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Abstract: Virulence factors (VFs), produced by pathogens, facilitate pathogenic microorganisms to 
invade, colonize, and damage the host cells. Accurate VF identification advances pathogenic 
mechanism understanding and provides novel anti-virulence targets. Existing models primarily 
utilize protein sequence features while overlooking the systematic protein-protein interaction (PPI) 
information, despite pathogenesis typically results from coordinated protein-protein actions. 
Moreover, a severe imbalance exists between virulence and non-virulence proteins, which causes 
existing models trained on balanced datasets by sampling to fail to incorporate proteins' inherent 
distributional characteristics, thus restricting generalization to real-world imbalanced data. To 
address these challenges, we propose a novel Generative and Contrastive self-supervised learning 
framework for Virulence Factor identification (GC-VF) that transforms VF identification into an 
imbalanced node classification task on graphs generated from PPI networks. The framework 
encompasses two core modules: the generative aĴribute reconstruction module learns aĴribute space 
representations via feature reconstruction, capturing intrinsic data paĴerns and reducing noise; the 
local contrastive learning module employs node-level contrastive learning to precisely capture local 
features and contextual information, avoiding global aggregation losses while ensuring node 
representations truly reflect inherent characteristics. Comprehensive benchmark experiments 
demonstrate that GC-VF outperforms baseline methods on naturally imbalanced datasets, exhibiting 
higher accuracy and stability, providing a potential solution for accurate VF identification. 

Keywords: virulence factor identification; protein-protein interaction; graph neural network; self-
supervised learning 
 

1. Introduction 
Virulence factors (VFs) are essential for pathogenesis, enabling bacteria to adhere to and invade 

host cells, utilize host cell nutrients for survival and reproduction, evade host immune defenses, and 
secrete toxins that destroy host cells. Antibiotics remain the primary therapeutic agents for bacterial 
infections, exerting their effects by either killing bacteria or inhibiting their growth and reproduction. 
For example, this can be accomplished by disrupting the bacterial cell wall and cell membrane, 
inhibiting bacterial DNA/RNA and protein synthesis, and blocking folate synthesis [1]. Since 
antibiotics directly suppress bacterial survival, large-scale antibiotic use accelerates the evolution of 
bacterial antibiotic resistance. Antibiotic resistance has become a significant global public health 
challenge [2]. To relieve the pressure stemming from the rapid evolution of bacterial resistance, 
relevant research has proposed anti-virulence strategies aimed at achieving therapeutic effects by 
targeting VFs to suppress the manifestation of bacterial virulence. These strategies include inhibiting 
bacterial toxins gene expression and toxins transmission, disrupting bacterial adhesion capabilities, 
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and interfering with bacterial communication [3]. Therefore, identifying bacterial VFs and 
developing an in-depth understanding of their mechanisms of action provide potential targets for the 
development of anti-virulence therapeutic strategies. 

Due to the importance of this problem, a large number of studies have emerged in the field of 
VF identification. Methods based on sequence similarity aim to obtain homologous sequences 
corresponding to a given query and determine the type of the given query based on the type of 
homologous sequences. However, due to the diversity of VFs, which are involved in various 
pathogenic processes such as adhesion, invasion, and toxicity, and exhibit species-specificity and 
host-specificity, many VFs may show only insignificant similarity to known protein sequences [4]. 
Moreover, pathogens continuously adapt to the environment during the evolutionary process, and 
their VFs are prone to alterations. Therefore, traditional sequence alignment methods such as BLAST 
[5] have limited performance in identifying diverse VFs and VFs with distant evolutionary 
relationships. 

To address this challenge, methods based on predefined protein features have been proposed. 
These methods extract features such as protein sequences, physicochemical properties, and 
evolutionary information, and combine them with traditional machine learning models and deep 
learning models for VF identification. For example, VirulentPred [6] takes amino acid composition 
(ACC), dipeptide composition (DPC), higher-order dipeptide composition, and position-specific 
scoring matrixes (PSSMs) as inputs for the first layer of a two-stage cascade support vector machine 
(SVM). The results from the first layer are then cascaded to the second layer SVM classifier for training 
to generate the final classifier, which outperforms SVM classifiers based on single or multiple 
sequence features only in the first layer. MP3 [4] uses AAC and DPC as inputs for SVM, while 
leveraging the hidden Markov model (HMM) to analyze domain information in a local MiniPfam 
database constructed based on the Pfam database. The results from SVM and HMM are integrated 
according to specific rules, providing a new approach and promising approach for predicting 
virulence proteins in large-scale genomic or metagenomic datasets. PBVF [7] conducts relevant 
analysis and prediction of VFs by taking DPC and multiple sequence similarity-based features as the 
inputs for SVM. Regarding the critical issue of negative dataset selection, this research adopts the 
NExIGO method based on Gene Ontology (GO) annotations to construct the negative dataset. The 
research results indicate that direct sequence similarity is crucial in the identification of VFs, and thus 
this characteristic should be fully utilized to improve the accuracy of analysis and prediction. DeepVF 
[8] extracts features based on sequence, physicochemical properties, and evolutionary information as 
inputs for four classic traditional machine learning models. It maps protein sequences to numerical 
values in alphabetical order, generating 10-dimensional features based on different window lengths 
for three deep learning models. By employing a stacking strategy, DeepVF effectively combines these 
baseline models, significantly enhancing model performance, and providing an important reference 
for classification problems in bioinformatics. VF-Pred [9] is based on sequence features and 
physicochemical properties, and can successfully generate the sequence similarity features proposed 
in reference [7]. Additionally, it introduces the sequence alignment feature, Seg-Alignment, to 
capture the percentage of the best sequence alignment with the negative and positive datasets. These 
features are input into traditional machine learning models, and various ensemble methods including 
stacking, voting, and boosting are used together to enhance the classification performance. 
Experimental results show that the sequence alignment feature significantly improves the accuracy 
of the adopted machine learning algorithms. Methods based on predefined protein features usually 
rely on the knowledge of domain experts for design, and thus have certain limitations in feature 
selection, especially for manually extracted sequence features, which makes it difficult to 
comprehensively cover the potential information of protein sequences. Since the selection of 
predefined features is crucial to model performance, the model performance often highly depends 
on the quality of feature engineering. 

With the rapid development of deep learning, natural language processing (NLP) has provided 
a new research perspective for protein representation learning [10,11]. Essentially, protein sequences 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2025 doi:10.20944/preprints202506.0217.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0217.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 23 

 

can be viewed as a kind of “language”. By leveraging the framework of language models, it is possible 
not only to capture the local paĴerns within the sequences but also to reveal their global connections. 
Compared with traditionally manually extracted features, protein features extracted based on 
language models are more likely to unearth the deep semantic information and complex paĴerns of 
protein sequences. The DTVF method proposed in reference [12] is based upon the protein sequence 
model ProtT5 [13], which is pre-trained on large-scale protein sequence data, as a protein feature 
extractor. It adopts a dual-channel architecture model, combining the long short-term memory 
network (LSTM) module with the convolutional neural network (CNN) module. And it introduces a 
dot-product self-aĴention layer into each module respectively. This model can enhance the accuracy 
and efficiency of VF identification. Another approach, GTAE-VF [14] aided with a graph transformer 
autoencoder for VF identification, leverages the ESM-2 [15] language model to obtain amino acid 
feature vectors and is the first to utilize three-dimensional structural information of protein predicted 
by ESMFold, finally transforming VF identification into a graph-level prediction task. The encoder-
decoder framework integrates graph convolutional networks(GNNs) and Transformer structures, 
effectively capturing long-range correlations, thereby further improving predictive performance. 
Methods based on language models for protein features indicate that the introduction of high-quality 
features may help models beĴer capture the relationship between VFs and sequence paĴerns. The 
transition from methods based on predefined features to those based on language model features 
marks a shift in VF identification models from traditional manual feature extraction to data-driven 
automated representation learning. 

