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Abstract: Predicting the outcome of a future game between two National Basketball Association
(NBA) teams poses a challenging problem of interest to statistical scientists as well as the general
public. In this article, we formalize the problem of predicting the game results as a classification
problem and apply the principle of maximum entropy to construct NBA maximum entropy
(NBAME) model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA
playoffs by the NBAME model. The best NBAME model is able to correctly predict the winning
team 74.4 percent of the time as compared to some other machine learning algorithms which is
correct 69.3 percent of the time.
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1. Introduction

National Basketball Association (NBA), the highest level Basketball league in the world, was
founded in 1946, having a history of 70 years. Now it is among the most professional, marketed,
attended games and one of the most popular leagues in the world. NBA enjoys a big following
around the world, with many participants anticipating for results, in addition to a multitude of
betting companies offering vast amounts of money to gamblers on odds of one team winning another
[1,2]. Most participants often place their odds subjectively basing on their personal preference of
teams without any scientific basis thus accuracy of the prediction is often very poor. With the rapid
advance in science and technology, specifically using sophisticated data mining and machine learning
algorithms, forecasting the outcome of a game before the game starts with high precision is highly
feasible and of great economic significance to various players in the betting industry.

With the prevalence of global sports competition, experts have began to focus on the historical
records of game statistics in a bid to turn the data into useful information since 1950. In the early days,
most of forecasts of NBA games just applied simple principles of statistics, which simply combined
the technical features of games, then calculating each team’s attacking and defensive strength, thus
determining the team’s overall strength, and then sorting teams according to their overall strength,
and finally using the sorted list to predict the outcome of the game [3,4]. However their accuracy is
low compared to probabilistic based machine learning methods. As the data for statistical features
became more ubiquitous, people began to look for more methods to apply to the large amounts of data
thus a vast amount of articles related to the analysis and forecasting of results of sports encounters
were published. With advances in statistics and processing power of personal computers, researchers
leveraged this power to improve accuracy in prediction. Bhandari et al. [5] developed the Advanced
Scout based on PC machine in 1996, which pushed NBA games’ data into data mining and knowledge
discovery technology field and enabled coaches to find some interesting patterns of the competition
of basketball game based on data.

By the end of the 20th century, a variety of machine learning algorithms started to be used by
scientists to forecast NBA games. Existing research that has used neural nets and decision trees has a
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major limitation of limited datasets which leads of overfitting of both the neural network and decision
tree models. Consequently the models will perform very well on the training data but a very low
performance results on the test dataset [6-8]. The Maximum Entropy model overcomes this limitation
by making use of the little known facts and making no assumptions about the unknown. Similarly,
support vector machine is limited by it’s failure to output a probability value but just a win or loss
which makes the results difficult to explain [9]. Lack of independence between some features used in
sports forecasting is a major limitation to researches such as [10], that used Naive Bayes method.

Of recent, many scholars have used a variety of probability graph models to simulate games
[11-14], and their results are promising. However their major focus is on the difference between
the simulation and the real game but do not predict the final outcome of the game and neither
do they compute their prediction accuracy. Stekler et al. [15] examined some different evaluation
procedures and compared prediction accuracy of some forecasting methods. Haghighat et al. [16]
reviewed the use of data mining technology (neural nets, support vector machines, bayesian method,
decision trees and fuzzy system) to forecast the results of sports events and evaluated the advantages
and disadvantages of each method. However, they did not evaluate the Maximum Entropy method
because to the best of our knowledge, this is the first research to apply the Maximum Entropy model
to sports forecasting.

The Maximum entropy model is more concerned about the construction of feature functions and
the preprocessing of feature values of the data. In this paper, using the maximum entropy principle,
we attempt to overcome the feature independence assumption that limits the Naive Bayesian model.
We applied the maximum entropy principle to a set of features and established the NBAME model.
Then we used the model to calculate the probability of the home team’s win of an upcoming game
and made predictions based on this probability. Our results show that the prediction accuracy is
pretty high when compared with others machine learning algorithms.

