7) we have used the deBroglie relation: 

𝑝  =  ℎ/λ =  ℏ𝑘  and the Einstein – Planck equation: E =  ℎ𝑓   
which apply to all fundamental particles [4]. 

Comparing (7) with the Einstein energy equation: 

𝐸ଶ ൌ ሺ𝑚𝑐ଶሻଶ ൅  𝑐ଶሺ𝑝௫ሻଶ ൅  𝑐ଶሺ𝑝௬ሻଶ ൅  𝑐ଶሺ𝑝௭ሻଶ    (8) 

we  find  that every 4‐dimensional wave  that obeys  the  rules we  imposed on our  framework 

should have a property which behaves like mass and is proportional to the wave’s angular frequency 

in the 5th dimension noted by the letter  𝐴. 
By relating the quantity    𝐴   with mass we conclude that:   

ሺℏ𝐴ሻଶ ൌ   ሺ𝑚𝑐ଶሻଶ          →         
஺

௖
ൌ  േ

௠௖

ℏ
                   (9) 

Summarizing  the  above, we  see  that  4  +  1  dimensional waves  in  our  framework  exhibit  a 

property which is identical to a mass term and is proportional to the wave’s angular frequency in the 

5th dimension. Also, inserting (9) to the frequency‐wavelength relation (4) produces the correct form 

of the Einstein energy equation. 

All these indicate that 4 + 1 dimensional waves in our framework have mass and propagate in 

3‐dimensional  space with  velocities  less  than  those  of  the  speed  of  light. Also,  the  bigger  their 

velocities in 3‐dimensional space is, the less their velocity in the 4th dimensional time. This is derived 

from (6) which becomes 

ඨሺ
𝜔ଶ

𝑐ଶ
 െ  𝑘௫

ଶ െ  𝑘௬
ଶ െ  𝑘௭

ଶሻ ൌ  
𝐴
𝑐

 

Additionally, we  saw  that  the metric  tensor  arises  naturally  from  our  framework.  This  is 

important because the metric tensor is a central object in general relativity that describes the local 

geometry  of  spacetime,  thus making  our  framework  compatible with  the  framework  of  general 

relativity [3].   

Taking all the above into account, we can go even further and try to integrate gravity into our 

framework.   

A  first approach can be made by modelling the 4 dimensional space for  the 4+1 dimensional 

wave  (or  equivalently  the  4  dimensional  spacetime  for  the  3  +  1  dimensional  observer)  as  an 

anisotropic medium, where the magnitude of the rate of transmition of the 4+1 dimensional wave 

(mentioned above) varies according to the energy distribution inside a certain region. This approach 

is similar to the approach taken by analogue gravity [12,13], transformation optics [14,15], and even 

parts of emergent gravity research, with the difference that in our framework mass and energy are 

not external parameters but emergent quantities and the metric tensor is not imposed but emerges 

naturally.   

In such an approach, we could relate the 3 + 1 stress‐energy tensor  𝑇ఓఔ, which encapsulates the 

density and flux of energy and momentum in 3 + 1 spacetime, with a tensorial refractive index, which 

affects the speed of propagation. 

Such an equation could take the form: 
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𝑛ఓఔ ൌ 𝜆 ∗ 𝑇ఓఔ 

Where  𝑛ఓఔ  is the tensorial refractive index and is connected to the speed of propagation or rate of 
transmition by the relation: 

𝑢ఓሺ𝑥ሻ ൌ  
𝑐

ට𝑛ఈఉሺ𝑥ሻ 𝑛ොఈ 𝑛ොఉ

 𝑛ොఓ 

𝑛ොఓ  is the direction of propagation. 
Then we could use equation (6): 

𝑢ఓሺ𝑥ሻ ൌ  
𝛢

ට𝑔𝜇𝜈𝑘𝜇𝑘𝜈
 

to relate  the metric tensor with  the tensorial refractive  index, which  is  in turn connected with the 

stress‐energy  tensor  𝑇ఓఔ ,  effectively  linking  geometry  to  the  density  and  flux  of  energy  and 

momentum. 

It is important to note at this point that in this approach since the metric tensor is connected to 

the tensorial refractive index which depends only on position and the wave’s frequency in the 5th 

dimension (invariant mass) is unaffected by that tensorial refractive index, the emergent metric tensor 

is determined only by the background  𝑇ఓఔ  therefore all 4 + 1 dimensional waves propagate through 

the same refractive structure and see the same emergent geometry. As a result, the geodesic motion 

of  massive  wave  packets  is  independent  of  their  rest  mass,  preserving  consistency  with  the 

equivalence principle of general relativity. 

