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Abstract: Identification the parameters of triple-diode electrical circuit structure of PV-module is 
a challenging issue and has been emphasized as an important research area. Accordingly, a 
hybrid evolutionary optimization algorithm is presented in this paper. Differential evolution 
algorithm (DEA) is hybridized with electromagnetism-like algorithm (EMA) in the mutation stage 
to enhance the reliability and efficiency of DEA. The presented algorithm is called differential 
evolution with integrated mutation per iteration (DEIMA). A new formula is presented to 
adapt the control parameters (mutation factor and crossover rate) of DEA and is based on a 
sigmoid function in terms of the current and previous fitness function values. Seven different 
experimental data sets are used to assess the performance of the proposed DEIMA. The results of 
the proposed PV modeling method are evaluated with other approaches in literature. According to 
different statistical criteria, DEIMA offered superiority in terms of root mean square error and 
main bias error by at least 5.4% and 10%, respectively, as compared to other methods. 
Furthermore, DEIMA needs 27.69 sec. as an average execution time less than other compared 
methods. 

Keywords: differential evolution; electromagnetism-like; photovoltaic; triple-diode model; 
parameter estimation 

1. Introduction

The plant pollution and the fluctuation of fossil fuel prices due to political and economic crises 
around the world are the main problems that affect the energy field. As well as for the 
aforementioned drawbacks of conventional energy sources, the fossil fuel is not abundant and 
sustainable [1]. Furthermore, the energy demand is dramatically increasing with time, due to the 
luxury live style demands. Therefore, finding a new sustainable energy source is a hot topic of 
research. Solar energy has been represented as one of the important and promising alternative energy 
sources [2,3]. The photovoltaic (PV) technology is playing an important role for converting the solar 
irradiance into direct current electricity. The long-life cycle time of PV and environmentally friendly 
are presenting the most advantages of this technology [4]. In addition, the price of PV module is also 
decreasing overtime [4]. The basic drawback of PV module is the low efficiency of converting solar 
energy into electricity [5]. This issue makes the output of PV module is limited and suffers from 
weather fluctuations. Therefore, the modeling of PV module has to be more accurate to enable the 
project administrator to use an appropriate number of PV modules in order to achieve the reliability 
and cost-effective PV system. Modeling PV module significantly depends on the process of 
estimating the identification unknown parameters of equivalent electrical circuit of module. These 
parameters are unknown and sensitive to weather conditions. Generally, estimating PV module 
parameters is obtained via three approaches; analytical, numerical, and artificial intelligent (AI)-
based method [6]. In analytical method, a relationship is presented between the parameters of PV 
module under the standard test condition (STC) and other weather condition using manufacturer 
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data [7]. The importance of analytical approaches is tended to be fast and simple for calculating the 
parameters [8]. The main issue of analytical method is the significant deviation between the 
experimental and simulated performance due to the impact of geographical situation on PV module 
parameters. 

The numerical method is proposed by scholars to overcome the drawbacks of analytical method. 
In numerical method, all the points of I-V characteristic curve are used based on an iteration method 
to extract the parameters of PV module [9]. The numerical method offers an accurate estimation for 
PV modules parameters than analytical method. The drawbacks of numerical method are its 
requirement for big I-V data curve, and the accuracy of results is affected by the assumed initial 
conditions of parameters [10]. Furthermore, the numerical method needs for great computational 
resources. A combination of numerical and analytical methods (compound method) have been 
presented by [11–13] to obtain the benefit of the aforementioned methods. The drawbacks of both 
analytical and numerical methods are still existed in the compound method. 

The third type of PV modeling method that based on AI. Many research works adopted artificial 
neural network (ANN) for modeling PV module [14]. The ANN-based PV modeling represents as a 
black box that requires a big data of I-V characteristic points. Moreover, it represents a complex 
location dependent modeling method.  