Most relevant studies primarily focus on the properties of proteins, including sequences, 
physicochemical properties, evolutionary information, and structural characteristics, to identify VFs. 
However, protein-protein interaction (PPI) network information has also been demonstrated to have 
potential in VF prediction. Reference [16] proposes a method to predict VFs based on the PPI network 
through the number, type, and interaction weight of neighbor nodes. Reference [17] further enriches 
the direct interaction neighbors of proteins into KEGG pathways, calculates the pathway enrichment 
scores, and uses the random forest model for prediction. However, these methods only utilize direct 
protein interactions and explicit features, such as the number and labels of neighbors, pathway 
enrichment scores, which are limited to shallow information within the direct neighborhood. They 
lack comprehensive modeling of broader contextual and deeper information on PPI networks and do 
not fully leverage the biological features of proteins themselves, such as sequence and structure. 
Moreover, explicit features rely on known protein functional annotations, and the models may be 
restricted by incomplete annotation information, making it difficult to comprehensively capture the 
implicit properties of unannotated proteins. Since the PPI network can be naturally modeled and 
mined using a graph structure, GNNs can be taken into account to address the above limitations. 

GNNs can integrate and simultaneously deal with protein sequence features and interaction 
information, and effectively aggregate node information across network layers through message-
passing mechanisms to capture deeper, non-linear features [18] Most GNNs are based on the 
homophily hypothesis [19–21], which essentially reflects the principle that “birds of a feather flock 
together” [22], meaning that interconnected nodes in a graph tend to belong to the same category. 
Under the homophily assumption, node representations will be smoothed through the aggregation 
process, with each node acquiring additional information from neighboring nodes that likely share 
the same label. We employ three commonly used homophily metrics: edge homophily [23,24], node 
homophily [25], and class homophily [26] to evaluate the homophily of three PPI networks: Salmonella 
enterica serovar Typhimurium LT2, Campylobacter jejuni NCTC, and Staphylococcus aureus NCTC 8325. 
In addition to comparing with three homophily graphs commonly used in node classification tasks, 
we also compare the homophily of PPI networks with the randomly generated networks. We make 
sure that the randomly generated networks be of the same size as the corresponding PPI networks, 
in order to eliminate the influence of network size differences and focus precisely on the homophily 
aspect during the comparison process. For each PPI network, 30 random networks are generated 
according to their node count, edge count, and category proportions. The three homophily metrics 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2025 doi:10.20944/preprints202506.0217.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0217.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 23 

 

are calculated and subject to t-tests (p-values all less than 0.05), with the mean homophily metrics 
being retained. The evaluation results are shown in Figure 1. 

 

Figure 1. Comparison of homophily evaluation results across different graph types. 

The original PPI networks exhibit higher node and edge homophily compared to commonly 
used homophily graphs for node classification tasks, although class homophily is relatively low. 
Overall, the homophily metrics of the original PPI networks are promising, suggesting that 
homophily-based GNNs are likely to effectively aggregate node information to obtain beneficial 
embeddings. Compared to random networks of the same scale, the original PPI networks show 
superior performance across all homophily metrics. The high node and edge homophily observed in 
both original PPI networks and random networks of the same size may reflect the impact of class 
imbalance in PPI networks, where dominant class nodes enhance these two metrics. The numerical 
advantage of dominant class nodes increases the probability of connections between nodes within 
this class. The difference in class homophily between original PPI networks and random networks 
indicates significant collaborative relationships among minority class nodes (virulence proteins), 
suggesting their coordinated participation in pathogenesis-related biological processes. Furthermore, 
based on the STRING [27] database, KEGG pathway enrichment analysis is performed on the 
interactions between virulence proteins, and the average local clustering coefficient among virulence 
proteins in these pathways is calculated, with results shown in Figure 2. The high average local 
clustering coefficient indicates that virulence proteins cooperatively participate in pathogenesis-
related biological activities through tight interactions, involving multiple aspects such as bacterial 
secretion regulation, bacterial invasion of host cells, synthesis and assembly of bacterial structural 
components, and coordination of quorum sensing. The intimate interactions of virulence proteins in 
PPI networks facilitate learning virulence protein features through message passing. 
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Figure 2. The average local clustering coefficient of virulence proteins in KEGG pathways. 

The natural distribution of proteins in bacterial systems exhibits an inherent imbalance between 
virulence and non-virulence proteins, with virulence proteins constituting a minority class. 
Traditional modeling approaches have aĴempted to address this imbalance through various 
sampling techniques. Under-sampling strategies are commonly employed for strain-specific datasets 
to reduce the number of non-virulence proteins moderately (such as maintaining a ratio of 1:5 
between the size of the negative dataset and the positive dataset), thereby mitigating class imbalance 
effects. Balanced sampling is performed for multi-strain datasets by randomly selecting negative 
samples to match the number of positive samples to construct a balanced dataset. Additionally, 
repeated learning of virulence proteins is performed to enhance model performance. However, these 
sampling approaches may inadvertently compromise the inherent diversity of the training data, 
potentially limiting the model's generalization capabilities. In imbalanced datasets, the majority class 
often dominates the learning process, causing the decision boundary to be biased towards the 
majority class. Self-supervised learning [28] has emerged as a promising alternative, offering the 
ability to extract effective representations from unlabeled data. This approach has the potential to 
capture more comprehensive and generalizable information that is inherent in the data itself, 
regardless of the skewed label distribution, demonstrating particular promise in addressing 
imbalanced classification challenges [29,30] Existing self-supervised graph learning methodologies 
can be categorized into three distinct paradigms [31]. The generative approach leverages intrinsic 
graph information as self-supervised signals, focusing on reconstructing specific components of the 
input data to develop robust graph data representations [32–34]. Contrastive methods emphasize the 
analysis of consistency between different views to extract essential features and structural paĴerns 
inherent in the data [35,36]. The predictive approach autonomously generates informative labels as 
supervision signals, addressing the relationships between data and their corresponding labels [37,38].  

