
Article Not peer-reviewed version

About Stability of SAIRP Epidemic

Model Under Stochastic Perturbations

of the Type of Poisson's Jumps

Leonid Shaikhet *

Posted Date: 27 April 2025

doi: 10.20944/preprints202504.2254.v1

Keywords: equilibria; stability in probability; asymptotic mean square stability; Lyapunov function; Poisson's

jumps; Linear Matrix Inequality (LMI); numerical simulation; MATLAB

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/970353


Article

About Stability of SAIRP Epidemic Model Under
Stochastic Perturbations of the Type of
Poisson’s Jumps
Leonid Shaikhet

Department of Mathematics, Ariel University, Ariel 40700, Israel; leonid.shaikhet@usa.net

Abstract: Asymptotic properties of the known SAIRP epidemic model are studied under stochastic
perturbations. It is assumed that the stochastic perturbations, given by a combination of the white
noise and Poisson’s jumps, are proportional to the deviation of a current state of the system under
consideration from one of the system equilibria. Sufficient conditions of stability in probability for two
different equilibria of the considered system are formulated via a simple linear matrix inequality (LMI),
that can be easily studied via MATLAB. Two demonstrative examples illustrate the obtained results
via numerical simulation of solutions of the considered system of five nonlinear stochastic differential
equations. The research method used here can be applied to a lot of other more complicated models in
various applications.

Keywords: equilibria; stability in probability; asymptotic mean square stability; Lyapunov function;
Poisson’s jumps; linear matrix inequality (LMI); numerical simulation; MATLAB

1. Introduction
The so-called SAIRP epidemic model is very popular in research (see, for instance, [1–4] and

the references therein). This epidemic model is described by the following system of five ordinary
differential equations:

Ṡ(t) = Λ −
[

β(1 − p(1 − u))
θA(t) + I(t)

N(t)
+ ψp(1 − u) + µ

]
S(t) + ωP(t),

Ȧ(t) = β(1 − p(1 − u))
θA(t) + I(t)

N(t)
S(t)− (ν + µ)A(t),

İ(t) = νA(t)− (δ + µ)I(t),

Ṙ(t) = δI(t)− µR(t),

Ṗ(t) = ψp(1 − u)S(t)− (ω + µ)P(t).

(1)

Here it is supposed that the total population

N(t) = S(t) + A(t) + I(t) + R(t) + P(t),

is subdivided into five distinct classes:

- susceptible individuals (S(t));
- asymptomatic infected individuals (A(t));
- active infected individuals (I(t));
- removed (including recovered and deceased) individuals (R(t));
- protected individuals (P(t)).
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The total population N(t) has a variable size, the recruitment rate Λ and the natural death rate µ

in (1) are assumed to be constant. The susceptible individuals S(t) become infected by contact with
active infected I(t) and asymptomatic infected individuals A(t), at a rate of infection

β
θA(t) + I(t)

N(t)
,

where θ represents a modification parameter for the infectiousness of the asymptomatic infected
individuals A(t). It is supposed also that all parameters of the system (1) are positive and, besides,
p < 1, u < 1.

In [1–3] some properties of the system (1) are studied in the deterministic case. In [4] stability in
probability of two equilibria of the system (1) is investigated by the assumption that the considered
system is exposed to stochastic perturbations of the white noise type [5,6].

In particular, in [4] it is shown that the equilibria of the system (1) are defined by the system of
five algebraic equations

Λ −
[

β(1 − p(1 − u))
θA + I

N
+ ψp(1 − u) + µ

]
S + ωP = 0,

β(1 − p(1 − u))
θA + I

N
S − (ν + µ)A = 0,

νA − (δ + µ)I = 0,

δI − µR = 0,

ψp(1 − u)S − (ω + µ)P = 0,

(2)

with the two solutions:
1) disease-free equilibrium

E∗
0 = (S∗

0 , A∗
0 , I∗0 , R∗

0 , P∗
0 )

with

S∗
0 =

(ω + µ)Λ
µ[ω + µ + ψp(1 − u)]

,

A∗
0 = I∗0 = R∗

0 = 0,

P∗
0 =

ψp(1 − u)Λ
µ[ω + µ + ψp(1 − u)]

,

(3)

and
2) endemic equilibrium

E∗
+ = (S∗

+, A∗
+, I∗+, R∗

+, P∗
+)

with

S∗
+ =

(ω + µ)Λ
µ[ω + µ + ψp(1 − u)]

