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MIREA—Russian Technological University, nik.karabutov@gmail.com 

Abstract 

Many publications have been devoted to the problem of parametric identifiability (PI). The major 
focus is on a priori identifiability. The parametric identifiability problem using experimental data (the 
so-called practical identifiability (PID)) is less studied. This is a parametric identification task. PI has 
not been studied using current data (in adaptive systems). We propose an approach to estimating PI 
based on the application of Lyapunov functions. The role of the excitation constancy is shown. 
Conditions of local parametric identifiability (LPI) for a class of linear dynamical systems are got 
based on current experimental data. The case is considered when both the state vector and the input-
output set are measured. Estimates are obtained for the parametric residual. Case of limiting LPI on 
the set of current data is studied. Influence of initial conditions on PI is analysed. The case of m -
parametric identifiability is studied. Approach to estimating the PI of linear dynamical systems and 
systems with periodic coefficients based on the application of Lyapunov exponents is proposed. The 
LPI of decentralised systems is analysed. Examples are given. 

Keywords: parametric identifiability; periodic dynamical system; Lyapunov function; adaptive 
algorithm; decentralized system; nonlinearity; quadratic condition; Lyapunov exponent 
 

1. Introduction 

Estimation of the model parameters is possible if the conditions guaranteeing their receipt are 
met. Many publications have been devoted to the issues of identifiability (see, for example, [1–10]). 
Much attention is paid to the analysis of a priori identifiability (AI) (in the literature, it is structural 
identifiability). AI conditions often have an algebraic form. To obtain them, such approaches are used 
as differential algebra [11], time series analysis [12] and some others [4,13–15]. The observability role 
[16] in identifiability problems is noted. 

Some authors study the identifiability problem based on experimental data (see review [4]). This 
is practical identifiability. PID is based on obtaining a mathematical model and verifying it. This 
approach gives good results for systems with a known structure. In [17], low-order models are used 
to solve the problem of unidentifiable parameters. This approach is based on performing many 
adjustments. 

Statistical hypotheses and criteria are used to solve the problem of estimating unidentifiable 
parameters. The probability profile parameter is used in [18]. Markov chains based on the Monte 
Carlo method [19] are used to estimate unidentifiable parameters. The apply of these approaches is 
associated with certain difficulties. 

The Fisher information matrix is used to solve of PID problems [20]. Other statistical approaches 
are discussed in [4]. The result of solving the PID problem is the model with an accurate forecast. If 
this is not true, then the structural identification problem is solved. A more complete analysis of the 
state of the PID problem is given in the review [4]. Note that the PID problem interpretation does not 
accurately reflect the problem. This is the parametric identification problem with decision-making 
elements. 

As follows from the presented analysis, the emphasis is on the study AI problem. Practical 
identifiability has not been sufficiently investigated. The focus is on synthesizing a mathematical 
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model using various methods and evaluating its predictive properties. Various statistics, methods, 
and criteria are used to decision-making about the PRI. If the parametric identifiability condition is 
not met, various multistep procedures are proposed. These approaches are not always effective. For 
a more complex class of systems (multidimensional, decentralized, and interconnected), this problem 
requires further investigation. PI issues were not considered in adaptive systems. 

In this paper, we study the PI problem for a class of adaptive models. The approach is proposed 
for obtaining conditions of local PI based on a class of adaptive algorithms. Conditions for limiting 
LPI are obtained. We show the dependence of adaptive identification system (ASI) properties on the 
initial conditions. A generalization of the results is given for the case of m -parametric identifiability. 
The linear system case with periodic parameters is considered. The PI problem solution is reduced to 
the application of Lyapunov exponents. 

2. Problem Statement 

Consider the system 

 

,
,T

X AX Bu
y C X
= +
=



 (1) 

where u∈ , y∈  are input and output, nX ∈  is the state vector, [ ]1 0 .... 0 TC = , 

[ ]0 0 .... 0 TB b= , n nA ×∈ . 

Set of experimental data 

 [ ]{ }0( ) ( ), ( ), , kt u t y t t t t= ∈ =  . (2) 

Assumption 1. A  is Hurwitz matrix. 

Problem. Evaluate the system (1) parametric identifiability using the of the set ( )t  analysis. 

3. Approach to PI Estimation 
The representation is valid for the system (1) in space ( , )u y : 

 Ty A P= ,  (4) 

where 2nA∈  is the vector of parameters, 2nP∈  is the generalised input vector, which is got 
based on the processing ( , )u y  by a system of auxiliary filters. 

To evaluate elements of vector A , introduce the model based on the set { }( ), ( )t u t y t=  for 

each t : 

 ˆˆ ˆ( ) Ty k y y A P= − − + , (5) 

where 2ˆ nA∈  is the vector of model parameters, 0k >  is the parameter setting the properties of 
the model. 

Equation for identification error (prediction) ˆe y y= − : 

 Te e A Pκ= − + Δ , (6) 
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where ˆA A AΔ = − . 
Let the elements of the vector ip P∈  by constantly excited (CE): 

 2: ( )
ip i i ip tα α≤ ≤VX  [ ]0 ,t t T∀ ∈ , (7) 

where 0, 0i iα α> > . 
Notation: 
(i) ( )X Af  is a class of systems (1); 
(ii) ( )y Af  is a congruent representation (4) on the set { }0( ), ( ),t u u y t t t= > ; 
(iii) iΩ  is the frequency spectrum of the element ip P∈ ; 
(iv) 

ii pp ∈VX  or ip ∈VX ; 

(v) ip ∉VX  if the CE condition is not held true. 
(vi) the variable is ( )u t ∈VX  if it has a non-degenerate frequency spectrum for all t∈  . 

Definition 1. The system (1) of class ( )X Af  is locally parametrically identifiable on the set t  if the 
condition 

 { }2 * *
0: &n

A A tA A A A t t tε∈ = ∈ − ≤ ∀ ≥ >   , (8) 

is fulfilled for its representation (4) in class ( )y Af , where *A  is some reference vector of system 
parameters (4), 0Aε ≥ . 

We see if there is an identification algorithm vector Â  of the system (5) on { }0( ) ,tt t t= >   for 

some ( ){ }0,iA t , then starting from the moment *t , the condition (8) will be fulfilled for the estimates 

of vector A . 
Consider the Lyapunov function 2( ) 0.5 ( )eV t e t= . 

Theorem 1. Let 1) assumption 1 holds, i.e., the matrix in (1) A∈[ ; 2) the system (1) represents how (4) 
to set ( )t ; 3) the identification system is described by equation (6); 4) uu∈VX ; yy∈VX , PP∈VX . Then 

the system (4) is locally parametrically identifiable in the region A  if 0AΔ =  follows from 0TA PΔ =  and 
the condition is satisfied: 

 
2

2 2( ) ( )e
P

kA t V t
α

Δ ≤ , (9) 

where ( ) ( ) , 0T
P n PP t P t Iα α≤ > , 

n n
nI

×∈  is the unit matrix. 
The proof of Theorem 1 is given in Appendix A. 

