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Abstract: This study addresses the challenge of optimizing energy management in the electric 
vehicle industry, specifically focusing on motorsport. It particularly targets optimizing energy 
management during an endurance event at the Formula Student competition. The research involves 
detailed simulation of a complete endurance event, including developing precise track and vehicle 
models and their application in real-time energy management of our motorsport vehicle. The 
primary objective is to develop an energy reference profile that optimizes point scoring following 
the event’s specific rules. The energy reference profile serves as a strategic guideline for energy 
consumption and its regeneration throughout the endurance event. What sets this study apart is its 
emphasis on the real-time feedback controller’s implementation in the Formula Student prototype, 
FST12, specifically during the Endurance event. This controller dynamically regulates the inverter’s 
power output, ensuring the vehicle follows the pre-established energy reference profile closely. This 
real-time energy management approach enhances overall performance by optimizing energy 
utilization for maximum scoring potential. The Formula Student prototype, FST12, undergoes 
experimental validation on a real 20 km closed-loop track. 

Keywords: Electric Vehicles; Energy Management; Formula Student; Optimization; Vehicle 
Dynamics 

 

1. Introduction 

Optimizing energy consumption is a significant challenge for both research and industrial 
communities. In electric vehicles, this challenge is aggravated due to the limited capacity of batteries, 
which ultimately limits the range and attractiveness of EVs [1]. Two current approaches to address 
this issue are the development of highly efficient powertrains and advancing energy use optimization 
techniques. 

Regarding powertrains, one example is the use of multiple energy sources to reduce the 
limitation of the batteries [2]. Supercapacitors, flywheels, and fuel cells can be combined with 
batteries to improve the energy management of EVs [3,4]. The development of highly efficient electric 
motors [5] and powertrain optimization [6] are also other approaches to reduce energy consumption. 
In [7], for example, the authors present the design optimization of an in-wheel permanent magnet 
synchronous motor to reduce the number of materials used and weight compared to conventional 
motors.  

The second issue addressed is energy management optimization algorithms, which offer a 
complementary approach to mitigating the limited capacity of batteries. In [8], an algorithm is 
proposed for intelligent transportation systems, utilizing an adaptive equivalent fuel consumption 
minimization strategy. This approach considers the battery’s state of charge and optimizes the 
vehicle’s start-stop function using NARX network-based velocity prediction. This method achieved 
fuel savings of up to 9%. In [9], the authors proposed a path and speed optimization strategy to extend 
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the range of an electric unmanned marine vehicle (USV) powered by batteries and photovoltaic 
panels. Experimental tests demonstrated that the USV could be fully powered by PV panels under 
low speed and wave conditions, with path and speed optimizations increasing the range by up to 
25%. Optimizing the driving profile is a crucial step in energy management. It must be tailored to the 
vehicle’s dynamics, weather, and road conditions to minimize energy consumption and maximize 
range while ensuring a minimum driving time. However, in a racing environment [10], the vehicle 
consumes a significant amount of energy to achieve maximum speed over the given track distance. 
In this critical context, this research focuses on developing energy management strategies for 
implementation in a racing Formula Student prototype. 

Formula Student is Europe’s most established educational engineering competition, challenging 
engineering students from the best universities around the world to conceptualize, design, build, and 
test electric or combustion single-seater formula race cars according to race car according to a specific 
set of rules [11]. FST Lisboa [12] was established in 2001 and is the Formula Student team from the 
University of Lisbon. Throughout its history, the team has striven to keep up with the industry’s ever-
growing demands and advancements, first with the transition from combustion to electric in 2010 
and then with the development of the team’s first autonomous car in 2021. 

Formula Student competitions are divided into static and dynamic events. The static events 
assess each team’s knowledge and engineering processes. The dynamic events in the EV category 
include: 
 Acceleration: a 75m straight line to test longitudinal acceleration capability. 
 Skidpad: two pairs of concentric circles in a figure-eight pattern to test lateral acceleration 

capability. 
 Autocross: a single lap on a handling track with features such as hairpins, slaloms, and chicanes, 

approximately 1km long. 
 Endurance: a roughly 22km closed-loop circuit with characteristics like Autocross, including a 

driver change at the halfway point. 
 Efficiency: evaluates the vehicle’s energy efficiency during the endurance event. 

Endurance and Efficiency events together account for 325 out of 1000 points, nearly a third of the 
total available points. During the testing season, the team has limited opportunities to simulate 
endurance events, as these tests can deplete an entire battery pack or come close to it. Additionally, 
endurance events are the most challenging to perform consistently well in, requiring meticulous 
preparation in car reliability, driver training, and, most importantly, temperature and energy 
management. Being the most challenging event, in last year’s FSG [13], only 13 EV teams successfully 
finished the Endurance (18% out of the 70 registered and 25% out of the 52 who started altogether). 

The research began with the FST Lisboa team using a simple algorithm for energy management. 
Recognizing the lack of a robust controller to enhance overall performance in the Endurance and 
Efficiency events, the need for a more sophisticated system became evident, motivating this research. 
The ultimate objective is to develop methodologies to optimize energy use, increasing confidence in 
successfully completing the event and enhancing point-scoring opportunities. 

We propose a methodology to generate an optimized energy reference profile and implement it 
in real-time. As such, a pre-event optimized plan is generated through a developed offline model and 
implemented into an energy management algorithm that adheres the actual energy deployment to 
what has been deemed optimal. The proposed methodology is validated in a real closed-loop track.  