R−1
0 ,

A∗
+ =

Λ
ν + µ

(1 − R−1
0 ),

I+ =
νΛ

(ν + µ)(δ + µ)
(1 − R−1

0 ),

R∗
+ =

δνΛ
µ(ν + µ)(δ + µ)

(1 − R−1
0 ),

P∗
+ =

ψp(1 − u)Λ
µ[ω + µ + ψp(1 − u)]

R−1
0 ,

(4)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2254.v1

https://doi.org/10.20944/preprints202504.2254.v1


3 of 10

where the basic reproduction number

R0 =
β(1 − p(1 − u))(θ(δ + µ) + ν)(ω + µ)

(ν + µ)(δ + µ)(ω + µ + ψp(1 − u))
> 1. (5)

Note also that, summing all equations of the system (2), we obtain N∗ =
Λ
µ

for the both equilibria

(3) and (4).
Below, stability of the both equilibria is studied by the assumption that the system (1) is exposed

to stochastic perturbations, given by a combination of the white noise and Poisson’s jumps, which are
directly proportional to the deviation of the state of the system (1) from one of the equilibrium.

2. Stochastic Perturbations
Let {Ω,F, P} be a complete probability space, {Ft, t ≥ 0} be a nondecreasing family of sub-σ-

algebras of F, i.e., Ft1 ⊂ Ft2 ⊂ F for t1 < t2, E be the mathematical expectation with respect to the
measure P.

Let us suppose that the system (1) is exposed to stochastic perturbations of the type of

ξi(t) = σiwi(t) + γi ν̃i(t), i = 1, ..., 5, (6)

where σi and γi are arbitrary constants,

ν̃i(t) = νi(t)− λit, i = 1, ..., 5,

wi(t) and νi(t) are respectively Ft-measurable and mutually independent the Wiener and the Poisson
processes, Eνi(t) = λit, λi > 0 [5–8].

Remark 1. Note that the Wiener processes describe continuous stochastic perturbations of the Brownian motion
type, while the Poisson processes describe stochastic perturbations of the jumps type. In [4] in the similar problem
stochastic perturbations are considered in the form (6) with γi = 0, i.e., without the Poisson jumps.

Let us suppose also that the stochastic perturbations (6) are directly proportional to the deviation
of the system state (S(t), A(t), I(t), R(t), P(t)) from one of the equilibria (S∗, A∗, I∗, R∗, P∗). As a result
we obtain the system of stochastic differential equations [5,6]

dS(t) =
[

Λ −
(

β(1 − p(1 − u))
θA(t) + I(t)

N(t)
ψp(1 − u) + µ

)
S(t) + ωP(t)

]
dt

+ (S(t)− S∗)dξ1(t),

dA(t) =
[

β(1 − p(1 − u))
θA(t) + I(t)

N(t)
S(t)− (ν + µ)A(t)

]
dt

+ (A(t)− A∗)dξ2(t),

dI(t) = [νA(t)− (δ + µ)I(t)]dt + (I(t)− I∗)dξ3(t),

dR(t) = [δI(t)− µR(t)]dt + (R(t)− R∗)dξ4(t),

dP(t) = [ψp(1 − u)S(t)− (ω + µ)P(t)]dt + (P(t)− P∗)dξ5(t).

(7)

Note that the equilibrium (S∗, A∗, I∗, R∗, P∗) of the deterministic system (1) is also the solution
of the system of stochastic differential equations (7). Stochastic perturbations of this type were first
proposed in [9] for SIR epidemic model and later also for some other mathematical models in various
applications (see, for instance, [10–14] and the references therein).
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3. Linear Approximation
Consider the nonlinear differential equation

ẋ(t) = F(x(t)), (8)

where x(t) ∈ Rn and the equation F(x) = 0 has a solution x∗ that is an equilibrium of the differential
Equation (8). Using the new variable y(t) = x(t)− x∗, represent the Equation (8) in the form

ẏ(t) = F(x∗ + y(t)). (9)

It is clear that stability of the zero solution of the Equation (9) is equivalent to stability of the equilibrium
x∗ of the Equation (8).