This of course is only an approximation that applies only to 4 + 1 dimensional waves (massive) 

and their energy density and flux and does not consider other waves – disturbances of other fields 

(for example electromagnetic waves).   

Despite that, the fact that it so nicely connects to the equations of general relativity may be a 

strong indication that we are on the correct path. 

Furthermore, because of the approach taken above, which shows that it is possible to integrate 

gravity  in  our  framework  and  because we  are  not  treating  the metric  tensor  as  an  independent 

dynamic  field, but as an emergent property of wave behavior and given  the  inherently dynamic 

nature of the framework (especially its dependence on fields of varying dimensionality) it may offer 

a basis for interpreting and potentially integrating other phenomena, such as dark matter and dark 

energy. However, exploring these possibilities lies well beyond the scope of this paper. 

4. Describing the Behaviour of a 4 + 1 Dimensional Wave: The Emergence of the 

Hilbert Space Structure of Quantum Mechanics in Our Framework 

In  this  Section,  continuing  the  study  of  the  behaviour  of  a  4  +1  dimensional wave  in  our 

framework, we will direct our efforts toward describing how a 3 + 1 dimensional observer can model 

the behaviour of a quantity that changes in reference to the 5th dimension. 

In order to do that and in accordance with Section 2, we turn our attention on a specific point in 

4D  space    𝑥´ሬሬሬ⃗   =  (𝑥ଵ,𝑦ଵ, 𝑧ଵ, 𝑡ଵ).  If  the  4th dimension  is  treated  as  space,  then  at  any  such point  the 

amplitude A of the 4th dimensional wave (not to be confused with the wave’s angular frequency in 

the 5th dimension which we also  expressed as 𝐴  above) will oscillate  in  the 5th dimension with 

frequency f′  = ω′/2π as shown in Figure 2. 
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Figure 2. How the Amplitude of a 4‐dimensional wave changes in the 5th dimansion (Max Amplitude = 1, T´ = 

period of the wave in the 5th dimansion) for a specific point in 4D space    𝑥´ሬሬሬ⃗   = (𝑥ଵ, 𝑦ଵ, 𝑧ଵ, 𝑡ଵ). 

This means that for a specific point in space and for a specific moment in time, as a 3D observer 

perceives it, a 4 ‐ dimensional wave would seem to possess many values of A which cannot be known 

in advance since the observer doesn’t have access to the 5th dimension.   

From the very first moment we try to mathematically model a dynamic spacetime, in the sense 

that we explained above, problems start to arise. More specifically, is it possible for a 3D observer to 

describe  changes  that  happen  in  the  same moment  in  time  (4th  dimension),  like  the Amplitude 

oscillation mentioned above?   

In  order  to  answer  this  question  and  start  giving  our  dynamic  spacetime  a mathematical 

foundation, we once again turn to the 3 ‐ dimensional wave of the form given in (1) and we ask a 

different question which may give us some insight into our problem. Can we model some aspects of 

the interactions and interferences of 3 dimensional waves without the need of time, only by using 

space? 

Not surprisingly the answer is yes. If these waves all travel with the same speed (𝑢) and all obey 
the equation:    𝑢  =  f  ∗  λ  ,    then we can make predictions about  the Amplitude of  the wave on a 

specific point  in space  in correlation with  its Amplitude on another point  in space and also make 

predictions  about  interference patterns  if we know  the geometry of  the  sources  and  the  relative 

phases of the waves [2]. This  is where complex numbers come  into play. For example,  in a single 

wave if we measure the Amplitude (A1) of the wave in one point in space we can know the amplitude 

(A2) of another point at distance dx from the first point by multiplying it with a phase factor in the 

form:   

Α2 = Re[
௮

஺1
𝑒௜ௗ௫∗

2ഏ
ഊ ] ,                              i = √െ1  (imaginary unit) 

Also, in the case of the double slit experiment for light (Figure 3), we know that the Amplitude 

of the interference pattern for any point on the screen is analogous to  𝑒௜ఝሺ௥ଵሻ      +    𝑒௜ఝሺ௥ଶሻ, where  𝑟1, 
𝑟2  the distances of the slits from the point measured on the screen and 𝜑ሺ𝑟ሻ ∝  𝑘 ∗ 𝑟 [2,9]. 

 

Figure 3. The double slit experiment and how it creates constructive and destructive interferences which have 

to do with the geometry of the experimental setup. 
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If there was an observer oblivious to the concept of our time (4th dimension) in any point of the 

screen of the double slit experiment, it would seem to him that the Amplitude of the wave can take 

many possible values. The only way any conclusion or correlation about the wave and its behavior 

can arise is with the use of complex numbers. Still some information is lost to the observer (like the 

exact value of the Amplitude because  it oscillates with time, which the observer can’t measure or 

understand) but at least a great portion of the total information of the system would be accessible (for 

example  if there  is a constructive or destructive  interference  like  in the double slit experiment for 

light). 