In the field of class-imbalanced node classification, multiple innovative self-supervised learning 
methods have been applied to meet the challenges. INS-GNN [39] implements generative self-
supervised pre-training to reconstruct the origin graph structure, effectively mitigating the inherent 
label bias present in imbalanced datasets. This method further incorporates self-training for pseudo-
label assignment to unlabeled nodes and utilizes self-supervised edge enhancement to modify the 
structural characteristics of minority nodes, thereby amplifying their influence in the learning process. 
The GraphMixup [40] improves the class-imbalanced node classification on graphs based on 
predictive self-supervised learning. It conducts semantic-level feature mixing by building a semantic 
relationship space and mixing edges while using an edge predictor trained via two context-based 
self-supervised tasks. Existing self-supervised learning approaches for addressing class-imbalanced 
graph node classification have been predominantly validated in conventional graph domains, such 
as social networks and citation networks, yet with limited exploration beyond these traditional 
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contexts. This constraint is particularly noteworthy in the domain of bioinformatics, where complex 
graph structures such as PPI networks present unique challenges and opportunities that remain 
largely unexplored within the current methodological framework. 

We present a novel framework for VF identification based on PPI networks, which integrates 
both generative and contrastive self-supervised learning strategies. Specifically, we construct local 
subgraphs centered on target proteins and generate multi-view representations through data 
augmentation strategies. These subgraph views are processed through GNNs to learn latent node 
representations. During the self-supervised learning phase, generative learning captures the inherent 
distributional characteristics of the data through node aĴribute reconstruction, while contrastive 
learning performs node-level comparisons between different views to effectively capture both local 
node features and contextual information. The learned latent representations are then utilized by a 
classifier for VF prediction. Experimental results on multiple real-world PPI network datasets 
demonstrate the effectiveness and robust performance of the new model we have proposed. The key 
contributions can be summarized as follows: 
 We employ GNNs to identify VFs leveraging PPI networks. This approach inte-grates both 

topological information from PPI networks and protein sequence fea-tures. Notably, we pioneer 
in transforming the VF identification task into a class-imbalanced node classification problem 
within the graph domain. 

 We propose a novel framework for VF identification that combines generative and contrastive 
self-supervised learning. Through aĴribute reconstruction and multi-view contrast, these two 
approaches work synergistically to enhance model performance in imbalanced classification 
tasks. 
We conduct comprehensive experimental evaluations across three PPI datasets, benchmarking 

our approach against available VF identification baseline models. The experimental results 
consistently demonstrate that our method achieves notable performance across multiple evaluation 
metrics. 

2. Materials and Methods 
As illustrated in Figure 3, the GC-VF framework's overall architecture comprises three 

components: protein sequence encoding, generative and contrastive self-supervised learning, and VF 
probability prediction. During the protein sequence encoding phase, the model encodes amino acid 
sequence features through multiple layers of deep neural networks, transforming them into protein 
sequence representations that are conducive to subsequent tasks. Subsequently, leveraging PPI 
networks, the model employs a hierarchical sampling strategy to construct local subgraphs of target 
proteins. Through data augmentation techniques, multi-view features essential for contrastive 
learning are generated. These views undergo information aggregation via GNNs, which enhance 
node representations by capturing more effective features. 
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Figure 3. The overall framework of the GC-VF. 

In the self-supervised learning module, generative learning captures the intrinsic feature 
distribution of proteins by node aĴribute reconstruction tasks, while contrastive learning focuses on 
optimizing discriminative features between nodes by minimizing feature distances between positive 
samples and maximizing those between negative samples. Combining these approaches enables the 
model to take account of both global distribution and local variations in the data. Node-level 
generative and contrastive objectives inhibit decision-making from being dominated by global 
structural paĴerns, thus more precisely capturing the inherent characteristics of individual nodes. 
Finally, the model inputs the learned node representations into a classifier and utilizes the optimized 
features for VF prediction. 

2.1. Datasets 

Since the proportion of VFs in most bacterial strains is relatively low, three species with a 
moderate proportion of VFs are selected for analysis: Salmonella enterica serovar Typhimurium LT2, 
Campylobacter jejuni NCTC 11168, and Staphylococcus aureus NCTC 8325. Protein sequence data and 
PPI network data for these three strains are obtained from the STRING database while corresponding 
VFs’ information is retrieved from the VFDB database [41]. Following the combined score threshold 
seĴings of the STRING database, only interaction relationships with a combined score greater than 
or equal to 0.4 are retained. To achieve a more comprehensive understanding of the characteristics 
inherent in each dataset, we calculate the basic properties of the PPI networks for these three strains 
and the class imbalance ratio (defined as the ratio of the number of samples in the largest class to that 
in the smallest class) [42] for each dataset. The relevant data is summarized in Table 1. Specifically, 
the numbers of VFs in the three strains are 156, 130, and 97, respectively. Furthermore, the class 
imbalance ratios in the selected datasets are 27.53, 11.48, and 31.72, respectively, all of which are 
notably high, indicating significant class imbalance. 

Table 1. Dataset Statistics. 

Dataset Nodes Edges VFs Imbalance Ratio 
S. enterica serovar 
Typhimurium LT2 

4451 86605 156 27.53 

C. jejuni NCTC 11168 1623 81710 130 11.48 
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S. aureus NCTC 8325 2847 79578 87 31.72 

2.2. Protein Sequence Encoding 

Currently, significant advances have been achieved in extracting protein features from amino 
acid sequences through the application of protein language models [43,44]. In particular, the 
extracting method of amino acid embedding proposed in reference [45] has demonstrated substantial 
improvements in PPI-related tasks. This method implements a dual-component embedding 
representation: the first leverages amino acid sequences to compute co-occurrence similarities via a 
pre-trained Skip-Gram model [46], while the second component employs one-hot encoding to 
capture electrostaticity and hydrophobicity similarities among amino acids [47]. Extending this 
amino acid embedding framework, Reference [48] develops a multi-layer deep neural network 
architecture to generate protein feature representations optimized for PPI network input. This 
architecture combines four types of layers, namely convolutional layers (Conv1d), pooling layers, 
bidirectional gated recurrent units (BiGRU), and fully connected layers (FC). In our present work, we 
utilize this combination of amino acid embedding method and multi-layer deep neural network 
architecture with an additional dropout layer to generate node feature representations that effectively 
characterize both global and local protein sequence properties. These refined feature embeddings 
establish a robust foundation for subsequent graph learning processes that incorporate PPI networks. 

2.3. Generative and Contrastive Protein Representation Learning 

2.3.1. Graph View Establishment 

Based upon the protein sequence encoding module, which is responsible for transforming 
protein sequences into node feature embeddings essential for GNNs, we employ a hierarchical 
neighborhood sampling method to construct local subgraphs [21] to further mine the structural 
information within PPI networks. Specifically, within each batch iteration, we initially select target 
proteins as center nodes from the PPI network through sampling without replacement. Next, we 
construct local structures through a two-layer neighborhood sampling approach: randomly sampling 
𝐾ଵ nodes from first-order neighbors that have direct physical interactions with the center protein, 
and further sampling 𝐾ଶ  second-order neighbor nodes for each selected first-order neighbor, 
thereby constructing an original view centered on the target protein. The first-order neighbors 
capture direct interaction relationships, while the incorporation of the second-order neighbors 
facilitates the detection of potential indirect interaction paĴerns. Then, we introduce Gaussian-
distributed random noise into the protein features of the original view, forming an augmented view. 
Subsequently, both the original and augmented views are processed as dual-stream inputs through 
the GNNs, enabling the aggregation of multi-scale neighborhood information and facilitating the 
learning of contextual protein representations within the PPI network. 