This work not only contributes to the Formula Student context but also resonates with the 
broader electric vehicle industry. As the industry continues its pursuit of energy-efficient solutions, 
this research underscores the importance of simulation-based optimization and real-time energy 
management. 

2. Methods and Models 

 It is essential to first model the vehicle and track it to optimize energy consumption. This 
modeling enables the prediction of energy usage. The methodology, summarized in Figure 1 as a 
flowchart, begins with defining the vehicle and track models. This step allows for an accurate 
estimation of the vehicle’s energy consumption under specific track conditions. Using these models, 
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offline energy optimization is performed to refine the speed profile, aiming to maximize points in the 
endurance competition. Once the “optimal” speed profile is determined, it is converted to an 
equivalent “optimal” energy profile due to competition restrictions (remote speed control is not 
permitted). In real-time, an energy management algorithm estimates the energy consumption and 
compares it with the reference profile at the current distance traveled by the vehicle, utilizing IMU 
and GPS signals. A PID controller uses this error to adjust the power limitations of the motor 
controllers in real-time, ensuring the energy driver adheres to the optimized energy profile. Special 
attention is given to the distance traveled estimator, as accumulated deviations could lead to incorrect 
operations on the track (e.g., accelerating before a turn). 

 

Figure 1. Methodology flowchart. 

2.1. FST12 Prototype 

The FST12, shown in Figure 2, is the twelfth prototype developed by FST Lisbon. This 4-wheel 
drive electric vehicle features a carbon-fiber-reinforced polymer monocoque chassis, a 
comprehensive aerodynamic package, and a custom-built 588 V high-voltage battery. Weighing 233 
kg (without the driver), the prototype boasts a power-to-weight ratio of 0.757 kW/kg. It can reach a 
top speed of 116 km/h and accelerate from 0 to 100 km/h in under 2.5 seconds. 
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Figure 2. The FST12 prototype, used as our case study, was the platform for testing the real-time 
implementation. 

Regulations limit the total power output to 80 kW in official events [11]. The battery pack powers 
four 32.5 kW permanent magnet synchronous in-wheel motors, each capable of producing up to 21 
Nm of torque at speeds of up to 20,000 rpm [14]. Upon a demanded maximum power value, Pmax, the 
control unit automatically distributes individual power limitations to the forward (𝑃௠௔௫

ி ) and rear 
(𝑃௠௔௫

ோ ) motors as in (1). 
𝑃௠௔௫

ி = 0.166ത𝑃௠௔௫ 
𝑃௠௔௫

ோ = 0.333ത𝑃௠௔௫ 
(1) 

The e-motors’ manufacturer provides an efficiency map with field weakening for different 
operating conditions in terms of torque and speed. Figure 3 depicts the motor efficiency map for the 
case of a rear motor when Pmax = 40 kW and the maximum torque is 𝑇௠௔௫

ோ  = 21Nm. 

 

Figure 3. Rear motor eff. map with Pmax = 40kW and 𝑇௠௔௫
ோ =21 Nm. 

The battery pack comprises LiCO2 cells, which individually have a nominal voltage of 3.7V, a 
charged voltage condition of 4.2V, and a typical capacity of 7.4Ah. Assembled in a 140s2p (140 series 
and 2 parallel) configuration, the battery pack provides a maximum voltage of 588V and a total 
theoretical energy capacity of 7.67kWh. While the theoretical battery capacity is 7.67kWh, the limiting 
value at which the vehicle can run is lower. Many factors decrease the available capacity, such as a 
continuous 600W low-voltage supply for various systems. Table 1 lists the calculations one can do to 
estimate better the energy the fully charged battery pack can deploy. 

Table 1. Deduction of total available battery pack capacity. 

Theoretical capacity 7666 Wh 
Low voltage supply (~35 mins) 350 Wh 
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Battery pack losses (3%) 230 Wh  
Deviation losses (10%) 767 Wh 
Available capacity 6319 Wh 

The knowledge of the available capacity is critical for the optimization process because a small 
deviation can cause the energy to be drained before the track is complete. Therefore, data from 
previous Endurance runs helped confirm this value, as shown in Table 2. With these results in mind, 
the maximum energy capacity is considered to be Emax = 6.3 kWh. 

Table 2. Maximum capacity extrapolation from Endurance data. 

Endurance Results FSG23 FSS23 
Initial SOC 98.6 % 98.99 % 
Final SOC 15.2 %  17.73 % 
Energy consumption 5.324 kWh 5.139 kWh 
Available capacity 6.405 kWh 6.324 kWh 

Furthermore, the prototype is equipped with a Kvaser Memorator Pro 5xHS data logger, which 
allows for the post-processing of sensory data included in the CAN communication line. Using its 
sensor fusion algorithms, the Xsens MTi-670 GNSS/INS estimates the position, velocity, acceleration, 
and orientation. Integrated into the battery pack, the Isabellenhutte IVT-S-300-U3-I-CAN2-12/24 
outputs voltage, current, power and energy measurements in real-time. 

The prototype also incorporates a dedicated PC to handle data processing and generate torque 
requests directed to the inverters. This computing unit operates internal modules and communicates 
via a ROS/CAN protocol. 

2.2. Vehicle Dynamic Model 

The vehicle model built on Newtonian mechanics is based on the dynamic bicycle model 
described in [15]. Its geometry can be visualized in Figure 4. The model predicts the evolution of the 
vehicle state vector x = [X, Y, ψ, vx, vy, r]T. Here, X and Y refer to the vehicle’s global position 
coordinates, ψ is the vehicle’s orientation, vx and vy correspond to the vehicle’s longitudinal and 
lateral velocities, respectively, and r is the time derivative of the vehicle’s orientation, also known as 
the yaw rate. The input vector contains the normalized pedal input, p, and the wheel steering angle, 
δ, described as u = [p, δ]T. 