Due to the reliability and efficiency of metaheuristic algorithms, the last are extensively used for 
modeling PV module [15]. The I-V characteristic of PV module is nonlinear, so the metaheuristic is 
an appropriate choice for handling the modeling problem. Big research efforts are devoted for 
estimating the parameters of single diode model (SDM) and double diodes model (DDM) of PV 
module using various metaheuristic algorithms since last decade. On the other hand, a humble 
research works was devoted for determining the parameters of triple diode model (TDM) of PV 
module. In [16], the authors have utilized an iterative process using the PSO algorithm to estimate 
PV model parameters and by fitting the measured I-V curves to the calculated I-V curves. The series 
resistance parameter has been considered to vary linearly with the load current through the device. 
The proposed TDM in [16] is demonstrated in comparison to the two-diode model, and the findings 
indicated how the TDM performance is better than DDM. Meanwhile, nine unknown parameters of 
the TDM PV module have been extracted via a novel implementation of the coyote optimization 
algorithm (COA) which has been presented in [17].  The obtained ideal design variables of the 
presented COA-TDM have been studied against the ideal variables achieved through whale 
optimization algorithm (WOA)-based TDM PV model, genetic algorithm (GA), and simulated 
annealing (SA), for both modules (KC200GTand MSX-60). The proposed COA-TDM showed an 
optimal design variable that are really close to that achieved by applying other metaheuristic 
optimization algorithms regarding both two commercial PV modules. In [18] a compound of 
analytical and an improved differential evolution algorithm called IDEA is presented to identify the 
parameters of DDM and TDM of PV module. For both the TDM and DDM, the parameters were 
partially extracted via analytical process (seven TDM parameters and five DDM parameters) and by  
using optimization techniques (both TDM and DDM have two variables). In [19] a slime mould 
algorithm (SMA) is presented according to the slime mould’s natural oscillation. Based on a unique 
mathematical expression, the SMA is introduced which adapting the weights to collect negative and 
positive feedback of the slime mould propagation wave. According to the results of [19], the SMA 
showed better performance as compared to other heuristic methods in TDM, DDM and SDM. A 
transient search optimization (TSO) is proposed in [20] which is based on a novel competent meta-
heuristic optimizer and aims to estimate the TDM PV module’s optimal nine-parameter. Different 
companies have applied the TSO for given objective function to identify three PV modules. 
Accordingly, the PV’s I-V characteristics have been validated by the measured data with regards to 
different solar radiations and temperatures. The TSO algorithm has proved his effectiveness as 
compared to other models as it has been indicated through the convergence curves. Authors in [21] 
have customized collected data and mathematical representation of PV model of different diode 
numbers (SDM/DDM/TDM), where the optimal parameters of the studied approach have been 
determined according to the fractional chaotic ensemble particle swarm optimizer FC-EPSO variants 
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and other models. The root mean square error (RMSE) is also one of the datasets that has been 
calculated and assessed and adapted as an objective function by the proposed algorithm. To justify 
the superiority of the presented approach, it has been justified against other approaches presented in 
literature. The outcomes in [21] have showed a least deviation between the estimated and measured 
curves with fastest convergence.  

Integrating the computation and harris hawk optimization (HHO) algorithm is another 
approach that is presented in [22] to determine the parameters of TDM regarding PV module. In this 
work, the authors utilized the standard test conditions (STC) datasheet values of PV modules with 
normal operating cell temperature (NOCT) to analytically examine four parameters while finding the 
remaining five parameters by relying on the HHO model. Seeking to estimate the parameters, two 
commercial PV panels have been used as monocrystalline CS6K280M and multi-crystal KC200GT. 
The results in [22] has proved the efficacy of the presented model and by depending on the datasheet 
values only it can simply implement to find the electrical parameters of any commercial PV panel. In 
[23] a new optimization method namely interval branch and bound algorithm is introduced and 
validated for three different parameter estimation models of PV cells (SDM, DDM and TDM). 
outcomes have been justified against other results in literature of the same data set. The behavior of 
the presented model is examined with regards to convergence speed and results in variability as 
comparison to metaheuristics. The estimated performance features of the tested cells for both P-V 
and I-V shown to be very similar to the experimental data and the obtained findings are really close 
to other efficient algorithms. In [24], an improved wind driven optimization (IWDO) model is 
presented and applied to calculate triple-diode parameters of the PV cell model. In order to evaluate 
the proposed model, IWDO model has been implemented on three various PV model techniques, 
which are poly-crystalline, mono-crystalline, and thin- film. Accordingly, the obtained results have 
been compared with other findings collected from other contributions to validate its accuracy. 
According to results of [24], the presented algorithm showed superiority over other models in terms 
of accuracy and convergence speed. The authors of [25] have relied on manta ray foraging 
optimization (MRFO) to find the unknown parameters of PV cells. using MRFO is adapted to extract 
the optimal PV parameters of the single, double, and three-diode algorithms. Based on comparative 
results between different metaheuristic algorithms and MRFO, findings proved that MRFO has 
supported a better balance among experimental and calculated I–V curves. In [26] an enhanced 
LSHADE optimization model called Chaotic LSHADE (CLSHADE) model which is traced to the 
Lambert W-function and has been presented to estimate TDM and DDM parameters of the PV 
equivalent circuits. The outcomes indicated that the accuracy of the CLSHADE model could be 
enhanced through adapting the presented solar cell current expressions where the RMSE is calculated 
based on them. For the purpose of investigating a complete photovoltaic algorithm, authors in [27] 
have proposed an improved spherical evolution technique that is based on a novel dynamic sine-
cosine mechanism (DSCSE). The experimental findings have indicated the superiority of DSCSE over 
other comparative approaches with different models and provided superior outcomes regardless 
different temperatures and light intensities. Based on the DE (HDE), a novel heterogeneous 
mechanism is presented in [28] to identify PV model parameters. Parameter fitting for the DDM, 
SDM, STP6-120/36 MM, TDM, Photowatt-PWP201 MM, and STM6-40/36 MM were determined by 
HDE. The findings indicated the superiority of the HDE for majority of PV techniques. Moreover, the 
HDE also takes low execution time to conduct its task. Although the HDE showed necessary features, 
its behavior regarding few PV models like TDM and DDM can be further improved. In [29], an 
enhanced model of the slime mould technique and based on Lambert W-function (ImSMA_LW) is 
proposed for extracting parameters of SDM, DDM, and TDM of PV module. According to [29], 
ImSMA_LW offered compromised results under various scenarios with different conditions. 