Remark 1. The vector ( )X t reconstruction in (1), based on (4) and schemes proposed in the literature, 
gives estimates that do not correspond to components ( )X t . This follows directly from (4). 
Therefore, adaptive control laws based on the use of vector P  elements are applied in control 
systems. Estimation 2x y=  , 2x X∈  can be obtained directly from (4). The remaining components 

( )X t  are determined based on the symbolic differentiation operation. 

Corollary from Theorem 1. If the adaptive algorithm 

 A ePΔ = −Γ , (10) 
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is used to evaluate the vector A in (4), then the local parametric identifiability of the system (1) follows from 
the estimation 

0

0( ) ( ) 2 ( )
t

e
t

V t V t k V dτ τ≤ −  , 

where ( ) ( ) ( )eV t V t V tΔ= + , 1( ) 0.5 TV t A A−
Δ = Δ Γ Δ , 0TΓ = Γ >  is a diagonal matrix. 

Let vector ( )P t  elements be measurable for each t . Here, the system (4) is detectable. Then 
observability, detectability and recoverability of the system (1) follow from properties of system (4). 

The proof corollary from Theorem 1 is given in Appendix B. 
Consider the Lyapunov (LF) function 0.5 T

EV Е RЕ= , where 0TR R= > . 
Structures of classes ( )X Af  and ( )y Af  are congruent, so the following statement is valid for 

system (1). 

Theorem 2. Let 1) the conditions of Theorem 1 are fulfilled for the system (4) of class ( )y Af ; 2) classes ( )X Af  
and ( )y Af  are congruent; 3) uu∈VX , ( ) XX t ∈VX . Then system (1) is locally parametrically identifiable on 

class ( )X Af  if 

 
2 2 24X u EA B Vα α μΔ + Δ ≤ ,   

where 
T TЕ QЕ Е RЕμ≥ , 0μ > , 

TRK K R Q+ = − , 0TQ Q= > , ( )tr TA A AΔ = Δ Δ , tr  is the matrix 

trace. 
The proof of Theorem 2 is given in Appendix C. 
Consider the adaptive model 

 ˆˆ ˆ ,X KE AX Bu= − + +  (11) 

and apply the integral algorithm class 

 
ˆ T

A

B

A ERX

B REu

= −Γ

= −Γ




 (12) 

to tuning of matrix ˆ ˆ,A B . 
The identification system is described by the equation: 

 ,E KE AX Bu= + Δ + Δ   (13) 

where ˆE X X= − , ˆ nX ∈  is model (11) state vector, K ∈[  is the matrix of dimension n n× . 

Corollary from Theorem 2. If the conditions of Theorem 2 are fulfilled, and the class of algorithms (12) is 
used to tuning the model (11) parameters, then the local parametric identifiability of the system (1) follows from 
the estimation 
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0

0( ) ( ) 2 ( )
t

W W E
t

V t V t V dμ τ τ≤ −  . (14) 

The proof corollary from Theorem 1 is given in Appendix D. 
We see that the local PI depends on the choice of initial conditions, and fulfilment of the 

requirements for variables and system input. 

Remark 2. Presented results differ from the results [4] based on the application of AI methods. If the 
decision is made based on experimental data, then various statistics [4] are used. In this paper, we 
apply the approach to the PI analysis based on the current data analysis. This approach has not been 
used in PI tasks. 

If conditions of Theorem 2 are fulfilled, then the class of algorithms (12) will be called locally 
identifying. 

In the future, for the convenience of reference, the adaptive algorithm (10) will be related to class 
y

IAT , and the law (12) to class X
IAT . 

Definition 2. A system (1) of class ( )X Af  is extremely locally parametrically identifiable (ELPI) on 
the set t  if the condition 

 { }2 * *
0: lim , (0) &n

A tt
A A A A t t tε ε

→∞
∈ = ∈ − → ∈ ∀ ≥ >      , (15) 

is satisfied for its representation (4) in class ( )y Af , where *A  is some reference vector of system (5) 
parameters, (0)  is an area of zero. 

Here, the vector A  identifiability is understood as the limit proximity to *A . Under certain 
conditions, the global PI of the vector A  follows from (15). 

Consider again the system (6) and LF 1( ) ( ) ( )TV t A t A t−
Δ = Δ Γ Δ . 

Theorem 3. Let the conditions of Theorem 1 be fulfilled and (i) there is a Lyapunov function VΔ  admitting an 

infinitesimal upper limit; (ii) there is 0ϑ >  such that the condition ( )2 2Te A P A eϑΔ = Δ +  is satisfied for 

sufficiently large t  in some area of zero; (iii) PP∈VX  with parameters ,P Pα α ; (iv) The inequality 

 3 4
4 3P P e

P

V V a Vϑα λ ϑ
αΔ Γ Δ≤ − + ,  (16) 

is valid for the trajectories of the adaptive system (6) and (10), where λΓ  is the minimum eigenvalue 
of the matrix Γ . Then the system (6), (10) is locally parametrically identifiable on the set t  with 
estimating ( ) ( )V t S tΔ Δ≤  if the functional condition 

 2

16
9 P e

P

a V V
α λ Δ

Γ

≤ , (17) 

is satisfied, where: 

 ( )0

0

( ) ( )
0( ) ( )

t
t t t

e
t

S t e S t e V dσ σ τπ τ τ− − − −
Δ Δ= +    (18) 
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is the upper solution of the comparison system eS S Vσ πΔ Δ= − +  for (16) if ( ) ( )0 0S t V tΔ Δ≥ , 4
3 P

P

aπ ϑ
α

= , 

0.75 Pσ ϑα λΓ= . 
The proof of Theorem 3 is given in Appendix E. 
We see that the PI in the class of algorithms (10) or (12) depends on the initial conditions and 

properties of the information set. LPI is guaranteed for systems of class ( )X Af  and ( )y Af  with 

asymptotic stability by error. However, estimate elements of the matrices will belong to the domain 
A . This is a typical state of adaptive identification systems based on the class of algorithms (10), 

(12). 

Remark 3. The region A  can be compressed to A  and limiting conditions for LPI can be got if 
conditions (9) or (17) for ASI are fulfilled. In real-world conditions, ASI guarantees almost extremely 
local parametric identifiability. 

4. On ELPI 

The ELPI fulfilment guarantees the transition to global PI (GPI). For static procedures (least 
squares method, maximum likelihood method), ELPI is ensured by the properties of the information 
matrix. For methods based on the class IAT , properties of the information matrix are not directly 
applicable, because the processes are complex in ASI. 

With GPI, we understand the condition fulfilment: 

 { }2 * *
0: 0 &n

A tA A A A t t t∈ = ∈ − = ∀ ≥ >  


. (19) 

The proposed interpretation of GPI as belonging the parameters of model (6) to the set A


 is 
linked to the absolute stability of an adaptive system. 

Global parametric identifiability follows from Theorem 4 for systems of class ( )y Af . 