 
Figure 4. Bicycle model geometry and parameters. 

The longitudinal propulsion force provided by each of the four electric motors is given by (2), 
where ηt represents the transmission’s efficiency, GR represents the transmission’s gear ratio, rw is the 
wheel’s radius, p ∈ [−1, 1] is a normalized pedal input, and Tmax is the programmable maximum torque 
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value at a given motor. Additionally, the instantaneous mechanical power used to calculate energy 
consumption is given by the sum in all four motors (3), where Ti and ωi are each motor’s operating 
torque and angular speed, respectively. On the right side of equation (3), the wheel’s angular speed 
is converted into rotations per minute [rpm]. Finally, ηpt denotes the powertrain system efficiency. 

𝐹ெ = 𝜂௧
(௣ ೘்ೌೣ)ீோ

௥ೢ
       (2) 

𝑃 = ෍
𝑇௜𝜔௜

𝜂௣௧

ସ

௜ୀଵ

= ෍
𝜋𝑇௜𝑛௜

30𝜂௣௧

ସ

௜ୀଵ

 (3) 

Furthermore, the grip at each tire, FT, is estimated through individual static loads, Fzstatic, dynamic 
load transfers, ∆Fz(x or y), and downforce, FDF, adding up to a given vertical tire load Fz, which saturates 
the traction force if under the previously generated motor force (4), (5). In (4), µx is a linear 
longitudinal tire coefficient and µxs is the non-linear slope factor. In (5), li is the tire’s axle distance to 
the center of gravity (CoG), and dfi is the downforce distribution per axle.  

𝐹் =
1

2
𝐹௭(𝜇௫ −

𝜇௫௦1

2
𝐹௭) (4) 

𝐹௭
௜ =

𝑚
𝑙௜

2
𝑔 +

1
2

𝜌𝐶௅𝐴𝑣௫
ଶ𝑑௙௜

2
± Δ𝐹௭௫ ± Δ𝐹௭௬ 

(5) 

The dynamic load transfer calculations for the longitudinal ∆Fzx and lateral directions ∆Fzy are 
described as (6), where m is the car’s total mass, hcog is the height of the center of gravity, ax and ay are 
the longitudinal and lateral accelerations, respectively, L is the wheelbase and lw is the track 
dimension of the vehicle. 

Δ𝐹௭௫ = 𝑚
௔ೣ௛೎೚೒

௅
, Δ𝐹௭௬ = 𝑚

௔೤௛೎೚೒

௟ೢ
 (6) 

As such, the total longitudinal traction force of the front axle, denoted by 𝐹௫
ி is the sum of the 

longitudinal traction forces of both front tires. The same applies to the total longitudinal traction force 
of the rear axle, denoted by 𝐹௫

ோ. In Equation (7), Fx represents the longitudinal forces applied on the 
vehicle, modeled by the sum of forces around the vehicle’s CoG, such as the electric motor 
propulsion, rolling, and aerodynamic forces. 

𝐹௫ = 𝐹௫
ி cos(𝛿) + 𝐹௫

ோ − 𝐶ோ𝑚𝑔 −
1

2
𝜌𝐶஽𝐴𝑣௫

ଶ (7) 

To define Fy, denoting the vehicle’s lateral force, one must employ the tire slip angle 𝛼௜ 
definition. This angle is defined as the difference between the wheel’s steering angle 𝛿௜  and the 
wheel’s direction of travel in (8). With the tire-slip angles computed and knowing the vertical loads 
applied on each tire, a simplified version of the model proposed in [16] is used to calculate the 
resultant lateral forces applied on each tire using (9). This application entails three coefficients to 
characterize the tire. Coefficient D represents the maximum value of the lateral force for one tire, C is 
a shape factor, and B is the stiffness factor of the tire. 

𝛼௜ = 𝛿௜ − arctan ቌ
𝑣௬ − 𝑟𝑙௜

𝑣௫ ±
𝑟𝑙௪

2

ቍ (8) 

𝐹௬
௜ = 𝐹௭

௜𝐷 sin൫𝐶 arctan(𝛣𝛼௜)൯ (9) 

As such, the total lateral traction force at the front axle, denoted by 𝐹௬
ி, is the sum of the lateral 

traction forces of both front tires. The same applies to the total longitudinal traction force of the rear 
axle, denoted by 𝐹௫

ோ. The vehicle’s total lateral force Fy is given by (10). So, the continuous time state-
space equations of the dynamic bicycle model can be consulted in Equation (11). 

𝐹௬ = 𝐹௬
ி cos(𝛿) + 𝐹௬

ோ (10) 
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⎣
⎢
⎢
⎢
⎢
⎡

𝑋̇
𝑌̇
𝜓̇
𝑣௑̇

𝑣௬̇

𝑟̇ ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑣௫ cos(𝜓) − 𝑣௬ sin(𝜓)

𝑣௫ sin(𝜓) + 𝑣௬ cos(𝜓)
𝑟

1

𝑚
൫𝐹௫ − 𝐹௬

ிsin(𝛿)൯ + 𝑣௬𝑟

1

𝑚
൫𝐹௬ + 𝐹௫

ிsin(𝛿)൯ − 𝑣௫𝑟

1

𝐼௭

ቀ൫𝐹௫
ி sin(𝛿) + 𝐹௬

ிcos (𝛿)൯𝑙௙ − 𝐹௬
ோ𝑙௥ቁ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (11) 

2.3. Track Model 

Figure 5 illustrates the official FSG 2023 track layout (clockwise direction) obtained from GPS 
sensor data. The FSG competition track has a single-lap distance of 1220m. So, the competition defines 
the total lap number as 18 laps to complete the endurance event, which is worth roughly 22km. 