The rest of this paper is arranged as follows: In the following sections we describe the Maximum
entropy model and K-means clustering. Section 3 gives overview of NBAME model. Section 4
presents the experiment results and compare with other models. Finally, concluding remarks and
suggestions for future work are given in Section 5.

2. Methods

Before exploring the use of the entropy-based scheme in NBA predication, we discuss the
Maximum entropy model, and the K-means clustering algorithm used to discretize continuous
valued attributes.

2.1. Maximum entropy model

The concept of “Information entropy” dates way back since Shannon [17] first put forward the
concept of information entropy in 1948, which is the expected value of the information contained
in each message. As a measure of random events’ uncertainty or the amount of information, the
information entropy can explicitly be written as

H(p) = —)_ piloga(pi) 1)
i

Where H(p) is the information entropy, and p; is the probability of a random event. Jayne [18]
proposed a criterion when reasoning according to some information, we must choose such a set of
probability distribution that had maximum entropy and subjected to all the known information; this
criterion is known as the “Maximum entropy principle”. The maximum entropy principle points out
that when we need to estimate the probability distribution of a random event, it must meet all the
known conditions, and make no subjective assumptions about unknown conditions. In this case, the
probability distribution is most uniform, and the risk of making a wrong prediction is the lowest, and
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called this distribution as “Maximum entropy model”. If we assume that all the models are constraint
to the set C, as
C:{p€P|E,;,fk:Epfk,i:1,2,---,N} (2)

The condition entropy that defined in the conditional distribution p(y|x) is

H(p) = =) p(x)p(ylx)logp(y|x) ®3)
XY

Then the model that has the maximum entropy H(p) is the maximum entropy model.

Maximum Entropy model is a good-performance adaptability and flexibility excellence statistical
model, making probability estimates to the problem, which is suited to solve the problem of
classification. Unlike other models, the Maximum Entropy Model does not suffer from the effect
of related features since it has an internal mechanism of dealing with features that are related to each
other, thus it gives a higher accuracy when dealing with data that has several related features. The
Maximum entropy principle has been widely applied to all kind of areas at the present time. Tseng
and Tuszynski [19] gave several examples of applications of maximum entropy in different stages
of drug discovery. Xu et al. [20] proposed a continuous maximum entropy method to investigate
the robust optimal portfolio selection problem for the market with transaction costs and dividends.
Berger et al. [21] described statistical modeling based on maximum entropy and used the model to
solve natural language processing problems. Nigam et al. [22] proposed the use of maximum entropy
techniques for text classification. Phillips et al. [23] studied the problem of modeling the geographic
distribution of a given animal or plant species by maximum-entropy techniques.

2.2. K-means clustering

Clustering is an unsupervised learning method, the algorithm need not be given labeled data.
Jain [24] provided an overview of clustering algorithm development and application. K-means
clustering is a method of vector quantization and originally from signal processing. The standard
algorithm was first proposed by Stuart Lloyd in 1982 [25], the central concepts of it was that portion
n observations {xl, X, ¢, xn} into k clusters in which each observation belongs to the cluster with
the nearest mean. Nowadays it is more and more popular as a kind of clustering method in data
mining field. Miinz et. al [26] presented a novel flow-based anomaly detection scheme based on the
K-means clustering algorithm. Kanungo et. al [27] presented a simple and efficient implementation
of K-means clustering algorithm and so on.

Algorithmic steps for k-means clustering;:

—_

Let {x1,x2, - - -, xn } be the set of data points andV = {vy, vy, - - -, v }be the set of centers.

2. Randomly select “c” cluster centers and calculate the distance between each data point and cluster
centers.

3. Assign the data point to the cluster center whose distance from the cluster center is minimum of
all the cluster centers.

4. Recalculate the new cluster center using: v; = (1/¢;) ]Clzl x; where, ¢; represents the number of
data points in ith cluster.

5. Recalculate the distance between each data point and new obtained cluster centers.

6. If no data point was reassigned then stop, otherwise repeat from step 3.

As K-means clustering is one of the most effective methods to discretize features [28], so we used
K-means clustering to discretize values of each feature.

