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Abstract: Identification the parameters of triple-diode electrical circuit structure of PV-module is
a challenging issue and has been emphasized as an important research area. Accordingly, a
hybrid evolutionary optimization algorithm is presented in this paper. Differential evolution
algorithm (DEA) is hybridized with electromagnetism-like algorithm (EMA) in the mutation stage
to enhance the reliability and efficiency of DEA. The presented algorithm is called differential
evolution with integrated mutation per iteration (DEIMA). A new formula is presented to
adapt the control parameters (mutation factor and crossover rate) of DEA and is based on a
sigmoid function in terms of the current and previous fitness function values. Seven different
experimental data sets are used to assess the performance of the proposed DEIMA. The results of
the proposed PV modeling method are evaluated with other approaches in literature. According to
different statistical criteria, DEIMA offered superiority in terms of root mean square error and
main bias error by at least 5.4% and 10%, respectively, as compared to other methods.
Furthermore, DEIMA needs 27.69 sec. as an average execution time less than other compared
methods.

Keywords: differential evolution; electromagnetism-like; photovoltaic; triple-diode model;
parameter estimation

1. Introduction

The plant pollution and the fluctuation of fossil fuel prices due to political and economic crises
around the world are the main problems that affect the energy field. As well as for the
aforementioned drawbacks of conventional energy sources, the fossil fuel is not abundant and
sustainable [1]. Furthermore, the energy demand is dramatically increasing with time, due to the
luxury live style demands. Therefore, finding a new sustainable energy source is a hot topic of
research. Solar energy has been represented as one of the important and promising alternative energy
sources [2,3]. The photovoltaic (PV) technology is playing an important role for converting the solar
irradiance into direct current electricity. The long-life cycle time of PV and environmentally friendly
are presenting the most advantages of this technology [4]. In addition, the price of PV module is also
decreasing overtime [4]. The basic drawback of PV module is the low efficiency of converting solar
energy into electricity [5]. This issue makes the output of PV module is limited and suffers from
weather fluctuations. Therefore, the modeling of PV module has to be more accurate to enable the
project administrator to use an appropriate number of PV modules in order to achieve the reliability
and cost-effective PV system. Modeling PV module significantly depends on the process of
estimating the identification unknown parameters of equivalent electrical circuit of module. These
parameters are unknown and sensitive to weather conditions. Generally, estimating PV module
parameters is obtained via three approaches; analytical, numerical, and artificial intelligent (AI)-
based method [6]. In analytical method, a relationship is presented between the parameters of PV
module under the standard test condition (STC) and other weather condition using manufacturer
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data [7]. The importance of analytical approaches is tended to be fast and simple for calculating the
parameters [8]. The main issue of analytical method is the significant deviation between the
experimental and simulated performance due to the impact of geographical situation on PV module
parameters.

The numerical method is proposed by scholars to overcome the drawbacks of analytical method.
In numerical method, all the points of I-V characteristic curve are used based on an iteration method
to extract the parameters of PV module [9]. The numerical method offers an accurate estimation for
PV modules parameters than analytical method. The drawbacks of numerical method are its
requirement for big I-V data curve, and the accuracy of results is affected by the assumed initial
conditions of parameters [10]. Furthermore, the numerical method needs for great computational
resources. A combination of numerical and analytical methods (compound method) have been
presented by [11-13] to obtain the benefit of the aforementioned methods. The drawbacks of both
analytical and numerical methods are still existed in the compound method.

The third type of PV modeling method that based on AL. Many research works adopted artificial
neural network (ANN) for modeling PV module [14]. The ANN-based PV modeling represents as a
black box that requires a big data of I-V characteristic points. Moreover, it represents a complex
location dependent modeling method.