A combination of two metaheuristic algorithms is proposed for estimating the nine parameters 
of TDM in this research. The electromagnetism-like algorithm (EMA) used the attraction-repulsion 
concept to synergic the mutation strategy of conventional DE algorithm. The proposed metaheuristic 
is called differential evolution with integrated mutation per iteration algorithm (DEIMA). In DEIMA, 
both mutation strategies of EMA and DEA are applied in the same iteration. Furthermore, a new 
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adaptive formula has proposed in this paper to realize adaptive mutation factor and crossover rate 
values of DEA’S mutation strategy. The adaptive technique in this formula is based on evolution of 
the fitness function. The proposed PV modeling method is validated by experimental I-V data for 
seven operation conditions. In addition, the results of the proposed DEIMA are evaluated through 
conducting a comparison with other related contributions in literature. 

The manuscript is structured as follows; the introduction part is presented in section one. In 
section two, the model of triple diode PV module and the formulating of PV module parameter 
estimation process as optimization problem are discussed. The proposed DEIMA is discussed in 
section 3. Next, the evaluation criteria that utilized for evaluating results of DEIMA are presented in 
section 4. The results of the proposed DEIMA-based PV modeling method are presented, discussed, 
and evaluated in section 5. The conclusion of this contribution and suggestions for future work are 
drawn in section 6.      

2. PV Modeling Method 

In this section, the mathematical representation of triple-diode PV module is presented. 
Furthermore, parameter estimation of the TDM-PV module that considered as an optimization 
problem is discussed.  

2.1. Triple-Diode PV Module Model 

The TDM of PV module comprises three diodes that connected in parallel as shown in Figure 1. 
The third diode is added into equivalent electrical circuit of PV module to simulate the recombination 
in grain sites and defect regions. The PV output current can be formulated by [22]: 𝐼 = 𝐼௣௛ − 𝐼௢ଵ ቂ𝑒𝑥𝑝 ቀ𝑞 ௏ାூோೄ௔భ஻்಴ቁ − 1ቃ −  𝐼௢ଶ ቂ𝑒𝑥𝑝 ቀ𝑞 ௏ାூோೄ௔మ஻்಴ቁ − 1ቃ − 𝐼௢ଷ ቂ𝑒𝑥𝑝 ቀ𝑞 ௏ାூோೄ௔య஻்಴ቁ − 1ቃ − ௏ାூோೄோು ,  (1) 

Where 𝐼 and 𝐼௣௛ are the PV output current (A) and photogenerated current (A), respectively. 𝐼௢ଵ, 𝐼௢ଶ, and 𝐼௢ଷ are respectively the saturation currents (A) that flows in the first, second, and third 
diodes. 𝑉 is the PV output voltage (V). 𝑎ଵ, 𝑎ଶ, and 𝑎ଷ are respectively the ideality factors of the first, 
second, and third diodes. 𝑞 , 𝐵 , and 𝑇஼  are the electron charge (1.60217646E-19C), Boltzman 
constant (1.3806503E-23J/K), and cell temperature (K), respectively. 𝑅ௌ and 𝑅௉ are the series and 
parallel resistors (Ω), respectively. 

Figure 1. Electrical equivalent circuit of Triple-diode PV module model. 

According to Eq. (1), there are nine indefinite parameters that should be precisely estimated. As 
it was stated previously, these parameters are related to weather conditions, specifically the ambient 
temperature and solar irradiance. 
  

+

-

𝑅௉ 𝐼௣௛ 

𝐷ଶ 𝐷ଵ 𝐷ଷ 

𝑅ௌ 
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2.2. Problem Formulation 

The issue of estimating nine indefinite parameters in TDM-PV module can be formulated as an 
optimization problem with nine decision variables and an objective function as follows; 𝑂𝐹 = ටଵ௡ (∑ 𝑓(𝐼௘, 𝑉, 𝛿)ଶ௡௜ୀଵ ),                                                (2) 

where; 𝑓(𝐼௘, 𝑉, 𝛿) = 𝐼௘ − 𝐼,                                                       (3) 
where 𝐼௘  is the experimental output current (A) of PV module. While, 𝐼 refers to the computed 
current of PV module according to  the estimated parameters that described by vector 𝛿 =ൣ𝐼௣௛, 𝐼௢ଵ, 𝐼௢ଶ, 𝐼௢ଷ, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑅ௌ, 𝑅௉൧. Variable 𝑛 represents the total number of points in the experimental 
I-V characteristic curve.  

3. DEIMA Optimization Algorithm 

The proposed PV-modeling method is based on DEIMA and the strategy of deriving an adaptive 
formula for the mutation and crossover rate control parameters of DEIMA are presented in the 
current section. DEIMA is a stochastic metaheuristic optimization algorithm, which is initiated by 
hybridizing DEA and EMA algorithms. The attraction-repulsion concept of EMA is utilized 
synergically with the conventional mutation stage of DEA. The four steps of DEIMA will be discussed 
in details in the following subsections. 