3. Maximum Entropy principle in NBA playoffs’ prediction

In this section, we describe basic technical features described in each game and apply
the maximum entropy principle to build the National Basketball Association Maximum Entropy
(NBAME) model
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3.1. Basic technical features

The outcome predicting problem is formalized as a classification problem, where the game
outcomes belong to exactly one of two categories. Each game is described with record consisting
of 29 features, which are related to the participating teams and the outcome of the game. Complete
statistics feature set with abbreviations can be seen in Table 1.

Table 1. Basic technical features used by our model.

Feature Abbreviation Feature Abbreviation

Field Goal Made FGM Field Goal Attempt FGA
Three Point Made 3PM Three Point Attempt 3PA

Free Throw Made FIM Free Throw Attempt FTA

Offensive Rebounds Oreb Defensive Rebounds Dreb
Assists Ast Steals Stl
Blocks Blk Turnover TO
Personal Fouls PF Points PTS

The statistics shown in Table 1, basic technical features, were used since they are common to
basketball and the typical fan understands what statistic represents.

3.2. NBAME model overview

Before building the NBAME model, we should construct the feature function. Choice of the
feature function is vital for performance of the maximum entropy model, which affects the structure
of the optimal probability model directly, and it is also gives the maximum entropy model the
most superiority over other models. The choice of feature function is flexible, which enables the
designer to make full use of the known facts of all kinds of information to improve the performance
of the model. In general, a feature function is a binary function of the form f(x,y) € (0,1).
Considering the NBAME model, we consider the NBA statistical probability model of training data
set(x1,11), (x2,¥2), - -+, (xN, UN), X; = (xi(l),xl(z),- . -,xi(zg)) € R% and is the features of the data sets
for each match, ;=0 or 1 is corresponding to the result of the match whether home team wins. So
according to dataset features x; and the outcome of the game result y; for each game in training data
set, we can define the feature function as:

= (D @ 08 .
fk<X,y)={ L (xl (xl ’xl 4 ’xl ))/\(y yl) (4)

0, otherwise

Where the k € K, K = |x(M ] x [x2)] % - . x |x28].

After constructing the feature functions, we can build the NBAME model by maximum entropy
model. We count the games with the same features x;, and the same outcome of the game y; in the
training data set, and then divide them by total number of training data set N. We get the empirical
distribution of joint probability distribution p(x,y).
plx,y) = % « number of times that (x, y) occurs in the sample 5)
For each feature function fi, the expectation with the empirical probability distribution of joint
probability distribution 7 (x, y) is:

Epfi = (Z) Pl y) fr(xy) ©)
XY
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We make calculation of the same feature attribute data feature x, and then divided them by the total
number of training dataset to get the empirical distribution of marginal probability distribution f(x),

p(x) = % « number of times that (x) occurs in the sample (7)

The expectations of feature function fi relative to the model p(y|x) and empirical distribution of
marginal probability distribution p(x) is:

Epfi = Z p(x)p(ylx) fi(x, ) 8)

(xy)

According to maximum entropy model, the classification problem becomes the optimal solution
problem that meets a set of constraint conditions now, namely:

P:{p|Eﬁfk:Epfk/Z:1/2//N} (9)
pt= argg\gg(H(P)) (10)

where
ZP p(y|x)logp(y|x) (11)

We transformed the problem of constrained optimization into unconstrained optimization of its
dual problem by Lagrange multiplier method:

N
P (y]x) = n(1> () Mfi(9) (12)

where the 77(x) is a normalization factor:

N
7(x) = Iy exp(} Acfi(x,y)) (13)

i=1

Parameter A can be perceived as the weight of feature function fi(x, y) the process of maximum
entropy algorithm’s learning is the process of adjusting the Ay. When solving the parameter Ay, we
could not obtain it in an analytical way but by a numerical calculation method , the most popular
being the Generalized Iterative Scaling(GIS) [29]. In this paper, we use the Generalized Iterative
Scaling method to calculate parameter Ay.