Due to the reliability and efficiency of metaheuristic algorithms, the last are extensively used for
modeling PV module [15]. The I-V characteristic of PV module is nonlinear, so the metaheuristic is
an appropriate choice for handling the modeling problem. Big research efforts are devoted for
estimating the parameters of single diode model (SDM) and double diodes model (DDM) of PV
module using various metaheuristic algorithms since last decade. On the other hand, a humble
research works was devoted for determining the parameters of triple diode model (TDM) of PV
module. In [16], the authors have utilized an iterative process using the PSO algorithm to estimate
PV model parameters and by fitting the measured I-V curves to the calculated I-V curves. The series
resistance parameter has been considered to vary linearly with the load current through the device.
The proposed TDM in [16] is demonstrated in comparison to the two-diode model, and the findings
indicated how the TDM performance is better than DDM. Meanwhile, nine unknown parameters of
the TDM PV module have been extracted via a novel implementation of the coyote optimization
algorithm (COA) which has been presented in [17]. The obtained ideal design variables of the
presented COA-TDM have been studied against the ideal variables achieved through whale
optimization algorithm (WOA)-based TDM PV model, genetic algorithm (GA), and simulated
annealing (SA), for both modules (KC200GTand MSX-60). The proposed COA-TDM showed an
optimal design variable that are really close to that achieved by applying other metaheuristic
optimization algorithms regarding both two commercial PV modules. In [18] a compound of
analytical and an improved differential evolution algorithm called IDEA is presented to identify the
parameters of DDM and TDM of PV module. For both the TDM and DDM, the parameters were
partially extracted via analytical process (seven TDM parameters and five DDM parameters) and by
using optimization techniques (both TDM and DDM have two variables). In [19] a slime mould
algorithm (SMA) is presented according to the slime mould’s natural oscillation. Based on a unique
mathematical expression, the SMA is introduced which adapting the weights to collect negative and
positive feedback of the slime mould propagation wave. According to the results of [19], the SMA
showed better performance as compared to other heuristic methods in TDM, DDM and SDM. A
transient search optimization (TSO) is proposed in [20] which is based on a novel competent meta-
heuristic optimizer and aims to estimate the TDM PV module’s optimal nine-parameter. Different
companies have applied the TSO for given objective function to identify three PV modules.
Accordingly, the PV’s I-V characteristics have been validated by the measured data with regards to
different solar radiations and temperatures. The TSO algorithm has proved his effectiveness as
compared to other models as it has been indicated through the convergence curves. Authors in [21]
have customized collected data and mathematical representation of PV model of different diode
numbers (SDM/DDM/TDM), where the optimal parameters of the studied approach have been
determined according to the fractional chaotic ensemble particle swarm optimizer FC-EPSO variants
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and other models. The root mean square error (RMSE) is also one of the datasets that has been
calculated and assessed and adapted as an objective function by the proposed algorithm. To justify
the superiority of the presented approach, it has been justified against other approaches presented in
literature. The outcomes in [21] have showed a least deviation between the estimated and measured
curves with fastest convergence.