 

Figure 5. Endurance Event - Track layout. 

In the optimization problem, each track segment is considered a variable to be optimized. As a 
result, the program divides each lap into different track sectors. Each is characterized by a start 
coordinate Pi = (Xi, Yi) and an end coordinate Pi+1 = (Xi+1, Yi+1), two arbitrary points in a two-
dimensional Cartesian coordinate system. Derived from the Pythagorean theorem, one calculates the 
respective sector distance with the Euclidean formula  

𝑆௜ = ඥ(𝑋௜ାଵ − 𝑋௜  )
ଶ + (𝑌௜ାଵ − 𝑌௜)

ଶ (12) 

By discretizing the track, the vehicle dynamics must be adapted accordingly. For each step, the 
longitudinal velocity of the vehicle at the following step can be determined based on the current 
velocity and the difference in kinetic energy, as shown in (13) [17]. 

   
1

2
𝑚 (𝑉௜ାଵ

ଶ − 𝑉௜
ଶ)  =  𝑆௜𝐹௜ (13) 

Assuming that the speed is constant while running through a single track sector, the vehicle's 
velocity dynamic is defined by (14). Time t is iteratively incremented by each time interval needed 
for the car to cross each segment Δ𝑡, as shown in (15). 
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   𝑉௜ାଵ = ඨ
2𝐹௜𝑆௜

𝑚
+ 𝑉௜

ଶ (14) 

𝑡௜ାଵ = 𝑡௜ + Δ𝑡௜ = 𝑡௜ +
𝑆௜

𝑉௜
 (15) 

The vehicle's lap time, Tteam, relates to the last value of tN, which is the accumulated run time after 
the total number of track sectors, N. Each segment's energy is computed by multiplying the 
instantaneous mechanical power (3) with the sector time Δ𝑡௜. The vehicle's total consumed energy, 
Eteam, is calculated as (16) by accumulating all N sector values and conversion to [kWh]. 

𝐸௧௘௔௠ =
∑ 𝑃௜Δ𝑡௜

ே
௜ୀଵ

3.6 × 10଺
 (16) 

Physically, the car's velocity at each sector is limited by its maximum velocity, vtop, or the 
maximum allowed centripetal force 𝑣௠௔௫. This is expressed in (17), where vtop is the vehicle's top 
speed, R is the turn radius, D is a tire coefficient that refers to the maximum lateral force in each tire 
and m is the vehicle's mass.  

𝑣௠௔௫ = min ቌ𝑣௧௢௣, ඨ𝑅
4𝐷

𝑚
ቍ (17) 

Moreover, R can be obtained through an iterative implementation of the Menger curvature [18] 
formula. Given the Cartesian coordinates of three sequential points (x, y, z), the curvature C and 
subsequent turn radius R are calculated as (18) and (19), where A denotes the area of the triangle 
spanned by x, y and z. 

𝐶 =
|𝑥 − 𝑦||𝑦 − 𝑧||𝑧 − 𝑥|

4𝐴
 (18) 

𝑅 =
1

𝐶
 (19) 

Note that when the track’s center line is straight, the curvature (18) tends to zero and the radius 
(19) tends to infinity. In this case, the vehicle’s maximum achievable velocity vmax (17), is its maximum 
straight-line velocity, vtop. Otherwise, its velocity will be limited by the maximum allowable lateral 
centripetal force, which depends on the vehicle’s mass and tire parameters. Figure 6 depicts the 
resultant velocity limit values along one lap of the track. 
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Figure 6. Velocity limit along FSG23 track layout. 

Lastly, the steering angle δ required for the vehicle to follow the track can be determined using 
(20), where L and lw are the vehicle’s wheelbase and track width, respectively. 

𝛿 = arctan (
𝐿

𝑅 − 0.5𝑙௪
) (20) 

Note that the above steering angle obtained from GPS data does not necessarily correspond to 
the track’s centerline. Instead, it reflects the driver’s chosen racing line, known for being more 
efficient in terms of speed and energy saving. 

2.4. Distance Estimation 

To ensure that the energy reference set-point is accurately aligned with the distance traveled, it 
is imperative to establish a dependable and precise method for odometry calculation. Given the 
available sensors and also the preliminary results using offline simulations with logged data, the 
methodology chosen for continuous distance estimation during the Endurance run was inertial 
odometry. This estimates a vehicle’s position based on measurements from inertial sensors, typically 
accelerometers and gyroscopes.  

2.5. Optimization Problem 

The ultimate goal of the optimization problem is to solve for the maximum points in the sum of 
the Endurance and Efficiency scoring. According to FSG’s rules [11], the score for the Endurance 
event is calculated with (21), 25 points for finishing, and a maximum of 225 points attributed to how 
fast the car finishes the event, normalized to the fastest car, where Tteam is the team’s corrected elapsed 
time, and Tmax is 1.333 times the corrected elapsed time of the fastest vehicle. 