4. Results

In order to test the performance of NBAME model, after collecting and preprocessing the games’
statistics, we turn to the problem of predicting the outcomes of NBA playoff games for each season
individually during 2007-08 season and 2014-15 season. We make experiments on dataset by NBAME
model and some other machine learning algorithm.

4.1. Data Collection and Preprocessing

We created a crawler program to extract the 14 basic technical features of both teams and home
team’s win or lose from http:/ /www.stat-nba.com/ , collected a total of 10271 records for all games
for seasons ranging from 2007-08 season to 2014-15 season, and stored them into a MySQL database.

After the original data set was obtained, we cleaned it using Java. First, we combined the two
teams’ 14 basic technical features of the same game into a single record for the game. The features of
a game therefore contained 28 basic technical features and win or lose of the home team. Secondly,
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we calculated the mean of each basic technical features respectively from recent six games for both
sides before the game started (In every season, if teams didn’t have 6 games before the game started,
then we took the mean of the feature data that had happened before the game. The features of the
first game of each season could not be predicted, so we removed the record of the day contains teams’
first game for each season), as the basis of predicted to each technical features for the coming game,
and used to predict the outcome of it.

Table 2. Sample features raw values obtained from stat-nba.com website

Features FGM FGA 3PM 3PA FM FTA Oreb Dreb Ast St Blk TO PF PTS

Features’ 32 79 6 24 18 24 8 28 17 10 2 18 15 88
values of 45 87 9 24 8 11 5 32 32 8 3 14 23 107

last 33 85 7 23 22 29 9 36 22 10 4 12 21 95

six games 33 83 6 23 12 15 14 28 22 6 4 15 18 84
for 48 85 8 23 10 14 12 31 29 9 6 13 20 114
home team 44 80 7 19 14 18 7 35 25 9 8 14 16 109
Average 39.17 8317 717 2267 1400 1850 9.17 31.67 2450 867 450 1433 1883 99.50

Table 2 shows home team’s least six games’ basic technical features obtained from website and
the average values for coming game. We could calculate the basic technical features for every coming
game in the same way. Table 3 shows a sample record of the features and the true outcome for the
first game in 2014-12-31.

Table 3. A sample record experimental dataset obtained by getting averages of previous six games.

Features Values Features Values Features Values Features Values Features Values
FGMy, 39.17 Dreby, 31.67 FGM, 41.00 Drebg 31.17 Winy, 1
FGAy, 83.17 Asty, 24.50 FGAq 82.33 Astg 22.17
3PMy, 7.17 Stly, 8.67 3PMg 7.50 Stlg 6.67
3PA 22.67 Blky, 4.50 3PAq 18.33 Blkg 4.00
FTM, 14.00 TOy, 14.33 FTMg 21.00 TOq 16.33
FTAy 18.50 PFy, 18.83 FTAq 27.83 PFy 22.17
Oreby, 9.17 PTSy, 99.50 Orebg 10.33 PTSq 110.50

As shown in Table 3, each training example is of the form (x;,y;), which corresponds to the
statistics and output of a game in a particular match. x; is an 28 dimensional vector contains the input
variables and y; indicates whether the home team won (y; = 1) or lost (y; = 0) in that game. The first
28 columns indicate the basic technical features for each team as obtained by computing an average
of the previous six games played by the corresponding team. The 29th column is the actual outcome
of the game corresponds to the predicted game, labeled as “Win,,” takes on only two values: 1 or 0;
a value of 1 indicates that the home team won and 0 otherwise. We use these basic technical features
dataset to train NBAME model by the principle of the maximum entropy and predict the result of the
coming game during NBA playoffs for each season.

According to the maximum entropy principle, the NBA maximum entropy (NBAME) model
needs to be trained on sufficient amount of training data. However, training in each season is limited
thus a possible threat of over-fitting; if there are too many feature functions such that the number of
training samples is smaller than the feature functions, the probability distribution model will over-fit
resulting into high variance. Consequently, we get a better performance on the training data but low
accuracy on testing data. So we needed to discretize each feature’s value to reduce variance and avoid
over-fitting.