Taking that into account, the observer who can’t understand and measure time would have to 

make use of complex functions and associate them with observables which the observer can measure 

and  understand  such  as wavelength  λ  or  energy  (if  the  energy  of  a wave  is  proportional  to  its 

frequency which is the case for electromagnetic radiation – photons and free fundamental particles). 

Also, such waves can not be entirely described only by spatial functions (for example  sinሺ𝑘ሬ⃗ 𝑟ሻ). Using 
the complex plane gives us a necessary extra degree of freedom, essential for our correlations. 

Complex numbers are also essential for quantum mechanics. Experiments have shown that it is 

impossible  to  predict  experimental  results with  real‐number  quantum  theory.  Also,  the  use  of 

complex numbers  is apparent  in  the  fact  that we can’t derive both Planck‐Einstein and deBroglie 

relations (E=hf and p=h/λ) in quantum mechanics without their use. 

A 3D wave is oscillating both in space and in time. For two different points (x1, y1, z1, t1) and (x2, 

y2, z2, t2), making precise correlations about the Amplitude in different times is impossible without 

any information about the time separation t2‐t1. Analogous to this, if we (the 3D observer) wanted to 

describe a 4+1 dimensional wave and model its behaviour, the only way we could achieve this would 

be  through  the  use  of  complex  numbers,  using  them  for  correlations  together  with  quantities 

measurable in the 3D plane (observables) such as distance, time separation or energy. This is where 

the  connection  with  quantum  mechanics  in  our  framework  starts  to  arise,  since  in  quantum 

mechanics there is also a need for operators (which are measurable quantities) in order to determine 

the  evolution  of  the  quantum  state  and  its  expectation  values,  in  reference with  the  values  this 

quantum state possesses in a different point in space or in time [4,5].   

More specifically, if we consider a 4 + 1 dimensional wave with a constant angular frequency in 

the 5th dimension, meaning a constant mass in our framework (which is logical since we try to draw 

conclusions about  the  similarity of  these waves and quantum mechanical particles with  constant 

mass), the wave’s amplitude would take the form: 

Φ(x΄,τ) = Φ0(x΄) 𝑒ି௜஺ఛ 

where x΄is the 4 dimensional space (3 + 1 dimensional spacetime for the observer) and τ  is the 5th 

dimensional time for this wave.   

Analogous to monochromatic classical waves expressed as:   

ψ(r,t) = ψ(r)𝑒ି௜ఠ௧ 

where one can calculate interference and interactions without involving time, only by knowing the 

spatial part, which is also complex. 

Additionally,  translations  (which refer  to shifting a system  in 3 dimensional space and  time) 

would only be possible by correlating the 4 dimensional spatial function Φ0(x΄) at a 4D point x΄ with 

the 4 dimensional spatial function at another 4D point, with the spatial difference between these two 

points and a measurable quantity that encodes the dynamics of the system in that direction. This is 

analogous what happens in classical waves where we multiply with phase factors in order to correlate 

the Amplitude of a wave in one point with the Amplitude of that wave in another point.   

Mathematically,  such  translations would have  to be  implemented  through unitary operators 

generated by observable quantities. For a small displacement in 4D space (𝛿𝑥ఓ) the function Φ0(x΄) 

transforms as: 

Φ0(x΄+𝛿𝑥ఓ) = 𝑒ି௜ఋ௫
ഋ௉ഋ෢   Φ0(x΄) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2025 doi:10.20944/preprints202501.2149.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.2149.v2
http://creativecommons.org/licenses/by/4.0/


  10  of  17 

 

where 𝑃ఓ෡  would be an operator that encodes the dynamics of the system in the direction of the displacement. 

Since Φ0(x΄) is not the full description of our wave solution, which evolves also in the 5th dimension, 

its evolution must be state‐dependent and must be generated by operators not simple numbers. These 

operators contain the dynamical rules (e.g., frequency, mass, momentum) that determine how the 

wave transforms when shifted,  just as the momentum operator generates phase shifts in ordinary 

wave mechanics. 

Also, in the classical case some observed physical quantities are dependent on the square of the 

complex spatial part ψ(r)  like  intensity (the energy per unit area per unit  time  transported by  the 

wave). 

I(r) ∝ ψ*(r)ψ(r) 

This is also the case with quantum mechanics. 