2.3.2. Generative AĴribute Reconstruction 

The basic principle of an autoencoder is to map the input data into a latent representation space 
through an encoder, followed by the reconstruction of the original input through a decoder. Within 
the context of graph data, this architecture not only facilitates the learning of latent node 
representations but also enables the capture of intrinsic association paĴerns between nodes through 
reconstruction tasks in an unsupervised manner. 

For node aĴribute reconstruction, we implement a strategic approach by not employing target 
node anonymization (seĴing features to zero), instead enabling the original aĴributes of target nodes 
to participate directly in the information aggregation process. This decision stems from the 
consideration that virulence proteins do not manifest strong homophily in their interaction paĴerns. 
Therefore, the non-anonymized reconstruction approach facilitates more precise capture of critical 
shared features between target nodes and their neighborhood nodes, while circumventing the 
introduction of irrelevant noise that might emerge from excessive reliance on neighborhood 
information. 
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The PPI network is formally defined as 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of protein nodes 
and 𝐸 represents the set of interaction relationships. For each target node 𝑖 ∈ 𝑉, views  𝐺௜

௢௥௜  and 
𝐺௜

௔௨௚
  derive from sampling and feature augmentation procedures, respectively. Notably, the 

augmentation operation exclusively modifies node features while preserving structural consistency 
between the two views, yielding identical adjacency matrices. 

The GNN architecture facilitates node representation updates through iterative neighbor 
information propagation, effectively mapping high-dimensional features onto a low-dimensional 
space. In the initial phase, the original subgraph 𝐺௜

௢௥௜  of target node 𝑖 is processed through a multi-
layer GNN encoder, which can be formally represented as 

𝐡௜
(௟)

= GNN௘௡௖൫𝐡௜
(௟ିଵ)

, 𝐀௜൯ (1)

where 𝒉௜
(௟)  represents the latent embedding of node 𝑖  at the 𝑙 -th layer of the GNNs. 𝐀௜   is the 

adjacency matrix of the subgraph sampled for node 𝑖. The GNN௘௡௖(∙) is a GNN encoder consisting 
of 𝐿 layers. The multi-layer structure enables to gradually aggregate node information from more 
distant neighbors and effectively capture the multi-level collaborative paĴerns among proteins. Each 
layer of the GNN is defined as follows 

𝐡௜
(௟)

= UPDATE(𝐡௜
(௟ିଵ)

, AGGREGATE({𝐡௝
(௟ିଵ)

, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ 𝑆(𝑖)})) (2)

where 𝑆(𝑖) represents the set of adjacent nodes in the subgraph sampled for node 𝑖. In particular, 
at the input stage, 𝐡௜

(଴)
= 𝐱௜

௢௥௜, representing the initial encoded feature of the protein sequence of the 
node. 

The architecture allows for various GNN implementations, including Graph Convolutional 
Network (GCN) [19], Graph AĴention Network (GAT) [20], and Graph Isomorphism Network (GIN) 
[49], each employing distinct neighbor aggregation strategies. In this study, we employ GraphSAGE 
[21] as the backbone network due to its robust generalization capabilities, achieved mainly by 
training a set of aggregator functions rather than individual node embeddings. The specific 
formulation of GraphSAGE is as follows 

𝐡௜
(௟)

= 𝜎(𝐖 ⋅ CONCAT(𝐡௜
(௟ିଵ)

, AGGREGATE(𝑒௝௜𝐡௝
(௟ିଵ)

, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ 𝑆(𝑖)))) (3)

where 𝜎(∙)  is the ReLU [50] activation function, 𝐖  represents the weight matrix, and 𝑒௝௜ 
represents the weight of the edge between the node pair (𝑗, 𝑖). The incorporation of edge weights 
enables the model to differentiate varying interaction strengths between protein pairs, reflecting their 
distinct collaborative importance in biological processes. The model firstly performs weighted 
aggregation of features from all neighboring nodes of node 𝑖 in the subgraph and then concatenates 
the aggregated information with the feature of node 𝑖 at the (𝑙 − 1)-th layer to obtain the latent 
representation at the 𝑙-th layer. 

The decoder transforms the encoder-generated node embeddings back to original node features, 
guiding the encoder toward more significant node representations while keeping capturing latent 
structural graph relationships. The decoder utilizes a multi-layer perceptron (MLP) with an 
architecture matching the encoder in terms of layer count and parameters, which can be denoted as 

 𝐱ෝ 𝒊
𝒐𝒓𝒊 = MLPௗ௘௖(𝐡௜

(௅)
)  (4)

where the MLP decoder implements two-layer architectures: MLP(𝐡𝒊) = 𝐖(ଶ)𝜎(𝐖(ଵ)𝐡𝒊) .  
Specifically, the decoder transforms the 𝐿 -th layer node representation 𝐡௜

(௅)
  into a reconstructed 

original encoded feature 𝐱ො𝒊
𝒐𝒓𝒊 through a series of non-linear transformations. 

The generative self-supervised learning framework optimizes itself by minimizing the 
reconstruction error between decoder-generated and origin embeddings. The mean squared error 
(MSE) quantifies the reconstruction loss, which can be specifically wriĴen as 

ℒ௚௘௡ =
1

𝑁
෍

1

𝑑

ே

௜ୀଵ

∥  𝐱௜
௢௥௜ − 𝐱ො ௜

𝒐𝒓𝒊 ∥ଶ  (5)
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where 𝑑  denotes the dimension of the original encoded feature  𝐱௜
௢௥௜ . Through minimization of 

reconstruction loss, the model learns to extract feature paĴerns shared between the target node and 
neighboring nodes during reconstruction. 

2.3.3. Multi-View Local-Local Contrasting 

Contrastive learning, an unsupervised learning method, facilitates the exploration of structural 
information and node relationships to learn feature similarities and differences, offering novel 
approaches for identifying potential virulence proteins. However, virulence proteins, within PPI 
networks, compared to their non-virulence counterparts, typically struggle to form stable subgraph 
features. This characteristic presents significant challenges for graph-level contrastive learning in 
extracting positive sample features from heavily-imbalanced virulence protein subgraphs. Pooling 
subgraph features as positive samples in contrastive learning may disproportionately reflect non-
virulence protein paĴerns, potentially compromising virulence protein feature learning. To address 
this challenge, we implement a node-level (local-local) contrastive scheme enabling independent 
optimization of individual node features.  

