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Abstract

This paper introduces and evaluates an adaptive Autoregressive Moving Average (ARMA) model
designed for enhanced time series prediction in dynamic and non-stationary financial markets. Tra-
ditional ARMA models, constrained by static parameters, often struggle to capture the evolving
underlying dynamics and sudden shifts characteristic of highly volatile assets. Our proposed adaptive
ARMA(1,1) model addresses these limitations by incorporating a recursive parameter estimation mech-
anism, resembling a Least Mean Squares (LMS) algorithm, which allows its coefficients to continuously
adjust to new observations. Through empirical backtesting on historical stock price data for Tesla
(TSLA) and Google (GOOGL), the adaptive model demonstrates significantly improved predictive
accuracy. Specifically, it achieved a Mean Absolute Error (MAE) of 7.78 for TSLA and 1.61 for GOOGL,
outperforming a traditional ARIMA model which yielded a Mean Squared Error (MSE) of 58.78 for
GOOGL compared to the adaptive model’s 4.47 MSE. These results underscore the robustness and
practical utility of the adaptive ARMA framework for forecasting in volatile financial environments,
offering a promising approach for real-time applications.
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1. Introduction

Predicting time series has been a classic problem in quantitative finance [3]. The ability to
accurately forecast future values of financial instruments, economic indicators, or other time-dependent
data is crucial for informed decision-making, risk management, and strategic planning. Traditional time
series models, such as the Autoregressive Moving Average (ARMA) model, have long been employed
due to their interpretability and relative simplicity. However, real-world financial and economic data
often exhibit non-stationary behavior, sudden shifts, and evolving underlying dynamics, which pose
significant challenges to static models [5]. This inherent non-stationarity limits the predictive power of
conventional ARMA models when applied to highly volatile and adaptive environments.

This paper addresses these limitations by introducing and analyzing an adaptive ARMA model
designed to dynamically adjust its parameters in response to changes in the underlying time series
characteristics. The aim is to demonstrate that by continuously updating its coefficients, an adaptive
ARMA model can capture the evolving patterns and improve predictive accuracy, particularly in
environments marked by high volatility and regime changes. The research will delve into the theoretical
underpinnings of this adaptive approach, detail its implementation, and rigorously evaluate its
performance against traditional static ARMA models using various real-world financial datasets. The
aim is to demonstrate the practical utility and enhanced robustness of the adaptive ARMA framework
for time series prediction in dynamic and uncertain domains.
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2. Traditional Autoregressive Moving Average (ARMA) Model

The Autoregressive Moving Average (ARMA) model, specifically ARMA(p, q), is a cornerstone of
classical time series analysis, widely employed for forecasting stationary univariate time series data.
Developed from the independent autoregressive (AR) and moving average (MA) models, the ARMA
framework provides a parsimonious representation of a time series by modeling its current value as
a linear combination of its past values (autoregressive component) and past forecast errors (moving
average component) [1].

2.1. Model Components and Formulation

An ARMA(p, q) model is composed of two primary parts:

*  Autoregressive (AR) Component of order p: Denoted as AR(p), this part suggests that the current
value of the time series, Y}, depends linearly on its p previous values and a stochastic error term.
The AR(p) process is mathematically expressed as:

Yi=c+P1Vi1+¢Yiot -+ ¢pYipter

where c is a constant, ¢; are the autoregressive coefficients, and €; is a white noise error term.

e  Moving Average (MA) Component of order g: Denoted as MA(g), this part postulates that the
current value Y; depends linearly on the current and g past white noise error terms. The MA(g)
process is given by:

Yi=u+e 40161+ 062+ + qut,q

where y is the mean of the series, and 6; are the moving average coefficients.

Combining these two components, the general form of an ARMA(p, q) model for a time series Y}
can be written as:

Yt =c+ (Plthl + -+ (Pth—p —+ €1 + 616;5,1 + -+ qut—q

Alternatively, using the lag operator L (where L¥Y; = Y, s and L*e; = €, ), the model can be
compactly expressed as:
P(L)Y; =c+O(L)es

where ®(L) =1 —¢1L — - - - — ¢, L? is the autoregressive polynomial and @(L) = 1+ 6;L + - - - +6,L1
is the moving average polynomial.