𝐸𝑁𝐷௦௖௢௥௘ = 25 + 225 ൮

𝑇௠௔௫

𝑇௧௘௔௠
− 1

0.333
൲ (21) 

Moreover, the Efficiency score is calculated with (22), where a maximum of 75 points is awarded 
to a team depending on its efficiency factor in comparison to other teams, where EFmin is the lowest 
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(best) efficiency factor of all teams, EFmax is defined as 1.5EFmin, and EFteam is the team’s efficiency factor, 
given by equation (23), where T is the uncorrected elapsed driving time, and E is the energy used. 

𝐸𝐹𝐹௦௖௢௥௘ = 75 ൬
𝐸𝐹௠௔௫ − 𝐸𝐹௧௘௔௠

𝐸𝐹௠௔௫ − 𝐸𝐹௠௜௡
൰ (22) 

𝐸𝐹 = 𝑇ଶ ∙ 𝐸 (23) 

The results from the most recent competition, FSG23, published at [13], are listed in Table 3. 

Table 3. Resulting formula values from FSG 2023. 

FSG2023 Value 
Tmax  1.333 ∙ 1396.84 = 1862 s 
EFmin 4.931 ∙ 1490.52 = 10.955×106 kWh∙s2 
EFmax 1.5 ∙ 10.955×106 = 16.432×106 kWh∙s2 

To maximize the score, considering the vehicle’s powertrain limitations to finish the event plus 
physical constraints, the cost function prioritizes point scoring according to (21) and (22), aiming to 
strike a balance between lap-time performance and energy consumption. The optimization problem 
is defined as follows (24), where the cost function is minimized concerning the pedal’s input state, u 
= p, and λi are soft constraint’s weights, allowing control over two crucial soft constraints. 

min൫−(𝐸𝑁𝐷ௌ஼ைோா  +  𝐸𝐹𝐹ௌ஼ைோா) +  𝜆1𝑉௣௘௡  +  𝜆2𝐸௣௘௡൯ 

s. t. A୧୬ୣ୯𝑢 ≤ 𝑏௜௡௘௤ 
(24) 

At each sector, the vehicle cannot exceed a maximum velocity, which is either limited by the 
maximum allowed centripetal force or the vehicle’s maximum velocity (25). Also, the vehicle must 
not exceed the maximum energy capacity of the battery pack as, in the real event, it would result in 
a DNF (Did-Not-Finished), scoring zero points (26). 

𝑉௣௘௡ = ෍ max (0, 𝑉௜ − 𝑣୫ୟ୶೔ )

ே

௜ୀଵ

 (25) 

𝐸௣௘௡ = max (0, 𝐸௧௘௔௠ − 𝐸௠௔௫) (26) 

Regarding the control input, u = p, there are two inequality constraints, which, algebraically 
written, are given by the following matrices: 

𝐴௜௡௘௤ = ቂ
−1 0
1 0

ቃ , 𝑏௜௡௘௤ = ቂ
1
1

ቃ (27) 

A simulator was developed in MATLAB to run the optimization environment, Figure 7. It starts 
by initializing an app interface that asks the user to input the track layout, vehicle physical and 
powertrain parameters, and optimization parameters. After discretizing the track environment, the 
program simulates multiple iterations of the Endurance event using the appropriate vehicle model 
while optimizing the control vector with the cost function (24) to maximize the score in both 
Endurance and Efficiency events. For this purpose, the MATLAB optimizing function fmincon is used 
to find the optimal solution given the constraints or a limit of iterations. After reaching the optimal 
solution, an output file containing the optimized energy reference line in function of the distance is 
generated. 
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Figure 7. Developed a simulator for energy optimization. 

2.6. Controller Implementation 

2.6.1. Endurance Energy Manager 

The system takes an optimal energy reference line in function of distance as its input and 
continually adapts the vehicle’s maximum power constraint, denoted as Pmax. Given the endurance 
distance status, this adjustment depends on whether the current energy level exceeds or falls short of 
the expected energy level. An error (28) is computed between the current energy level and the 
referenced set-point. This depends on continuous distance estimation, d, along the Endurance. 

𝐸௘௥௥௢௥ = 𝐸௥௘௙(𝑑) − 𝐸௥௘௔௟ (28) 

Then, the new vehicle’s maximum power (29), Pmax, is computed using a simple PI-Controller on 
the error resultant from (28) to compute the power limit adjustment that is then added/subtracted 
onto the initial power limiting value, Pinit. In (29), Kp and Ki are controller gains, proportional and 
integral, respectively. These gains are used to tune the aggressiveness of the power limit adjustments. 

𝑃௠௔௫ = 𝑃௜௡௜௧ + (𝐾௣𝐸௘௥௥௢௥ + 𝐾௜ න 𝐸௘௥௥௢௥

௧

଴

𝑑𝑡) (29) 

2.6.2. Distance Estimation Methodology 

The results of running offline simulations with this measure on different endurance log samples 
are shown in Table 4. As can be seen, the differences between the estimated distances and the actual 
ones are very close, with a deviation of less than 0.7%. 

Table 4. Different odometry methodologies results. 

Log Run Inertial odom. Actual distance 
Alverca 21250 m 21378 m 
FSG23 22070 m 21924 m 
FSS23 20760 m 20900 m 
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2.6.3. Distance Estimation Methodology 

However precise, the methodology above remains susceptible to error accumulation along the 
lengthy Endurance event. To address this challenge, a new system was introduced. The position 
validator operates by continuously monitoring distance estimates derived from inertial odometry, 
aligning them with expected positions on the track layout. It then validates the distance estimate by 
performing real-time cross-validation with the GPS outputs. The algorithm compares the expected 
track position with the actual GPS-derived position, computing the Euclidean distance and checking 
if it falls within an acceptable threshold. The threshold is expressed as a maximum radius around the 
expected point, Rmax. In cases where the distance discrepancy exceeds this threshold (∆d > Rmax), 
indicating error accumulation over what is deemed acceptable, the system dynamically corrects the 
distance using GPS data and adjusts for the elapsed number of laps. 