Specifically, the encoded features 𝐱௜
௢௥௜  from original-view and 𝐱௜

௔௨௚
 from augmented-view of the 

target node 𝑖  are processed through a shared GNN encoder GNN௘௡௖(∙)  to generate node 
embeddings 𝐡௜

௢௥௜   and 𝐡௜
௔௨௚ . To enhance representation quality, we incorporate a projection head 

Projector(∙), implementing a two-layer MLP that projects node features onto a new feature space. 
Within this space, positive sample pair features exhibit increased proximity while negative sample 
pairs maintain greater separation, thereby improving representation quality [51]. This process is 
formalized as 

𝐳𝒊
𝒐𝒓𝒊  =  Projector(𝐡௜

௢௥௜)  (6)

𝐳𝒊
𝒂𝒖𝒈

 =  Projector(𝐡௜
௔௨௚

)  (7)

During node-level contrastive instance sampling, 𝐳𝒊
𝒐𝒓𝒊  from the original view serves as the 

anchor, while 𝐳𝒊
𝒂𝒖𝒈 from the augmented view as the positive sample. For negative sample selection, 

inspired by GRACE [52], we employ a mixed sampling strategy across and within views: node 
embeddings excluding node 𝑖 in the original view are selected as negative samples to enhance intra-
view relationship understanding, while nodes other than the positive sample in the augmented view 
are selected to improve inter-view discrimination capability. 

The contrastive self-supervised learning objective simultaneously minimizes representation 
distance between similar samples while maximizing it between dissimilar samples. We employ 
InfoNCE [51] to compute contrastive loss, maximizing mutual information between random events, 
which is a practical and powerful tool for extracting shared data information. The InfoNCE loss can 
be formulated as 

ℒ௖௢௡  = −
1

𝑁
෍ log

ே

௜ୀଵ

exp൫sim൫𝐳௜
௢௥௜ , 𝐳௜

௔௨௚
൯ 𝜏⁄ ൯

exp൫sim൫𝐳௜
௢௥௜ , 𝐳௜

௔௨௚
൯ 𝜏⁄ ൯ + NSC௜

  (8)

where sim(𝐡௩ , 𝐡௨) denotes the cosine similarity between the node features of 𝑣 and 𝑢, calculated 
as  

𝐡ೡ𝐡ೠ

∥𝐡ೡ∥∥𝐡ೠ∥
. The temperature coefficient 𝜏 modulates similarity distribution sharpness, with smaller 

values producing more concentrated distributions and larger values yielding smoother distributions. 
NSC௜  represents negative sample contribution to the loss function, computed as 

 NSC௜ = ෍ exp (sim൫𝐳௜
௢௥௜ , 𝐳௝

௢௥௜൯ 𝜏⁄
௝∈ ೔ீ

೚ೝ೔,௝ஷ௜
+ ෍ exp (sim൫𝐳௜

௢௥௜ , 𝐳௞
௔௨௚

൯ 𝜏⁄
௞∈

೔ீ
ೌೠ೒

,௞ஷ௜
 (9)

where the first term aggregates similarity contributions from original-view negative samples to the 
anchor node, while the second term computes augmented-view negative sample contributions. 
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2.4. VF Prediction 

The protein embeddings optimized through self-supervised modules achieve an integration of 
protein sequences, physicochemical properties, as well as contextual information derived from the 
PPI network. These embeddings are subsequently processed through a classifier to predict VFs. The 
classifier architecture incorporates a FC layer and a Dropout layer, the laĴer of which effectively 
mitigates overfiĴing. The final output is transformed into a probability value via the sigmoid 
activation function. The classifier can be mathematically expressed as 

𝑦ො௜ = 𝜑(𝐖 ⋅ Dropout(𝐡𝒊
𝒐𝒓𝒊) + 𝑏) (10)

where 𝐡𝒊
𝒐𝒓𝒊 denotes the protein embedding of node 𝑖 learned by the GNN, 𝐖 represents the FC 

layer weight matrix, 𝑏 is the bias term, and 𝜑 represents the sigmoid activation function. 
To address class imbalance in VF prediction, we implement Focal loss [53] for classification loss. 

The Focal loss dynamically adjusts sample weights, diminishing easily-classified sample 
contributions while amplifying difficult-to-classify sample importance, thereby enhancing minority 
class recognition capabilities. The focal loss calculation introduces an intermediate variable 𝑝𝑡௜  , 
which is a combination of the true label and the predicted probability, and its specific definition is as 
follows 

  𝑝𝑡௜ = 𝑦௜𝑦ො௜ + (1 − 𝑦௜)(1 − 𝑦ො௜) (11)

where 𝑦ො௜ represents the predicted probability, and 𝑦௜  is the true label. The complete form of the 
focal loss can be formulated as 

ℒ௖௟௦ = −
1

𝑁
෍[𝜆(1 − 𝑝𝑡௜)

ఊlog (𝑝𝑡௜)]

ே

௜ୀଵ

 (12)

where 𝜆 represents the class weight coefficient balancing positive and negative sample contributions, 
and 𝛾 denotes the focusing parameter controlling aĴention distribution between easy and difficult 
samples. 

The final loss function integrates three essential components: reconstruction loss ℒ௚௘௡  , 
contrastive loss ℒ௖௢௡  , and classification loss ℒ௖௟௦  . Self-supervised learning components are balanced 
by coefficients 𝛼 and 𝛽 

  ℒ = 𝛼ℒ௚௘௡ + 𝛽ℒ௖௢௡ + ℒ௖௟௦  (13)

The overall workflow of the proposed GC-VF framework is shown in Algorithm 1. Firstly, we 
sample a batch of protein nodes from the PPI network. For each target node, we generate its original 
view and augmented view, then input these two views into the shared GNN encoder to extract the 
embeddings of the target node. After that, we decode and restore the target node embeddings in the 
original view and calculate the reconstruction loss. Next, we input the target node embeddings from 
the two views into the projection head and project them onto a new embedding space. Subsequently, 
we adopt a mixed sampling strategy between and within views for node-level contrastive learning 
and calculate the contrastive loss. Finally, we combine the generation, contrastive, and classification 
tasks, train the model through joint optimization of multiple objectives, and perform predictions on 
proteins. 

3. Results 
3.1. Experimental SeĴings 

In experimental implementation, a two-layer GraphSAGE is employed as the GNN backbone, 
utilizing LSTM as the aggregation function. Given that the protein sequence encoding module 
generates embeddings of 256 dimensions, we configure the GNN architecture with hidden 
dimensions of 128 and 64 for the first and second layers, respectively. The noise hyperparameter is 
configured at 0.1, and the InfoNCE loss temperature hyperparameter is set to 0.03. For the composite 
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loss function, we assign a coefficient of 0.4 to the generative loss. As for the contrastive loss, its 
coefficient varies depending on the dataset, being set to either 0.6 or 0.2. The focal loss 
hyperparameters 𝜆 and 𝛾 are set to 0.25 and 2. The subgraph sampling is established at a size of (6, 
6), resulting in a subgraph with the size of 37 nodes for each target node. 

For performance evaluation, we employ two primary metrics: the Area Under the Receiver 
Operating Characteristic Curve (AUROC) and the Area Under the Precision-Recall Curve (AUPRC). 
The AUROC provides a comprehensive assessment of the model's discriminative capability between 
positive (majority) and negative (minority) samples, while the AUPRC specifically emphasizes 
performance on positive samples. To ensure a thorough evaluation, we incorporate additional 
supplementary metrics: sensitivity, specificity, F1-score, and MaĴhews Correlation Coefficient 
(MCC). Sensitivity is specifically utilized to evaluate positive sample identification capability, while 
specificity measures its discriminative ability for negative samples. The F1-score adeptly balances the 
accuracy and recall evaluations of positive class prediction, and the MCC comprehensively 
contemplates various prediction outcomes, rendering them particularly appropriate for the 
evaluation of imbalanced datasets. 