Integrating the computation and harris hawk optimization (HHO) algorithm is another
approach that is presented in [22] to determine the parameters of TDM regarding PV module. In this
work, the authors utilized the standard test conditions (STC) datasheet values of PV modules with
normal operating cell temperature (NOCT) to analytically examine four parameters while finding the
remaining five parameters by relying on the HHO model. Seeking to estimate the parameters, two
commercial PV panels have been used as monocrystalline CS6K280M and multi-crystal KC200GT.
The results in [22] has proved the efficacy of the presented model and by depending on the datasheet
values only it can simply implement to find the electrical parameters of any commercial PV panel. In
[23] a new optimization method namely interval branch and bound algorithm is introduced and
validated for three different parameter estimation models of PV cells (SDM, DDM and TDM).
outcomes have been justified against other results in literature of the same data set. The behavior of
the presented model is examined with regards to convergence speed and results in variability as
comparison to metaheuristics. The estimated performance features of the tested cells for both P-V
and I-V shown to be very similar to the experimental data and the obtained findings are really close
to other efficient algorithms. In [24], an improved wind driven optimization (IWDO) model is
presented and applied to calculate triple-diode parameters of the PV cell model. In order to evaluate
the proposed model, INDO model has been implemented on three various PV model techniques,
which are poly-crystalline, mono-crystalline, and thin- film. Accordingly, the obtained results have
been compared with other findings collected from other contributions to validate its accuracy.
According to results of [24], the presented algorithm showed superiority over other models in terms
of accuracy and convergence speed. The authors of [25] have relied on manta ray foraging
optimization (MRFO) to find the unknown parameters of PV cells. using MRFO is adapted to extract
the optimal PV parameters of the single, double, and three-diode algorithms. Based on comparative
results between different metaheuristic algorithms and MRFQO, findings proved that MRFO has
supported a better balance among experimental and calculated I-V curves. In [26] an enhanced
LSHADE optimization model called Chaotic LSHADE (CLSHADE) model which is traced to the
Lambert W-function and has been presented to estimate TDM and DDM parameters of the PV
equivalent circuits. The outcomes indicated that the accuracy of the CLSHADE model could be
enhanced through adapting the presented solar cell current expressions where the RMSE is calculated
based on them. For the purpose of investigating a complete photovoltaic algorithm, authors in [27]
have proposed an improved spherical evolution technique that is based on a novel dynamic sine-
cosine mechanism (DSCSE). The experimental findings have indicated the superiority of DSCSE over
other comparative approaches with different models and provided superior outcomes regardless
different temperatures and light intensities. Based on the DE (HDE), a novel heterogeneous
mechanism is presented in [28] to identify PV model parameters. Parameter fitting for the DDM,
SDM, STP6-120/36 MM, TDM, Photowatt-PWP201 MM, and STM6-40/36 MM were determined by
HDE. The findings indicated the superiority of the HDE for majority of PV techniques. Moreover, the
HDE also takes low execution time to conduct its task. Although the HDE showed necessary features,
its behavior regarding few PV models like TDM and DDM can be further improved. In [29], an
enhanced model of the slime mould technique and based on Lambert W-function (ImSMA_LW) is
proposed for extracting parameters of SDM, DDM, and TDM of PV module. According to [29],
ImSMA_LW offered compromised results under various scenarios with different conditions.

A combination of two metaheuristic algorithms is proposed for estimating the nine parameters
of TDM in this research. The electromagnetism-like algorithm (EMA) used the attraction-repulsion
concept to synergic the mutation strategy of conventional DE algorithm. The proposed metaheuristic
is called differential evolution with integrated mutation per iteration algorithm (DEIMA). In DEIMA,
both mutation strategies of EMA and DEA are applied in the same iteration. Furthermore, a new
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adaptive formula has proposed in this paper to realize adaptive mutation factor and crossover rate
values of DEA’S mutation strategy. The adaptive technique in this formula is based on evolution of
the fitness function. The proposed PV modeling method is validated by experimental I-V data for
seven operation conditions. In addition, the results of the proposed DEIMA are evaluated through
conducting a comparison with other related contributions in literature.

The manuscript is structured as follows; the introduction part is presented in section one. In
section two, the model of triple diode PV module and the formulating of PV module parameter
estimation process as optimization problem are discussed. The proposed DEIMA is discussed in
section 3. Next, the evaluation criteria that utilized for evaluating results of DEIMA are presented in
section 4. The results of the proposed DEIMA-based PV modeling method are presented, discussed,
and evaluated in section 5. The conclusion of this contribution and suggestions for future work are
drawn in section 6.

2. PV Modeling Method

In this section, the mathematical representation of triple-diode PV module is presented.
Furthermore, parameter estimation of the TDM-PV module that considered as an optimization
problem is discussed.

2.1. Triple-Diode PV Module Model

The TDM of PV module comprises three diodes that connected in parallel as shown in Figure 1.
The third diode is added into equivalent electrical circuit of PV module to simulate the recombination
in grain sites and defect regions. The PV output current can be formulated by [22]:

1= Ion = Ion [exp (02555) = 1] = 1o [exp (4 2572) = 1] = fos [exp (a 52) — 1] = 525, (1)

a1BTc a;BTc a3zBT¢

Where I and I,, are the PV output current (A) and photogenerated current (A), respectively.
Ip1,153,and 1,3 are respectively the saturation currents (A) that flows in the first, second, and third
diodes. V isthe PV output voltage (V). ay,a,, and a; are respectively the ideality factors of the first,
second, and third diodes. q, B, and T, are the electron charge (1.60217646E-19C), Boltzman
constant (1.3806503E-23]/K), and cell temperature (K), respectively. R and Rp are the series and
parallel resistors (Q), respectively.