We used K-means clustering for data discretization by the software R. We applied the clustering
software package [30], using the Partitioning Around Medoids (PAM) function to cluster the data of
each feature. The number of clusters is input parameters, and its value often involves clustering’s
effect. A crucial choice to make was the number of clusters to be used; Silhouette Coefficient (SC) [31]
can be used to solve this problem, which combines condensation degree and degree of separation.
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It indicated the effectiveness of clustering with a value between -1 and + 1. The greater the value is
the better result of clustering. According to this principle, we could try to use some parameters of
number of clustering, calculating the SC repeatedly under the condition of different cluster number,
we chose the one when the SC is the highest, which corresponded the number of best clusters.

We calculate the SC of the away teams’ score when k ranges from 3 to 10 (2 clusters are not
enough to distinguish a lot of data obviously). Figure 1 shows the relationship between k value and
SC by the K-means clustering to discrete the away teams’ score.

0.53
I

Silhouette Coefficient

0.51
1

Number of Clusters

Figure 1. Silhouette Coefficient (SC) with the change of clusters.

As shown in the Figure 1, 2014-15 season after getting rid of the first three days (some of the
teams had not played the first game of the season in the first three days of this season, it was not
possible to forecast its features’ values, here we did not use it as an experimental dataset), the SC
value of away teams’ score changes as the change of the number of clusters k value from 3 to 10 in
2014-15 season. It is shown that when we take k as 3, the SC 0.545 is greater than when k takes any
other values. Thus the cluster number of away teams’ score is assumed to be 3. Figure 2 shows the
results of discretization of away teams’ score, when the SC is 0.545
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Figure 2. Three clusters for away teams’ score

As shown in the Figure 2, away teams’ score discrete values after 3 clusters of K-means, the
distribution in each cluster is shown. We use k-means clustering to discretize home teams’ score
values and other basic technical features for each game in the same way. Some samples of the
experimental data set can be seen in the Table 4.

Table 4. A sample record experimental dataset obtained by getting averages of previous six games.

Home teams’ features
FGM;, PGAh 3PM;1 3PAh FTM;, PTAh Orebh Drebh Asth Stlh Blkh TOh PFh PTS;,

37.63 8331 785 2266 1435 19.02 950 31.68 2426 882 418 1449 1865 98.6

37.63 8331 785 1894 1435 19.02 7.17 3501 2426 694 650 1242 2207 9448
37.63 8475 1074 2611 1780 2544 11.27 3259 2426 882 650 1242 19.87 106.59
3763 8020 785 2611 1780 2235 950 29.60 2297 790 418 1514 18.65 98.60
37.63 8612 1074 3405 1780 2380 1230 31.68 2197 9.64 336 16.09 22.07 10239
3763 7795 785 2087 1780 2076 717 30.77 2426 694 418 16.09 2098 102.39
4085 8778 785 1894 1780 2544 1339 3694 1996 694 5.66 1242 2098 106.59

Away teams’ features Home team
FGM, FGA, 3PM, 3PA, FTM, FTA, Oreb, Dreb, Ast, Stl, Blk, TO, PF, PTS, win

40.36 82.6 777 1840 20.61 2654 1034 3216 2240 6.59 4.08 1619 21.65 10843
3676 7384 777 21.63 1685 2442 826 2868 1934 9.00 376 13.17 21.65 100.06
3773 8681 539 1840 1685 2034 1248 28.68 21.66 7.76 515 1242 2045 100.06
38.88 795 1049 21.63 1558 2034 759 3216 2413 776 571 1736 2279 100.06
3566 8513 777 21.63 1790 2442 1083 3550 1934 7.18 571 11.74 19.09 100.06
3773 8513 539 1840 16.85 2034 1148 3216 2070 7.18 515 1242 1632 100.06
4248 86.81 1049 2473 16.85 2241 1248 3216 20.70 840 571 1242 19.09 10843