Theorem 4. Let: 1) the conditions of Theorems 1 and 3 are fulfilled; 2) The system of inequalities is valid for 
processes in the system (6), (10) 

 


1

4 3
3 4 G

G

P
e e

P P
WP

A

kV Vk
VV a

α λ

ϑ ϑα λ
α

Γ

ΔΔ
Γ

 −     ≤         −  






, (20) 

where ,λ λΓ Γ  are the maximum and minimum eigenvalues of the matrix Γ . Then (a) the system (4) 
is globally parametrically identifiable on the class ( )y Af , (b) the system (6), (10) is exponentially 

stable with the estimate: 

 ( )0
0( ) ( )GA t t

G GW t e S t−≤ ,  (21) 

if 

 22 29 16P Pk aα λ λΓ Γ≥ , (22) 
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where 2
GS ∈  is the state vector of the comparison system ( ) ( )G G GS t A S t= , ( ) ( )0 0G GS t W t≥ . 

The proof of Theorem 4 is given in Appendix F. 
From Theorem 4, we obtain GPI on the set of initial conditions and ELPI. Since the systems are 

congruent, this condition is also valid for systems (1) of class ( )X Af . To substantiate this statement, 
apply the approach [22]. 

5. About m -Parametric Identifiability 

Let the CE condition not be fulfilled. The problem of identifiability, and identification, must be 
solved. Consider the approach to solving this problem using the example of the class ( )y Af  system. 

Let the system and the model have the form (4) and (5). We assume that u∉VX . The term 
TA PΔ  in (6) is represented as 

TT T T T T TA P A P A A P Pδ   Δ = Δ = Δ   
  , 

where ( ) , ( )PP t P t∈ ∉VX VX
 ; T TA Aδ Δ 

  is the representation AΔ  corresponding to the vector 

( )P t . 
Transform the equation for error (6) to the form 

 ( ),Te e A P A Pκ ω= − +Δ + , (23) 

where TA Pω δ= , ( ),A Pω ∈  is uncertainty caused by non-fulfilment of the condition u∈VX , 
ˆA A AΔ = −  , ˆ ˆA A⊂  is the part of the vector Â  evaluated on the class y

IAT , 2ˆ mA∈ , m n< . 

Let ( ),A P ωω ε≤ , where 0ωε ≥ . 

Definition 3. A system of class ( )y Af  is m -locally parametrically identifiable on the set 

{ }0( ), ( ) ,t P t u t t t= ∉ >VX  if the condition 

 { }2 * *
0: , 0 &m

A m m tA A A A t t tε ε∈ = ∈ − ≤ > ∀ ≥ >  
    . (24) 

is satisfied with its representation (4) in class ( )y Af . 

Theorem 5. Let (i) the system (1) be stable; (ii) the Lyapunov function 10.5 AV A A−
Δ = Δ Γ Δ   admits an 

infinitesimal limit, where 0T
A AΓ = Γ >   is the diagonal matrix; (iii) ( )u t ∉VX . Then the system (4) is locally 

parametrically identifiable in the domain A


 if 

 
2 20.5 0.5 2P m eA k Vωυ εΔ + ≤  (25) 

and all trajectories of the system (4) belong the area 

 { }2 1 1 2
0( ) , : ( ) ( ) 2 0.5n

v v m ee t A V t V t k V ωη η ε− −
Ξ = ∈ Δ ∈ ≤ − +   ,  (26) 

where v eV V VΔ= +  , ( )min 1,2η λΓ= . 
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The proof of Theorem 5 is given in Appendix G. 
From Theorem 5, we see that the PI domain depends on the CE fulfilment of the information set 

of the system. If the CE condition is not fulfilled, the parameter mε  increases because of the effect of 
parametric uncertainty ω . Here, estimate (14) is more realistic and, under certain conditions, ELPI 
is possible with estimate (18). 

Remark 4. In biological systems, structural identifiability issues are considered. Most times, lineal 
systems with numerous parameters are studied. Various algorithms are proposed and identifiability 
conditions are investigated to reduce the number of estimated parameters. In ASI, a multiplicative 
approach is used to identify a system with various parameters [23]. Here, PI is understood as 
parametric identifiability in some parametric domain ( )G A , depending on the vector of 

multiplicative parameters (MPV). As a rule, MPV estimates belong to a certain limited area, which is 
formed based on of a priori information and analysis of the information set. This identifiability 
applies to systems satisfying specified quality requirements. 

6. Lyapunov Exponents in PI Problem 

6.1. Stationary System of Class ( )
X Af  

Lyapunov characteristic exponents (LE) are the characteristic of a dynamical system. LE is an 
indirect PI estimate of the system. This approach to PI has not been considered in the literature. The 
LE application has its own peculiarities in the proposed paradigm of PI. In particular, it is necessary 
to consider the issue of detectability, recoverability and identifiability of LE based on the information 
set of the system. Identifiability is understood as the detectability of Lyapunov exponents. Known 
approaches allow us to estimate only the maximum (largest) LE [24]. A more promising approach is 
based on the analysis of geometric frameworks (GF) reflecting the change in LE [24]. Issues of LE 
detectability based on GF analysis are presented in [24]. Therefore, they are not considered here. 
Detectability is the important issue for evaluating LE. 

In [24], the criteria for _c -detectability of Lyapunov exponents are presented. _c -
detectability and recoverability we understood as the ability to the LE estimate. _c -detectability 
imposes certain requirements on experimental data. The approach allows us to obtain the full range 
LE. 

Let 1m n υ= − − , where υ  is the number of non-recoverable LE. 

Definition 4. The system (1) is called m -detectable with a υ -non-recoverability level if the υ  lineal 
(LE) has an insignificant level. 

As follows from definition 4, that if the system of class ( )
X Af  is m -detectable with a level of 

υ -non-recoverability, then this is a sufficient condition for m -parametric identifiability of the 
system. The CE requirement plays an important role, as it guarantees the S-synchronizability and 
structural identifiability of the nonlinear system. 

Remark 5. The definition 4 provides sufficient conditions for evaluating PI systems of class ( )
X Af . 

This issue requires further study. Note that LE (for the classes ( )
X Af  under consideration, the 

Lyapunov exponents are the eigenvalues of the matrix) depend on system parameters. 
Analysing nonstationary (periodic) systems is more difficult, since it is difficult to isolate the 

parametric space here. 
Using LE translates the PI problem into the space of Lyapunov exponent [25] for periodic 

systems (PS). 

6.2. PS for Class ( )
X Af  
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Consider the system (1) with the matrix ( )A t . For convenience, the system will be denoted by 

perS . 

Assumptions. 
A1. ( )A t  is a bounded continuous Frobenius matrix 

 ( ) AA t α≤ , (27) 

where 0Aα > , ⋅  is matrix norm. 