All  the above  show  that  in our  framework  since we  intend  to model  the behaviour of 4 + 1 

dimensional waves with  only  spatial  components  (4  dimensional  space  for  the wave),  the most 

effective thing to do would be to use complex 4 dimensional functions. For this purpose, the natural 

formalism would be a Hilbert space of complex‐valued functions, where: 

- Observable quantities, which help us make correlations, would be treated as Operators 

- Expectation values would encode measurable quantities we are  interested  in measuring and 

would be calculated by:   

〈𝑂෠〉 = ׬𝛷଴ሺx΄ሻ𝛰෠ 𝛷଴
∗ሺx΄ሻ 

To  summarize,  the oscillatory wave  solution of  a harmonic  4  +  1 dimensional wave  (which 

implies a particle with constant mass in our framework):   

Φ(x΄,τ) = Φ0(x΄) 𝑒ି௜஺ఛ 

naturally suggests that the space of all such solutions forms a complex vector space. We can define a 

complex vector space  𝐿ଶሺ𝑅ସሻ, where Φ0(x΄) ∈ 𝐿ଶሺ𝑅ସሻ  and endow  the space with an  inner product 

(the superscript “2” comes from the type of integrability condition imposed on the functions in that 

space – real valued square‐integrable functions). Observables are then modeled as linear operators 

acting on this space, with measurable quantities obtained via: 

〈𝑂෠〉 = ׬𝛷଴ሺx΄ሻ𝛰෠ 𝛷଴
∗ሺx΄ሻ 

This formalism aligns with the Hilbert space structure of quantum mechanics, allowing us to 

define  observables  as  self‐adjoint  operators  and  extract  physical  quantities  through  expectation 

values.   

Furthermore, any interaction of such a wave which results in an irreversible exchange of energy 

or an irreversible change in one or more of the wave’s characteristics would have to be interpreted as 

a discontinuous update of the 4‐dimensional complex‐valued function Φ0(x΄) ∈  𝐿ଶሺ𝑅ସሻ. This update 
can be modeled via projection operators associated with the eigenstates of a self‐adjoint observable 

𝑂෠ . Upon obtaining  the outcome,  the  complex‐valued  function  Φ0(x΄)  collapses  to  the new  state’s 

corresponding eigenfunction and all future 5th dimensional evolution proceeds from this new state. 

This  process  parallels  the  standard  collapse  postulate  of  quantum  mechanics  referring  to  the 

quantum measurement problem.   

All of the above demonstrate that the use of quantum formalism in our framework is not merely 

an  analogy,  but  a  mathematically  necessary  structure.  Moreover,  quantum  behavior  emerges 

naturally from the underlying dynamics, rather than being introduced through external postulates. 

This is also a key difference between our framework and other classical higher dimensional theories 

where quantum correlations are not natural outcomes and have to be imposed by turning classical 

fields  into  quantum  fields,  promoting  classical  observables  into  operators  and  then  defining 

probabilistic behavior through a Hilbert space, that does not emerge naturally from the theory.   
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Finally, we will try to give the most basic form of an equation in our framework by attempting 

to model a pure 4 +1 dimensional wave of a Scalar Field  (Φ), which does not  interact with  lower 

dimensional  disturbances  of  itself  or  any  other  field  and  propagates  in  a  harmonic  way.  The 

magnitude of its rate of transmition is taken to be equal to the magnitude of the speed of light. For 

this wave the 5th dimension is acting as time and the 4th dimension (our time dimension) is acting as 

another spatial dimension. We are interested in modelling this wave in a way that makes sense to us, 

the 3 + 1 dimensional observer, following the same rules we imposed on the previous Sections.   

This equation would take the form: 

(Second time derivative term) = (rate of transmition)2 x (second spatial derivative) 

The following apply: 

‐ The wave is 4 + 1 dimensional which means that time for this wave is the 5th dimension 

‐ For this wave our time (the 4th dimension) is behaving as a spatial dimension. For this reason, 

our time dimension will be included in the spatial derivative terms 

‐ Since we are modelling the wave’s behaviour  in the reference  frame of a 3 + 1 dimensional 

observer, all quantities and relations must apply to that reference frame. 

Taking all these into account our equation should have the form: 

Second 5th dimensional derivative term =  𝑐ଶ ൈ(second spatial derivative terms)                  (10) 

Considering  that  the wave propagates  in a harmonic way  in  the 5th dimension and  taking a 

sinusoidal solution Φ, the second 5th dimensional derivative term will be in the form: 

െ𝛢ଶΦ                                                  (11) 
(where  𝛢  is the wave’s angular frequency in the 5th dimension) 

The second spatial derivative terms will now include 3‐dimensional time (4th dimension) and we 

will again make use of the Minkowski metric (metric tensor for flat spacetime) because we want the 

results to have a physical meaning to us the 3 + 1 dimensional observer. This means that the spatial 

derivative terms will take the form [6]: 

ቀ
ଵ

௖మ
డమ

డమ௧
െ ∇ଶቁΦ                                                          (12) 