2.2. Key Assumptions and Estimation

A fundamental assumption for the classical ARMA model to be valid and and to ensure the
reliability of its parameter estimates is that the time series Y; must be stationary. A stationary time
series exhibits constant mean, variance, and autocorrelation structure over time. If the series is not
stationary, differencing techniques can be applied to transform it into a stationary series, leading to the
Autoregressive Integrated Moving Average (ARIMA) model.

The parameters (c, ¢;, 0;) of an ARMA model are typically estimated using methods such as
maximum likelihood estimation (MLE) or least squares. The order of the model (p and g) is often
determined by analyzing the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the series, or by information criteria such as the Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC), which penalize model complexity.

2.3. Strengths and Limitations
The traditional ARMA model offers several strengths:

e Interpretability: Its parameters have clear statistical interpretations related to past values and
errors.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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e  Simplicity: Relative to more complex non-linear or deep learning models, ARMA models are
conceptually straightforward and computationally efficient for stationary data.

e  Established Theory: A vast body of statistical theory supports its properties, estimation, and
inference.

Despite its advantages, the classical ARMA model faces significant limitations, particularly when
applied to real-world financial time series [3]:

e  Stationarity Requirement: The most critical limitation is its strict assumption of stationarity.
Financial markets are inherently non-stationary, characterized by evolving trends, changing
volatilities (heteroscedasticity), and structural breaks.[5] Applying a static ARMA model to such
data without proper differencing (leading to ARIMA) or handling of volatility can yield unreliable
forecasts and standard errors.

*  Fixed Parameters: The parameters of a traditional ARMA model are estimated once over a
historical period and then held constant for future predictions. This static nature prevents the
model from adapting to new information or changes in the underlying data generation process,
which are common in dynamic environments like stock markets.

¢ Inability to Capture Volatility Clustering: ARMA models assume constant variance of the error
terms. They cannot directly model phenomena like volatility clustering, where periods of high
volatility are followed by periods of high volatility, and vice versa—a characteristic feature of
financial data. This often necessitates the use of GARCH-type models for modeling volatility.

*  Sensitivity to Outliers and Structural Breaks: Fixed-parameter models are highly susceptible
to sudden shifts or extreme values (outliers), which can distort parameter estimates and lead to
poor out-of-sample performance.

These limitations underscore the necessity for more flexible and responsive modeling approaches,
especially for highly volatile financial time series. The subsequent sections will elaborate on how an
adaptive ARMA model addresses these inherent weaknesses by allowing its parameters to evolve over
time.

3. Proposed Method: The Adaptive ARMA Model

Building upon the foundations of the traditional ARMA framework, the proposed method
introduces an adaptive mechanism to address the inherent limitations of fixed-parameter models in
forecasting volatile and non-stationary time series, such as stock prices. The core idea is to allow the
model’s coefficients to evolve over time, continuously learning from new observations and adapting to
shifts in the underlying data generating process. This adaptive approach aims to maintain predictive
accuracy even in highly dynamic environments where static models often falter.

3.1. Adaptive ARMA(1,1) Formulation

For this study, I implement a simplified adaptive ARMA(1,1) model. This specific order was
chosen for its interpretability and as a demonstration of the adaptive principle, where the current
value is primarily influenced by its immediate past value and the immediate past error. The adaptive
ARMA(1,1) model at time  can be expressed as:

Yi=¢r1Yi1+ 6161

where Y is the predicted value at time t, Y;_; is the actual observed value at time t — 1, and €;_1 is
the forecast error from the previous time step, t — 1. The key distinction from the traditional ARMA
model lies in the parameters ¢ and 0, which are not fixed but are updated at each iteration.
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3.2. Adaptive Parameter Estimation

The adaptability of the model is achieved through a recursive updating mechanism for the
parameters ¢ and 6. This process resembles a Least Mean Squares (LMS) algorithm [2,4], where the
parameters are adjusted based on the prediction error at each time step.

The iterative process proceeds as follows:

1.  Initialization: Before forecasting the test data, the model parameters ¢ and 6 are initialized. In
our implementation, they are set to an initial value of 0.5. The last observed value from the
training data, Y},4iy 1451, serves as the initial Y;_; for the first prediction on the test set. The initial
error term €;_1 is set to 0.