R O

As shown in Table 4, the first 14 columns represent the home teams’ basic technical features
values after k-means clustering discretization. The last column is the home teams’ actual win or loses
of the game. Others represent the away home teams’ basic technical features values after k-means
clustering discretization. It is also the final dataset that is applied to train NBAME model and make
prediction for the NBA playoffs. We sort them by the date, separate them according to the seasons,
and then saved the data for each season to a file, and then train and test NBAME model for each of
the season saved in the file repeatedly.
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4.2. The results of NBAME model for predicting the NBA playoffs

We accumulated 14 basic technical features, which are discretized by K means cluster, of both
sides and the victory of home from the first game of the season to the coming game to construct
NBAME model by the maximum entropy principle, and trained the parameter Ay by the Generalized
Iterative Scaling (GIS) algorithm. Then we applied 28 basic technical features of the coming game
into the NBAME model; calculated the probability of the home team’s victory in the game p(y|x). As
the results for p(y|x) are continuous number, we set up a threshold at 0.5 (meaning that if our model
outputs a probability not less than 0.5, we decide that the home team wins, else if the probability is
less than 0.5, we decide the home team loses) to decide the winner of the game, meaning:

filoy) = { 0(lose), ply|x) < 0:5 (14)

Finally, we compared the decision of the home team to win or lose to the corresponding real
competition. If it was the same, then we said the prediction of the NBAME model was right, and we
added 1 to the count of correct prediction. Eventually we would get the total number of predicting
correctly, and we divided it by the number the data set that we used to test it, which is our model’s
forecast accuracy. Accuracy was used as performance measure, and it was calculated by the following

formula: o
number of correct predictions

accuracy = —
Y total number of predictions

(15)

The accuracy of predicting eight seasons NBA playoff games by NBAME model with 0.5 threshold
judgment is shown in the first row of Table 5.

Table 5. Prediction accuracy (in percentages) of NBAME model with different thresholds.

Threshold 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15

0.5 74.4 68.2 68.3 66.7 69.0 67.1 65.2 69.1
0.6 77.1 74.5 75.0 69.8 73.0 714 66.7 70.4
0.8 100.0 80.0 100.0 100.0 100.0 75.0 100.0 100.0

As can be seen from Table 5, we used entire discrete feature set (all 28 game statistic as features) to
predict the probability of the home team’s victory for the playoffs of each season between the 2007-08
season and 2014-15 season. The prediction accuracy reached as high as 74.4% in 2007-08 season. This
shows that the NBAME model by the maximum entropy principle is suitable to forecast the outcome
of NBA game, and can achieve the best prediction accuracy.

NBAME model outputs the probability of the home team’s winning in the coming game given
the coming game’s features. The home team would be more likely to win if the model outputted
a probability greater than the threshold value. At this point it is important to note setting a high
confidence improves the accuracy of our model predictions with a drawback of predicting fewer
games. If we set the threshold to 0.6, we shall not be able to make a decision on all the games with
output probabilities between 0.4 and 0.6,

1(win), p(y|lx) > 0.6
fku(x,y) = 16
k(xy) { O(lose), p(ylx) <04 (16)
However, predictions based on the few decisions made would be more accurate. To study the effect
of varying the threshold values, we used the same training dataset to train the NBAME model, and
calculated the probability of the home team’s victory for each season, and used the threshold of 0.6
and 0.7 to decide the outcome of coming game, the experimental results are shown in Table 5. We
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also made Figure 3 for a graphical representation of the number of predicted games and predicted
accuracy during 2007-08 season and 2014-15 season with the threshold of 0.5, 0.6 and 0.7

g4 \

100 100.0%

80 -

- 90.0%

60 - - 80.0%

40 - - 70.0%

predicted accuracy

20 - - 60.0%

- 50.0%

The number of predicted games

2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15

seasons

mmm Number of Games(0.5 threshold) s Number of Games(0.6 threshold)

mmm Number of Games(0.7 threshold) ===precision(0.5 threshold)

precision(0.6 threshold) ——precision(0.7 threshold)

Figure 3. The number and accuracy of prediction with different confidence by NBAME model from
2007-08 season to 2014-15 season playoffs

As shown from Figure 3, when adjusted the confidence, the games for which we could make a
decision are less than the total of playoff games of each season. For example, the number of prediction
decreased from 86 to 48 when we increased the threshold to 0.6 in 2007-08 season, however, the correct
rate of prediction improved to 77.1 percent. While used 0.7 as the threshold, we got the 100 percent
for many season payoffs, even though we just could make decision for few games. It shows that we
could trade the number of games for which we can make a prediction for the benefit of improved
prediction accuracy which can be of great commercial value.