3.1. Initialization 

The first step of DEIMA is initializing 𝐷௉ × 𝑁௉ population, where 𝐷௉ is the number of decision 
variables and 𝑁௉ refers to the number of candidate individual vectors. It is worth mentioning that 
each individual vector comprises 𝐷௉ decision variables. The population (𝑝𝑜𝑝) can be described as 
follows: 

𝑝𝑜𝑝 = ൮ 𝑥ଵଵ 𝑥ଵଶ … 𝑥ଵேು𝑥ଶଵ⋮ 𝑥ଶଶ⋮ …⋱ 𝑥ଶேು⋮𝑥஽ುଵ 𝑥஽ುଶ … 𝑥஽ುேು
൲,                                          (4) 

The 𝐷௉ parameters of 𝑖௧௛ individual vector is randomly initiated using Eq. (5) and uniformly 
distributed within the interval of  𝑗௧௛  decision variable ൣ𝑋𝐿௝, 𝑋𝐻௝൧ , where 𝑋𝐿௝  is the lower 
boundary and  𝑋𝐻௝  is the  upper bounds of search space. 𝑋௝௜଴ = 𝑋𝐿௝௜ + 𝑟𝑎𝑛𝑑 × ൫𝑋𝐻௝௜ − 𝑋𝐿௝௜൯,                                          (5) 
where 𝑟𝑎𝑛𝑑 is a random number, which is selected randomly within (0, 1). 

3.2. Mutation 

The proposed DEIMA has utilized two different types of mutation (𝑀௘ and 𝑀ௗ). Both types are 
used in each iteration and based on the following criterion. 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ൜𝑀௘ 𝑖𝑓 𝜃௟ீ < 𝜀ଵ𝜃௟଴𝑀ௗ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     ,                                  (6) 

where 𝜃௟଴ and 𝜃௟ீ  refer to the 𝑙௧௛ standard deviation vectors of the row vectors of 𝑝𝑜𝑝 population 
in the initial and 𝐺 generations, respectively. 𝑙 is a random number, which is randomly chosen 
within [1, 𝐷௉] interval. 𝜀ଵ is a constant control parameter with value belongs to [0,1] [30]. The 𝜀ଵ 
controls the switch between 𝑀௘  and 𝑀ௗ mutation operations within the population. The 𝑀ௗ mutation operation is achieved by computing the mutant vector 𝑋෠௜ீ  as follows: 𝑋෠௜ீ = 𝑋෠௥ଵீ + 𝐹൫𝑋෠௥ଶீ − 𝑋෠௥ଷீ൯                                                  (7) 

Where 𝑋෠௥ଵீ, 𝑋෠௥ଶீ   and  𝑋෠௥ଷீ  are three distinct individual vectors randomly selected from 
population. In other words, 𝑟ଵ, 𝑟ଶ and  𝑟ଷ are distinct indices and belong to the period [1, 𝑁௉]. 𝐹 
is the mutation control factor having values within [0.5, 1] [31]. It is worth mentioning that the control 
parameter 𝐹 and crossover control rate (𝐶𝑅) in crossover step are adaptive in each iteration and are 
being set by using a novel formula as follow: 𝐹, 𝐶𝑅 = 𝑑( ௅ଵାୣ୶୮ (ି௞(௪ି௪బ) + 𝑏),                                             (8) 
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The above formula based on sigmoid function. Where the maximum value is labeled as 𝐿 of 
sigmoid function curve, 𝑘 and 𝑤଴ are the steepness of the curve and midpoint of x-axis sigmoid 
function, respectively. In the current research work, 𝐿, 𝑘 and 𝑤଴ are set 1, 12 and 0 according to 
many experiments. 𝑏  and 𝑑 are constants; which are chosen to maintain 𝐹 and 𝐶𝑅 within [0.5, 
1], where 𝑏 set 1 and 𝑑 equal to 0.5. 𝑤 refers to the random weighted difference between the best 
objective function value of 𝑤 and is computed by: 𝑤 = [𝑂𝐹(𝑋௕௘௦௧ீ ) −  𝑂𝐹(𝑋௕௘௦௧ீିଵ)] ∗ 𝑟𝑎𝑛𝑑,                                       (9) 

As it was stated previously, the second part of mutation is 𝑀௘  mutation operation. The last 
operation utilized the total force exerted on 𝑋௥ଵீ by 𝑋௥ଶீ and 𝑋௥ଷீ to compute the mutant vector 𝑋௜ீ . 
The force exerted by any individual vector on another one depends on the charge between them, 
which is calculated as below; 𝑞௥ଵ௥ଶீ = ைி൫௑ೝభಸ ൯ିைி൫௑ೝమಸ ൯ைி൫௑ೢ೚ೝೞ೟ಸ ൯ିைி൫௑್೐ೞ೟ಸ ൯,                                                (10) 𝑞௥ଵ௥ଷீ = ைி൫௑ೝభಸ ൯ିைி൫௑ೝయಸ ൯ைி൫௑ೢ೚ೝೞ೟ಸ ൯ିைி൫௑್೐ೞ೟ಸ ൯,                                                (11) 

where 𝑂𝐹(𝑋ீ ) refers to the objective function value of individual vector X in the 𝐺௧௛  iteration. 𝑋௪௢௥௦௧ீ  and 𝑋௕௘௦௧ீ  are the worst and best solution in the 𝐺௧௛ iteration, respectively. Consequently, 
the exerted forces by 𝑋௥ଶீ and  𝑋௥ଷீ on the individual vector 𝑋௥ଵீ are described by [32], 𝐹௥ଵ௥ଶீ = (𝑋௥ଶீ − 𝑋௥ଵீ) ∗ 𝑞௥ଵ௥ଶீ ,                                               (12) 𝐹௥ଵ௥ଷீ = (𝑋௥ଷீ − 𝑋௥ଵீ) ∗ 𝑞௥ଵ௥ଷீ ,                                               (13) 