Combining (10), (11) and (12) we get: 

െ𝛢ଶΦ = 𝑐ଶ ൈ  ቀ
ଵ

௖మ
డమ

డమ௧
െ ∇ଶቁΦ                                 → 

ቀ
ଵ

௖మ
డమ

డమ௧
െ ∇ଶቁΦ ൅

஺మ

௖మ
 Φ = 0                                       → 

which is equal to the Klein – Gordon equation if we consider that: 

஺మ

௖మ
ൌ  ቀ

௠௖

ℏ
ቁ
ଶ
         →       

஺

௖
ൌ  േ

௠௖

ℏ
 

The same result for  𝛢  as the one we derived earlier! 

This  is very promising  since  the mass  term we derived by alternative means  in Section 2  is 

identical to the mass related component in the Klein – Gordon and Dirac equations [7,8]: 

൤
ଵ

௖మ
డమ

డమ௧
െ ∇ଶ ൅ ቀ

௠௖

ℏ
ቁ
ଶ
൨𝛹 ൌ 0    (Klein–Gordon equation) 

𝛾଴
డఅ

௖డ௧
 + 𝛾ଵ

డఅ

డ௫
 + 𝛾ଶ

డఅ

డ௬
൅ 𝛾ଷ

డఅ

డ௭
 + 

௠௖

ℏ
 𝑖 𝛹 ൌ 0 (Dirac equation) 

Also, in QFT the mass term is recognized as a term in the Lagrangian that is quadratic in the 

field and has the form  𝐴ଶφଶ    for some  𝐴  (𝐴 ∝ m the mass of the particle) [7,8]. Since we can not 
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exactly model the behaviour of 4+1 dimensional waves as we showed  in  this Section and need to 

make correlations with observables, such a term would make sense to appear in any attempt of the 

3D observer to model the possible interactions and of those waves with themselves and other lower 

dimensional waves. 

What makes the present work fundamentally depart from other Kaluza – Klein theories, where 

mass is interpreted as momentum in the extra dimension is that in our approach the fifth dimension 

is not an extra spatial coordinate but represents a dynamical temporal dimension. This means that 

we do not need  to rely on compactification or gauge unification and  then  impose quantization  in 

order  to make  the  equation  quantum,  but  instead  the  formalism  derived  earlier  both  provide 

quantum behavior and compatibility with special relativity which is emergent from the framework 

itself.   

Additionally, in other higher dimensional theories the values of the field in the fifth dimension 

correspond to different events in 5D spacetime and do not collapse into one 4D event unless some 

mechanism (e.g.    compactification, brane confinement, integral over the 5th dimension) forces that 

[16]. This means  that  in  those  theories both  the deduction of  the  four‐dimensional Klein‐Gordon 

equation  from  a  five‐dimensional wave  equation  of  zero  (hyper‐)mass  and  the  superposition  of 

different  values  of  that  field  in  one  4D  event  do  not  work  unless  we  use  a  methodology  or 

mathematical trick external to the theory. Our framework has no use for that. 

Finally, our  framework provides a natural avenue  for  integrating different  types of physical 

equations (including those that treat time and space asymmetrically) due to the dynamic role of the 

time dimension in our framework. Since time is not a fixed dimension for all phenomena (fields and 

their disturbances) and interactions but the +1 dimension relative to a field disturbance propagation, 

the mathematical form of energy dispersion may vary with dimensionality. 

Take for example the case of the heat equation or diffusion in general.   

డ௨ሺ௫,௧ሻ

డ௧
 = a

డమ௨ሺ௫,௧ሻ

డమ௫
 

It  is  first‐order  in  time  but  second‐order  in  space,  because  it  models  irreversible  energy 

dispersion that depends on spatial imbalance (curvature) but has no memory or oscillatory behavior. 

By  contrast,  the wave  equation  is  second‐order  in  both  time  and  space  because waves  involve 

oscillations  and  the  acceleration  (2nd  time  derivative)  is  tied  to  spatial  curvature,  reflecting  the 

symmetric, oscillatory nature of wave propagation. 

In our framework, distinctions between how space and time are treated for the same interaction 

may  emerge  naturally  from  the  dimensional  context  of  the  interaction.  For  example,  a  higher‐

dimensional field could experience diffusion therefore treating lower dimensional time in a second‐

order, while a lower‐dimensional field might also evolve in a diffusion‐like, first‐order way in its own 

time coordinate. This opens  the door  to a geometric  reinterpretation of  the Schrödinger equation 

(first‐order  in  time),  the Dirac  equation  (first‐order  in  time  and  space),  and  even non‐Hermitian 

dissipative systems. 