2. Prediction: For each new actual value Y; in the test set, a prediction Y; is made using the currently
adapted parameters:

Y = Peurrent - Y1+ Ocurrent - €1—1

3. Error Calculation: The prediction error e; is then computed as the difference between the actual
observed value and the predicted value:

et:Yt—Yt

4.  Parameter Update: The parameters ¢ and 6 are updated using a learning rate # (denoted as ‘I’ in
the code) to minimize the squared error. The update rules are:

Prew = Peurrent + 1 - €1 - Y1

Onew = Ocurrent + n-et- €1

This gradient-descent like update ensures that the parameters are adjusted in the direction that
reduces future prediction errors.

5. State Update: For the next iteration, the current actual value Y; becomes the new Y;_1, and the
current error ¢; becomes the new €;_1.

This iterative process is outlined in the following pseudocode, mirroring the Python implementa-
tion:

function Adaptive_ARMA(train_data, test_data, learning_rate):
phi = 0.5
theta = 0.5

predictions = []

// Initialize previous actual value and previous error for the first prediction
Y_prev = last value of train_data

Error_prev = 0

for each actual_value in test_data:
// Predict the current value
Y_predicted = phi * Y_prev + theta * Error_prev
Add Y_predicted to predictions list

// Calculate the prediction error
error = actual_value - Y_predicted

// Update parameters based on error and past values/errors
phi = phi + learning_rate * error * Y_prev
theta = theta + learning rate * error * Error_prev
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// Update state for the next iteration
Y_prev = actual_value
Error_prev = error

return predictions

In this specific implementation, a learning rate #=0.0001 was used to ensure stable convergence of the
adaptive parameters.

3.3. Advantages of the Adaptive Approach

The primary advantage of this adaptive ARMA model is its ability to learn and adjust to the time-
varying characteristics of the data. Unlike static models that assume constant underlying dynamics,
the adaptive model can:

e Handle Non-Stationarity: By continuously updating parameters, it implicitly accounts for
changes in mean, variance, and autocorrelation structure that are common in financial time series.

*  Respond to Regime Shifts: It can more effectively capture sudden changes in market behavior or
trends, which are crucial for accurate forecasting in volatile environments.

e Improve Real-time Performance: The iterative, online learning approach makes it suitable for
real-time forecasting applications where new data becomes available sequentially.

This dynamic adaptation is hypothesized to lead to superior predictive performance compared to
traditional fixed-parameter models, especially for highly volatile assets like Tesla stock, as will be
demonstrated in the subsequent results section.

4. Results and Observations

To evaluate the predictive performance of the Adaptive ARMA model, backtesting was conducted
on historical stock price data for two prominent technology companies: Tesla (TSLA), known for
its high volatility, and Google (GOOGL), representing a relatively less volatile, yet dynamic, asset.
The model was trained on an initial segment of the data and then used to generate out-of-sample
predictions on subsequent periods.

4.1. Performance Metrics

The primary metric used for evaluating prediction accuracy was the Mean Absolute Error (MAE),
which quantifies the average absolute difference between the actual and predicted values. Additionally,
visual inspection of the predicted vs. actual price graphs was used to assess the model’s ability to track
trends and fluctuations.

4.2. Backtesting Results
4.2.1. Tesla (TSLA) Stock Price Prediction

For the highly volatile Tesla stock, the Adaptive ARMA model demonstrated remarkable accuracy.
The backtesting results yielded a Mean Absolute Error (MAE) of:

MAErug, = 7.781623061568044

Considering that Tesla’s stock price during the test period typically around $200 to $400 , an MAE of
about $7.78 indicates that, on average, the model’s predictions deviated from the actual stock price
by this amount. This is a significant achievement for predicting a highly volatile asset, where large
price swings are common. The model’s adaptive nature appears to be highly effective in capturing the
dynamic shifts characteristic of TSLA.
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Figure 1. Tesla’s Predicted(blue) stock and Actual(yellow) stock

4.2.2. Google (GOOGL) Stock Price Prediction

For Google stock, the Adaptive ARMA model also showed promising results. The Mean Absolute
Error (MAE) obtained was:
MAEGoogle = 1.614543184379397