A2. ( )A t  is almost periodic, i.e., a subsequence can be selected from any sequence 

 ( ) ( )iA t A t τ= −  (28) 

converging uniformly along the entire axis to some almost periodic matrix ( )A t . 
A3. ( )A t  is the Hurwitz matrix for almost all 0t ≥  

Let { }0
( ), 1, ,iA t i n t tχ= = >e is a spectrum of LE iχ  ( )1,i n= . 

Definition 5. The function ( )i tχ  is almost periodic in the Bohr sense [26] or the UY - function [25], 
if such a positive number ( )l l δ=  exists, that any segment [ ],a a l+  contains at least one number 

fT , for which it is hold 

 ( ) ( )ff x T f x δ+ − <     and [ )0,t∈ ∞ . (29) 

If ( )i tχ  is a UY -function, then it is απ -almost periodic [26], where ,α π  are positive 
numbers. 

Let the order of the system perS  be known. Apply the geometric structure 
,sk ρ′ΔSK  to decide on 

the spectrum Ae  [26]. Here ( )ˆ( , )s gk t y tρ ρ= , ( )ˆ ˆln ( )g g gy y tρ ρ= = , ˆ ( )gy t  is an evaluation of the 

general solution of the system (1). 

,sk ρ′ΔSK  described by the function ( ) :sk s sf t k k→Δ , where skΔ . ( )sk t  is απUY -function, ( )skf t  

contains areas skW , where a drastic change is taking place. 

Theorem 6. If the system perS  is stable and recoverable, and the function ( )skf t  contains at the interval 
*

0 , gt t  ⊂    ( )*t t≤  at least regions skW , then the system perS  has an order m  and is _c -identifiable 

(_c -detectable). 
In terms of Theorem 6, g  is a time interval in which an estimate of the general solution of the 

system perS  are obtained. 

It follows from Theorem 6 that the system perS  is identifiable on the set { }
,
i
sk ρ

SK . As shown in 

[25], the location of local minima on 
,
i
sk ρ

SK  coincides with regions skW  of the structure 
,sk ρ′ΔSK . This 

result allows us to obtain the set LEM  containing estimates LE of the system perS . Cardinal LEM  may 
not match the LE number of the system. LEM  characterizes the set of system perS  lineals. 

The detectability (identifiability) of the periodic system (1) with the matrix ( )A t  follows from 
[25]. 

Theorem 7. Let 1) assumptions A1-A3 are fulfilled for the system; 2) the system perS is recoverable; 

3) ( ) uu t ∈VX ; 4) set { }, ( )i
sk tρ  elements are απUY -functions; 5) the structure 

,
i
sk ρΔ

SK  contains at least 
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v  regions of v
skW , which to local minima correspond to the structure

,
i
sk ρ

SK . Then the set LEM  is 

_c -detectable or fully detectable. 

Corollary from Theorem 7. If structures 
,
i
sk ρΔ

SL  contain only m  of regions v
skW , which to local minima 

correspond on 
,
i
sk ρ

SK , then the system perS  is m -detectable with an υ -non-recoverable level. 

Remark 6. Eigenvalues ( )i tλ  of the matrix ( )A t  are periodic functions of time. Therefore, lineals 
( )i tL  and 1( )i t+L  corresponding to these functions may overlap. This can generate an infinite range 

of LE. Determine the acceptable range for LEM  and the number that determines the mobility of the 
largest Lyapunov exponent. The set LEM  upper bound is determined by the allowable mobility limit 
of the largest LE 1χ . The estimate is fair for 1χ  [25]: 

 
,

1
1 sup i

sk ρ
χ ≤  , (30) 

where 
,

1
i
sk ρ

  is the interval of the change of the ith indicator ,
i
sk ρ . The region LEM  lower boundary 

is bounded by the smallest LE nκ  [25]. 

Definition 6. The system perS  of class ( )X Af  with matrix ( )A t  satisfying assumptions A1–A3 is 

locally LEM -identifiable on the set { }0( ), ( ),t X t u t t t= > , if spectrum Ae  of LE belonging to the 

class UY -function exists such that 

 ( ) { }* ** **
0( ) : , , & ( )i LE i i iAA t t t t t t tχχ χ χ χ ε  ∈ = ∈ − ≤ ∀ ∈ > e M , 1,i n= ,  (31) 

where 0χε ≥ . 
The problem of assessing the LE adequacy has its own specifics. Let ˆˆ ,g gy yf  is phase portrait of 

the system perS . 

Definition 7 [25]. Estimates of Lyapunov exponents iχ  are χ -adequate in the   space, if areas of 
their definition coincide with απ -almost-periodicity regions of structure ˆˆ ,g gy yS . 

Theorem 8 [25]. Let:(i) the perS -system is stable and recoverable; (ii) the set LEM  is _c -detectable; (iii) 

definition regions j
slW  on the

,
i
sk ρΔ

SL  structure coincide with απ -almost-periodicity regions for the G5 

structure ˆˆ ,g gy yS . Then estimates of elements for the set LEM  are χ -adequate to the regions απ -almost 

periodicity ˆˆ ,g gy yS . 

Remark 8. We have considered only one approach to assessing the PI of periodic systems. The PS can 
be considered as a system with an interval parametric domain and identifiability can be estimated 
within the specified limits. Here, the approaches described above in sections 4 and 5 are applied. 

So, the problem of estimating LPI is reduced to a more adequate task of estimating LE for these 
systems. The PI conditions in a special space are got and the methods of its estimation are given. The 
adequacy concept of LE estimates is introduced and the area for the LE location is highlighted. We 
have shown the existence of a LE set for the system perS . 

7. About LPI for Decentralized Systems 

Consider a decentralized system (DS) 
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( )

1,
,

:
,

m

i i i i i ij j i i
j j ii

i i i

X A X B u A X F X
S

Y С X
= ≠

 = + + +

 =


 (32) 

where in
iX ∈ , iq

iY ∈  are state and output vectors of the iS -subsystem, iu ∈  is control, 

1,i m= , 
1

m

i
i
n n

=

= . The elements of the matrices , , i ji i i n nn n n
i i ijA B A ××∈ ∈ ∈    are unknown; 

i iq n
iC

×∈ . The matrix ijA  reflects the mutual influence of the subsystem jS . ( ) in
i iF X ∈  considers 

the nonlinear state of subsystem 2 iS , and the iA ∈[  is the Hurwitz matrix (stable). 

Assumption 2. ( )i iF X  belongs to the class 

 ( ) { }1 2 1 2, ( ) : ( ) , (0) 0n
F F X X F X X Fπ π π π= ∈ ≤ ≤ =a   (33) 

and satisfies the quadratic condition 

 ( )( ) ( )( )2 1 0
T

X F X F X Xπ π− − ≥ , (34) 

where 1 20, 0π π> > . 
The information set of measurements for the iS -subsystem has the form 

 [ ]{ }, 0( ), ( ), ( ), ,o i i i j kX t u t X t t t t= ∈ =  .  