Our model is trained using the Adam optimizer, with a learning rate of 0.001 and a weight decay 
coefficient of 0.0001. The datasets are partitioned into training, validation, and test sets in a 6:2:2 ratio. 
Throughout the training process, a total of 131 epochs are carried out, and the model's performance 
is scrutinized on the validation set every 10 epochs. The optimal model is then selected and archived. 
During the testing phase, the model is subjected to 100 trials on the test set, and the average of the 
results is adopted as the final performance indicator. To expedite and optimize the training process, 
the batch size is set to 300. The GC-VF model is executed on a NVIDIA GeForce RTX 3080 GPU. 

Algorithm 1. The key algorithm for the proposed GC-VF framework 
Input: PPI graph 𝐺 = (𝑉, 𝐸) , Initial protein embeddings 𝐱௜ , Maximum 
number of training epochs 𝑇, Batch size 𝐵 
Output: VF prediction probability 𝑦ො௜ 
1: for each training epoch 𝑡 ∈ {1,2, … , 𝑇} do: 
2:   Randomly divide the protein nodes 𝑉 into batches of size 𝐵. 
3:   for each batch 𝑏 = {𝑣ଵ, 𝑣ଶ, … , 𝑣஻} do: 
4:     for each node 𝑣௜ in 𝑏 do: 
5:       Randomly sample a second-order subgraph of 𝑣௜ as 𝑆௜

௢௥௜, and  
generate 𝑆௜

௔௨௚ by adding Gaussian noise to the features. 
6:       Compute the protein embeddings  𝐡௜

௢௥௜ and 𝐡௜
௢௥௜ from the 

GNN encoder using the embeddings of both views, 𝐱௜
௢௥௜ and 

𝐱௜
௔௨௚, via Eq. (3). 

7:       Perform aĴribute reconstruction on 𝐡௜
௢௥௜ via Eq. (4) to obtain 

the reconstructed protein aĴribute  𝐱ො𝒊
𝒐𝒓𝒊. 

8:       Calculate the reconstruction loss ℒ௚௘௡ using Eq. (5) between 
 𝐱௜

௢௥௜  and 𝐱ො𝒊
𝒐𝒓𝒊. 

9:       Project the GNN-encoded target node embeddings from the 
𝐺௜

௢௥௜  and 𝐺௜
௔௨௚ by the projection head to obtain latent  

embeddings via Eq. (6) and Eq. (7), respectively. 
10:       Perform contrastive learning using  𝐳𝒊

𝒐𝒓𝒊 and 𝐳𝒊
𝒂𝒖𝒈 to  

compute contrastive loss ℒ௖௢௡ via Eq. (8). 
11:       Calculate the classification loss ℒ௖௟௦ for VF prediction via  

Eq. (12). 
12:       Update the model parameters by backpropagating the total loss 

ℒ via Eq. (13). 
13:     end for 
14:   end for 
15: end for 
16: Predict the virulence factor probability 𝑦ො௜ for node 𝑣௜ via Eq. (11). 
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3.2. Methods Comparison 

To comprehensively evaluate method performance in VF prediction, we conduct experiments 
on three representative bacterial strain datasets: S. enterica serovar Typhimurium LT2, C. jejuni NCTC 
11168, and S. aureus NCTC 8325. These datasets exhibit VF ratios of 3.5%, 8.0%, and 3.1% respectively, 
reflecting the characteristic class imbalance encountered in real-world applications. 

For comparative analysis, we select four representative baseline methods: BLAST [5], which is 
predicated on sequence similarity; the classical machine learning approach, VirulentPred 2.0 [54]; as 
well as DeepVF [8], a hybrid method combining traditional machine learning and deep learning; and 
DTVF [12], which is based on deep learning. The BLAST implementation involves constructing a local 
sequence database, wherein test sequences are queried and predictions are made based on the 
highest-similarity matches within training samples. Considering the evaluations of VirulentPred 2.0 
and DeepVF, the default parameter configurations provided by their respective web platforms are 
adopted. When implementing DTVF, ProtT5 is initially utilized to generate representations of protein 
sequences, followed by the employment of its pre-trained method for prediction. 

In performance evaluation, we employ multiple complementary metrics. The AUROC baseline 
of 0.5 represents random classifier performance, while AUPRC baselines vary with positive sample 
proportions, corresponding to 0.035, 0.08, and 0.031 for the three datasets respectively. The 
experimental results presented in Table 2 demonstrate that our proposed GC-VF method exhibits 
notable overall performance. 

Analysis of experimental results reveals that while certain baseline methods have achieved high 
accuracy on specific datasets, such apparent advantages may mask underlying classification 
limitations. These methods often exhibit high specificity, showing a tendency to classify samples into 
the majority negative class. In scenarios with substantial class imbalance, while this tendency might 
yield favorable accuracy and specificity metrics, the actual discriminative capability remains limited. 
Thus, comprehensive evaluation necessitates consideration of multiple metrics, particularly 
sensitivity and AUPRC. 

Notably, we observe that some methods often struggle to maintain adequate specificity while 
aĴempting to enhance sensitivity. For instance, VirulentPred 2.0, despite demonstrating high 
sensitivity, achieves a low F1-score, indicating that increased recall comes at the cost of precision, 
resulting in numerous false positive predictions. This observation underscores the importance of 
balancing various performance metrics in VF prediction and highlights the GC-VF framework's 
capability in effectively harmonizing these competing objectives. 

Table 2. Performance comparison of different methods for VF prediction. 

Dataset Method Accuracy Sensitivity Specificity F1-score MCC AUPRC AUROC 

S. enterica 
serovar 

Typhimuri
um LT2 

BLAST 0.9560 0.4839 0.9731 0.4348 0.4145 0.3440  
VirulentPred 2.0     0.6979 0.9677 0.6881 0.1829 0.2552 0.0989  

DeepVF 0.9008 0.3548 0.9208 0.2018 0.1788 0.2593 0.7942 
DT-VF 0.9651 0.3548 0.9871 0.4151 0.4038 0.2761 0.8678 
GC-VF 0.9941 0.9058 0.9973 0.9140 0.9119 0.9572 0.9972 

C. jejuni 
NCTC 
11168 

BLAST 0.8738 0.3462 0.9197 0.3051 0.2388 0.3356 0.8738 
VirulentPred 2.0     0.4831 0.9231 0.4448 0.2222 0.2025 0.1228  

DeepVF 0.6440 0.7308 0.6364 0.2484 0.2045 0.4510 0.6695 
DT-VF 0.6800 0.8077 0.6689 0.2877 0.2679 0.1817 0.7622 
GC-VF 0.9588 0.6877 0.9824 0.7276 0.7107 0.7365 0.9482 

S. aureus 
NCTC 8325 

BLAST 0.9579 0.3529 0.9765 0.3333 0.3122 0.3440  
VirulentPred 2.0     0.4614 1.0000 0.4448 0.0997 0.1528 0.0525  

DeepVF 0.5554 0.8750 0.5456 0.1041 0.1427 0.4670 0.7021 
DT-VF 0.9035 0.4706 0.9168 0.2254 0.2250 0.1678 0.8171 
GC-VF 0.9889 0.7524 0.9961 0.8005 0.7990 0.8107 0.9460 
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3.3. Analysis of Graph-Based Approaches 

We conduct comprehensive evaluation of various graph methods on three bacterial strain 
datasets, categorized into two primary classes: graph learning and graph construction. To ensure 
experimental validity, consistent datasets and hyperparameter seĴings are maintained across all 
methods. 