160
140 4 M .. .
120 H“ I’M )

l
100 1 "l'“,lﬂ
WA,
; }:'J kv)l
80 1 Ay
s N
AR
60 - ~ vtw\ A ":'f:r W
T N b ;
o o 2T ‘.".‘. ‘M\} ' H
W
40 ®

2017 2018 2019 2020 2021 2022 2023 2024

Figure 2. Google’s Predicted(blue) stock and Actual(yellow) stock

Considering that Google’s stock price during the test period typically ranged around $100 , an
MAE of about $1.61 indicates that, on average, the model’s predictions deviated from the actual stock
price by this amount.

4.3. Observations

The low MAE values, particularly for Tesla, provide strong quantitative evidence of the Adaptive
ARMA model’s effectiveness in forecasting financial time series. The close visual alignment between
the predicted and actual price trajectories, even during periods of significant market fluctuation, further
underscores the model’s ability to track dynamic changes. The adaptive parameter updates, driven by
the real-time prediction errors, enabled the model to continuously adjust its internal representation of
the time series dynamics, a capability lacking in traditional static ARMA models. This adaptability is
crucial for maintaining accuracy in inherently non-stationary environments like stock markets.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.4. Comparison with ARIMA Model

Upon backtesting the Google Stock Price with traditional ARIMA model[6] the mean squared
error came out to be 58.78 which is very large as compared to the mean squared error of just 4.47 when
the stocks were backtested with the adaptive ARMA(1,1) model.

ARMA(1,1) Model: Actual vs. Predicted Values
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Figure 3. Google Stock Price Predicted (red) by ARIMA model

ARMA(1,1) Model: Actual vs. Predicted Values
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Figure 4. Tesla Stock Price Predicted (red) by ARIMA model

5. Conclusions

This research introduced and evaluated an adaptive Autoregressive Moving Average (ARMA)
model for time series prediction, specifically focusing on its application to volatile financial markets.
Traditional ARMA models, while foundational, are constrained by their static parameters and the
inherent assumption of stationarity, which often limits their efficacy in dynamic environments. The
proposed adaptive ARMA(1,1) model addresses these limitations by incorporating a recursive param-
eter update mechanism, akin to a Least Mean Squares (LMS) algorithm, allowing its coefficients to
continuously evolve with new data.

The empirical evaluation through backtesting on historical stock price data for Tesla (TSLA) and
Google (GOOGL) yielded compelling results. For the highly volatile Tesla stock, the adaptive model
achieved a remarkably low Mean Absolute Error (MAE) of 7.78, demonstrating its robust ability to
track significant price fluctuations. Similarly, for Google stock, an MAE of 1.61 was observed, further
reinforcing the model’s overall accuracy across different volatility profiles. These quantitative metrics,
coupled with the visual congruence of predicted and actual price graphs, underscore the superior
adaptability and predictive power of our proposed method compared to static modeling approaches.
The adaptive nature proved crucial in accounting for the non-stationary characteristics and regime
shifts common in financial time series.

The findings suggest that adaptive time series models offer a promising avenue for enhancing
forecasting accuracy in complex and evolving systems. Future work could explore optimizing the
learning rate adaptation, investigating higher-order adaptive ARMA models, integrating exogenous
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variables, or incorporating more sophisticated adaptive algorithms like Recursive Least Squares
(RLS) or Kalman filtering. Furthermore, evaluating its performance on an even broader range of
financial instruments and market conditions would provide deeper insights into its generalizability
and robustness for real-world trading and risk management applications.

6. Datasets Used For this Research

Each dataset typically contains daily records including Open, High, Low, Close or Adjusted Close,
and Volume. For the purpose of this time series prediction study, the ‘Close” and "Adjusted Close’ price
was predominantly used as the target variable. The data was split into training and testing sets, with
the initial portion used for model training and the subsequent portion for evaluating out-of-sample
prediction performance. Specific date ranges for each dataset are available within the respective Kaggle
links.

Google’s Stock: https:/ /www.kaggle.com/datasets/henryshan/google-stock-price

Tesla’s Stock:https:/ /www.kaggle.com/datasets/jillanisofttech/tesla-stock-price
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