Rs

ph

Figure 1. Electrical equivalent circuit of Triple-diode PV module model.

According to Eq. (1), there are nine indefinite parameters that should be precisely estimated. As
it was stated previously, these parameters are related to weather conditions, specifically the ambient
temperature and solar irradiance.


https://doi.org/10.20944/preprints202408.1640.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 d0i:10.20944/preprints202408.1640.v1

2.2. Problem Formulation

The issue of estimating nine indefinite parameters in TDM-PV module can be formulated as an
optimization problem with nine decision variables and an objective function as follows;

0F = LS8 fU V.07, @
where;
f(Iet v, 5) = Ie - Ir (3)

where I, is the experimental output current (A) of PV module. While, I refers to the computed
current of PV module according to the estimated parameters that described by vector 6 =
[Iph, Ip1, 152, 153,04, 05,03, Rg, R p]. Variable n represents the total number of points in the experimental
I-V characteristic curve.

3. DEIMA Optimization Algorithm

The proposed PV-modeling method is based on DEIMA and the strategy of deriving an adaptive
formula for the mutation and crossover rate control parameters of DEIMA are presented in the
current section. DEIMA is a stochastic metaheuristic optimization algorithm, which is initiated by
hybridizing DEA and EMA algorithms. The attraction-repulsion concept of EMA is utilized
synergically with the conventional mutation stage of DEA. The four steps of DEIMA will be discussed
in details in the following subsections.

3.1. Initialization

The first step of DEIMA is initializing Dp X Np population, where Dp is the number of decision
variables and Np refers to the number of candidate individual vectors. It is worth mentioning that
each individual vector comprises Dp decision variables. The population (pop) can be described as

follows:
X11 X12 = XiNp
X1 X2 X2Np
pop = : : ., . ) (4)
xDpl xDpZ e XDPNP

The Dp parameters of i*" individual vector is randomly initiated using Eq. (5) and uniformly
distributed within the interval of j* decision variable [X L, X Hj] , where XL; is the lower
boundary and XH; isthe upper bounds of search space.

X} = XL;; + rand x (XH;; — XLj;), (5)
where rand is a random number, which is selected randomly within (0, 1).

3.2. Mutation

The proposed DEIMA has utilized two different types of mutation (M, and M,). Both types are
used in each iteration and based on the following criterion.
M, if 6f <&6? ©)
M, otherwise
where 6 and 6f refer to the ['" standard deviation vectors of the row vectors of pop population

Mutation operation = {

in the initial and G generations, respectively. [ is a random number, which is randomly chosen
within [1, Dp] interval. & is a constant control parameter with value belongs to [0,1] [30]. The &
controls the switch between M, and M,; mutation operations within the population. The
M, mutation operation is achieved by computing the mutant vector X as follows:

XE =X +F(X5 - 8%) @)

Where X&,X% and X% are three distinct individual vectors randomly selected from
population. In other words, r;, 7, and 713 are distinct indices and belong to the period [1,Np]. F
is the mutation control factor having values within [0.5, 1] [31]. It is worth mentioning that the control
parameter F and crossover control rate (CR) in crossover step are adaptive in each iteration and are
being set by using a novel formula as follow:

F,CR = d( = b), 8)

1+exp (mk(Ww—wyg)
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The above formula based on sigmoid function. Where the maximum value is labeled as L of
sigmoid function curve, k and w, are the steepness of the curve and midpoint of x-axis sigmoid
function, respectively. In the current research work, L, k and w, are set 1, 12 and 0 according to
many experiments. b and d are constants; which are chosen to maintain F and CR within [0.5,
1], where b set1and d equalto 0.5. w refers to the random weighted difference between the best
objective function value of w and is computed by:

w = [OF (Xfo5r) — OF (X550 * rand, ©)