Mathematical model 

 ( ) ( )
1,

ˆˆˆ ˆ ˆ ˆ
m

i i i i i i i i ij j i i
j j i

X K X X A X B u A X F X
= ≠

= − + + + + , (35) 

where iK ∈[  is a matrix with known elements; ˆ ,iA  ˆ
iB , ˆ

ijA  are tuning matrices, îF  is a priori 

defined nonlinear vector function. 
Problem. Obtain PI estimates for the system (32) based on the set ,o i  analysis. 

DS (32) is nonlinear, so the condition CE (7) is represented as: 

 ( ) ( )uu u u u Su
ι ι ιιια α ια τ α ω ωΣ 2

, : ≤ ( ) ≤ & Ω ( ) ⊆ Ω ( )XV ,  

Where ( )
iu
ωΩ  is the set of frequencies for iu ; S ( )ωΩ  is the set of acceptable frequencies of input 

iu , ensuring S-synchronizability of the system. 

Get the equation for the error ˆ
i i iE X X= − : 

 ( )
1,

M

i i i i i i i ij j i i
j j i

E K E A X B u A X F X
= ≠

= + Δ + Δ + Δ +Δ , (37) 

where ˆˆ ˆ ˆ, , ,i i i i i i ij ij ij i i iA A A B B B A A A F F FΔ = − Δ = − Δ = − Δ = −  are parametric residuals. 

Consider the system (37) and LF ( ) 0.5 T
i i i i iV E E R E= , where 0T

i iR R= >  is a positive symmetric 

matrix. 

Let ( )tr T
i i iA A AΔ = Δ Δ , ( )tr T

ij ij ijA A AΔ = Δ Δ  are the norm of matrixes iAΔ , ijAΔ , tr( )⋅  is the 

trace of the matrix. 
The following modification of Theorem 1 [27] is true. 
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Theorem 9. Let: 1) the matrix iA ∈[ ; 2) ,( )
XX iiiX t α α∈VX , ,( )

XX jjjX t α α∈cX  α ,α( )
uu iiiu t ∈cX ; 3) 

( ) ( )1 2,i i FF X π π∈a  and 

 ( ) 2

ii i XF X ηα≤ , 2
i i

T
i i X FF F ηα δΔ Δ ≤ + ,   

where 0,π π1 2> 0, >  ( ) ( ) 0
iX iXη η π π α α1 2 Ξ= , > 0, = > , 22η π π= + , 1 2π π π= , 1 2π π π= + , 0

iF
δ > . 

Then subsystem (32) is locally parametrically identifiable on the set ,o i  if 

 
22 2

1,
2 2

i i j i i i

m

X i u i X ij X F Q i
j j i

A B A Vα α α ηα δ λ
= ≠

 
Δ + Δ + Δ + + ≤ 

 
 , (38) 

where 
i iQ Q ikλ λ= − , 0iλ >  is the minimum eigenvalue of the matrix iQ ; 0ik > , 

T
i i i i iK R K R Q+ = − , 

0T
i iQ Q= > . 

The proof of Theorem 9 is given in Appendix H. 

Corollary 1 of Theorem 9. Let conditions of Theorem 9 be fulfilled. Then the nonlinearity ( )i iF X  is locally 

structurally identifiable in the parametric sector 

 ( ) { }1 2 1 2, : ( )i

i

n
X i i i i iX X F X Xπ π π π= ∈ ≤ ≤f  ,  

if 

 2 0.25i i i iF V zλΔ ≤ + , (39) 

where 0iz ≥ . 
The proof corollary 1 from Theorem 9 is given in Appendix I. 
Consider the system (37) and class iS

IAT  algorithms to tune its parameters: 

 

,

,

,

i

ij

i

T
i A i i i

T
ij j i jA

T
i B i i i

A E R X

A E R X

B E Ru

Δ = −Γ

Δ = −Γ

Δ = −Γ







 (40) 

where 
iA

Γ , 
ijA

Γ , 
iB

Γ  are diagonal matrices of the corresponding dimensions. 

Lyapunov function for analysis of system (37) and (4): ,iS i iW V VΔ= + : 

 ( ) ( )1 1 1
,

1,
0.5tr 0.5 tr 0.5

i ij i

m
T T T

i i A i ij A ij i B i
j j i

V A A A A B B− − −
Δ

= ≠

= Δ Γ Δ + Δ Γ Δ + Δ Γ Δ , ( ) 0.5 T
i i i i iV E E R E= .  

Corollary 2 of Theorem 9. Let 1) conditions of Theorem 9 be fulfilled; 2) the class iS
IAT  of algorithms is 

used to tuning parameters of the model (35). Then the system (32) is locally parametrically identifiable if 

 ( )
0

0 2 ( )
t

i i i i
t

t t V dσ χ μ σ τ τ− ≤  , (41) 

where 2
i ii X Fχ ηα δ= + , ( )1 min 1,2 , 0

i ii R i Rγ λ σ μ λ− = = − > ; ,
i iR Rλ λ  are The minimum and maximum 

eigenvalues of the matrix iR , and the estimate is held 
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 ( )
0

0 0( ) ( ) 2 ( )
i i

t

S S i i i i
t

W t W t V d t tμ σ τ τ σ χ≤ − + − . (42) 

The proof corollary 2 from Theorem 9 is given in Appendix J. 
As follows from Theorem 9, system (32) is LPI and structurally identifiable with nonlinearity 

( )i iF X  in the parametric sector ( )1 2,
iX
π πf  on the set of initial conditions and ,o i . 

If we perform nonlinearity factorization (see, for example, [27]) 

 ( ),1 ,2
ˆ ˆ ˆ( ) ,T
i i i i i iF X F X N N=  , (43) 

where ,1
,1

ˆ in
iN ∈  is a priori estimation of known parameters, ,2

,2
ˆ in
iN ∈  is vector of tuning 

parameters, the structure ( ),1,i i iF X N is formed a priori considering the known vector ,1iN , and 

apply the algorithm 

 ( ),2 ,1
ˆ ˆ,

i

T
i F i i i i iN F R E X N= −Γ  , (44) 

where 
iF

Γ  is a diagonal matrix with positive diagonal elements, then we obtain the conditions for 

global parametric identifiability for DS on the class of algorithms iS
IAT  and (44). They are based on 

the modernization of results [27]. 