Then, the resultant force exerted by 𝑋௥ଶீ and 𝑋௥ଷீ on 𝑋௥ଵீ is calculated by, 𝐹௥ଵீ = 𝐹௥ଵ௥ଶீ + 𝑋௥ଵ௥ଷீ ,                                                      (14) 
Next, the 𝑀௘  mutation operation produces the 𝑋௜ீ  mutant vector in 𝐺௧௛  iteration and is 

corresponding to 𝑋௜ீ  as follows: 𝑋෠௜ீ = 𝑋௥ଵீ + 𝐹ఈீ ,                                                         (15) 

3.3. Crossover 

In this step, the trial vector of 𝐺௧௛  iteration 𝑦௝,௜ீ is initiated by utilizing both the corresponding 
target 𝑋௥ଵீ or mutant 𝑋෠௜ீ  vector based on the following formula. 𝑌௝,௜ீ = ቊ𝑋෠௝,௜ீ     𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅   𝑜𝑟 𝑗 = 𝐼௜𝑋௝,௜ீ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        ,                                     (16) 

Where 𝐼௜ is an index number, which is randomly selected from the interval [1, 𝐷௉]. As it was 
stated in the previous subsection, 𝐶𝑅  is a crossover control rate which has an adaptive value 
computed by Eq. (8). At the end of crossover step, the element of trial vector (decision variables) will 
be checked to determine if one of them violates the boundaries of corresponding search space. Eq. (5) 
is used to initiate the element of trail vector when it is unphysical value.  

3.4. Selection  

The last step of DEIMA is the selection step to select between the trail vector and the 
corresponding individual vector for 𝐺௧௛ iteration based on the following formula: 𝑋௜ீ ାଵ = ቊ𝑌௜ீ    𝑖𝑓 𝑂𝐹 (𝑌௜ீ ) < 𝑂𝐹(𝑋௜ீ )𝑋௜ீ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     ,                                      (17) 

At the end of selection step, the individual vector of generation (𝐺 + 1) is generated to constitutes 
the new population.  

Figure 2 illustrates the proposed DEIMA method for estimating the unknown nine parameter of 
TDM-PD module. 
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Figure 2. DEIMA-based PV modeling method. 

4. Evaluation Criteria  

In the current research work, seven criteria are utilized to assess the performance of the 
introduced PV-modeling method as compared to other methods. More details about the evaluation 
criteria will be presented in the next subsection. 
  

Define 𝐺௠௔௫, 𝑁௉, 𝑃𝑉 datasheet, 𝜀ଵ with 

𝜎௟ீ ൒ 𝜀ଵ𝜎௟଴ NO YES 

Initialize population Eq. (5) 

Compute𝜎௟଴, fitness function, 
best individual 

• Compute the vector 𝜎ୋ 

• Choose l randomly from [1, 𝐷௉] 

• Compute 𝑀𝐹&𝐶𝑅, Eq. (8) 

• Generate mutant vector, Eq. (7) 

𝑴𝒅    
Generate mutant vector, Eq. (15) 

𝑴𝒆 

𝐺 < 𝐺௠௔௫  

Checking the parameters 

 
Generate novel individual vector; Eq. (17) 

Calculate I-V curve using 
Newton Raphson method 

𝐺 = 𝐺 + 1 

Generate trial vector, Eq. (16) 
Crossover 

Selection Operation: 

Yes 

No 
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4.1. Root Mean Square Error (𝑹𝑴𝑆𝐸) 

The 𝑅𝑀𝑆𝐸 criterion presents the deviation between the computed and experimented points of 
the I-V characteristic curve along n-data set as depicted in below.  𝑅𝑀𝑆𝐸 = ටଵ௡ ∑ (𝐼௘௧ − 𝐼௖௧)ଶ௡௧ୀଵ ,                                              (18) 

where 𝐼௘௧ and 𝐼௖௧ are the experimental and computed currents at 𝑖௧௛ point of I-V curve.  