Among the graph learning methods, we primarily evaluate three prominent GNN architectures: 
GraphSAGE, GCN, and GAT. GraphSAGE aims to train aggregator functions and has multiple 
aggregator architectures, including the Mean aggregator, LSTM aggregator, and Pooling aggregator. 
Moreover, GraphSAGE-GCN, a convolutional variant of GraphSAGE, is an extended inductive 
version of GCN.  

In terms of graph construction methods, we explore several graph construction strategies: the 
PPI networks, the Cosine Similarity Graph (CSG), and the BLAST Similarity Graph (BSG). The CSG 
model computes the cosine similarity between protein feature vectors and constructs the graph using 
a threshold of 0.5. The BSG model, on the other hand, calculates protein sequence similarities via 
BLAST and retains edges with an E-value below 20. In addition, we set a baseline method without 
using a graph structure (MLP-NS), which directly inputs the embeddings encoded from protein 
sequences into an MLP classifier. Notably, both the CSG and BSG models utilize GraphSAGE-LSTM 
for graph learning. 

Figures 4(a) and 4(b) present comparative AUROC and AUPRC metrics across the three bacterial 
strain datasets. In the experiments PPI of graph-based GNN variant, GraphSAGE models consistently 
outperform GCN and GAT, with superior performance from LSTM and Pooling aggregators. The 
LSTM aggregator achieves optimal performance, primarily due to its distinctive sequence processing 
mechanism. By establishing continuous dependency chains between nodes, it effectively captures 
complex neighbor relationships which might enhance the GNNs' expressive capacity in neighbor 
feature aggregation, enabling more comprehensive node-dependency modeling. Meanwhile, the 
Pooling aggregator, by adaptively identifying key features from neighbors, focuses aĴention on 
important information for VF prediction. 

Experimental results reveal significant performance degradation when excluding PPI network 
structure. While both CSG and BSG approaches based on sequence similarity capture certain protein 
relationships, they inadequately express complex biological interactions. This characteristic 
underscores the PPI network's advantage in capturing protein functional relationships: sequence 
similarity alone does not equate to functional similarity. For instance, proteins with similar sequences 
may not participate in identical biological pathways, whereas PPI graphs beĴer reflect proteins' 
synergistic effects through real biological interactions. Furthermore, even advanced sequence-based 
models (e.g., CNN, GRU) underperform graph-based methods. This suggests that graph structures 
have more potential to capture protein feature relationships, compensating for the limitations of 
sequence-only models. 
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Figure 4. Performance comparison of graph learning and construction approaches. 

3.4. Analysis of Graph-Based Approaches 

We conduct comprehensive experiments to evaluate how various key hyperparameters 
influence our proposed framework's performance. The analysis focuses on four critical 
hyperparameters: noise hyperparameter, temperature hyperparameter, subgraph sampling size, and 
loss function balance factors. Below we present our detailed findings. 

In our contrastive learning setup, we generate an augmented view by applying Gaussian noise 
to the original node features. The noise, following a standard normal distribution, is controlled by a 
hyperparameter that determines the perturbation magnitude. We test noise hyperparameter values 
throughout the set {0.001, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7} and evaluate performances using 
AUROC and AUPRC, as illustrated in Figures 5(a) and 5(b). Our findings reveal that moderate noise 
levels improve model performance, though the effect varies from dataset to dataset. Excessive noise 
(above 0.1) significantly degrades performance by disrupting feature integrity. Through extensive 
testing, we determine that a noise hyperparameter of 0.1 provides an optimal balance between data 
diversity and stability across datasets. 

The temperature hyperparameter  𝜏  in the InfoNCE loss governs the model's ability to 
distinguish between positive and negative samples. Our experiments, spanning  𝜏 values within the 
set {0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 1.0}, reveal dataset-specific sensitivities to this 
hyperparameter (Figures 5(c) and 5(d)). When seĴing  𝜏 = 0.01, an abnormal situation occurs where 
the model outputs NaN (Not a Number) values. This indicates that the selected value for this 
parameter is rather diminutive, failing to support stable operations of the model. Consequently, in 
subsequent experiments regarding the seĴing of this hyperparameter, we initiate the range from 0.03 
to avoid such instabilities and further explore the optimal configuration. Based on extensive testing, 
we finally select  𝜏 = 0.03 as the optimal value, delivering consistent and superior performance across 
most datasets. 
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Figure 5. Sensitivity analysis of noise and temperature hyperparameters on GC-VF performance. 

We implement a two-layer subgraph sampling strategy, denoted as (𝐾₁, 𝐾₂), where 𝐾₁, 𝐾₂ ∈ {2, 
3, 4, 5, 6, 7} and 𝐾₂ ≤  𝐾₁. Results shown in Figure 6 indicate that subgraph size particularly affects 
AUPRC, while AUROC remains more stable. Larger first-layer sampling (𝐾₁ ) generally enhances 
performance, suggesting beĴer capture of local information characteristics. Similarly, increased 
second-layer sampling ( 𝐾₂ ) improves AUPRC, highlighting the importance of second-order 
neighborhood information in modeling contextual relationships. Balancing performance and 
computational efficiency, we establish (𝐾₁, 𝐾₂) = (6,6) as optimal sampling hyperparameters. 

 

Figure 6. Impact of subgraph sampling size on GC-VF performance. 
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Finally, we explore how the coefficients 𝛼 and 𝛽 in loss function (13) affect model performance 
by modulating the influence of generative and contrastive self-supervised modules. Given that self-
supervised learning serves an auxiliary role to classification, we constrain both 𝛼 and 𝛽 to (0, 1]. 
We set the coefficients in a range of {0.2, 0.4, 0.6, 0.8, 1.0}  and conducted a comprehensive 
exploration of different combinations within this range. Results in Figure 7 show that small 
coefficients (𝛼 = 0.2, 𝛽 = 0.2) lead to suboptimal performance due to insufficient feature learning, 
while large values (𝛼 = 1.0, 𝛽 = 1.0) compromise classification capability by overemphasizing self-
supervised tasks. The C. jejuni NCTC 11168 dataset shows particular sensitivity to the generative loss 
coefficient 𝛼, performing best with high 𝛼 and low 𝛽 values (𝛽 = 0.2). Conversely, the S. enterica 
serovar Typhimurium LT2 dataset exhibits performance degradation at 𝛼 = 1.0, suggesting dataset-
specific dependencies on different self-supervised learning modules. Based on these findings, we 
standardize 𝛼 at 0.4 while allowing 𝛽 to vary by dataset: 𝛽 = 0.2 for S. aureus NCTC 8325 and 𝛽 = 
0.6 for the other datasets, achieving optimal cross-dataset performance. 