Therefore,  the dynamic  time concept allows us  to consider hybrid evolution equations  (first‐

order  in  some dimensions,  second‐order  in others)  all governed by how  energy propagates  and 

disperses across interacting fields of different dimensionalities. The consideration of different fields 

of  different  dimensionalities  and  their  interactions may  also  eliminate  constraints  between  the 

gradients along  the different coordinates  (since  time  in one  field can behave as space  in another), 

potentially accommodating the  integration of distinct symmetries and symmetry violations across 

different interactions, in a manner analogous to what occurs in quantum field theory (QFT). This line 

of thinking may allow further generalization and unification of quantum, classical, and dissipative 

dynamics under a common higher‐dimensional geometric structure, though this is much beyond the 

scope of this paper. 

Until now we have  been  focusing  on wave  solutions  in  our  framework  and not  on  system 

dynamics. This has been intentional because we want to focus on how both relativistic and quantum 
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mechanical behaviour emerges from these solutions. However, the inherently dynamic structure of 

our model also provides a natural avenue for examining the emergence of physical laws from first 

principles. Let’s consider an example:   

Suppose  that  in  the  context  of  our  framework,  every  4  +  1 dimensional  field  experiences  a 

harmonic restoring force in the fifth dimension, aiming to restore the field to a minimum value. Such 

a force would take the general form: 

F = - ∇௦௣௔௧௜௔௟𝐸 

providing that our system is conservative and we have harmonic motion in the fifth dimension. 

Taking  the Minkowski Metric,  applying  what  we  said  in  Section  3  and  demanding  that 

invariance must be conserved we derive: 

f = - 𝜕ఓ𝐸𝑢ఓ ,  where f is the projection of F onto a unit 4vector  𝑢ఓ= (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ 

f = - (𝑔ఔఓ𝜕ఔ𝛦)𝑢ఓ = െ
ଵ

௖
 
డா

డ௧
𝑥଴ + 

డா

డ௫
𝑥ଵ + 

డா

డ௬
𝑥ଶ + 

డா

డ௭
𝑥ଷ 

If we require that energy is conserved in the 3 + 1 dimensional reference frame, which means 

that 
డா

డ௧
  = 0, and the evolution of the field is governed by the spatial derivatives of energy, then the 

integral  ׬
డா

డ௫

௧మ
௧భ

 δx dt , in a specific direction x, which is the action for a 3 + 1 dimensional observer is : 

δS = ׬
డா

డ௫

௧మ
௧భ

 δx dt = ׬ f
௧మ
௧భ

 δx dt = f δx δt 

This means  that  there  exists  a minimum  non‐zero  variation  in  action  corresponding  to  the 

smallest physical influence a system can undergo in this framework. As a result, the total contribution 

of all those 4 forces projected to the 3 + 1 dimensional reference frame from all possible directions to 

a certain 4 dimensional point, would be 

ර f 𝑑ସ𝑥 

and consist of all possible   

δS = f δx δt 

from all possible directions, resulting in distinct (quantized) units of action. 

This postulated quantization aligns with the principles underlying both the Bohr–Sommerfeld 

quantization rule: 

ර𝑝𝑑𝑥 ൌ 𝑛ℎ 

and  the  path  integral  formulation  of  quantum mechanics, where  transition  amplitudes  are 

weighted by a phase factor: 

𝑒௜ௌ/ℏ 

This means that quantization may not need to be postulated externally in our framework but 

could  emerge  from  the  deeper  structure  of  how  higher‐dimensional  dynamics  project  into  the 

observable  3+1‐dimensional  world,  requiring  that  energy  and  causality  are  preserved  under 

projection. 

5. The Compatibility of Our Framework with Physical Reality and Its Testability 

Considering the results of the previous Sections, we conclude that in our proposed framework 

all  higher  dimensional  filed  disturbances  or  interactions  exhibit  a  property  analogous  (if  not 
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equivalent) to mass which produces the correct Einstein Energy Equation. Also, they propagate in 3‐

dimensional  space with  velocities  lower  than  the  speed  of  light  and  the more  their  3D  speed 

component approaches the speed of light the less their 4‐dimesnional time speed component would 

be.  This  behaviour  emerges  directly  from  the  invariant  structure  imposed  on  the  propagation 

dynamics, which in turn makes the integration of the metric tensor possible. 

Additionally, we demonstrated  that modelling exactly  the behaviour of such disturbances or 

interactions in our 3+1 reference frame is not possible because of our lack of information regarding 

the 5th dimension. Instead, we can model their behaviour by making correlations with measurable, in 

our 3D plane, quantities and thus have a picture about interferences, dispersions and propagations. 