As it was stated previously, the second part of mutation is M, mutation operation. The last
operation utilized the total force exerted on X& by X% and X5 to compute the mutant vector XF.
The force exerted by any individual vector on another one depends on the charge between them,

which is calculated as below;
OF (X71)~O0F (x%)

G —

U1r2 = (X ors) 0P (tfone) (10)
G _ OF(XTGI)—OF(X%

13 = (X ors) OF (tfone) (11)

where OF(X¢) refers to the objective function value of individual vector X in the G** iteration.
XGorse and Xg.o. are the worst and best solution in the G iteration, respectively. Consequently,
the exerted forces by X% and XS on the individual vector Xf, are described by [32],

Ffio = (X% — X71) * @fira, (12)
Ffys = (X5 — X7) * qfirs, (13)
Then, the resultant force exerted by X% and X% on X§ is calculated by,

Frcl = Frclrz + XrGlr3r (14)

Next, the M, mutation operation produces the Xf mutant vector in G'" iteration and is
corresponding to X as follows:
XE=Xp + 7, (15)

3.3. Crossover

In this step, the trial vector of G** iteration y/; is initiated by utilizing both the corresponding
target X or mutant X¢ vector based on the following formula.
X%  ifrand <CR orj=1
{ Ji f ] L’ (16)

X7, otherwise
Where I; is an index number, which is randomly selected from the interval [1, Dp]. As it was
stated in the previous subsection, CR is a crossover control rate which has an adaptive value
computed by Eq. (8). At the end of crossover step, the element of trial vector (decision variables) will
be checked to determine if one of them violates the boundaries of corresponding search space. Eq. (5)

G _
=

is used to initiate the element of trail vector when it is unphysical value.

3.4. Selection

The last step of DEIMA is the selection step to select between the trail vector and the
corresponding individual vector for G** iteration based on the following formula:
X6+ = {Yﬁ if OF (¥) < OF (X{) a7
' Xf  otherwise ’
At the end of selection step, the individual vector of generation (G + 1) is generated to constitutes
the new population.
Figure 2 illustrates the proposed DEIMA method for estimating the unknown nine parameter of

TDM-PD module.
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Calculate /-V curve using
Newton Raphson method

Figure 2. DEIMA-based PV modeling method.

4. Evaluation Criteria

In the current research work, seven criteria are utilized to assess the performance of the
introduced PV-modeling method as compared to other methods. More details about the evaluation
criteria will be presented in the next subsection.
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4.1. Root Mean Square Error (RMSE)

The RMSE criterion presents the deviation between the computed and experimented points of
the [-V characteristic curve along n-data set as depicted in below.

RMSE = J%Z?:l(let - Ict)zr (18)

where I, and I, are the experimental and computed currents at i** point of I-V curve.

4.2. Mean Bias Error (MBE)

The overall bias error between the computed and experimented I-V characteristic curve is
measured by using MBE formula as presented below:

1
MBE = n te1(Uee — Ict)zr (19)

4.3. Coefficient of Determination (R?)

R? is another criterion that utilized to assess the accuracy and performance of the proposed PV-
modeling method. This coefficient explains the degree of ability that a computed I-V curve follows
the experimental one. It is worth mentioning that the better value of R? criterion should be close to
1. The R? is computed by:

n _ 2
R2 = 1 — Zt=alct=ler)” 20)

2?:1(Iet_fe)2 !

where,
= 1
le =Y les 1)

4.4. Average Absolute Error (AAE)

Absolute error shows the absolute difference between the experimental and calculated
currents. The average value of absolute error is computed by finding the average of absolute error
over the whole points of the I-V curve. The AAE is calculated by.