Let JF =

∥∥∥∥∥ ∂Fi
∂xj

∥∥∥∥∥, i, j = 1, ..., n, be the Jacobian matrix of the function F = {F1, ..., Fn} and

lim|y|→0
|o(y)|
|y| = 0, where |y| is the Euclidean norm in Rn. Using Taylor’s expansion in the form

F(x∗ + y) = F(x∗) + JF(x∗)y + o(y)

and the equality F(x∗) = 0, we obtain the linear approximation

ż(t) = JF(x∗)z(t) (10)

of the nonlinear differential Equation (9). So, a condition for the asymptotic stability of the zero
solution of the linear Equation (10) is also a condition for the local stability of the equilibrium x∗ of the
initial nonlinear Equation (8).

To construct the linear approximation of the system (7) let us put

x(t) = (S(t), A(t), I(t), R(t), P(t))′,

x∗ = (S∗, A∗, I∗, R∗, P∗)′,

y(t) = x(t)− x∗,

N∗ = S∗ + A∗ + I∗ + R∗ + P∗.

(11)

Here and everywhere below ′ is the sign of transpose.
Representing the system (1) in the form (8) and calculating the Jacobian matrix, we obtain the

linear part of the system (7) in the form

dz(t) =Az(t)dt +
5

∑
i=1

Biz(t)dwi(t) +
5

∑
i=1

Ciz(t)dν̃i(t), (12)

where z(t) ∈ R5, Bi and Ci are the 5 × 5-matrices with all zero elements besides of respectively bii = σi

and cii = γi, i = 1, ..., 5.
Note that for Ci = 0, i = 1, ..., 5, the linear Equation (12) was obtained in [4] with

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

0 ν −(δ + µ) 0 0
0 0 δ −µ 0

ψp(1 − u) 0 0 0 −(ω + µ)

, (13)
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where

a11 =−
[

β(1 − p(1 − u))
θA∗ + I∗

N∗

(
1 − S∗

N∗

)
+ ψp(1 − u) + µ

]
,

a12 =− β(1 − p(1 − u))
S∗

N∗

(
θ − θA∗ + I∗

N∗

)
,

a13 =− β(1 − p(1 − u))
S∗

N∗

(
1 − θA∗ + I∗

N∗

)
,

a14 = β(1 − p(1 − u))
S∗(θA∗ + I∗)

(N∗)2 ,

a15 = a14 + ω,

(14)

and

a21 = β(1 − p(1 − u))
θA∗ + I∗

N∗

(
1 − S∗

N∗

)
,

a22 = β(1 − p(1 − u))
S∗

N∗

(
θ − θA∗ + I∗

N∗

)
− (ν + µ),

a23 = β(1 − p(1 − u))
S∗

N∗

(
1 − θA∗ + I∗

N∗

)
,

a24 = a25 = −β(1 − p(1 − u))
S∗(θA∗ + I∗)

(N∗)2 .

(15)

In particular, for the equilibrium E∗
0 the elements (14) and (15) of the matrix (13) are respectively

a11 =− (ψp(1 − u) + µ),

a12 =− θβ(1 − p(1 − u))
S∗

N∗ ,

a13 =− β(1 − p(1 − u))
S∗

N∗ ,

a14 = 0, a15 = ω,

(16)

and
a21 = a24 = a25 = 0,

a22 = θβ(1 − p(1 − u))
S∗

N∗ − (ν + µ),

a23 = β(1 − p(1 − u))
S∗

N∗ .

(17)

Remark 2. Let the function V(z), z ∈ R5, has two derivatives ∇V(z) and ∇2V(z). The generator L of the
Equation (12) has the form [5,6,10]

LV(z) =(∇V(z))′Az +
1
2

5

∑
i=1

z′Bi∇2V(z)Biz

+
5

∑
i=1

λi[V(z + Ciz)− V(z)− (∇V(z))′Ciz].

(18)

4. Stability
Definition 1. Put

y(t) = (S(t), A(t), I(t), R(t), P(t))− (S∗, A∗, I∗, R∗, P∗)

= (S(t)− S∗, A(t)− A∗, I(t)− I∗, R(t)− R∗, P(t)− P∗).