In  this  context  the Hilbert  space  structure of quantum mechanics becomes a necessity. Also, any 

irreversible  change  in  a  4  +  1  dimensional  field  configuration  (wave  solutions) would  result  a 

discontinuous update in the complex‐valued 4 ‐dimensional space wave function which is analogous 

to measurement updates in quantum mechanics. 

Summarizing  the  above  we  conclude  that  all  higher  dimensional  filed  disturbances  or 

interactions  exhibit  behaviour  which  is  compatible  with  both  quantum  mechanics  and  special 

relativity. This compatibility should also apply to the interactions of these disturbances with lower 

dimensional fields or lower dimensional disturbances of themselves.   

Although we have primarily focused on analysing the behaviour of solutions rather than full 

system  dynamics,  our model  suggests  that  deeper  aspects  of  physical  reality may  also  emerge 

naturally from the geometric and dynamic structure of the framework. The appearance of the metric 

tensor  from wave dynamics  offers  a path  toward  integrating  general  relativity  and gravity. The 

dimensional difference of fields may eliminate constraints between the gradients along the different 

coordinates (since time in one field can behave as space in another), potentially accommodating the 

integration of distinct symmetries and symmetry violations across different interactions. A harmonic 

restoring force in fifth dimensional fields may result in a minimum physical influence a system can 

undergo possibly hinting at the quantization of action. Taken together, these results highlight the 

potential of our dynamic time framework not only to reconcile quantum and relativistic theories, but 

also  to  ground  them  in  a  unified  higher‐dimensional  geometric  structure  that  is  fundamentally 

consistent with observable physical reality. 

Despite  all  these,  the  reader  may  still  wonder  why  may  this  framework  be  conceptually 

important and nothing more than a mathematical convenience. The key lies in its explanatory power: 

rather than imposing quantum or relativistic behaviour through independent axioms or quantization 

procedures,  the  framework allows  these  features  to emerge organically  from  the deeper dynamic 

structure of our  framework and  the  requirement  that causality and  invariance between  reference 

frames  be  conserved.  It  offers  a  coherent  interpretation  of mass,  the  role  of  complex  numbers, 

probabilistic measurement, and even spacetime curvature, all in a single framework.   

As  for  the unintuitive behaviour of  time  in our  framework and why such a behaviour  is not 

obvious  in our physical  reality  the  following answer may be given. We must  recognize  that our 

perception  of  physical  reality  arises  solely  through  interactions.  All  measurable  quantities, 

observations, and physical phenomena are mediated by fields that couple to our sensory apparatus 

or instruments, most notably the electromagnetic field. If we interpret the electromagnetic field as 

fundamentally a 3+1‐dimensional field (a field whose excitations ‐ light ‐ propagate in three spatial 

dimensions  with  time  as  the  fourth)  then  our  entire  observational  framework  is  inherently 

constrained  to  this dimensionality. However,  if  these 3+1 dimensional  fields  interact with higher‐

dimensional  field  disturbances,  such  as  4+1  dimensional  waves  associated  with  mass‐bearing 

particles, the resulting interactions can exhibit features that are traditionally attributed to quantum 

mechanics as our framework suggest. Additionally, that would mean in our framework that massive 

particles propagate with velocities  lower  than  that of  the  speed of  light  therefore  the maximum 

possible  velocity  (that  of  light) would  also  be  the  speed  of  causality  and  information  exchange. 

Furthermore, while atoms themselves are fundamentally quantum mechanical and do not adhere to 

strict classical 3D geometry, molecules are shaped by electromagnetic interactions (we have taken the 
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electromagnetic field to be 3 + 1 dimensional), which depend on the relative 3D spatial configuration 

of  atoms.  Intermolecular  forces,  too,  are  governed  by  these  electromagnetic  relationships within 

three‐dimensional space. As a result, the macroscopic structures and forces that define our physical 

environment  emerge  in  a way  that  reinforces  the  appearance  of  a  fundamentally  3‐dimensional 

reality. All  the  above  show  that  a  framework  like  the  one we  are  proposing would  allow  the 

reconstruction of all observable aspects of physical reality within a 3+1‐dimensional reference frame, 

preserving the illusion that time is universally the fourth dimension, even though, at a deeper level, 

time itself is dynamic and context‐dependent. 

Finally, our framework also exhibits some other aspects that are not integrated in other theories 

and it is these aspects that should provide us with a means of testing it.   

In Section 3 we equated the 5th dimensional frequency with a term proportional to the quantity 
௠

ℏ
  .   

Consider the well‐known optical case where a 3+1 dimensional wave beam (e.g., light) is split 

into  two  paths:  one  beam  passes  through  a medium  that  reduces  its  speed  (depending  on  the 

refractive  index),  while  the  other  travels  through  free  space.  Although  the  frequency  remains 

constant,  the differing optical paths  introduce  a phase difference between  the beams,  leading  to 

interference effects upon recombination. This phase difference depends on the optical path length, 

which in turn is influenced by the frequency of the light due to the refractive index of the medium. 