AAE = =30 [l — Lotl, (22)

4.5. Deviation of RMSE (d.,)):

The evaluation criterion d,, refers to the deviation of RMSE for each solar irradiance from the
mean RMSE of the all seven operation conditions as formulated below.

d,, = RMSE,, — RMSE, (23)

Where RMSE,, refers to the RMSE of m' solar irradiance (operation condition), and
RMSE is the arithmetic mean of RMSE of overall operation conditions ( G, — G,). RMSEE is
computed by:

1

RMSE = ; t=1 RMSEt, (24)

whereris the total number of operation conditions.

4.6. Standard Test Deviation (STD)

Another statistical criterion, STD, is used to evaluate the performance of the proposed PV-
modeling method. STD value explains the average deviation of RMSE for the seven operation
conditions. STD is computed by:

STD = |55 mea(dn)?, (25)

4.7. CPU-Execution Time (CET)

The last criterion used to evaluate the results of the proposed PV-modeling method is the
required time by CPU for executing the DEIMA.
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5. Results and Discussion

A multicrystaline Kyocera KC120-1 with 120Wp capacity PV module is used in this paper for
testing the proposed modeling method. The specifications of the aforementioned PV module are
tabulated in Table 1.

Table 1. The specifications of Kyocera KC120-1 PV module.

Characteristics Value
Number of cells connected in series 36
Short-circuit current () 745 A
Open-circuit voltage (V) 215V
Current at maximum power point (I, 71A
Voltage at maximum power point (V;,,) 169V
Maximum power at STC (Ppqyx) 120 We
Temperature coefficient of I, (@) 1.325 mA/K
Temperature coefficient of V. (B) -77.5 mV/K

Seven different operation conditions are used as experimental data to extract the parameters of
PV module. These operation conditions are denoted by G1 to G7 and they are tabulated in Table 2.
The first and second columns of Table 2 comprise the solar irradiance and cell temperature of various
operation conditions. It is worth mentioning that each operation condition includes various length of
experimental I-V data points that explained in the fourth column of Table 2. It should be noted that
the weather conditions and operation conditions terms are interchangeably used through this paper.

A different evolution with integrated mutation per each iteration was adopted to estimate the
unknown parameters of TDM. Since the dimension of PV-module optimization problem is 9, then
the decision variables (Dp) are 9, and the number of individual solutions will be 10D [33,34]. The
maximum number of iteration (Gy,,,) for DEIMA and other methods that adopted for comparison
issue is proposed 500 as a typical value that is based on several trial-and-error tests. According to
many operations, the switching control parameter (g;) founds 0.28 present as the best performance
of DEIMA. In the meanwhile, the mutation factor and crossover rate of DEIMA are adaptive
according to the proposed formula that discussed previously.

Table 2. Seven operation conditions and related solar irradiance and cell temperature.

Weath Length of
eather ength of data Solar radiance (W/m?) Cell temperature (K)

condition n)
G 22 118.28 318.32
Gz 24 148 321.25
Gs 50 306 327.7
Gs 91 711 324.21
Gs 92 780 329.1
Ge 101 840 331.42
G 102 978 328.56

The search space range of nine parameters regarding TDM is based to literature. The
photocurrent, Rg, Rp, diode saturation currents (I,;,/,,,andl,3), and diode ideality factors
(ai,a,,and a3) are chosen to be [1,8] A, [0.1, 2] £, [100, 5000] O, [1E-12, 1E-5] A, and [1,2], respectively
[35].

The nine parameters of TDM PV module that estimated based on DEIMA are explained in Table
3. Based on the estimated parameters and Newton-Raphson method, the I-V and P-V curves of TDM
PV module under seven different operation conditions can be obtained as illustrated in Figure 3 and
Figure 4, respectively. According to Figure 3 and Figure 4, it can be visually concluded that I-V and
P-V curves obtained by DEIMA-based PV modeling method are closer to experimental ones. It is
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worth to mention that experimental I-V and P-V curves of PV module are irregular due to the error
in I-V generator that used in the field to collect the experimental data.

Table 3. The nine estimated parameters of TDM of PV module.