Using logged data from the most recent Endurance event (FSG23), with the maximum acceptable 
discrepancy defined at Rmax = 5 m, the position validator eliminates the accumulated residual error of 
the inertial odometry worth over 140 meters, as seen in Figure 8. 

 
Figure 8. FSG23 Endurance offline distance estimation. 

2.6.4. Pipeline Implementation 

The controller now implemented relates to the Endurance Energy Manager, who dynamically 
adjusts the vehicle’s power limitation to ensure that the vehicle closely adheres to the pre-established 
optimal energy reference line. Like the rest of the pipeline, the module is programmed in its own 
SIMULINK model, incorporating MATLAB functions. After being tested offline, the code was 
generated in C++ using the SIMULINK Coder built-in feature, and the target file was set 
appropriately. A working frequency of 10 Hz was chosen for the Endurance Energy Manager module. 
Finally, the C++-generated code is implemented on the team’s ROS/CAN communication pipeline. 
New signals were added to the CAN line, and the appropriate signal/module connections were made 
in the ROS communication pipeline. The module’s inputs are: 
 IMU: 3x1 vector containing IMU readings (vx,vy,ψ). 
 GPS: 2x1 vector containing GPS readings (latitude, longitude). 
 isaenergy: accumulated energy value, in Wh. 
 EMenable: Turns the controller module ”on/off”. 
 maxpwr: Limits total power as a safety measure, in W. 
 initPL: Algorithm’s initial power limiting value, in W. 
 EMkp: Controller’s proportional gain. 
 EMki: Controller’s integral gain. 
 dprev: Discretely accumulated distance value, in m. 

The outputs are: 
 EMpwrlimit: Energy Manager algorithm Pmax computation, in W. 
 pwrlimit: Sent to the Power Limiter; 
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 𝑝𝑤𝑟௟௜௠௜௧ = ൜
𝐸𝑀௣௪௥௟௜௠௜௧ ,   if 𝐸𝑀௘௡௔௕௟௘ = 1

𝑚𝑎𝑥௣௪௥ ,   otherwise
 

 d: Accumulated distance run by the vehicle. 
 eref: Current energy reference setpoint, Eref(d). 

 
Figure 9. Control system pipeline implementation. 

3. Results 

3.1. Model Mismatch 

Prior to the optimization, it is important to test the developed models and compare the outputs 
to real measurements, using the same inputs to try and validate outputs. Thus, the models were 
developed in SIMULINK and fed with real logged driving data regarding the fastest FSG Endurance 
event lap as input. Table 5 shows the mean-squared error results for velocity and energy outputs 
obtained by sensors compared to their reference. 

Table 5. Velocity and energy mean-squared error model mismatch. 

Mean-squared-error Velocity [m/s] Energy [Wh] 
Point mass vehicle model 2.96 33.92 
Dynamic bicycle model 0.48 2.26 

In light of these results, due to its closer representation of the real prototype in racing conditions, 
the chosen model is the dynamic bicycle model. Additionally, the optimization process entails 
multiple iterations, each characterized by its runtime, influenced by model complexity and the 
number of variables (sectors). Due to extended runtimes in SIMULINK for each iteration, it is 
necessary to discretize the process in MATLAB. This has been executed, and Table 6 lists the results. 

Table 6. Velocity and energy mean-squared error simulation mismatch. 

Mean-squared-error Velocity [m/s] Energy [Wh] 
Continuous lap simulation 0.48 2.26 
Discretized lap simulation 0.57 3.47 

To observe where the model is missing most, Figure 10 represents a velocity mismatch 
percentage factor along the track layout given by V/Vreal. This computes values over 1 when the model 
estimates the vehicle driving faster than in reality and values under 1 when estimating a lower 
velocity. 
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Figure 10. Velocity mismatch factor along lap. 

Predominantly, there is a slight overestimation (yellow) of the vehicle’s velocity in straights and 
an underestimation (blue) in most tight corners. The effectiveness of the multivariable optimization 
process is significantly impacted by the number of variables represented by track partitions in this 
context. This influence extends to both model accuracy and computational speed. Upon evaluating 
the results for vehicle velocity mismatch (in MSE) and lap simulation duration while altering the total 
number of partitions in a single lap, a noteworthy conclusion emerges: Beyond 3000 lap sectors, there 
is marginal improvement in terms of model accuracy, while the single iteration time steadily 
increases linearly. This has substantial implications for optimization time, particularly when the 
process involves computing thousands of iterations to identify the optimal solution. 

3.2. Optimization Results 

In the Endurance event, the focus lies on lap time optimization and energy consumption. The 
balance is modeled in the cost function (24). The objective is to achieve the highest joint score while 
ensuring the car completes the 22 km distance within its maximum energy capacity and physical 
limitations. Running the optimization of the FST12 prototype around an 18-lap Endurance event on 
the official 2023 FSG track layout (see Figure 5), the resulting velocity profile along time is shown in 
Figure 11. Additionally, it is compared to the maximum velocity in each track section, as defined in 
equation (17). Figure 12 shows the resulting power deployment along the lap. 

 

Figure 11. Velocity along FSG lap time. 
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Figure 12. Optimized power deployment along FSG track. 