8. Examples 

1. Consider an engine control system with the Bouc–Wen hysteresis 

 ( , , ) ( ),mx cx F x z t f t+ + =   (45) 

 ( , , ) ( ) (1 ) ( )F x z t kx t kdz tα α= + − , (46) 

 ( )1 ( )n nz d ax x z sign z x zβ γ−= − −   ,   (47) 

where 0m >  is mass, 0c >  is damp, ( , , )F x z t  is the recovering force, 0d > , 0n > , 0k > , 
(0,1)α ∈ , ( )f t  is exciting force, , ,a β γ  are some numbers. Set of experimental data 

{ }( ), ( ),o f t y t t= ∈  . Vector of parameters [ ], , , , , , , TA m c a k nα β γ= . 
To estimate PI on the set o , Equation (45) is transformed to the form [28] 

 1 2 3x z fx a x a p a p bp= + + + , (48) 

 , , , 0,x x f f z zp p x p p f p p zμ μ μ μ= − + = − + = − + >     

where 1 ( ) /a c m mμ= − − , ( )( )2 /a k c m mα μ μ= − − −
, ( )( )3 1 /a k mα= − −

. 
Model for system identification (48) 

 ( ) 1 2 3
ˆˆ ˆ ˆ ˆ ˆx x z fx k x x a x a p a p bp= − − + + + + , (49) 

where 0xk > ; ˆ ( )ia t , 1,2,3i = , ˆ( )b t  are adjustable model parameters. Let ˆe x x= − . From (48) and 
(49), we obtain the equation for the identification error: 
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 1 2 3x x z fe k e a x a p a p bp= − + Δ + Δ + Δ + Δ ,  (50) 

where 1 1 1ˆ ( )a a t aΔ = − , 2 2 2 3 3 3
ˆˆ ˆ( ) , ( ) , ( )a a t a a a t a b b t bΔ = − Δ = − Δ = − . 

The variable z  is not measured. Apply the model to estimate z : 

 ( ) 1 2
ˆˆ ˆ ˆ ˆz x z x fx k x x a x a p bp= − − + + + . (51) 

and introduce a residual ˆz zx xε = − . Let zε  is current estimate z . Then we get the model to 
evaluate z  

 ( ) ˆ ˆˆ ˆ ˆ ˆ ˆ( )n n
z zz k z x x z sign z x zε β γ= − − + − −       (52) 

where 0zk > ; β̂ , γ̂  are estimates of hysteresis parameters (47); ( )( ) ( )x x t x tτ τ= + − , τ  is the 

integration step. 
Introduce a residual ˆ zzε ε= − , satisfying equations 

 ( )ˆ ˆ ˆn n
zk x x z sign z x zβ γε ε β βη γ γη= − + Δ + Δ + + Δ +     , (53) 

 ( ) ( )ˆ ˆn nx z sign z x z sign zβη = −   , ˆn nx z x zγη = −   ,  

where 
ˆ ˆ, ,x x x β β β γ γ γΔ = − Δ = − Δ = −   , 

ˆβ β βΔ = − , ˆγ γ γΔ = − . Present (49) as: 

 ˆ1 2 3
ˆˆ ˆ ˆ ˆ ˆ( )x x z fx k x x a x a p a p bp= − − + + + + , (54) 

 ˆ ˆ ˆz zp p zμ= − + , (55) 

and (50) is written as: 

 ˆ1 2 3x x z fe k e a x a p a p bp= − + Δ + Δ + Δ + Δ . (56) 

Evaluate the identification quality using the Lyapunov function. 2( ) 0.5 ( )V t tε ε= . Get adaptive 
algorithms from 0Vε < : 

 ( )ˆ ˆ ˆ,n nx z sign z x zβ γβ χ ε γ χ εΔ = − Δ = −    , (57) 

where 0, 0β γχ χ> >  are parameters ensuring the stability of algorithms (57). 

Consider functionals: 

 ( )0.52 2 2 2
1 2 3( ) ( ) ( ) ( ) ( )aD t a t a t a t b tΔ = Δ + Δ + Δ + Δ , ( )0.52 2

, ( ) ( ) ( )D t t tγ β γ βΔ = Δ + Δ . (58) 

Figures 1 and 2 represent PI evaluations of the system (45) – (47). The ASI has two loops: the 
main one (variable e ) and the auxiliary one (variable ε ). Figure 1 shows the structure , ae DΔ]  

described by the function :| |a ae Dϕ → Δ , and Figure 2 presents the structure 
,, Dγ βε Δ]  described by 

the function , ,:| | Dγ β γ βϕ ε → Δ . 
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Figure 1. Structure , ae DΔ] . 
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Figure 2. Structure 
,, Dγ βε Δ] . 

Presented structures confirm the fulfilment of the Theorem 1 conditions, since trajectories of the 
system for sufficiently large t  get into the region  . 

2. Consider the system, the phase portrait of which is shown in Figure 3. The set of experimental 
data ( )t  is known. Input ( ) 5 2sin(0.2 )u t tπ= + . Figure 3 shows the presence of oscillations in the 
system, the frequency of which differs from the frequency of the input. Therefore, the system is the 
system with periodic coefficients. 

To determine LE, we apply the approach [25] and obtain estimates of the general solution and 
its derivative. 

 [ ][ ];ˆ (0.75;0.( ) 1 ) (0 )7 0.22 T
qy t u t u t= −  , [ ][ ]0.394; 0.05 7ˆ ( ) 19;0,0 8 ( ) ( ) T

qy t u t u t= − −  . (59) 

The coefficients of determination for these models are equal 0.99. Next, we determine estimates 
of the free movement for the system. The evaluation of order for the system follows from Figure 4. 
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Figure 3. Phase portrait. 
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Figure 4. LE set. 

It follows from 1
,sk ρΔ

SK  that the system has a third order. From 1
,sk ρΔ

SK  and 2
,sk ρΔ

SK , we get the 

set LE (Figure 4). 
The upper estimate for mκ  is 2.04− . Mobility limit for 1χ  is –0.8. χ -adequacy confirmation of 

LE estimates is shown in Figure 5. The eigenvalues of the state matrix of the system perS  are: 

 { }2.04; 1.842; 1.77; 1.167; 0.878LE = − − − − −M .  

So, we see that the set LEM  is _c -detectable, and the system has the third order. Since the 
elements of the set LEM  are recoverable and detectable, the system perS  is LPI. 

 

Figure 5. Estimate of χ -adequacy of LE. 

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5
-0,18

-0,12

-0,06

0,00

0,06

0,12

0,18

1
,sk ρΔ

ˆ
gy

ˆ
gy

1
,sk ρΔ

ˆgy

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 June 2025 doi:10.20944/preprints202506.1561.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1561.v2
http://creativecommons.org/licenses/by/4.0/


 17 of 24 

 

9. Conclusion 

The problem of estimating parametric identifiability based on current experimental data is 
considered. Methods of the priori identifiability based on the analysis of the information matrix are 
not applicable in this case. We consider the approach based on the application of the second 
Lyapunov method to the PI study. LPI conditions are got based on the adaptive identification 
application to the linear dynamical system. We analyse data on state vector and current information 
on input and output in the problem PI. Conditions and estimates have been obtained that guarantee 
PI and LPI. 

The m -parametric identifiability case is considered when the condition of constant excitation is 
not fulfilled. PI estimates are got for decentralised nonlinear systems and systems with periodic 
parameters. We show that Lyapunov exponents should be used to PI analyses of the system with 
periodic parameters. 

Modelling examples are presented that confirm the efficiency of the proposed approach. 