Parameter G1 G2 G3 G4 G5 G6 G7
a; 1.00004  1.40544 1.97468 199608 1.64065 1.53082  1.49762
a, 197660 1.45038 1.06383  1.00095 1.49554  1.44084  1.49754
as 199144  1.35464  1.04220 1.31040 1.45000 1.45671  1.49766

Rg 1.90299  0.13195 0.75172  0.53455 0.23549 0.16636  0.18106
Rp 100.00554 125.38801 195.59178 169.22920 100.00108 4798.1068 100.00002
Ipn 1.00000  1.00000 1.95796  4.42801 5.05995 5.18610 6.27363
Iy 1.59E-08 6.695E-10 8.974E-07 3.610E-06 9.966E-06 9.996E-06 1.00E-05
Iz 9.97E-06 5.555E-06 2.591E-09 6.494E-09 9.948E-06 9.779E-06 1.00E-05
Iy3 9.96E-06 4.180E-07 1.232E-07 2.915E-06 9.692E-06 9.994E-06 1.00E-05
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Figure 3. I-V characteristics of TDM of PV module under seven distinct operation conditions.
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Figure 4. P-V characteristics of TDM of PV module under seven distinct operation conditions.
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Figure 5 shows the evolution of objective function within the whole generation under seven
operation conditions for DEIMA to calculate TDM parameters of PV-module. The presented DEIMA
shows fast convergence and minimum objective function values for all operation conditions. It should
be noted that the proposed modeling method based on DEIMA exhibits a stable objective function
value at the first 20 iterations.
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Generation

Figure 5. Fitness function evolution of TDM of PV module parameter estimation using DEIMA under
seven operation conditions.

In order to prove the superiority of the proposed PV modeling method based on DEIMA, a fair
comparison was done with other methods in literature. The penalty differential evolution algorithm
(PDEA) [36], the improved adaptive differential evolution algorithm (IADEA) [37],
electromagnetism-like algorithm (EMA) [38], InSMA_LW [29], and ant lion optimizer with Lambert
W function (ALO_LW) [39] were used as bench marks for comparison purposes to indicate the
effectiveness of DEIMA. The experimental conditions including the size of population, maximum
number of generations, and search space of decision variables of the whole aforementioned methods
are the same for all methods to ensure fair comparisons. It should be noted that the mutation factor
and crossover rate of DEIMA and IADEA are dynamically adaptive according to a formula.
Meanwhile, the mutation factor and crossover rate of PDEA are chosen to be 0.5 and 1, respectively
[36].

Figure 6 shows the RMSE of the proposed DEIMA and other compared algorithms under seven
operation conditions. The proposed DEIMA offers the lowest RMSE values under the whole
operation conditions with average value around 0.06024. The ALO_LW, ImSMA_LW, IADEA, and
EMA provided the second, third, fourth, and fifth low RMSE values, respectively. While, the PDEA
exhibited the worse RMSE value as compared to other methods. The DEIMA presents the lowest
MBE as compared to other methods with average MBE of 0.00518 over seven operation conditions
as shown in Figure 7. The PDEA is still have the worst MBE values over the whole operation
conditions. Figure 8 shows the coefficient of determination of various algorithms as bar chart. The
proposed DEIMA also offers compromise R? values, which are close to one over the seven operation
conditions. The average R? of DEIMA, ALO_LW, InSMA_LW, IADEA, EMA, and PDEA are 0.9923,
0.994, 0.9935, 0.9915, 0.9914, and 0.9885, respectively.
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The CPU-execution times of various algorithms are tabulated in Table 4 over seven weather
conditions. The average execution time of DEIMA is around 27.69 sec. The DEIMA needs less time to
conduct execution as compared to other methods. Although the algorithms ALO_LW and
ImSMA_LW offered promising results in many evaluation criteria, they need long execution time to
candidate the TDM optimal parameters of the PV module.

G1 G2 G3 G4 G5 G6 G7
Operation condition
HIADE mPDE mEM DEIM ®mImSMA_LW ®mALO_LW

Figure 6. RMSE of various optimization algorithms under different operation conditions.