 

Figure 7. GC-VF performance variation with different 𝛼 and 𝛽 combinations. 

3.5. Ablation Study 

To systematically evaluate the GC-VF framework's key components, we conduct a series of 
ablation experiments. We test several variant models by removing specific modules: the generative 
aĴribute reconstruction module (GC-VF w/o Gen), the local contrastive learning module (GC-VF w/o 
Con), and the self-supervised learning module (GC-VF w/o SL). Additionally, we evaluate variants 
of the GraphSAGE encoder without edge weights (GC-VF w/o EW) and with binary cross-entropy 
loss replacing focal loss (GC-VF w/ BCE). Table 3 presents the comparative results across all three 
datasets. 

Our experiments reveal that the complete GC-VF model, incorporating both generative and 
contrastive learning for self-supervision, achieves notable performance across all datasets. The 
ablation studies demonstrate that removing any self-supervised module results in performance 
degradation. Notably, the combined implementation of both modules produces performance 
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improvements exceeding their individual contributions, confirming positive and effective synergy 
between these self-supervised strategies. However, we observe distinct variations in module 
contributions across different datasets. For the S. enterica serovar Typhimurium LT2 and C. jejuni 
NCTC 11168 datasets, the removal of the generative module results in minimal impact, suggesting 
contrastive learning's dominance in feature extraction. Conversely, for the S. aureus NCTC 8325 
dataset, the aĴempt to remove the generative module significantly degrades performance across 
multiple metrics, underlining its crucial role in feature learning. These variations suggest that 
bacterial strain datasets possess unique feature distribution paĴerns, leading to differential responses 
to various self-supervised learning strategies. 

The analysis of edge weights reveals their importance in model performance. Removing edge 
weights substantially degrades results, primarily because traditional feature aggregation methods 
fail to capture the nuanced intensity differences in PPI networks. Our statistical analysis of PPIs across 
the three datasets reveals distinctive paĴerns in interaction strengths: virulence protein interactions 
average a combined score of 0.7556, virulence to non-virulence protein interactions average 0.6037, 
and non-virulence protein interactions 0.6428. These findings indicate stronger interaction paĴerns 
between proteins of the same type, among which virulence proteins exhibit the strongest interaction 
paĴerns. This biological insight justifies our integration of edge weights into the framework. By 
incorporating these differentiated edge weights into the GNNs, our model effectively prioritizes 
strong interaction connections, particularly the high-intensity interactions between virulence 
proteins, during feature aggregation. This approach not only enhances the model's prediction 
capabilities but also aligns with established biological characteristics of PPI networks. 

Furthermore, the implementation of focal loss has proved effective in addressing class imbalance, 
even with default hyperparameter seĴings. The comparative analysis shows that replacing focal loss 
with binary cross-entropy loss results in performance degradation, highlighting focal loss's beneficial 
role in managing data imbalance challenges. 

Table 3. Ablation experiment results of GC-VF key modules across three datasets. 

Dataset Model Accuracy Sensitivity Specificity F1-score MCC AUPRC AUROC 

S. enterica 
serovar 

Typhimuri
um LT2 

GC-VF w/o Con 0.9906 0.8458 0.9959 0.8625 0.8596 0.9106 0.9929 
GC-VF w/o Gen     0.9922 0.8632 0.9969 0.8855 0.8831 0.9151 0.9889 
GC-VF w/o SL 0.9894 0.8055 0.9961 0.8414 0.8380 0.8754 0.9813 
GC-VF w/o EW 0.9873 0.8084 0.9938 0.8168 0.8132 0.8689 0.9915 
GC-VF w/ BCE 0.9775 0.7100 0.9872 0.6886 0.6823 0.7333 0.9824 

C. jejuni 
NCTC 
11168 

GC-VF 0.9941 0.9058 0.9973 0.9140 0.9119 0.9572 0.9972 
GC-VF w/o Con 0.8803 0.6046 0.9042 0.4482 0.4087 0.3591 0.8688 
GC-VF w/o Gen     0.9447 0.5323 0.9806 0.6070 0.5928 0.5921 0.8748 
GC-VF w/o SL 0.9287 0.4519 0.9701 0.5065 0.4937 0.4833 0.8323 
GC-VF w/o EW 0.9325 0.7012 0.9526 0.6249 0.6000 0.6013 0.9365 

S. aureus 
NCTC 8325 

GC-VF w/ BCE 0.9268 0.4646 0.9670 0.5061 0.4873 0.8428 0.4646 
GC-VF 0.9588 0.6877 0.9824 0.7276 0.7107 0.7365 0.9482 

GC-VF w/o Con 0.9856 0.6612 0.9955 0.7327 0.7401 0.7457 0.9535 
GC-VF w/o Gen     0.9806 0.7382 0.9880 0.6942 0.6877 0.6613 0.9296 
GC-VF w/o SL 0.9827 0.6835 0.9919 0.7035 0.7038 0.7301 0.9379 
GC-VF w/o EW 0.9841 0.6759 0.9936 0.7172 0.7141 0.6978 0.9342 
GC-VF w/ BCE 0.9867 0.7124 0.9951 0.7610 0.7585 0.7538 0.9013 

GC-VF 0.9889 0.7524 0.9961 0.8005 0.7990 0.8107 0.9460 

4. Discussion 
In this paper, we propose GC-VF, a novel VF identification framework based on PPI networks. 

GC-VF innovatively combines generative and contrastive self-supervised learning to enhance 
imbalanced node classification. The generative module generates robust node representations via 
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feature reconstruction, preserving essential protein characteristics, and the contrasting module 
enhances feature discrimination by maximizing/minimizing similarities of positive/negative 
instances, boosting the model's protein classification ability. Unlike methods relying solely on 
sequence features, GC-VF exploits systemic PPI networks information, aligning with the biological 
mechanism that pathogenesis arises from coordinated protein interactions. Experiments on three 
bacterial-strain datasets validate its effectiveness in VF identification, offering insights for bacterial 
pathogenesis research and targeted therapeutic development.  

However, PPI network-based approaches encounter two critical challenges: (1) strong coupling 
between protein features and network context, leading to transfer-learning difficulties across unseen 
networks; (2) hyperparameter optimization challenges arising from different network structures and 
data distributions, necessitating automated adaptive tuning to improve model efficiency and 
adaptability. 

In response to the aforementioned limitations, we propose several directions for future research. 
First, we aim to explore transfer-learning techniques, such as Domain-Adversarial Neural Network 
(DANN)[55] and Conditional Domain-Adversarial Neural Network (CDAN)[56] on graphs, which 
leverage adversarial training to align domains by learning shared feature representations between 
source and target networks, thereby improving model generalization on new PPI networks. Second, 
to address hyperparameter selection, we propose employing Bayesian optimization and random 
search for automatic exploration of the hyperparameter space. Additionally, we plan to leverage 
hyperparameters tuned on similar datasets to quickly fine-tune the model for different PPI network 
datasets. 
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