Appendix A 

Proof of Theorem 1. Consider the LF 2( ) 0.5 ( )eV t e t= . For eV , we get: 

 2 T
eV ke e A P= − + Δ  (A.1) 

or, applying condition 4 of Theorem 1, 

 21
2e PV kV A
k
α≤ − + Δ , (A.2) 

where 
T

P PPPα α≤ ≤ , 0, 0P Pα α> > . 
Let ( )u t  and ( )y t  correspond to Fourier series with multiple frequencies ,u yΩ Ω , where yΩ  

depends on the spectrum ( )u t . System (1) is a frequency filter and A∈[ . Therefore, the frequency 
spectra of the elements of the vector P  will vary. Therefore, sets 

ip
Ω , where ip P∈ , will not have 

common areas. Then 0AΔ =  follows from the identifiability condition 0TA PΔ = . 
So, condition 4 is necessary for the local identifiability of the system (6). As condition 4 is 

fulfilled, for the limited trajectories (identifiability) of the system (4), it is necessary that: 

 
2

2 2( ) ( )A t V tκ
ρ

Δ ≤ .  (A.3) 

Appendix B 

Proof of Corollary 1 from Theorem 1. For eV , we get: 

 
2 2 1 ,

2 2 ,

T T
e

e e

V ke e A P ke A A
V kV V

−

Δ

= − + Δ = − − Δ Γ Δ

= − −


   (B.1) 

where 
20.5eV e= , 

10.5 TV A A−
Δ = Δ Γ Δ . Let eV V VΔ= + . Present (B.1) as: 

 
2 2 ,

0.5 ,
e e

e

V kV V
V kV

Δ≤ − −

≤ −

 
  (B.2) 
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where from 

 
0

0( ) ( ) 2 ( )
t

e
t

V t V t k V dτ τ≤ −   (B.3) 

or 0( ) ( )V t V t≤ . 

Appendix C 

Proof of Theorem 2. The derivative LF 0.5 T
EV Е RЕ=  has the form 

 ( )T T
EV Е QЕ Е R AX Bu= − + Δ +Δ  (C.1) 

or 

 ( )T T
EV Е RЕ Е R AX Buμ≤ − + Δ + Δ , (C.2) 

where T TЕ QЕ Е RЕμ≥ , 0μ > , 0TQ Q= >  is a positive definite matrix satisfying the equation 
TRK K R Q+ = − , 0TR R= > . Then (C.2) 

 ( ) ( )2 212 0.5T T
E E X uV Е RЕ Е R AX Bu V A Bμ μ μ α α−≤ − + Δ + Δ ≤ − + Δ + Δ , (C.3) 

where ( )2 tr TA A AΔ = Δ Δ , 2 TB B BΔ = Δ Δ , ( ) ( )T
X n X nI X t X t Iα α≤ ≤ , nI  is the identity matrix. 

From (C.3), we obtain the condition of LPI: 

 2 2 24X u EA B Vα α μΔ + Δ ≤ . (C.4) 

Appendix D 

Proof of Corollary 1 from Theorem 2. Consider LF ,W E A BV V V= + , where: 

 ( )1 1
, 0.5tr 0.5T T
A B A BV A A B B− −= Δ Γ Δ + Δ Γ Δ ,   

,A BΓ Γ  are diagonal matrices with positive diagonal elements. 
If we consider (12), then (C.1) is written as: 

 
( )

( )
,

1 1tr .

A B

T T
E

T T T
BA

V

V Е QЕ Е R AX Bu

Е QЕ A R A B R B− −

= − + Δ + Δ =

= − − Δ Γ Δ − Δ Γ Δ




 


 (D.1) 

Obtain 

 
0

02 ( ) ( ) 2 ( )
t

W E W W E
t

V V V t V t V dμ μ τ τ≤ −  ≤ −  . (D.2) 
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Appendix E 

Proof of Theorem 3. Apply algorithm (10) and represent the derivative 1TV A A−
Δ = Δ Γ Δ  as: 

 TV e A PΔ = − Δ . (E.1) 

Let 0ϑ ≥  exist such that in some region 0 the condition ( )2 2Te A P A eϑΔ = Δ +  is satisfied. 

Then (E.1) 

 
( )2 2 2 2 2 22 2

2 2

3 1
4 4

3 2 .
4

V A P e A P A P e

A P e A P

ϑ ϑ ϑ ϑ

ϑ ϑ

Δ = − Δ + = − Δ − Δ − ≤

≤ − Δ + Δ


 (E.2) 

As PP∈VX  и 2( )P PP tα α≤ ≤ , then 

 23 2
4 P PV A e a Aϑα ϑΔ ≤ − Δ + Δ . (E.3) 

Apply the inequality [29] 

 2 2 21
2 2
aaz bz z b

a
− + ≤ − + , 0, 0, 0a b z> > > .  

Then 

 2 23 2
8 3P P

P

V A a eϑα ϑ
αΔ ≤ − Δ + . (E.4) 

As 2 2A VλΓ ΔΔ ≥ , where λΓ  is the minimum eigenvalue of the matrix Γ . Then: 

 3 4
4 3P P e

P

V V a Vϑα λ ϑ
αΔ Γ Δ≤ − + . (E.5) 

It follows from (E.5) that PI is guaranteed on a certain set ( ){ }0Â t  and on the set t  if 

 2

16
9 P e

P

V a V
α λΔ

Γ

≥   

and fair evaluation ( ) ( )V t S tΔ Δ≤ , where: 

 ( )0

0

( ) ( )
0

4( ) ( )
3

t
t t t

P e
P t

S t e S t a e V dσ σ τϑ τ τ
α

− − − −
Δ Δ= +    

0.75 Pσ ϑα λΓ= , ( )S t  is the upper solution of the comparison system eS S Vσ π= − +  for ( )V tΔ  (E.5), 

if ( ) ( )0 0S t V tΔ Δ≥ , 4
3 P

P

aπ ϑ
α

= . 
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Appendix F 

Proof of Theorem 4. From the proofs of the corollary of Theorem 1 and Theorem 3, we obtain 

 

21 ,
2

3 4 .
4 3

e P

P P e
P

V kV A
k

V V a V

α

ϑα λ ϑ
αΔ Γ Δ

≤ − + Δ

≤ − +




 (F.1) 

As 2 1 1 2T TA A A A A Vλ λ− −
Γ Γ ΔΔ = Δ ΓΓ Δ ≤ Δ Γ Δ ≤ , then (F.1) 

 


1

4 3
3 4 G

G

P
e e

P P
WP

A

kV Vk
VV a

α λ

ϑ ϑα λ
α

Γ

ΔΔ
Γ

 −     ≤         −  






. (F.2) 

The matrix GA  is an M -matrix [30] if conditions ( )( 1) 0i
i GA− Δ >  are fulfilled for the major 

minors. Obtain 

 0k > , 22 29 16P Pk aα λ λΓ Γ≥ . (F.3) 

If the conditions (F.3) are fulfilled, then the adaptive system (6), (10) is exponentially stable (ES). 
As follows from the ES, estimates of the vector A  in (4) are extremely locally parametrically 
identifiable under given initial conditions. The estimate (21) is got using the approach described in 
the proof of Theorem 3. 