Analogously, if a 4+1 dimensional wave beam were split into two components, each traversing 

regions with different propagation  characteristics,  the  resulting  interference upon  recombination 

would depend on the fifth‐dimensional frequency of the wave which we equated to mass (9). This is 

in accordance with the gravity – induced quantum interference experiment in 1975 by R. Colella, A. 

Overhauser and S. A. Werner and their results published in Physical Rev. Lett. 34 (1975) 1472 [10], 

which say that the effects depend on the quantity  ቀ
௠

ℏ
ቁ
ଶ
. In their setup, both beams passed through 

regions with differing gravitational potentials, analogous to differing propagation rates in our model. 

These  findings  are  also  consistent  with  our  proposed  treatment  of  4‐dimensional  space  as  an 

anisotropic  medium,  where  the  transmission  characteristics  of  a  4+1  dimensional  wave  vary 

according to the local energy distribution. 

Furthermore, in our framework, our time dimension (4th dimension) can behave as space for a 

higher dimensional interaction. All spatial dimensions should behave in the exact same way and be 

indistinguishable from each other in the higher dimensional reference frame. This implies that there 

should be no  restriction  in  the direction of motion of a higher dimensional disturbance  in  the 4th 

dimension. Taking into account that we have not considered the effects of entropy and the 2nd law of 

thermodynamics, which may  restrict  this direction of motion, experimental  findings  that  suggest 

results with negative time correlation should be a strong supporter of our framework. These results 

should not however affect causality or provide faster than light propagation of information since it 

would violate the rule we imposed on Section 3. The results of recent research [11] done by a team in 

the University of Toronto suggest that negative values taken by time such as the group delay have 

more physical significance than has generally been appreciated, may be one of those results in favor 

of our framework.   

6. Summary   

Through  a novel way of modelling  the  time dimension we  constructed  a  framework which 

allowed  us  to  explore  new  ways  of  integrating  quantum  mechanics  and  general  relativity  by 

dynamically linking temporal and spatial dimensions, which are typically treated as distinct in these 

frameworks. 

We  demonstrated  that  under  this  framework  higher  dimensional  filed  disturbances  or 

interactions exhibit properties analogous to mass and obey relationships consistent with the Einstein 

energy  equation.  This  dynamic  treatment  of  time  also  naturally  incorporated  the metric  tensor, 

suggesting compatibility with general relativity. Furthermore, the probabilistic behaviour and need 
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for observables in quantum mechanics, alongside the Hilbert space formalism of quantum mechanics 

emerged as an intrinsic feature of the framework. 

The possibility of integrating some of the mathematical tools of both quantum mechanics and 

general  relativity,  in  particular:  Operators,  Complex  Functions  (Wavefunctions),  Probabilistic 

Behaviour,  the Metric  Tensor  and  the  Einstein  Energy  Equation,  offers  a  promising  avenue  for 

unifying quantum mechanics and general relativity, potentially solving one of the greatest problems 

of  modern  physics.  Also,  certain  features  of  our  framework  seem  to  be  in  accordance  with 

experimental results and we also suggested potential experimental directions to further test it.   

Future  research  should delve  into  refining  the mathematical  foundation  of  this  framework, 

investigating  how  interactions  of  higher  and  lower dimensional  fields  should  be modelled,  and 

exploring its compatibility with emerging experimental data. Finally, we believe that modelling the 

interaction of 4+1 dimensional and 3+1 dimensional  fields  together with  imposing symmetries on 

them could be of much significance and possibly help better understand or more accurately produce 

some  of  the possible  interactions  and  equations  in QFT. These  efforts may  further  validate  and 

expand  the  scope  of  this  dynamic  higher‐dimensional  spacetime  framework,  bridging  the  gap 

between the two most successful theories of modern physics. 

Data Availability Statement: All data generated or analyzed during this study are included in this published 

article. 

Author Contributions: The concept of a dynamic time dimension, as described in this paper, its core idea and 

the framework in which behaves are attributed to the author alone. The same is true for the for the writing of 

this paper and all its results. 

Notification:  For  any  use,  sharing,  adaptation,  distribution  and  reproduction  in  any  media  or  format, 

appropriate  credit must  be  given  to  the  author.  This  applies  to  this  paper,  the  concept  of  time  behaving 

dynamically and being modelled as  the plus one (+1) dimension relative  to  the dimensions through which a 

given phenomenon propagates and interacts, its core idea and the framework in which behaves, as described in 

this paper. 
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