4.2. Mean Bias Error (𝑴𝐵𝐸) 

The overall bias error between the computed and experimented I-V characteristic curve is 
measured by using 𝑀𝐵𝐸 formula as presented below: 𝑀𝐵𝐸 = ଵ௡ ∑ (𝐼௘௧ − 𝐼௖௧)ଶ௡௧ୀଵ ,                                                 (19) 

4.3. Coefficient of Determination (𝑹ଶ) 𝑅ଶ is another criterion that utilized to assess the accuracy and performance of the proposed PV-
modeling method. This coefficient explains the degree of ability that a computed I-V curve follows 
the experimental one. It is worth mentioning that the better value of 𝑅ଶ criterion should be close to 
1. The 𝑅ଶ is computed by: 𝑅ଶ = 1 − ∑ (ூ೎೟ିூ೐೟)మ೙೟సభ∑ (ூ೐೟ିூ೐ഥ )మ೙೟సభ ,                                                    (20) 

where, 𝐼௘ഥ = ଵ௡ ∑ 𝐼௘௧௡௧ୀଵ ,                                                          (21) 

4.4. Average Absolute Error (𝑨𝐴𝐸) 

Absolute error shows  the absolute difference between the experimental and calculated  
currents. The average value of absolute error is computed by finding the average of absolute error 
over the whole points of the I-V curve. The 𝐴𝐴𝐸 is calculated by.  𝐴𝐴𝐸 = ଵ௡ ∑ |𝐼௖௧ − 𝐼௘௧|௡௧ୀଵ ,                                                  (22) 

4.5. Deviation of RMSE (𝒅௠): 

The evaluation criterion 𝑑௠ refers to the deviation of 𝑅𝑀𝑆𝐸 for each solar irradiance from the 
mean 𝑅𝑀𝑆𝐸 of the all seven operation conditions as formulated below. 𝑑௠ = 𝑅𝑀𝑆𝐸௠ − 𝑅𝑀𝑆𝐸തതതതതതതത,                                                  (23) 

Where 𝑅𝑀𝑆𝐸௠  refers to the 𝑅𝑀𝑆𝐸  of 𝑚௧௛  solar irradiance (operation condition), and 𝑅𝑀𝑆𝐸തതതതതതതത is the arithmetic mean of 𝑅𝑀𝑆𝐸  of overall operation conditions ( 𝐺ଵ − 𝐺଻).  𝑅𝑀𝑆𝐸𝐸തതതതതതതതതതത  is 
computed by: 𝑅𝑀𝑆𝐸തതതതതതതത = ଵ௥  ∑ 𝑅𝑀𝑆𝐸௧௥௧ୀଵ ,                                                  (24) 
where r is  the total number of operation conditions. 

4.6. Standard Test Deviation (𝑺𝑇𝐷) 

Another statistical criterion, 𝑆𝑇𝐷 , is used to evaluate the performance of the proposed PV-
modeling method. 𝑆𝑇𝐷  value explains the average deviation of 𝑅𝑀𝑆𝐸  for the seven operation 
conditions. 𝑆𝑇𝐷 is computed by:  𝑆𝑇𝐷 = ට ଵ(௥ିଵ) ∑ (𝑑௠)ଶ௥௠ୀଵ ,                                                (25) 

4.7. CPU-Execution Time (CET) 

The last criterion used to evaluate the results of the proposed PV-modeling method is the 
required time by CPU for executing the DEIMA. 
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5. Results and Discussion 

A multicrystaline Kyocera KC120-1 with 120Wp capacity PV module is used in this paper for 
testing the proposed modeling method. The specifications of the aforementioned PV module are 
tabulated in Table 1. 

Table 1. The specifications of Kyocera KC120-1 PV module. 

Characteristics Value 
Number of cells connected in series 36 

Short-circuit current (𝐼௦௖) 7.45 A 
Open-circuit voltage (𝑉௢௖) 21.5 V 

Current at maximum power point (𝐼௠௣) 7.1 A 
Voltage at maximum power point (𝑉௠௣) 16.9 V 

Maximum power at STC (𝑃௠௔௫) 120 WP 
Temperature coefficient of 𝐼௦௖ (𝛼) 1.325 mA/K 
Temperature coefficient of 𝑉௢௖ (𝛽) -77.5 mV/K 

Seven different operation conditions are used as experimental data to extract the parameters of 
PV module. These operation conditions are denoted by G1 to G7 and they are tabulated in Table 2. 
The first and second columns of Table 2 comprise the solar irradiance and cell temperature of various 
operation conditions. It is worth mentioning that each operation condition includes various length of 
experimental I-V data points that explained in the fourth column of Table 2. It should be noted that 
the weather conditions and operation conditions terms are interchangeably used through this paper. 

A different evolution with integrated mutation per each iteration was adopted to estimate the 
unknown parameters of TDM. Since the dimension of PV-module optimization problem is 9, then 
the decision variables (𝐷௉) are 9, and the number of individual solutions will be 10𝐷 [33,34]. The 
maximum number of iteration (𝐺௠௔௫) for DEIMA and other methods that adopted for comparison 
issue is proposed 500 as a typical value that is based on several trial-and-error tests. According to 
many operations, the switching control parameter (𝜀ଵ) founds 0.28 present as the best performance 
of DEIMA. In the meanwhile, the mutation factor and crossover rate of DEIMA are adaptive 
according to the proposed formula that discussed previously. 

Table 2. Seven operation conditions and related solar irradiance and cell temperature. 