4.3. Comparison of NBAME model with some selected existing machine learning algorithms.

To evaluate NBAME model by maximum entropy we made prediction for NBA playoffs using
selected other machine learning algorithms and compared the results with those of NBAME model.
In Table 6 we present results obtained when the features in Table 1 were used together with the
algorithms in Table 6 to predict outcomes of NBA playoffs between 2007 and 2015.

Table 6. Prediction accuracy (in percentages) of selected algorithms for NBA playoffs for seasons

between 2007 and 2015.
Algorithm 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15
Naive Bayes 65.0 61.9 59.1 59.3 53.6 58.8 56.5 55.0
Decision Tree 67.0 56.0 51.2 58.0 54.8 61.2 56.5 60.0
(BP)Neural Networks 69.3 63.1 52.4 67.9 56.0 63.5 50.6 57.4
Support Vector Machine 65.1 60.7 62.2 60.5 60.7 67.1 63.5 60.0
NBAME 74.4 68.2 68.3 66.7 69.0 67.1 65.2 69.1

From Table 6 we realize that our model out-performed all the other classifiers for all seasons
under consideration except for the 2010-11 season where our model was out-performed by Neural
Networks. The SVM model follows closely in the second position and then Neural Networks finished
third. The Naive Bayes had the lowest accuracy with an average of about 60%, this may have been
caused by it’s assumption that all the features were independent which was not the case. Accuracy
results from the Neural Networks and Decision Tree suffer adverse variations between seasons, for
example in the 2007-2008 season, the Neural Network registered impressive prediction accuracy at
69.3% but drastically reduced to 52.4% and 50.6% in 2009-2010 and 2013-2014 seasons respectively.
These variations could be explained by insufficiently small size of the training dataset that may have
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caused the models to over-fit the data. Another interesting feature of the results is that some seasons
appear to be inherently more difficult to predict, such as 2013-14 season , which showed lower overall
prediction accuracies for all methods. This could have been caused by some significant changes for
example: Zach Randolph was suspended for punching Steven Adams while jogging back in transition
in Game 6. The controversy regarding Clippers” owner Donald Sterling’s racist comments arose,
which led the Clippers and all NBA teams’ players to protest strongly against such remark of his. The
Oklahoma City Thunder failed to cover for the absence of Ibaka Serge for his injury, and so on. All of
these unpredictable incidences, both on and outside the court, may have caused NBA games in this
season to be highly unpredictable. Figure 4 presents a graphical representation of this data.
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(BP)Neural Networks
\\V- < Support Vector Machine
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~ ~N
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Figure 4. Comparison of performance of NBAME model against some machine learning algorithms

5. Conclusions and Future work

We applied the maximum entropy principle to construct the NBAME model and used the model
to predict the outcome of the NBA playoffs from 2007-08 season to 2014-15 season, as seen in the
results section, NBAME model is a good probability model for prediction of NBA games. The
prediction of NBA games results is a very hard problem because there are many random factors
such as the relative strengths of either teams, presence of injured players, players’ attitude, and team
manager’s operations, that determine the winner or loser. Overall the NBAME model is able to match
or perform better than other machine learning algorithms.

The predictive model in this research was able to use the mean of each basic technical features
respectively from recent six games for both sides before the game started to accurately predict the
outcome of an “un-played” game. Possible extensions to this research would include exploring better
methods to calculate the value of the features for the coming game, such as using more effective
algorithms to preprocess the features of NBA dataset, or looking for some comprehensive strengths
as features.
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