Appendix G 
Proof of Theorem 5. Consider (23) and represent the derivative of LF eV  as: 

 2 T
eV ke e A P eω= − + Δ +  (G.1) 

or 

 
2

22 2 2

1 ,
2

0.5 0.5 ,

e P

e P

V kV A
k

V ke e A ω

α

υ ε

≤ − + Δ

≤ − + + Δ +




 (G.2) 

where 1 0mk k= − > , 2( ) ,P P PP t υ υ α≤ ≠ . From (G.2), we obtain the condition m -local PI: 

 
2 20.5 0.5 2P m eA k Vωυ εΔ + ≤ . (G.3) 

Represent (G.1) in the form 

 ( )2 2 1T T T
eV ke e A P A P ke A A eδ ω−= − + Δ + = − −Δ Γ ΓΔ +    . (G.4) 
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Then (G.4) 

 2 22 2 0.5 0.5e eV kV V eλ ωΓ Δ≤ − − + +  . (G.5) 

Transform (G.5) 

 


2

1

2

2 2 0.5 ,

2 2 0.5 .

e m e
k

e m e

V k V V

V V k V

λ ω

λ ω

Γ Δ

−

Γ Δ

≤ − − +

+ ≤ − +

 

 
 (G.6) 

Let ( )min 1,2η λΓ= , v eV V VΔ= +   and 1mk k= − . Then: 

 1 1 22 0.5v m eV k V ωη η ε− −≤ − + . (G.7) 

The estimate for vV  (see (26)) follows from (G.7).  

Appendix H 

Proof of Theorem 9. iV  has the form: 

 ( )
1,

m
T T

i i i i i i i i i i ij j i i
j j i

V E Q E E R A X B u A X F X
= ≠

 
= − + Δ + Δ + Δ +Δ 

 
  (H.1) 

or 

 
 ( )

( )

1,

2

1,
0.5 ,

i i i

m
T T

i i i i i i i i i i ij j i i
j j iV k V

m

i i i i i i i i ij j i i
j j i

V E Q E E R A X B u A X F X

V kV A X B u A X F X

λ

λ

= ≠−

= ≠

≤ − + Δ + Δ + Δ +Δ ≤

 
≤ − + + Δ + Δ + Δ +Δ 

 








 (H.2) 

where 0iλ >  is the minimum eigenvalue of the matrix iQ . 
Apply the Cauchy-Bunyakovsky-Schwarz inequality and Titu’s lemma to the last term in (H.2) 

and get 

 
( )

( )

2

1,

2 2 22 2 2 2

1,

0.5

2 .

m

i i i i ij j i i
j j i

m

i i i i ij j i i
j j i

A X B u A X F X

A X B u A X F X

= ≠

= ≠

 
Δ + Δ + Δ +Δ ≤ 
 
 

≤ Δ + Δ + Δ + Δ 
 




 (H.3) 

Consider condition 1) of Theorems 9 and iV  write as: 

 ( )2 22 2

1,
2

i i j

m

i i i X i u i X ij i i
j j i

V V A B A F Xλ α α α
= ≠

 
≤ − + Δ + Δ + Δ + Δ 

 
 , (H.4) 

where i i ikλ λ= − . Apply Lemmas 1, 2 [26] and get for 2
iFΔ  

 2 2
i i

T
i i i X FF F F ηα δΔ Δ = Δ ≤ + , (H.5) 
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where 
22η π π= + , 1 2π π π= + , 1 2π π π= , 0

iF
δ ≥ . 

Then (H.4) 

 
22 2

1,
2 2

i i j i i

m

i i i X i u i X ij X F
j j i

V V A B Aλ α α α ηα δ
= ≠

 
≤ − + Δ + Δ + Δ + + 

 
 . (H.6) 

If state variables are CE and the condition (38) is fulfilled, then the system (32) is the LPI on the 
set ,o i . 

Appendix I 

Proof of Corollary 1 from Theorem 9. As follows from Theorem 9, DS is locally parametrically 
identifiable if the condition (38) is satisfied. Apply Lemmas 1, 2 [26] to the last terms in (H.6) and get: 

 ( ) 22 2 2
i i i i i iX F X F F i FFηα δ ηα δ δ δ+ = + − = Δ − , (I.1) 

Therefore, 

 ( )2
,0.25 0.5

ii i i F i i j jF V αλ δ χ θ ζ ζΔ ≤ + − − , (I.2) 

where 
( ) 22 2

,
1, 1,

min , min , min
j

m m

i i i j ij j Xi j jj j i j j i
A B A αθ ζ ζ α

= ≠ = ≠

= Δ + Δ = Δ = 
. 

As , ij j F i iαζ ζ δ χ θ≤ − , then 2 0.25i i i iF V zλΔ ≤ + .  

Appendix J 

Proof of Corollary 2 from Theorem 9. Represent iV  (H.2) as: 

 

( ) ( )

( ) ( )
( )

1,

1 1

1,

1

tr tr

.

i ij

i

m
T T

i i i i i i i i i i ij j i i i i
j j i

m
T T T
i i i i A i i ij i ijA

j j i

T T
i B i i i i i i

V E Q E E R A X B u A X F X F X

E Q E A R A A R A

B R B E R F X

= ≠

− −

= ≠

−

 
= − + Δ + Δ + Δ +Δ + Δ = 

 

= − − Δ Γ Δ − Δ Γ Δ −

−Δ Γ Δ + Δ











 (J.1) 

Let 2T T
i i i i i i i i iE Q E E R E Vμ μ≥ ≥ , where 0iμ ≥ . Then: 

 
,

2
,

2 2

2 2 0.5 ,
i

i i

T
i i i R i i i i

i i R i R i i

V V V E R F

V V V F

μ λ

μ λ λ

Δ

Δ

≤ − − + Δ ≤

≤ − − + + Δ

 


 (J.2) 

where ,
i iR Rλ λ  are minimum and maximum eigenvalues of the matrix iR . 

The estimate (H.5) is fair for iFΔ . Therefore, (J.2) is represented as: 

 ,

,

2 2 ,

2 2 ,

i i i i

i i

i

i i R i R i X F

i R i i i i

V V V

V V V
σ χ

μ λ λ ηα δ

λ σ χ

Δ

Δ

 
 ≤ − − − + +  
 

+ ≤ − +

 
 

 

  (J.3) 
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where 2
i ii X Fχ ηα δ= + . Let ( )1 min 1,2 , 0

i ii R i Rγ λ σ μ λ− = = − > . Transform (J.3): 

 2 ,
iS i i i i iW Vσ γ γ χ≤ − +  (J.4) 

Then 

 ( )
0

0 0( ) ( ) 2 ( )
i i

t

S S i i i i
t

W t W t V d t tμ σ τ τ σ χ≤ − + −  (J.5) 

if 
( )

0

0 2 ( )
t

i i i i
t

t t V dσ χ μ σ τ τ− ≤ 
. 
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