0.025

0.02

0.015

MBE

0.01

0.005

G1 G2 G3 G4 G5 G6 G7
Operation condition
EHEM mPDE mIADE DEIM mALO_LW mEImSMA_LW

Figure 7. MBE of various optimization algorithms under different operation conditions.
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B ImSMA_LW  0.9836 0.9905 0.9978 0.9993 0.9949 0.9947 0.9937

Figure 8. R? of various optimization algorithms under different operation conditions.

Table 4. Execution time of various algorithms under several operation conditions.

Operation condition

Algorithm Gl ) e Ga Gs Co 7 Average
IADE 30.16 28.25 275 30.063 30.031 30.75 31.25 29.71
PDE 32.8 29.78 27.13 29.58 31.33 28.02 28.11 29.54

EM 5152.51 5050.24 5623.41 6599.23 5811.21 5769.82 6487.71 5784.88
DEIM 24.94 26.50 26.56 28.75 28.69 29.19 29.20 27.69

ALO_LW 1827.64 553.27 1383.69 18823 5615.73 34559 3644.34 2178.94

ImSMA_LW 1380.98 2828.44 5338.09 7827.3 256.86 3200.22 2090.84 3274.68

Figure 9 shows the RMSE deviation of each operation condition (d,,). The DEIMA offers the
lowest d,,, valuesin G1, G2, G4, and G7 operation conditions. The EMA shares the proposed DEIMA
in G3, G5, and G6 weather conditions by offering the best d,, values. The small values of d,, prove
the capability of the proposed method to candidate effective estimation for PV-module parameters.
The STD value can be computed for various methods by using d,, over seven operation conditions.
The DEIMA presents 0.0426 as the lowest STD value as compared to IADEA, ALO_LW, EMA, and
PDEA with 0.04416, 0.0446, 0.04684, and 0.04937, respectively.

The last criterion used to compare the results of DEIMA with other algorithms is the average
absolute error (AAE). Figure 10 shows the AAE of the proposed DEIMA and other methods. Based
on Figure 10, DEIMA presents the lowest AAE over seven operation conditions. It is worth
mentioning that the AAE is significantly increased when the operation conditions are changed from
G1 to G7, because the number of I-V points in data set is increased as it was stated in Table 2.

Based on the aforementioned discussions, the radar diagram in Figure 11 can be drawn by
scoring each algorithm according to its performance in each criterion. It is noticed that the proposed
DEIMA is claiming the first score among other methods over most of criteria. In the meanwhile,
PDEA obtained the last score (6) in most of criteria, except for the CPU-execution time.
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Figure 9. d,,, of various optimization algorithms under different operation conditions.
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Figure 10. AAE of various optimization algorithms under different operation conditions.


https://doi.org/10.20944/preprints202408.1640.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2024 d0i:10.20944/preprints202408.1640.v1

15

STD MBE

AE R"2

Execution Time

e [ADE e PDE EM DEIM emmmmALO LW e |mSMA_LW

Figure 11. The radar diagram of various algorithms over different criteria.

6. Conclusion

A hybrid optimization algorithm-based PV modeling technique is presented in this paper. The
modeling method is utilized to assess the unknown parameters of triple-diode PV module. The
introduced algorithm hybridized the conventional DEA and EMA to obtain DEIMA. The mutation
stage of DEA is boosted by the attraction-repulsion concept of EMA. A novel formula is proposed for
adapting the mutation factor and crossover rate control parameters for each iteration. The formula is
using the sigmoid function and the evolution of fitness function. The fitness function is formulated
by using the root mean square error between the experimental and computed PV output currents
over n-points of I-V characteristic under seven operation conditions. The operation conditions are
chosen with different solar irradiance and ambient temperature in order to prove the superiority of
the proposed PV modeling method. The outcomes of DEIMA are validated with conventional DEA,
EMA, and IADE algorithms by evaluating seven statistical criteria. According to results, DEIMA
offered a significant superiority than other compared methods. As a future work, the authors are
focusing on using DEIMA-based multiobjective functions to estimate nine parameters of triple-diode
PV module and integrated with multicriteria decision making method.
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