The solution (S∗, A∗, I∗, R∗, P∗) of the system (7) is called stable in probability if for any ε1 > 0 and ε2 > 0
there exists δ > 0 such that y(t) satisfies the condition P{sup

t≥0
|y(t)| > ε1} < ε2 for any y(0), such that

P{|y(0)| < δ} = 1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2025 doi:10.20944/preprints202504.2254.v1

https://doi.org/10.20944/preprints202504.2254.v1


6 of 10

Definition 2. The zero solution of the Equation (12) is called:

- mean square stable if for each ε > 0 there exists a δ > 0 such that E|z(t)|2 < ε, t ≥ 0, provided that
E|z(0)|2 < δ;

- asymptotically mean square stable if it is mean square stable and for each initial value z(0), such that
E|z(0)|2 < ∞, the solution z(t) of the Equation (12) satisfies the condition lim

t→∞
E|z(t)|2 = 0.

Remark 3. It is known [10] that sufficient conditions for asymptotic mean square stability of the zero solution
of the linear part of a stochastic nonlinear system with the order of nonlinearity higher than one at the same
time are sufficient conditions for stability in probability of the solution of the initial nonlinear system. So, for
investigation of stability in probability of the equilibrium (S∗, A∗, I∗, R∗, P∗) of the nonlinear system (7) it is
enough to get conditions for asymptotic mean square stability of the zero solution of the linear Equation (12).

Theorem 1 ([10]). Let there exist a function V(z) and positive constants c1, c2, c3, such that the following
conditions hold:

EV(z(t)) ≥ c1E|z(t)|2, EV(z(0)) ≤ c2|z(0)|2,

ELV(z(t)) ≤ −c3E|z(t)|2.

Then the zero solution of the Equation (12) is asymptotically mean square stable.

Theorem 2. Let for the matrices A, Bi and Ci, i = 1, ..., 5, of the Equation (12) there exists a positive definite
matrix Q, such that the following LMI

QA + A′Q +
5

∑
i=1

(B′
i QBi + λiC′

i QCi) < 0 (19)

holds. Then the equilibrium (S∗, A∗, I∗, R∗, P∗) of the system (7) is stable in probability.

Proof. Using the generator (18) for the Lyapunov function V(z) = z′Qz, Q > 0, we have

LV(z) =2z′QAz +
5

∑
i=1

z′B′
i QBiz +

5

∑
i=1

λiz′C′
i QCiz

=z′
[

QA + A′Q +
5

∑
i=1

(
B′

i QBi + λiC′
i QCi

)]
z.

(20)

So, if the LMI (19) holds then via (20)
LV(z) ≤ −c|z|2

for some c > 0 and, therefore, via Theorem 1 the zero solution of the linear stochastic differential
Equation (12) is asymptotically mean square stable.

Via Remark 3 it means that the appropriate equilibrium (S∗, A∗, I∗, R∗, P∗) of the nonlinear system
(7) is stable in probability. The proof is completed.

5. Numerical Simulations
5.1. Difference Analogue

For numerical simulation of solutions of the system (7) let us construct the difference analogue of
this system. Put

tj = ∆j, ∆ > 0,

Sj = S(tj), Aj = A(tj), Ij = I(tj), Rj = R(tj), Pj = P(tj),

wi,j = wi(tj), νi,j = νi(tj), i = 1, ..., 5, j = 0, 1, 2, ... .

(21)
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Via (21) the difference analogue of the system (7) takes the form

Sj+1 = Sj +

[
Λ −

(
β(1 − p(1 − u))

θAj + Ij

Nj
+ ψp(1 − u) + µ

)
Sj + ωPj

]
∆

+ (Sj − S∗)[σ1(w1,j+1 − w1,j) + γ1(ν1,j+1 − ν1,j − λ1∆)],

Aj+1 = Aj +

[
β(1 − p(1 − u))

θAj + Ij

Nj
Sj − (ν + µ)Aj

]
∆

+ (Aj − A∗)[σ2(w2,j+1 − w2,j) + γ2(ν2,j+1 − ν2,j − λ2∆)],

Ij+1 = Ij + [νAj − (δ + µ)Ij]∆

+ (Ij − I∗)[σ3(w3,j+1 − w3,j) + γ3(ν3,j+1 − ν3,j − λ3∆)],

Rj+1 = Rj + [δIj − µRj]∆

+ (Rj − R∗)[σ4(w4,j+1 − w4,j) + γ4(ν4,j+1 − ν3,j − λ4∆)],

Pj+1 = Pj + [ψp(1 − u)Sj − (ω + µ)Pj]∆

+ (Pj − P∗)[σ5(w5,j+1 − w5,j) + γ5(ν5,j+1 − ν5,j − λ5∆)],

j = 0, 1, 2, ... .