As one can observe, the optimization sees the vehicle matching maximum corner speeds for lap 
time reduction and manages energy in the two main straights (especially), easing off the throttle and 
even regenerating slightly (see Figure 12). 

In summary, the FST12 completes the simulated FSG Endurance event with a total elapsed time 
of 1520 seconds, consuming a total energy of 5.985 kWh (out of 6.3kWh), showing it is not optimal to 
consume all available energy for maximum points. As a result, the average lap time is 84.44 seconds, 
with an energy consumption of 0.333 kWh per lap, which would result in 177 points and an additional 
35.7 points for efficiency, bringing the total to 212.7 points out of 325, as illustrated in Figure 13. Also, 
this figure shows the real points obtained in the competitions of 2022 (FST11-FSG22) and 2023 (FST12-
FSG23) by the FST team without energy optimization. This optimization process can achieve a high 
increase without changing the vehicle’s performance and structure. 

 

Figure 13. Optimized FSG scoring result in joint score map. 

3.3. On-Track Results 

For the test run, the routine expected in competitions was performed on a real track in Alverca, 
Portugal. The practical plan for using the system involves first optimizing the Endurance profile 
based on the track data gathered during the Autocross event (held a day before Endurance). 
Afterward, the optimized plan is uploaded to the car’s control unit, and the energy monitoring 
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system is enabled to run throughout the event. Given the absence of other teams for competitive 
benchmarks on the final test run day and the inability to fully recreate one of the already existing 
layouts, a better team was assumed to be 5% faster and 15% more efficient than a representative 
Autocross lap set by the FST12 around the track in question. So, the driver performed a total of 4 laps, 
and the average lap time was 72 seconds with an average energy consumption of 0.26 kWh per lap. 
The chosen track has a lap distance of 884 meters, adhering to FS layout regulations [13], and the run 
programmed in this test consists of 22 laps around the circuit below. 

After the initial Autocross runs, the battery pack was charged back up to nearly 95%. In the 
meantime, the track data was extracted and the offline optimization was performed. The result for 
the velocity profile around the layout can be consulted in Figure 14. 

 

Figure 14. Optimized lap velocity profile along Alverca track. 

Overall, the FST12 completed the simulated event with a total elapsed time of 1522.1 seconds, 
consuming a total energy of 5.355 kWh. The average lap time is 70.55 seconds, with an energy 
consumption of 0.243 kWh per lap, resulting in 222.6 points for the Endurance event and an 
additional 49.2 points for efficiency, bringing the total to 271.8 points out of 325. Having concluded 
the optimization, the resulting energy plan was uploaded to the car’s control unit’s energy 
management system and the Endurance run was begun. 

In reality, the FST12 completed the full Alverca Endurance run in 1574.6 seconds, consuming a 
total energy of 5.383 kWh. A video onboard of one of the Endurance laps can be found through the 
QR code depicted in Figure 15. Compared to the optimization-based simulation, the results are 
presented in Table 7, with each respective deviation. Furthermore, the power limit adjustments over 
time compared to the real power output are shown in Figure 16, and one can see that over the run, it 
allows for proper adherence to the energy reference line, as shown in Figure 17. The run’s total 
distance estimation resulted in 19894m, which deviates from the expected measured 19448m (22 laps 
of 884m each) by 2%. 

Table 7. Final run results in comparison to the optimization. 

Results Time [s] Energy [kWh] Points 
Optimization  1522.1 5.355 271.8 
Final run 1574.6 5.383 253.1 
Deviation 1.4% 0.5% 6.8% 
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Figure 15. QR Code to FST12 onboard during Endurance run. 
https://youtu.be/jT0GfjM5nTc?si=CtbzNcQ4KxO0plLC. 

 
Figure 16. Vehicle power output and limitation along time. 

 
Figure 17. Energy consumption in comparison to its reference along time. 

It is important to acknowledge that while the achievements of a well-optimized offline 
simulation provide a strong foundation, they may not entirely capture the complexities of an actual 
Endurance event. In the dynamic context of an Endurance event with multiple participating cars, 
various factors come into play that can significantly impact the optimization process. These include 
unforeseen events such as yellow flags resulting from vehicle breakdowns or blue flags to inform 
slower-moving cars that they must temporarily pull over to a designated area to allow a faster car to 
overtake, both of which request unaccounted-for driver responses. Such occurrences disrupt the 
anticipated optimization outcomes.  

Additionally, the driver change halfway through the Endurance event introduces additional 
challenges. Penalties are not accounted for in the optimization yet occur occasionally and have the 
potential to push the vehicle beyond the boundaries of the efficiency scoring window. Consequently, 
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there may come a point where prioritizing pure speed over efficiency becomes more advantageous 
for the point-scoring tally. 

These aspects highlight the need for future research to delve deeper into the intricacies of real-
world scenarios and refine optimization strategies to adapt to the event-evolving dynamics of 
Formula Student Endurance events. 

4. Conclusions 

This work proposes a methodology to optimize the energy use of competitive electric vehicles 
and implement it in a real case study. The Formula Student competition was used as an 
implementation case to evaluate this methodology.  

The methodology first requires complete vehicle characterization, involving the development of 
models grounded in the principles of vehicle dynamics. These models were validated, utilizing a 
data-driven approach to define powertrain efficiency and the battery pack’s capacity. The employed 
vehicle model provides a mismatch to reality under 5% for both velocity and energy model outputs 
during a full racing lap around the FSG track. 