Weather 
condition 

Length of data 
(𝒏) 

Solar radiance (W/m2) Cell temperature (K) 

G1 22 118.28 318.32 
G2 24 148 321.25 
G3 50 306 327.7 
G4 91 711 324.21 
G5 92 780 329.1 
G6 101 840 331.42 
G7 102 978 328.56 

The search space range of nine parameters regarding TDM is based to literature. The 
photocurrent, 𝑅ௌ , 𝑅௉ ,, diode saturation currents ( 𝐼௢ଵ, 𝐼௢ଶ, and 𝐼௢ଷ ), and diode ideality factors 
(𝑎ଵ, 𝑎ଶ, and 𝑎ଷ) are chosen to be [1,8] A, [0.1, 2] Ω, [100, 5000] Ω, [1E-12, 1E-5] A, and [1,2], respectively 
[35]. 

The nine parameters of TDM PV module that estimated based on DEIMA are explained in Table 
3. Based on the estimated parameters and Newton-Raphson method, the I-V and P-V curves of TDM 
PV module under seven different operation conditions can be obtained as illustrated in Figure 3 and 
Figure 4, respectively. According to Figure 3 and Figure 4, it can be visually concluded that I-V and 
P-V curves obtained by DEIMA-based PV modeling method are closer to experimental ones. It is 
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worth to mention that experimental I-V and P-V curves of PV module are irregular due to the error 
in I-V generator that used in the field to collect the experimental data. 

Table 3. The nine estimated parameters of TDM of PV module. 

Parameter G1 G2 G3 G4 G5 G6 G7 𝑎ଵ  1.00004 1.40544 1.97468 1.99608 1.64065 1.53082 1.49762 𝑎ଶ  1.97660 1.45038 1.06383 1.00095 1.49554 1.44084 1.49754 𝑎ଷ  1.99144 1.35464 1.04220 1.31040 1.45000 1.45671 1.49766 𝑅ௌ  1.90299 0.13195 0.75172 0.53455 0.23549 0.16636 0.18106 𝑅௉  100.00554 125.38801 195.59178 169.22920 100.00108 4798.1068 100.00002 𝐼௣௛  1.00000 1.00000 1.95796 4.42801 5.05995 5.18610 6.27363 𝐼௢ଵ  1.59E-08 6.695E-10 8.974E-07 3.610E-06 9.966E-06 9.996E-06 1.00E-05 𝐼௢ଶ  9.97E-06 5.555E-06 2.591E-09 6.494E-09 9.948E-06 9.779E-06 1.00E-05 𝐼௢ଷ  9.96E-06 4.180E-07 1.232E-07 2.915E-06 9.692E-06 9.994E-06 1.00E-05 

 

Figure 3. I-V characteristics of TDM of PV module under seven distinct operation conditions. 

 

Figure 4. P-V characteristics of TDM of PV module under seven distinct operation conditions. 
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Figure 5 shows the evolution of objective function within the whole generation under seven 
operation conditions for DEIMA to calculate TDM parameters of PV-module. The presented DEIMA 
shows fast convergence and minimum objective function values for all operation conditions. It should 
be noted that the proposed modeling method based on DEIMA exhibits a stable objective function 
value at the first 20 iterations. 

 

Figure 5. Fitness function evolution of TDM of PV module parameter estimation using DEIMA under 
seven operation conditions. 

In order to prove the superiority of the proposed PV modeling method based on DEIMA, a fair 
comparison was done with other methods in literature. The penalty differential evolution algorithm 
(PDEA) [36], the improved adaptive differential evolution algorithm (IADEA) [37], 
electromagnetism-like algorithm (EMA) [38], ImSMA_LW [29], and ant lion optimizer with Lambert 
W function (ALO_LW) [39] were used as bench marks for comparison purposes to indicate the 
effectiveness of DEIMA. The experimental conditions including the size of population, maximum 
number of generations, and search space of decision variables of the whole aforementioned methods 
are the same for all methods to ensure fair comparisons. It should be noted that the mutation factor 
and crossover rate of DEIMA and IADEA are dynamically adaptive according to a formula. 
Meanwhile, the mutation factor and crossover rate of PDEA are chosen to be 0.5 and 1, respectively 
[36]. 

Figure 6 shows the 𝑅𝑀𝑆𝐸 of the proposed DEIMA and other compared algorithms under seven 
operation conditions. The proposed DEIMA offers the lowest 𝑅𝑀𝑆𝐸  values under the whole 
operation conditions with average value around 0.06024. The ALO_LW, ImSMA_LW, IADEA, and 
EMA provided the second, third, fourth, and fifth low 𝑅𝑀𝑆𝐸 values, respectively. While, the PDEA 
exhibited the worse 𝑅𝑀𝑆𝐸 value as compared to other methods. The DEIMA presents the lowest 𝑀𝐵𝐸 as compared to other methods with average 𝑀𝐵𝐸 of 0.00518 over seven operation conditions 
as shown in Figure 7. The PDEA is still have the worst 𝑀𝐵𝐸  values over the whole operation 
conditions. Figure 8 shows the coefficient of determination of various algorithms as bar chart. The 
proposed DEIMA also offers compromise 𝑅ଶ values, which are close to one over the seven operation 
conditions. The average 𝑅ଶ of DEIMA, ALO_LW, ImSMA_LW, IADEA, EMA, and PDEA are 0.9923, 
0.994, 0.9935, 0.9915, 0.9914, and 0.9885, respectively. 
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The CPU-execution times of various algorithms are tabulated in Table 4 over seven weather 
conditions. The average execution time of DEIMA is around 27.69 sec. The DEIMA needs less time to 
conduct execution as compared to other methods. Although the algorithms ALO_LW and 
ImSMA_LW offered promising results in many evaluation criteria, they need long execution time to 
candidate the TDM optimal parameters of the PV module. 