(22)

5.2. Examples

Here two demonstrative numerical examples are considered.

Example 1. Putting

Λ = 15, µ = 1, θ = 1, ψ = 0.4, ν = 0.15,

δ = 0.033, ω = 0.0013, p = 0.7, u = 0.3, β = 1.5,
(23)

from (3) we obtain N∗
0 =

Λ
µ

= 15 and

(S∗
0 , A∗

0 , I∗0 , R∗
0 , P∗

0 ) = (12.5445, 0, 0, 0, 2.4555). (24)

Via MATLAB it was shown that for the values of the parameters

σ1 = 1.4, σ2 = 0.93, σ3 = 1.2, σ4 = 1.4, σ5 = 1.4,

γi = λi = 1, i = 1, ..., 5,
(25)

the LMI (19) holds and, therefore, the equilibrium (24) is stable in probability.
In Figure 1 50 trajectories of the solution of the system (7), obtained via the difference analogue (22) with

the parameters (23), (25) and ∆ = 0.06, are shown with the initial values

S(0) = 22, A(0) = 11, I(0) = 4, R(0) = 8, P(0) = 17. (26)

All trajectories (S(t)-brown, A(t)-violet, I(t)-blue, R(t)-red, P(t)-green) converge to the stable in probability
equilibrium (24).
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Figure 1. 50 trajectories of the solution of the system (7) with the parameters (23), (25), (26) converge to the stable
equilibrium (24).

Example 2. Putting

Λ = 15, µ = 1, θ = 1, ψ = 0.08, ν = 0.18,

δ = 0.33, ω = 0.0013, p = 0.4, u = 0.3, β = 2,
(27)

from (5) and (4) we obtain R0 = 1.3541 > 1, N∗
0 =

Λ
µ

= 15 and

(S∗
+, A∗

+, I∗+, R∗
+, P∗

+) = (10.8264, 3.3317, 0.4509, 0.1488, 0.2422). (28)

Via MATLAB it was shown that for the values of the parameters

σ1 = 1.5, σ2 = 0.79, σ3 = 1.2, σ4 = 1.3, σ5 = 1.3,

γ1 = 1.1, γ2 = 0.95, γ3 = 1.1, γ4 = 0.5, γ5 = 1,

λ1 = 1.1, λ2 = 1.59, λ3 = 1.1, λ4 = 1, λ5 = 1.1,

(29)

the LMI (19) holds and, therefore, the equilibrium (28) is stable in probability.
In Figure 2 50 trajectories of the solution of the system (7), obtained via the difference analogue (22) with

the parameters (27), (29) and ∆ = 0.06, are shown with the initial values are shown with the initial values

S(0) = 7, A(0) = 4.5, I(0) = 9, R(0) = 5.5, P(0) = 2.7. (30)

All trajectories (S(t)-brown, A(t)-violet, I(t)-blue, R(t)-red, P(t)-green) converge to the stable in probability
equilibrium (28).
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Figure 2. 50 trajectories of the solution of the system (7) with the parameters (27), (29), (30) converge to the stable
equilibrium (28).

Remark 4. Note that for the numerical simulation of trajectories of the Wiener processes wi(t), i = 1, ..., 5, in
Examples 1 and 2 the special algorithm has been used, described in detail in [10] (p.29-31).

Remark 5. For the numerical simulation of the Poisson processes νi(t), i = 1, ..., 5, similarly to [7,8] the
continuous random variable ζi is used, uniformly distributed on the interval (0, 1): νi,j+1 − νi,j = 1 if ζi < λi∆
and νi,j+1 − νi,j = 0 in the contrary case.

One can see that in difference from the similar pictures in [4], where only stochastic perturbations
of the white noise type are considered, here in Figures 1 and 2 the trajectories of all processes have
discontinuities, that is a consequence of jumps in Poisson’s processes.

6. Conclusions
Asymptotic properties of the known SAIRP epidemic model, described by a system of five

nonlinear differential equations, are studied under stochastic perturbations, given by a combination of
the white noise and Poisson’s jumps. It is shown that a sufficient condition of stability in probability for
two equilibria of the considered system is formulated in the form of a simple linear matrix inequality
(LMI) that can be easily studied via MATLAB. Two demonstrative examples illustrate the obtained
results via numerical simulation of solutions of the considered system. The research method used here
can be applied to a lot of other more complicated models in different applications.
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