An optimization-based simulation framework was established to simulate Endurance runs, with 
the flexibility to configure key parameters such as powertrain characteristics and the starting 
conditions of the run. The overall goal is to maximize the points scored according to the regulations 
based on the driving profile and subsequent optimal energy deployment over distance. Following 
this, we developed an energy management system capable of employing a low-level controller that 
periodically dynamically adjusts the prototype’s maximum power limitation along the run. This 
involved continuously monitoring the real-time error, calculated as the difference between the 
reference and actual energy consumed, as measured by an appropriate sensor.  

The proposed methodology was validated in a real Endurance run at a test track. The developed 
energy management control system was implemented, guided by a previously simulated optimal 
reference. This reference was tailored to maximize Endurance and Efficiency points in the new track 
layout relative to a normalized best score. In summary, compared to the optimal simulation, a 20km 
Endurance run had a total time mismatch of 1.4% and a total energy mismatch of 0.5%, leading to a 
discrepancy of 6.8% from the simulated and actual points prospect. 

This approach, merging theoretical modeling with a data-driven perspective and testing the 
prototype, proved to be an efficient energy optimization method for electric vehicle applications, 
particularly the Formula Student Endurance competitions. 

Author Contributions: Conceptualization, methodology, T.R.P. and J.F.P.F.; validation, T.R.P., J.F.P.F. and 
P.J.C.B.; formal analysis, investigation, T.R.P.; resources, T.R.P. and J.F.P.F.; writing—original draft preparation, 
writing—review and editing, T.R.P., J.F.P.F. and P.J.C.B.; supervision, J.F.P.F. and P.J.C.B. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This work is financed by national funds through FCT - Foundation for Science and Technology, I.P., 
through IDMEC, under LAETA, project UIDB/50022/2020. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wu, Q.; Sun, S. Energy and Environmental Impact of the Promotion of Battery Electric Vehicles in the 
Context of Banning Gasoline Vehicle Sales. Energies 15, 8388, 2022. 

2. H. Borhan, A. Vahidi, A. Phillips, M. Kuang, I. Kolmanovsky, and S. Cairano. Mpc-based energy 
management of a power-split hybrid electric vehicle. IEEE Transactions on Control Systems Technology, 
2012. 

3. Bauman, J.; Kazerani, M. A Comparative Study of Fuel-Cell-Battery, Fuel-Cell-Ultracapacitor, and Fuel-
Cell-Battery-Ultracapacitor Vehicles. IEEE Trans. Veh. Technol. 57, 760–769, 2008.  

4. Khaligh, A.; Li, Z. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid 
Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE Trans. Veh. Technol. 59, 2806–
2814, 2010. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2024 doi:10.20944/preprints202411.1016.v1

https://doi.org/10.20944/preprints202411.1016.v1


 19 

 

5. B. Bilgin and A. Emadi, "Electric Motors in Electrified Transportation: A step toward achieving a sustainable 
and highly efficient transportation system," in IEEE Power Electronics Magazine, vol. 1, no. 2, pp. 10-17, 
June 2014. 

6. Massimiliano Gobbi, Aqeab Sattar, Roberto Palazzetti, Gianpiero Mastinu, Traction motors for electric 
vehicles: Maximization of mechanical efficiency – A review, Applied Energy, vol. 357, 2024. 

7. Cabuk, A.S.; Ustun, O. In Search of the Proper Dimensions of the Optimum In-Wheel Permanent Magnet 
Synchronous Motor Design. Energies, 17, 1106, 2024.  

8. Lin, W.; Zhao, H.; Zhang, B.; Wang, Y.; Xiao, Y.; Xu, K.; Zhao, R. Predictive Energy Management Strategy 
for Range-Extended Electric Vehicles Based on ITS Information and Start–Stop Optimization with Vehicle 
Velocity Forecast. Energies 15, 7774, 2022. 

9. J. F. P. Fernandes et al., Extended-Range Marine Unmanned Surface Vehicles for Border Surveillance 
Missions, 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, pp. 
960-965, 2024. 

10. X. Liu, A. Fotouhi, and D. Auger. Optimal energy management for formula-e cars with regulatory limits 
and thermal constraints. Applied Energy, 2020. 

11. F. S. Germany. Formula student rules 2023, 2023. [Online] Available at: 
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.0.pdf  

12. Formula Student, FST Lisboa official website. [Online] Available at https://www.fstlisboa.com/.  
13. F. S. Germany. Formula Student Germany competition results. [Online]. Available at 

https://www.formulastudent.de/fsg/results.  
14. AMK, Amk motion - electric racing kit. [Online] Available at https://www.amk-motion.com/amk-

dokucd/dokucd/en/DokuCD_HTML5_en.htm#projekt/doku-
cd_html5/topics/amk_automotive.htm?TocPath=Formula%2520Student%2520Electric%257C_____0  

15. W. Milliken and D. Milliken. Race Car Vehicle Dynamics. SAE International, 1995. 
16. H. Pacejka. Tyre and Vehicle Dynamics. Butterworth Heinemann, 2006. 
17. Jia, Y.; Jibrin, R.; Görges, D. Energy-Optimal Adaptive Cruise Control for Electric Vehicles Based on Linear 

and Nonlinear Model Predictive Control. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 12, 
pp. 14173-14187, Dec. 2020. 

18. J. C. Leger. Menger curvature and rectifiability. Annals of Mathematics, 1999. 
19. S. Tie and C. Tan. A review of energy sources and energy management system in electric vehicles. Renewable 

and Sustainable Energy Reviews, 2013. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2024 doi:10.20944/preprints202411.1016.v1

https://doi.org/10.20944/preprints202411.1016.v1