 
Figure 6. 𝑅𝑀𝑆𝐸 of various optimization algorithms under different operation conditions. 

 
Figure 7. 𝑀𝐵𝐸 of various optimization algorithms under different operation conditions. 
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Figure 8. 𝑅ଶ of various optimization algorithms under different operation conditions. 

Table 4. Execution time of various algorithms under several operation conditions. 

Algorithm 
Operation condition 

Average 
G1 G2 G3 G4 G5 G6 G7 

IADE 30.16 28.25 27.5 30.063 30.031 30.75 31.25 29.71 
PDE 32.8 29.78 27.13 29.58 31.33 28.02 28.11 29.54 
EM 5152.51 5050.24 5623.41 6599.23 5811.21 5769.82 6487.71 5784.88 

DEIM 24.94 26.50 26.56 28.75 28.69 29.19 29.20 27.69 
ALO_LW 1827.64 553.27 1383.69 1882.3 5615.73 345.59 3644.34 2178.94 

ImSMA_LW 1380.98 2828.44 5338.09 7827.3 256.86 3200.22 2090.84 3274.68 

Figure 9 shows the 𝑅𝑀𝑆𝐸 deviation of each operation condition (𝑑௠). The DEIMA offers the 
lowest 𝑑௠ values in G1, G2, G4, and G7 operation conditions. The EMA shares the proposed DEIMA 
in G3, G5, and G6 weather conditions by offering the best 𝑑௠ values. The small values of 𝑑௠ prove 
the capability of the proposed method to candidate effective estimation for PV-module parameters. 
The 𝑆𝑇𝐷 value can be computed for various methods by using 𝑑௠ over seven operation conditions. 
The DEIMA presents 0.0426 as the lowest 𝑆𝑇𝐷 value as compared to IADEA, ALO_LW, EMA, and 
PDEA with 0.04416, 0.0446, 0.04684, and 0.04937, respectively.  

The last criterion used to compare the results of DEIMA with other algorithms is the average 
absolute error (𝐴𝐴𝐸). Figure 10 shows the 𝐴𝐴𝐸 of the proposed DEIMA and other methods. Based 
on Figure 10, DEIMA presents the lowest 𝐴𝐴𝐸  over seven operation conditions. It is worth 
mentioning that the 𝐴𝐴𝐸 is significantly increased when the operation conditions are changed from 
G1 to G7, because the number of I-V points in data set is increased as it was stated in Table 2. 

Based on the aforementioned discussions, the radar diagram in Figure 11 can be drawn by 
scoring each algorithm according to its performance in each criterion. It is noticed that the proposed 
DEIMA is claiming the first score among other methods over most of criteria. In the meanwhile, 
PDEA obtained the last score (6) in most of criteria, except for the CPU-execution time. 

G1 G2 G3 G4 G5 G6 G7
IADE 0.9655 0.9963 0.9974 0.9992 0.9942 0.9957 0.992
PDE 0.9538 0.9942 0.9964 0.9988 0.9926 0.9933 0.9902
EM 0.9649 0.9971 0.9974 0.9993 0.9944 0.9957 0.9909
DEIM 0.968 0.9976 0.998 0.9993 0.9946 0.9958 0.9931
ALO_LW 0.981 0.9976 0.9978 0.9993 0.9949 0.9943 0.9932
ImSMA_LW 0.9836 0.9905 0.9978 0.9993 0.9949 0.9947 0.9937
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Figure 9. 𝑑௠ of various optimization algorithms under different operation conditions. 

 
Figure 10. 𝐴𝐴𝐸 of various optimization algorithms under different operation conditions. 
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Figure 11. The radar diagram of various algorithms over different criteria. 

6. Conclusion 

A hybrid optimization algorithm-based PV modeling technique is presented in this paper. The 
modeling method is utilized to assess the unknown parameters of triple-diode PV module. The 
introduced algorithm hybridized the conventional DEA and EMA to obtain DEIMA. The mutation 
stage of DEA is boosted by the attraction-repulsion concept of EMA. A novel formula is proposed for 
adapting the mutation factor and crossover rate control parameters for each iteration. The formula is 
using the sigmoid function and the evolution of fitness function. The fitness function is formulated 
by using the root mean square error between the experimental and computed PV output currents 
over 𝑛-points of I-V characteristic under seven operation conditions. The operation conditions are 
chosen with different solar irradiance and ambient temperature in order to prove the superiority of 
the proposed PV modeling method. The outcomes of DEIMA are validated with conventional DEA, 
EMA, and IADE algorithms by evaluating seven statistical criteria. According to results, DEIMA 
offered a significant superiority than other compared methods. As a future work, the authors are 
focusing on using DEIMA-based multiobjective functions to estimate nine parameters of triple-diode 
PV module and integrated with multicriteria decision making method.   
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